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We adopt the point of view thgRiemanniai classical andloop-baseflquantum descriptions of geometry
are macro- and microdescriptions in the usual statistical mechanical sense. This gives rise to the notion of
geometrical entropy, which is defined as the logarithm of the number of different quantum states which
correspond to one and the same classical geometry configufaiecrostate We apply this idea to gravita-
tional degrees of freedom induced on an arbitrarily chosen in space two-dimensional surface. Considering an
“ensemble” of particularly simple quantum states, we show that the geometrical erg(dyycorresponding
to a macrostate specified by a total afeaf the surface is proportional to the arBgA) = oA, with « being
approximately equal to 1/3:13%. The result holds both for cases of open and closed surfaces. We discuss
briefly physical motivations for our choice of the ensemble of quantum s{&86556-282(97)05006-§

PACS numbd(s): 04.60.Ds, 04.70.Dy

I. INTRODUCTION system in a macrostate is giveby the logarithm of the
“volume” of the compartment corresponding to this mac-
Among the results of the loop approach to nonperturbarostate.

tive quantum gravity there are several which tell us that the Let us return to our quantum description of geometry. It is
picture of geometry on scales small as compared with ounatural to introduce a coarse graining of the space of quan-
usual scalegon Planckian scal¢dooks quite different from tum states in such a way that quantum states approximating
the habitual picture of Riemannian geometry. The usual clasdifferent “geometries” belong to different compartments.
sical picture arises only as an approximation to a more funHaving divided the space of states this way, it is natural to
damental quantum picture. The fundamental excitations ofhtroduce the function which for any geometry configuration
the emerging quantum geometry are one-dimensional loofives the logarithm of the “volume” of the corresponding
excitations and the whole quantum picture is of essentialfFompartment. This gives rise to the notion géometrical
discrete, combinatorial charactdSee, for instance, recent €Ntropy Thus, geometrical entropy tells “how many” dif-

works [1,2], which also contain extensive references to theferent quantum states there are which correspond to a given

previous papers on the loop approgch geometry configuration. To be more precise, in the cases

Let us assume that we can formulate a reasonable a __hen a compartrr_]ent IS |tself_a Ilne_ar space the entropy IS
given by the logarithm of the dimension of the corresponding

proximation criteria, and for any classical geometry configu-

. . 2 . compartment.
ration find the set of gpprommat!ng quantum st.ates_. It S n this paper we try to implement the idea of geometrical
natural to expect.that if the precision of approximation 'Sentropy following a very simple choice of the “ensemble”
chosen not too high, there will be a lot of quantum stategy quantum states. Although some of our results are surpris-
corresponding to the same “geometry.” It is quite temptinging " the aim of this paper is not to argue a physical signifi-
to consider a usual Riemannian geometry description as @ance of the results obtained. Rather, in order to understand
macroscopical one and to regard all quantum states approxf the general idea of geometrical entropy makes sense, we
mating a Riemannian metric as microstates corresponding t€onsider a particularly simple case, in which the analysis can
the same macrostate. This point of view brings up a lot ofe accomplished, and develop a technique that may prove to
interesting possibilities. be useful for future developments.

Indeed, recall that with distinguishing between macro- Our choice of the “ensemble” of quantum states is as
and microstates of a system the notion of entropy arises ifollows. First, we restrict our consideration to the gravita-
statistical mechanics. Entropy is a function which dependsional degrees of freedom of an arbitrary spacelike two-
on a macroscopic state of the system. It can be thought of adimensional surface. Namely, we consider Lorentziafl3
a function which for each macroscopic state gives(tbga-  general relativity in the framework dfeal) Ashtekar vari-
rithm of the number of different microscopic states corre- ables, and the quantization given by the loop quantum grav-
sponding to this macrostate. More precisely, the space dfy. We restrict our consideration to the gravitational system
states of the system should be divided into compartmentsnduced by the full theory on some two-surfacg
where all microstates belonging to the same compartment are
macroscopically indistinguishable. Then the entropy of the

1in fact, the usual thermodynamical entropy is proportional to this
number, but it is convenient to work in the units in which this
*Electronic mail address: krasnov@phys.psu.edu proportionality coefficient is chosen to be unity.
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FIG. 1. Vertex of a 3D spin
network (a) and its intersection
with the surfaceS (b). Edges
1,2,3 are tangential ones.

