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We adopt the point of view that~Riemannian! classical and~loop-based! quantum descriptions of geometry
are macro- and microdescriptions in the usual statistical mechanical sense. This gives rise to the notion of
geometrical entropy, which is defined as the logarithm of the number of different quantum states which
correspond to one and the same classical geometry configuration~macrostate!. We apply this idea to gravita-
tional degrees of freedom induced on an arbitrarily chosen in space two-dimensional surface. Considering an
‘‘ensemble’’ of particularly simple quantum states, we show that the geometrical entropyS(A) corresponding
to a macrostate specified by a total areaA of the surface is proportional to the areaS(A)5aA, with a being
approximately equal to 1/16p l P

2 . The result holds both for cases of open and closed surfaces. We discuss
briefly physical motivations for our choice of the ensemble of quantum states.@S0556-2821~97!05006-6#

PACS number~s!: 04.60.Ds, 04.70.Dy

I. INTRODUCTION

Among the results of the loop approach to nonperturba-
tive quantum gravity there are several which tell us that the
picture of geometry on scales small as compared with our
usual scales~on Planckian scales! looks quite different from
the habitual picture of Riemannian geometry. The usual clas-
sical picture arises only as an approximation to a more fun-
damental quantum picture. The fundamental excitations of
the emerging quantum geometry are one-dimensional loop
excitations and the whole quantum picture is of essentially
discrete, combinatorial character.~See, for instance, recent
works @1,2#, which also contain extensive references to the
previous papers on the loop approach!.

Let us assume that we can formulate a reasonable ap-
proximation criteria, and for any classical geometry configu-
ration find the set of approximating quantum states. It is
natural to expect that if the precision of approximation is
chosen not too high, there will be a lot of quantum states
corresponding to the same ‘‘geometry.’’ It is quite tempting
to consider a usual Riemannian geometry description as a
macroscopical one and to regard all quantum states approxi-
mating a Riemannian metric as microstates corresponding to
the same macrostate. This point of view brings up a lot of
interesting possibilities.

Indeed, recall that with distinguishing between macro-
and microstates of a system the notion of entropy arises in
statistical mechanics. Entropy is a function which depends
on a macroscopic state of the system. It can be thought of as
a function which for each macroscopic state gives the~loga-
rithm of the! number of different microscopic states corre-
sponding to this macrostate. More precisely, the space of
states of the system should be divided into compartments,
where all microstates belonging to the same compartment are
macroscopically indistinguishable. Then the entropy of the

system in a macrostate is given1 by the logarithm of the
‘‘volume’’ of the compartment corresponding to this mac-
rostate.

Let us return to our quantum description of geometry. It is
natural to introduce a coarse graining of the space of quan-
tum states in such a way that quantum states approximating
different ‘‘geometries’’ belong to different compartments.
Having divided the space of states this way, it is natural to
introduce the function which for any geometry configuration
gives the logarithm of the ‘‘volume’’ of the corresponding
compartment. This gives rise to the notion ofgeometrical
entropy. Thus, geometrical entropy tells ‘‘how many’’ dif-
ferent quantum states there are which correspond to a given
geometry configuration. To be more precise, in the cases
when a compartment is itself a linear space the entropy is
given by the logarithm of the dimension of the corresponding
compartment.

In this paper we try to implement the idea of geometrical
entropy following a very simple choice of the ‘‘ensemble’’
of quantum states. Although some of our results are surpris-
ing, the aim of this paper is not to argue a physical signifi-
cance of the results obtained. Rather, in order to understand
if the general idea of geometrical entropy makes sense, we
consider a particularly simple case, in which the analysis can
be accomplished, and develop a technique that may prove to
be useful for future developments.

Our choice of the ‘‘ensemble’’ of quantum states is as
follows. First, we restrict our consideration to the gravita-
tional degrees of freedom of an arbitrary spacelike two-
dimensional surface. Namely, we consider Lorentzian 311
general relativity in the framework of~real! Ashtekar vari-
ables, and the quantization given by the loop quantum grav-
ity. We restrict our consideration to the gravitational system
induced by the full theory on some two-surfaceS

*Electronic mail address: krasnov@phys.psu.edu

1In fact, the usual thermodynamical entropy is proportional to this
number, but it is convenient to work in the units in which this
proportionality coefficient is chosen to be unity.
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embedded in the spatial manifoldS. Thus the degrees of
freedom of our system are just the degrees of freedom of
general relativity that live on a surfaceS. Second, we specify
a macrostate of our system simply fixing the total area of the
surfaceS. In this case, as we shall see later, it is easy to pick
up all quantum states which approximate a given macrostate,
and the analysis becomes almost straightforward. Thus, to
illustrate the general idea of geometrical entropy, we stick
here to the case when a macrostate of our system~which
‘‘lives’’ on the surfaceS) is specified simply by the total
areaA of S.