(@) ()

embedded in the spatial manifolfl. Thus the degrees of €27B, respectively A,B stands for two component spinor
freedom of our system are just the degrees of freedom dhdices. The “surface” momentum fiel&AB carries infor-
general relativity that live on a surfa& Second, we specify mation about the two-metric o8.
a macrostate of our system simply fixing the total area of the et us describe the quantum theory. The loop quantization
surfaceS. In this case, as we shall see later, it is easy to picksf 3+1 general relativity is described in detail i, 2]. For
up all quantum states which approximate a given macrostateyr purposes it is sufficient to recall that there exists an or-
gnd the analysis becqmes almost straightforward. Thus_, hogonal decomposition of the Hilbert space of gauge-
illustrate the general idea of geometrical entropy, we stickpyariant states of quantum general relativity into subspaces,
here to the case when a macrostate of our sydtghich  \yhich are labeled by the so-called spin networks. Spin net-
“lives” on the surfaceS) is specified simply by the total \york states are labeled by closed graph& iwith spins(or,
areaA of S. o _ ~equivalently, with irreducible representations of the gauge
Let us note that such a statistical mechanical con3|dergrou0 assigned to each edge and intertwining operators as-
ation of surface degrees of freedom is of a special interesgigned to each vertex of graph.
because of its possible connection with the black hole ther- | ot us now specify the space of quantum surface states.
modynamics. Indeed, there is a common belief that it is thgsjyen a two-dimensional2D) (not necessarily closgdur-
degrees of freedom living on the horizon surface of a blacksce S embedded into the spatial manifaldand a 3D spin
hole which account for the black hole entropy. To try t0 networkI” one can consider the intersection of this spin net-
reveal the connection between quantum gravity and thermqyqrk with S. Let us call the intersection points vertices. Gen-
dynamics that is suggested by black hole physics is one Qfra|ly, there can be vertices of any valence not less thah two
the motivations for our investigation. ~_(valence of a vertex is the number of edges of a spin network
The other, and maybe even more important motivation is;tate which meet in this vertgxAlso, there can be edges
that the I_oop .qua_nt.um gravity itself is a new approa_ch. '”Iying entirely on the surfac& among the edges df; we
such a situation it is necessary to apply the formalism tQ;nq|| call such edges tangentiake Fig. 1 The intersection
simple problems, just in order to see if it gives a reasonabley 1 yith the surfaceS defines what we shall call a surface
picture. The set of problems concerning statistical propertiegpin network orS. A surface spin network is a graph lying
of the theory might serve as one of such tests. _ entirely on the surfac&, with spins assigned to each edge,
The paper is organized as follows. In the next section We,q intertwining operators assigned to each vertex. The in-
recall briefly how the surface quantum states look and disgery\yiners assigned to each vertex are just those of the cor-
cuss the issue of correspondence between macro- and MIClsponding 3D spin network. This means that vertices of a
descriptions. In Sec. Ill we calculate geometrical entropy of5 ‘g rface spin network “remember” what were the spins
surface degrees of freedom considering the case of an opef e edges incident at the surfasee Fig. 2 Note that our
surface. Section IV contains a generalization of our result tQefinition of a surface spin network is not the canonical one.
the case of closed surfaces. We conclude with the disCUsSIOR. «canonical” surface spin network is defined as a graph
lying on the surface, with spins assigned to each edge, and
intertwiners assigned to each vertex. We use the term “sur-
face spin network” simply to denote the intersection of a 3D
Let us recall the description of general relativity in termsspin network with the surfacs, or, in other words, to denote
of (real) Ashtekar variables. In the Hamiltonian framework the “surface” part of information carried by a 3D spin net-
general relativity can be formulated as a theory of(8U work. To avoid confusion, we shall also use the term “gen-
connection over the spatial manifold. The connection field
plays the role of a configurational variable; the momentunT———
variable is presented by the canonically conjugated field. The?n the case of theory without fermionic degrees of freedom,
dynamics of the theory is determined by a set of constrainivhich we consider here, the valence of vertices of a spin network
functionals. state should be not less than two in order to have a gauge-invariant
The degrees of freedom induced on an arbitrarily chosegtate. When fermionic degrees of freedom are present in the theory
surfaceS are described by pull-backs of the connection andvalence of vertices can be equal to one. In this case open ends of a
momentum fields int&®, which we shall denote byQB and  spin network describe fermionic degrees of freedsee[3]).

Il. SURFACE QUANTUM STATES
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FIG. 3. The valence of the simplest vertex is two.
FIG. 2. Intertwining operator assigned to the verterf a gen-
eralized surface spin network “remembers” what were the spins

ja.is.js Of the edges 4,5,6 incident at the surface. .
1415l g We define the spac# of surface quantum states as the

) ) space spanned by algeneralizedl surface spin network
eralized surface spin network state. . states. This definition means that the basi#fiis formed by
The simplest nontrivial example of a surface spin networksiface spin network states, which gives us all that we need
is that coming from a single edge intersecting the surface 5, our counting purposes.
(see Fig. 3 Such a spin network is simply the pointon We can now recall that there exists a set of well defined
S, with the intertwining operator being the map from the one A o Y
operatorsAg, which “measure” quantum geometry &.

copy of the representation spagt [j here is the spin la- )
beling the irreducible representation of @ to the other These operators correspond to areas of various redools
the surfaceS (see[1]). It turns out that 3D spin network

copy of pl). The intertwiner in this case is specifiéap to . 1 ‘
an overall constahptsimply by the spinj attached to the states are eigenstates of operatégs. The corresponding
vertexv. eigenvalues are given by

T o o
A= 2, 532000+ D 20000+ D =6 G+ D). ®

Note that we measure areas in the units offli& which is  is infinite. Indeed, loops on the surface, which are the sim-
convenient in the loop quantum gravity. Here the sum isplest possible parts of a surface spin network state, do not
taken over all vertices lying in the regionR of the surface give any contribution to the areas. Therefore, one has an
S, j;‘v), j?v , andjzv) are the total spins of edges lying up, infinite number of spin networks which approximate one and
down, ancf tangential to the surfatsee[1] for detaily. Al- the same total area &fbeing different only in configurations
though these operators are defined on 3D quantum states, tb€loops on the surface.
eigenvalueq1) depend only on the “surface” part of the  One can argue, however, that this happens because, using
information carried by a 3D spin network state. Therefore terminology from statistical mechanics, a macrostate of our
we can think ofAg as operators defined on tkgeneralizegl  system is not completely specified when we fix only a total
surface spin network states, with eigenvalues given by Ecarea of the surface. Indeed, areas of regionSamarry in-
(2). formation only about degrees of freedom describedety

As we have said in the Introduction, in this paper we arefield. But there are also degrees of freedom described by the
going to consider a geometrical entropy that corresponds to gyll-back of the connection field on the surface which one
macrostate specified simply by a total surface akedor  should take care of when specifying a macrostate. Our guess
this simple case, the approximation criterion between macros that different configurations of loops on the surface from
and micro descriptions is straightforward. Namely, we canthe above example correspond to different classical configu-
say that a quantum statenicrostat¢ approximates a given rations of the connection field d Indeed, as we know, in
macrostate if the mean value of the operaitgrin this quan-  classical theory loop quantities are constructed as traced ho-
tum state is approximately equal to the fixed valuelt is  lonomies of the connection, and, therefore, are just those
straightforward to see that quantum states approximating tabjects which carry information about the connection field.
tal surface area form a linear subspace in the space of allherefore, since in our simple treatment we want to forget
surface states. Its dimension is equal to the number of differabout degrees of freedom described by the fatd when
ent surface spin network states approximatig we specify a macrostate, to be consistent we have also to