Let us note that such a statistical mechanical consider-
ation of surface degrees of freedom is of a special interest
because of its possible connection with the black hole ther-
modynamics. Indeed, there is a common belief that it is the
degrees of freedom living on the horizon surface of a black
hole which account for the black hole entropy. To try to
reveal the connection between quantum gravity and thermo-
dynamics that is suggested by black hole physics is one of
the motivations for our investigation.

The other, and maybe even more important motivation is
that the loop quantum gravity itself is a new approach. In
such a situation it is necessary to apply the formalism to
simple problems, just in order to see if it gives a reasonable
picture. The set of problems concerning statistical properties
of the theory might serve as one of such tests.

The paper is organized as follows. In the next section we
recall briefly how the surface quantum states look and dis-
cuss the issue of correspondence between macro- and micro-
descriptions. In Sec. III we calculate geometrical entropy of
surface degrees of freedom considering the case of an open
surface. Section IV contains a generalization of our result to
the case of closed surfaces. We conclude with the discussion.

II. SURFACE QUANTUM STATES

Let us recall the description of general relativity in terms
of ~real! Ashtekar variables. In the Hamiltonian framework
general relativity can be formulated as a theory of SU~2!
connection over the spatial manifold. The connection field
plays the role of a configurational variable; the momentum
variable is presented by the canonically conjugated field. The
dynamics of the theory is determined by a set of constraint
functionals.

The degrees of freedom induced on an arbitrarily chosen
surfaceS are described by pull-backs of the connection and
momentum fields intoS, which we shall denote byaa

AB and

ẽaAB, respectively (A,B stands for two component spinor
indices!. The ‘‘surface’’ momentum fieldẽaAB carries infor-
mation about the two-metric onS.

Let us describe the quantum theory. The loop quantization
of 311 general relativity is described in detail in@1,2#. For
our purposes it is sufficient to recall that there exists an or-
thogonal decomposition of the Hilbert space of gauge-
invariant states of quantum general relativity into subspaces,
which are labeled by the so-called spin networks. Spin net-
work states are labeled by closed graphs inS with spins~or,
equivalently, with irreducible representations of the gauge
group! assigned to each edge and intertwining operators as-
signed to each vertex of graph.

Let us now specify the space of quantum surface states.
Given a two-dimensional~2D! ~not necessarily closed! sur-
faceS embedded into the spatial manifoldS and a 3D spin
networkG one can consider the intersection of this spin net-
work with S. Let us call the intersection points vertices. Gen-
erally, there can be vertices of any valence not less than two2

~valence of a vertex is the number of edges of a spin network
state which meet in this vertex!. Also, there can be edges
lying entirely on the surfaceS among the edges ofG; we
shall call such edges tangential~see Fig. 1!. The intersection
of G with the surfaceS defines what we shall call a surface
spin network onS. A surface spin network is a graph lying
entirely on the surfaceS, with spins assigned to each edge,
and intertwining operators assigned to each vertex. The in-
tertwiners assigned to each vertex are just those of the cor-
responding 3D spin network. This means that vertices of a
2D surface spin network ‘‘remember’’ what were the spins
of the edges incident at the surface~see Fig. 2!. Note that our
definition of a surface spin network is not the canonical one.
A ‘‘canonical’’ surface spin network is defined as a graph
lying on the surface, with spins assigned to each edge, and
intertwiners assigned to each vertex. We use the term ‘‘sur-
face spin network’’ simply to denote the intersection of a 3D
spin network with the surfaceS, or, in other words, to denote
the ‘‘surface’’ part of information carried by a 3D spin net-
work. To avoid confusion, we shall also use the term ‘‘gen-

2In the case of theory without fermionic degrees of freedom,
which we consider here, the valence of vertices of a spin network
state should be not less than two in order to have a gauge-invariant
state. When fermionic degrees of freedom are present in the theory
valence of vertices can be equal to one. In this case open ends of a
spin network describe fermionic degrees of freedom~see@3#!.

FIG. 1. Vertex of a 3D spin
network ~a! and its intersection
with the surfaceS ~b!. Edges
1,2,3 are tangential ones.
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eralized surface spin network state.’’
The simplest nontrivial example of a surface spin network

is that coming from a single edge intersecting the surfaceS
~see Fig. 3!. Such a spin network is simply the pointv on
S, with the intertwining operator being the map from the one
copy of the representation spacer ( j ) @j here is the spin la-
beling the irreducible representation of SU~2!# to the other
copy of r ( j ). The intertwiner in this case is specified~up to
an overall constant! simply by the spinj attached to the
vertexv.

We define the spaceH of surface quantum states as the
space spanned by all~generalized! surface spin network
states. This definition means that the basis inH is formed by
surface spin network states, which gives us all that we need
for our counting purposes.

We can now recall that there exists a set of well defined

operatorsÂR , which ‘‘measure’’ quantum geometry ofS.
These operators correspond to areas of various regionsR of
the surfaceS ~see @1#!. It turns out that 3D spin network

states are eigenstates of operatorsÂR . The corresponding
eigenvalues are given by

As5 (
vPR

1

2
A2 j ~v !

d ~ j ~v !
d 11!12 j ~v !

u ~ j ~v !
u 11!2 j ~v !

u1d~ j ~v !
u1d11!. ~1!

Note that we measure areas in the units of 16p l P
2 , which is

convenient in the loop quantum gravity. Here the sum is
taken over all verticesv lying in the regionR of the surface
S; j (v)

u , j (v)
d , and j (v)

t are the total spins of edges lying up,
down, and tangential to the surface~see@1# for details!. Al-
though these operators are defined on 3D quantum states, the
eigenvalues~1! depend only on the ‘‘surface’’ part of the
information carried by a 3D spin network state. Therefore,
we can think ofÂR as operators defined on the~generalized!
surface spin network states, with eigenvalues given by Eq.
~1!.

As we have said in the Introduction, in this paper we are
going to consider a geometrical entropy that corresponds to a
macrostate specified simply by a total surface areaA. For
this simple case, the approximation criterion between macro-
and micro descriptions is straightforward. Namely, we can
say that a quantum state~microstate! approximates a given
macrostate if the mean value of the operatorÂS in this quan-
tum state is approximately equal to the fixed valueA. It is
straightforward to see that quantum states approximating to-
tal surface area form a linear subspace in the space of all
surface states. Its dimension is equal to the number of differ-
ent surface spin network states approximatingA.

Let us see now how many different quantum states ap-
proximate a given total area. It is easy to see that this number

is infinite. Indeed, loops on the surface, which are the sim-
plest possible parts of a surface spin network state, do not
give any contribution to the areas. Therefore, one has an
infinite number of spin networks which approximate one and
the same total area ofS being different only in configurations
of loops on the surface.

One can argue, however, that this happens because, using
terminology from statistical mechanics, a macrostate of our
system is not completely specified when we fix only a total
area of the surface. Indeed, areas of regions onS carry in-
formation only about degrees of freedom described byeAB

field. But there are also degrees of freedom described by the
pull-back of the connection field on the surface which one
should take care of when specifying a macrostate. Our guess
is that different configurations of loops on the surface from
the above example correspond to different classical configu-
rations of the connection field onS. Indeed, as we know, in
classical theory loop quantities are constructed as traced ho-
lonomies of the connection, and, therefore, are just those
objects which carry information about the connection field.
Therefore, since in our simple treatment we want to forget
about degrees of freedom described by the fieldaAB when
we specify a macrostate, to be consistent we have also to
forget about those quantum states which, as we believe, con-
tribute toaAB and do not contribute to the area ofS.

FIG. 2. Intertwining operator assigned to the vertexv of a gen-
eralized surface spin network ‘‘remembers’’ what were the spins
j 4 , j 5 , j 6 of the edges 4,5,6 incident at the surface.

FIG. 3. The valence of the simplest vertex is two.
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Let us, therefore, consider only quantum states which
contribute to the areas of regions onS, but do not ‘‘contrib-
ute’’ to the connection field on the surface. These, according
to our guess, are the states which contain no loops on the
surface. We shall call the corresponding spin networksopen
spin networks. A~generalized! surface spin network is called
open if the~surface! graph that labels it contains no closed
paths~or no loops!. The simplest open spin network state is
the spin network containing a single vertex~see Fig. 3!.