Let us see now how many different quantum states apforget about those quantum states which, as we believe, con-
proximate a given total area. It is easy to see that this numbéribute toa*® and do not contribute to the area $f
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over all different state$'={p,j,}, wherea>0 is a param-
eter. Consideringgr=[1/Q(«) Jexd —«A(I')] as aprobabil-
ity of our system to be found in a stdfeit is easy to see that
the meanvalue of the area in such statistical state is

al
A(a)z—%aQ. (4

e

-
=,

P,

The entropy of the system in this macrostate is given by the
standard formulés= —Zrprinpr or, as it is easy to check,
by

SEITLE P SGLELTLLD
masaneen o w ofinansssanna

e I )

S(a)=aA(a)+InQ(a). (5)
FIG. 4. The simplest surface spin network states are specified by
a set of punctures on the boundary. We see that the mean value of the surface area depends on
«a. If the statistical “ensemble” of states is chosen properly,
Let us, therefore, consider only quantum states whiclthen one can adjust the value af in such a way that
contribute to the areas of regions 8nbut do not “contrib-  A(«) acquires any prescribed value. There is some particular
ute” to the connection field on the surface. These, accordingalue ofS which corresponds to the chosen valuetofSolv-
to our guess, are the states which contain no loops on thiag away« from A(a) and S(a), we obtain the entropy as a
surface. We shall call the corresponding spin netwagsn  function of the are&s=S(A). Statistical mechanics tells us
spin networks. Ageneralize@isurface spin network is called that when the density(A) of states of our system grows
open if the(surface graph that labels it contains no closed sufficiently fast withA it is of no difference which way of
paths(or no loop3. The simplest open spin network state is calculatingS(A) is chosen; one can count the logarithm of
the spin network containing a single vertésee Fig. 3. the number of different states which give one and the same
Now, to find the entropy which corresponds to a mac-area or calculate the functid®(A) as described — the re-
rostate of a fixed total surface ar@awve should calculate the sults will not differ. Let us note théB(A) calculated through
number of quantum states which approximateaking into  Eqg. (5) will be meaningful only for largeA (as compared
account only open spin networks. However, let us first anawith unity, i.e., with the Planckian argaThis is really what
lyze the problem taking into account only some particularlywe need because only in this case does the notion of approxi-
simple spin network states, and then try to generalize thenation and, therefore, the notion of entropy acquire sense.

result obtained. Let us now discuss whether all the sets{pfj,} should
be taken into account in E€R). First of all, let us recall that
Ill. GEOMETRICAL ENTROPY: SETS OF PUNCTURES we have to count not the surface spin networks themselves

. ) . ) but the diffeomorphism equivalence classes of spin net-
_ Letus consider spin networks whose vertices are bivalenfyrks, This means that two surface spin networks which can
i.e., those specified simply by sets of poifitsrtices onthe e ransformed one into another by a diffeomorphism on the
surface with spins assigned to these poif#se Fig. 4  gyrface should be considered as a single state in(Eq.
Points on the surface with spins assigned are somepmelsnuS the continuous set of dafp,j,} (p runs all over the
called puncturessee, for exampld4]), z_and we shal! use this surfaceS) reduces simply to a set of spif§,} when one
name as well. So quantum states which we consider now affenrifies sets of punctures which can be mapped one into

specified by sets of punctures on the surface. _ .. another by a diffeomorphism on the surfdoete, however,
For these simple quantum states there exists a simplifiege giscussion following the next paragraph

version of the formuld1). Namely, a sefp,j,} of punctures Next, we note that, if the surfac® is a closed one, not

gives the area of a regidR on S: every set{p,j,} can be obtained as a result of intersection
with S of some 3D spin network irt,. Namely, the sum
A({p.jph) = > Vip(ipt1). (20 Zpjp, Which is the total spin which “enters” the surface
peR must be an integer for gauge-invariant states. This corre-

. . o sponds to the fact that not all eigenvalues given by the for-
Here the sum is taken over all punctures which lie in the . .
. : . : mula (1) are eigenvalues of the area of a closed surface, as it
regionR andj, are the corresponding spins. To get the total . . . ; ) ; .
p ) was first pointed out if1]. Let us consider in this section
area of the surface we just have to sum over all punctures .
peS only a simpler case of an open surfa8gwe return to the