Now, to find the entropy which corresponds to a mac-
rostate of a fixed total surface areaA we should calculate the
number of quantum states which approximateA, taking into
account only open spin networks. However, let us first ana-
lyze the problem taking into account only some particularly
simple spin network states, and then try to generalize the
result obtained.

III. GEOMETRICAL ENTROPY: SETS OF PUNCTURES

Let us consider spin networks whose vertices are bivalent,
i.e., those specified simply by sets of points~vertices! on the
surface with spins assigned to these points~see Fig. 4!.
Points on the surface with spins assigned are sometimes
called punctures~see, for example,@4#!, and we shall use this
name as well. So quantum states which we consider now are
specified by sets of punctures on the surface.

For these simple quantum states there exists a simplified
version of the formula~1!. Namely, a set$p, j p% of punctures
gives the area of a regionR on S:

A~$p, j p%!5 (
pPR

Aj p~ j p11!. ~2!

Here the sum is taken over all punctures which lie in the
regionR and j p are the corresponding spins. To get the total
area of the surface we just have to sum over all punctures
pPS.

With these simple states the problem of calculating the
entropy becomes almost straightforward.

Let us use the standard trick. Instead of counting states
which correspond to the same area we shall take a sum over
all states but take them with different statistical weight.
Namely, let us consider the sum

Q~a!5(
G

exp@2aA~G!# ~3!

over all different statesG5$p, j p%, wherea.0 is a param-
eter. ConsideringpG5@1/Q(a)#exp@2aA(G)# as aprobabil-
ity of our system to be found in a stateG, it is easy to see that
themeanvalue of the area in such statistical state is

A~a!52
] lnQ

]a
. ~4!

The entropy of the system in this macrostate is given by the
standard formulaS52(GpGlnpG or, as it is easy to check,
by

S~a!5aA~a!1 lnQ~a!. ~5!

We see that the mean value of the surface area depends on
a. If the statistical ‘‘ensemble’’ of states is chosen properly,
then one can adjust the value ofa in such a way that
A(a) acquires any prescribed value. There is some particular
value ofSwhich corresponds to the chosen value ofA. Solv-
ing awaya from A~a! andS~a!, we obtain the entropy as a
function of the areaS5S(A). Statistical mechanics tells us
that when the densityh(A) of states of our system grows
sufficiently fast withA it is of no difference which way of
calculatingS(A) is chosen; one can count the logarithm of
the number of different states which give one and the same
area or calculate the functionS(A) as described — the re-
sults will not differ. Let us note thatS(A) calculated through
Eq. ~5! will be meaningful only for largeA ~as compared
with unity, i.e., with the Planckian area!. This is really what
we need because only in this case does the notion of approxi-
mation and, therefore, the notion of entropy acquire sense.

Let us now discuss whether all the sets of$p, j p% should
be taken into account in Eq.~3!. First of all, let us recall that
we have to count not the surface spin networks themselves
but the diffeomorphism equivalence classes of spin net-
works. This means that two surface spin networks which can
be transformed one into another by a diffeomorphism on the
surface should be considered as a single state in Eq.~3!.
Thus the continuous set of data$p, j p% (p runs all over the
surfaceS) reduces simply to a set of spins$ j p% when one
identifies sets of punctures which can be mapped one into
another by a diffeomorphism on the surface~note, however,
the discussion following the next paragraph!.

Next, we note that, if the surfaceS is a closed one, not
every set$p, j p% can be obtained as a result of intersection
with S of some 3D spin network inS. Namely, the sum
(pj p , which is the total spin which ‘‘enters’’ the surface
must be an integer for gauge-invariant states. This corre-
sponds to the fact that not all eigenvalues given by the for-
mula ~1! are eigenvalues of the area of a closed surface, as it
was first pointed out in@1#. Let us consider in this section
only a simpler case of an open surfaceS; we return to the
case of a closed surface in Sec. IV.

And, finally, let us consider the states specified by the
following two sets of punctures~see Fig. 5!:

$ . . . ,j ~p8!5s, . . . ,j ~p9!5q, . . . %,

$ . . . ,j ~p8!5q, . . . ,j ~p9!5s, . . . %. ~6!