; . . case of a closed surface in Sec. IV.
With these simple states the problem of calculating the And, finally, let us consider the states specified by the

entropy becomes almost straightforward. following two sets of puncturesee Fig. 5
Let us use the standard trick. Instead of counting states 9 P 9-

which correspond to the same area we shall take a sum over

e =s, . P =q, ...},
all states but take them with different statistical weight. { 1P 1PH=a J

Namely, let us consider the sum {...i(pH=q,....j(p"H=s, ...} (6)
Q(Ol)=2 ex — aA(T)] 3) These two states differ one from another only at two points
T p’,p"; they give the same total area of the boundary. Should
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FIG. 5. Two sets of punctures which are considered as specifying different quantum states.

we distinguish these two states or consider them as a singke andS. What we are interested in is the depende8th)
physical state? It turns out that this is the key question whicHor large values ofA. But we see that all large values Af
determines the form of the dependence of the entiS(@#) can be obtained by small changesdanvhena— a'. Thus,

on the ared of the surface. Let us now consider these statesrom Eq. (5) we conclude that, foA>1,

asdifferentand postpone the discussion of such a choice to

the last section. So let us denote ByA) the number of S~a'A. (10
states which correspond to one and the same Aregathe o

case when all the set§) are regarded as specifying different Here we neglected the termQnwhich is small as compared
states. It is easy to see tha{A) is the number obrdered  t0 the main tern(10). , ,
sets of punctures which approximate the total aedt is This result tells us that entropy grows precisely as the first
straightforward to computhi(A) using our method with the Power of area of the boundary. Now let us see what
statistical suni.One can easily check that the fact that we@mounts to. One can do this numerically but it is also
regard the seté6) as specifying different statdsr, equiva- straightforward tg find an approxmat.e value. Note that
lently, the fact that we count ordered sets of puncturesZ(@) can be rewritten as the sum over integers

means that we can sum over the spin of each pundbole

pendently z(a)= D, exp— %\/I2+ 2l. (13)
=
Q=1+n§lj 21/2 - 21/2 exp— a% Vip(ipt1). The term under the square root in the exponential can be
Py Pn

@) given the form (+1)?—1. Because the sum starts from
I=1 we can neglect the unity as compared to a larger term.

The first sum here denotes the sum over the number of podhenz(a) can be easily computed

sible punctures or§ and the subsequent ones denote the

summation over the possible spins. It is easy to see that __ exp—a)
Z(a)= . (12
1 —exp—al2)
_ 1
Q= 1-z(a)’ ®  This gives for the a':z(a¢')=1 the value
o a’'=21n2/(y5—1)]~0.96. An explicit numerical investi-
wherez(«) is given by gation of the equationz(a’)=1 gives a close value
- a’'~1.01.
_ — So we have shown that for large valuesfothe entropy
z(a)—j;m exp—aj(j+1). ©) depends on the area as
Note that the sum here runs over all positive integers and S(A)=a'A;
half-integers. One can expect th@{ «) will increase asw
gets smaller because in any c&gpdiverges whenr goes to a'=1.01. 13

zero. However, we see that E@) diverges even for some
finite value of a’ such thatz(e')=1 (we shall see in a |y, GEOMETRICAL ENTROPY: THE CASE OF CLOSED

minute to which value ok this corresponds Whena gets SURFACES
smaller and approaches, Q(«) increases and diverges at _ )
the pointe’. It can easily be checked that(«) and S(«) As we have mentioned before, in the case of closed sur-

also diverge whenz—a’. This means that changing facesS we have to take into account the fact that not all
slightly we will obtain substantial differences in values of €igenvalues given by the formu(d) are eigenvalues of the
operatorAg, which measures the total area of the surface.
Namely, in the case of a closed surfaSegauge-invariant
30ne can also do this calculation explicitly, using combinatorialuantum states are those which satisfy the condition that the
methods. Seg5]. sums=, _si(,) and 3, sjf,, over all vertices lying on the
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surface are integefd] [spinsj ,, ,j‘(’v) are those defined after diverges for some finite value af. Let us, therefore, inves-
the formula(1)]. This condition means that for the case of atigate the behavior oQ(«),seqgWhena goes to zero. First,
closed surface some spin network states should be excludédgf us note that