These two states differ one from another only at two points
p8,p9; they give the same total area of the boundary. Should

FIG. 4. The simplest surface spin network states are specified by
a set of punctures on the boundary.
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we distinguish these two states or consider them as a single
physical state? It turns out that this is the key question which
determines the form of the dependence of the entropyS(A)
on the areaA of the surface. Let us now consider these states
asdifferentand postpone the discussion of such a choice to
the last section. So let us denote byN(A) the number of
states which correspond to one and the same areaA in the
case when all the sets~6! are regarded as specifying different
states. It is easy to see thatN(A) is the number ofordered
sets of punctures which approximate the total areaA. It is
straightforward to computeN(A) using our method with the
statistical sum.3 One can easily check that the fact that we
regard the sets~6! as specifying different states~or, equiva-
lently, the fact that we count ordered sets of punctures!
means that we can sum over the spin of each punctureinde-
pendently

Q511 (
n51

`

(
j p1

51/2

`

••• (
j pn

51/2

`

exp2a(
p

Aj p~ j p11!.

~7!

The first sum here denotes the sum over the number of pos-
sible punctures onS and the subsequent ones denote the
summation over the possible spins. It is easy to see that

Q5
1

12z~a!
, ~8!

wherez(a) is given by

z~a!5 (
j51/2

`

exp2aAj ~ j11!. ~9!

Note that the sum here runs over all positive integers and
half-integers. One can expect thatQ(a) will increase asa
gets smaller because in any case~7! diverges whena goes to
zero. However, we see that Eq.~8! diverges even for some
finite value of a8 such thatz(a8)51 ~we shall see in a
minute to which value ofa this corresponds!. Whena gets
smaller and approachesa8, Q(a) increases and diverges at
the pointa8. It can easily be checked thatA(a) andS(a)
also diverge whena→a8. This means that changinga
slightly we will obtain substantial differences in values of

A andS. What we are interested in is the dependenceS(A)
for large values ofA. But we see that all large values ofA
can be obtained by small changes ina whena→a8. Thus,
from Eq. ~5! we conclude that, forA@1,

S'a8A. ~10!

Here we neglected the term lnQ which is small as compared
to the main term~10!.

This result tells us that entropy grows precisely as the first
power of area of the boundary. Now let us see whata8
amounts to. One can do this numerically but it is also
straightforward to find an approximate value. Note that
z(a) can be rewritten as the sum over integers

z~a!5(
l51

`

exp2
a

2
Al 212l . ~11!

The term under the square root in the exponential can be
given the form (l11)221. Because the sum starts from
l51 we can neglect the unity as compared to a larger term.
Thenz(a) can be easily computed

z~a!5
exp~2a!

12exp~2a/2!
. ~12!

This gives for the a8:z(a8)51 the value
a852 ln@2/(A521)#'0.96. An explicit numerical investi-
gation of the equationz(a8)51 gives a close value
a8'1.01.

So we have shown that for large values ofA the entropy
depends on the area as

S~A!5a8A;

a851.01. ~13!

IV. GEOMETRICAL ENTROPY: THE CASE OF CLOSED
SURFACES

As we have mentioned before, in the case of closed sur-
facesS we have to take into account the fact that not all
eigenvalues given by the formula~1! are eigenvalues of the
operatorÂS , which measures the total area of the surface.
Namely, in the case of a closed surfaceS gauge-invariant
quantum states are those which satisfy the condition that the
sums(vPSj (v)

u and (vPSj (v)
d over all vertices lying on the

3One can also do this calculation explicitly, using combinatorial
methods. See@5#.

FIG. 5. Two sets of punctures which are considered as specifying different quantum states.
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surface are integers@1# @spinsj (v)
u , j (v)

d are those defined after
the formula~1!#. This condition means that for the case of a
closed surface some spin network states should be excluded
from the sum~3!. Recall that our result essentially follows
from the fact that the statistical sumQ(a) diverges when
a approaches somefinite valuea8. Because we have to drop
some positive terms from the statistical sum corresponding
to a closedS, Q(a) can prove to be convergent for all
a.0 and as a result we would obtain some other~nonlinear!
dependenceS(A).4

The aim of this section is to show that geometrical en-
tropy S(A) of ~ordered! sets of punctures, considered in the
previous section, for a closed surfaceS still depends linearly
on the total surface area. So, again, our states are specified by
ordered sets$p, j p% of punctures on the surface. However, in
the case of a closed surface, not all sets of punctures corre-
spond to gauge-invariant physical states. Namely, in our case
gauge-invariant states are those for which(pPSj p is an inte-
ger. To find the number of different states which approxi-
mate one and the same total area we can again apply our
trick with the statistical sum. The statistical sumQ(a) will
be given by the expression~7!, where we have to take into
account only the states satisfying the above condition.

It is not hard to calculate the statistical sumQ(a) for our
case of a closed surfaceS. Let us divide the functionz(a)
given by Eq.~12! into two partsz(a)5 z̃(a)1z5 (a). Func-
tion z̃(a) is the sum over all integer valuesl of spin j :

z̃5(
l51

`

exp2aAl ~ l11!. ~14!

Functionz5 (a) is the sum over all half-integersj5 l21/2:

z5~a!5(
l51

`

exp2aA~ l21/2!~ l11/2!. ~15!

Let us rewrite the statistical sumQ(a) over all sets of punc-
tures in terms of the functionsz̃,z5 introduced:

Q~a!5
1

12~ z̃1z5 !
5

1

12 z̃ (
n50

` S z5

12 z̃D
n

. ~16!

A moment of reflection shows that in order to get the statis-
tical sum corresponding to the case of a closed surface, we
have to drop from Eq.~16! all terms which contain odd pow-
ers ofz5 . Thus we get

Q~a!closed5
1

12 z̃ (
n50

` S z5

12 z̃D
2n

5
1

12 z̃

1

12S z5

12 z̃D
2 .

~17!

Here z̃,z5 are functions ofa. Recall now that our statistical
mechanical system has a regime in which the entropy de-
pends linearly on the area in the case when the statistical sum

diverges for some finite value ofa. Let us, therefore, inves-
tigate the behavior ofQ(a)closedwhena goes to zero. First,
let us note that

Q~a!closed5
12 z̃

~12 z̃1z5 !~12 z̃2z5 !
. ~18!

Also, we note thatz5. z̃, because the sum inz5 (a) starts from
j51/2, whereas the sum inz̃ is taken over all integer values
of spin and starts fromj51. We see, therefore, that the
statistical sum Q(a)closed diverges for
a8: z̃(a8)1z5 (a8)51. But z̃1z55z, so the value ofa8 here
is the solution of equationz(a8)51 obtained in the previous
section.

Thus we get that

Sclosed~A!5a8A, ~19!

wherea8 is the same as in Eq.~13!. Thus we have proved
that, although the statistical sumQclosed(a) for the case of a
closed surface is different fromQ(a) corresponding to the
case of an openS, it implies the linear dependence
S(A)5a8A of the entropy on the surface area, with the pro-
portionality coefficienta8 being the same as in the case of an
open surface. One can say that, although we excluded some
states from the statistical sum, there are still ‘‘enough’’ states
to give the same linear dependence of the entropy onA as in
the case of an open surface.

V. DISCUSSION

The result that we have obtained considering some par-
ticularly simple surface quantum states is that the entropy
corresponding to a macrostate which is specified by a total
areaA of the surface is proportional precisely to the area
A. It is important that we have obtained precisely the same
dependenceS(A) both for the case of open and closed sur-
facesS. The entropy was defined as the logarithm of the
number of different quantum states that approximate one and
the same area of the surface. The states which we considered
were specified simply by the sets of punctures on the surface.
It is crucial that the states which are different only up to a
permutation of spins~see Fig. 5! were considered as different
quantum states.

One of the reasons why we postponed the discussion of
the key point of distinguishing the states~6! was to empha-
size the importance of this choice. This is the choice which
implies the linear dependence of entropyS(A) on the surface
area. As we show in the Appendix, in the case when states
~6! are considered as indistinguishable, the dependence of
the entropy on the areas is different from the linear one~in
fact, the entropy turns out to be proportional to the square
root of the area!.

Before discussing this key point, let us note that our aim
in this paper is not to give a physical motivation for some
particular choice of the ensemble of quantum states. Rather
we wanted to show how the entropy arises naturally when
one considers correspondence between classical and quan-
tum pictures of geometry. We also wanted to illustrate this
idea following some simple choice of the ensemble of quan-
tum states, and to present a technique which turns out to be

4In fact, in this case we would obtain thatS(A) growsslowerthan
A.
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useful. Having this in mind, let us discuss our choice of
considering the states~6! as distinguishable ones.

We were counting the number of different diffeomor-
phism equivalence classes of~simple! surface spin networks
approximating one and the same total surface area. This
means that two surface spin networks which can be trans-
formed one into another by a diffeomorphism on the surface
should have been considered as specifying the same mi-
crostate. Let us now consider the two states~6!. It is easy to
see that there exists a diffeomorphism which maps one state
into the other; this diffeomorphism simply rearranges two
pointsp8,p9 on the surface. Therefore, on the first sight, the
states~6! should have been considered as a single state.

Does this mean that the result obtained is physically
meaningless and is simply an exercise in statistical mechan-
ics? There are some reasons to believe that the result ob-
tained is more than that. So let us give some possible moti-
vations for our strange choice of considering states~6! as
different quantum states.

One possibility, which is argued by Rovelli@5#, is that
points on the surface are physically distinguishable, and so
are the states~6!. This, in fact, happens in the case of some
systems for which the surfaceS plays the role of the bound-
ary. It might be the case thatboundary conditionspartly ~or
even completely! break diffeomorphism invariance on the
boundary. This would mean that some spin networks which
are usually considered as specifying one and the same quan-
tum state, should, in fact, be considered as different quantum
states. This case of systems with boundaries is subtle and
deserves special attention. Let us only note the possible con-
nection of our result, viewed from this point, with the results
of Carlip @6#.

The other possibility, which has also been argued in@7#, is
that some other~in fact, loop! states on the surface make
some of the states~6! belong to different diffeomorphism
equivalence classes of spin networks. Indeed, the surface
loop states which we considered as giving no contribution to
the areas, and, thus, forgot about, may affect largely the
number of different diffeomorphism equivalence classes of
states which approximate one and the same area ofS. To see
this, let us introduce a loop configuration on the surface. This
loop configuration divides the surface into regions. It is clear
that some of the states~6! will belong to different equiva-
lence classes, for there will no longer be a diffeomorphism
‘‘connecting’’ different regions. Thus the number of differ-
ent diffeomorphism equivalence classes which approximate
one and the same total areaA in this case is larger than in the
case when there are no loops on the surface. So loops on the
surface may allow one to distinguish states of the form~6!
~for more details see@7#!.

Of course, neither of these motivations gives a final physi-
cal justification of the result obtained. But let us repeat that
this is not what we aimed at in this paper. We hope, how-
ever, that the above discussion shows at least that the issue
deserves a further investigation.

Finally, let us discuss the possibility to generalize the re-
sult obtained considering arbitrary open surface spin network
states. First, let us take into account surface spin networks
which have no tangential edges, allowing, however, vertices
of arbitrary valence. In this case we have to use a general
formula ~1! for eigenstates of area operators~with all

j (v)
(u1d) being equal to zero because of the fact that we con-
sider spin networks with no tangential edges!. We would like
to generalize our result counting all~open! surface spin net-
works which approximate one and the same total surface
area. However, we face the problem trying to consider all
states. Namely, eigenvalues given by the formula~1! are de-
generate and we have to take this degeneracy into account
when calculating the entropy. Let us consider, for example, a
simple state, which contains one vertex of valence two~see
Fig. 6!. For this state we getj u5 j d50, and, therefore,
AS50. A moment of consideration shows that there are, in
fact, an infinite number of similar surface states that do not
give any contribution to the area ofS. Thus we find that
eigenvalueAS50 is infinitely degenerate. Similarly, we find
that all eigenvalues given by the formula~1! are infinitely
degenerate. Therefore, if we would like to take into account
all different surface states we would get an infinite value for
our geometrical entropy.

Let us note, however, that the states which we have just
considered are rather pathological. Namely, we observe that
small deformations of the surfaceS ~see Fig. 6! ~with the
spin network state being not deformed! cause a change in the
‘‘quantum area’’ ofS. Let us consider a one parameter fam-
ily of surfacesSe ,eP@0,1# such thatSe→Swhene→0. For
our example~see Fig. 6!, if surfacesSe approach the surface
S from below we have lime→0ASe

5AS50 ~here byAS we

denote an eigenvalue of the operatorÂS on the quantum state
we consider!. However, if we choose the family of surfaces
approaching S from above we have lime→0ASe

5A3ÞAS50 ~we measure areas in the units 16p l P
2 ). Thus

we see that states which cause the degeneracy are ‘‘patho-
logical’’ when considered as surface states, for ‘‘quantum
area’’ of S in these states behaves noncontinually under
small deformations ofS. This observation suggests that we
have to exclude these states when we consider an ensemble
of surface states. A natural way to do it would be to change
the approximation criterion between macro- and microde-
scriptions. Namely, let us strengthen our criterion in the fol-
lowing way. We fix a valueA of the total area ofS, which
defines our macrostate. We choose one parameter familySe
of two surfaces such thatSe→S,e→0. Let us now say that a
spin network stateG approximates our macrostate if
lime→0ASe

(G)5A, whereASe
(G) is the eigenvalue of opera-

tor ÂSe
corresponding to the eigenstateG.

FIG. 6. Surface state which does not contribute to the surface
area, thus, producing the degeneracy.

55 3511GEOMETRICAL ENTROPY FROM LOOP QUANTUM GRAVITY



The new approximation criterion states that we have to
consider only ‘‘good’’ surface quantum states. By definition,
‘‘quantum area’’ of S in ‘‘good’’ surface quantum states
does not change under small deformations of the surfaceS. It
is easy to see that ‘‘good’’ quantum states are those which
have only bivalent vertices, i.e., precisely those states which
we considered in this paper. Thus we conclude that the result
obtained above gives the geometrical entropyS(A) of a mac-
rostate of a fixed total areaA, the quantum states that ac-
count for this entropy being all states which approximateA
in the strong sense, i.e., those for which ‘‘quantum area’’
does not change under small deformations of the surfaceS.
Furthermore, the entropyS(A) is the same both for open and
for closed surfaces. Thus the result obtained is general in the
sense that we consider all quantum surface states which ap-
proximateA in the strong sense.

Let us conclude by saying that the notion of geometrical
entropy is, presumably, valid not only in the form explored
here~when we fixed only one macroscopic parameter — the
surface area!, but also in a more general context. For ex-
ample, it is of interest to calculate the entropyS(g) which
corresponds to a given two-metric on the surface, which is a
genuine geometrical entropy.
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APPENDIX: COUNTING UNORDERED SETS
OF PUNCTURES

In this appendix we would like to show that the entropy
S(A) in the case when one considers sets~6! as undistin-
guishable is proportional to the square root of the area.

Since we do not distinguish between sets~6!, all states
G which enter Eq.~3! are just unordered sets$ j 1 , j 2 , . . . % of
spins. One can describe each such state by a set
$nj 1,nj 2, . . . % of numbers of spinsj 1 , j 2 , . . . in this state. It
is convenient to imagine each state defined by a set
$ j 1 , j 2 , . . . % as a collection of different particles. Particles of
a particular sortj correspond to punctures carrying the spin
j . There can be many particles of the same sort in a state and
we denote the corresponding number of such particles by
nj . Having this analogy in mind it is easy to see that in our
case the statistical sumQ(a) is given by

Q~a!5(
$nj %

expS 2a (
j51/2

`

njA~ j !D . ~A1!

Here byA( j ) we denoted the contribution to the area from a
single ‘‘particle’’ of the sortj :

A~ j !5Aj ~ j11!. ~A2!

Note that the sum overj starts fromj51/2 and runs over all
positive integers and half-integers. It is straightforward to
take the sum over numbersnj of different ‘‘particles’’ in Eq.
~A1!; this gives

Q~a!5)
j

1

12exp@2aA~ j !#
. ~A3!

The area as a function of parametera is given by the for-
mula ~4!. In our case it gives

A~a!5(
j

A~ j !exp@2aA~ j !#

12exp@2aA~ j !#
. ~A4!

To see what dependence ofA on a this implies we replace
the sum over spinsj by the sum over integers~colors!
l52 j . ThenA( l )51/2Al 212l . For values ofl.1 we have
the approximation

A~ l !'~ l11!/2. ~A5!

Let us now approximate the sum overj in Eq. ~A4! by the
following integral overl :

A~a!'E
l51

`

dl

~ l11!

2
expS 2a

~ l11!

2 D
12expS 2a

~ l11!

2 D . ~A6!

It is easy to see that this integral is equal to

A~a!5
2

a2E
a

`

dx
xexp2x

12exp2x
. ~A7!

Recall now that we are interested in the dependenceS(A) for
large values ofA ~as compared with unity!. We see from Eq.
~A7! that large values ofA correspond to smalla. In the
limit a→0 the integral in Eq.~A7! can easily be calculated:

E
0

`

dx
xexp2x

12exp2x
5

p2

6
. ~A8!

So, finally, for large values ofA ~or, equivalently, for small
a), we have the following dependence:

A~a!5
p2

3a2 . ~A9!

This gives the dependenceS(A) of the entropy on the area.
Namely, in the limit of largeA we can neglect the logarith-
mic term in Eq.~5! as compared with the larger first term.
Thus we get
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S5
p

A3
AA. ~A10!

So, in the case when one considers unordered sets of punc-
tures, the geometrical entropyS(A) is proportional to the
square root of the area.
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