from the sum(3). Recall that our result essentially follows

from the fact that the statistical su@(«) diverges when 1-7
a approaches sonfeiite valuea'. Because we have to drop Q@) closed™ (1-7+3)(1-7-3)
some positive terms from the statistical sum corresponding

to a closedS, Q(a) can prove to be convergent for all pi5o, we note thaf>7, because the sum &(a) starts from
a>0 and as a result we would obtain some otfmemlineal  ;—1/> whereas the sum Tis taken over all integer values

4
dependenc&(A).” o _ of spin and starts fronj=1. We see, therefore, that the
The aim of this section is to show that geometrical en-g;aiistical sum Q(@) dosed diverges for

tropy S(A) of (ordered sets of punctures, considered in the a'Z(a')+3(a')=1. ButZ+Z=z, so the value ofx’ here

previous section, for a closed sur_faSestiII depends Iinearjy is the solution of equation(«')=1 obtained in the previous
on the total surface area. So, again, our states are specified Yo

ordered set$p, j,} of punctures on the surface. However, in - 1hus we get that

the case of a closed surface, not all sets of punctures corre-

spond to gauge-invariant physical states. Namely, in our case Seosed A) = a’A, (19)
gauge-invariant states are those for whith, gj, is an inte-

ger. To find the number of different states which approxi-wherea’ is the same as in Eq13). Thus we have proved
mate one and the same total area we can again apply ouat, although the statistical SUBysd @) for the case of a

(18)

trick 'With the statistical s.um. The statistical su@{«a) Wi!| closed surface is different fror@(a) corresponding to the
be given by the expressid(T), where we have to take into case of an openS, it implies the linear dependence
account only the states satisfying the above condition. S(A)= a’A of the entropy on the surface area, with the pro-

Itis not hard to calculate the statistical s@ga) for our  portionality coefficienta’ being the same as in the case of an
case of a closed surfac Let us divide the functiorz(e@)  open surface. One can say that, although we excluded some
given by Eq.(12) into two partsz(a) =2z(a)+z(a). Func-  states from the statistical sum, there are still “enough” states
tion z(«a) is the sum over all integer valu¢sof spin j: to give the same linear dependence of the entropf @s in

the case of an open surface.

Ezzl exp—aI(1+1). (14)

V. DISCUSSION

The result that we have obtained considering some par-
ticularly simple surface quantum states is that the entropy
o corresponding to a macrostate which is specified by a total

f(a)zz exp—a(1—1/2)(1+1/2). (15) areaA of the surface is proportional precisely to the area

=1 A. It is important that we have obtained precisely the same

) o dependenc&(A) both for the case of open and closed sur-

Let us rewrite the statistical su@(«) over all sets of punc- facesS. The entropy was defined as the logarithm of the

Functionz(«) is the sum over all half-integefs=1— 1/2:

tures in terms of the functiorsZ introduced: number of different quantum states that approximate one and
. _ the same area of the surface. The states which we considered
_ 1 1 2 z \" were specified simply by the sets of punctures on the surface.
Q)= 1-(Z+3) T1-74\1-7Z (16) It is crucial that the states which are different only up to a

permutation of spingsee Fig. $were considered as different

A moment of reflection shows that in order to get the statisduantum states.

tical sum corresponding to the case of a closed surface, we One of the reasons why we postponed the discussion of

have to drop from Eq(16) all terms which contain odd pow- the key Po"‘t of distinguis_hing t_he stat_@ was to e_mpha-_
ers of 3. Thus we get size the importance of this choice. This is the choice which

implies the linear dependence of entrdfyA) on the surface

1 - 50 4 1 area. As we show in the Appendix, in the case when states
_ — _ (6) are considered as indistinguishable, the dependence of
Q(@) ciosed™ = = = 5 \2-
1-z7=\1-2 1—21_ z the entropy on the areas is different from the linear @Gne
1-7 fact, the entropy turns out to be proportional to the square

17 root of the arep

Before discussing this key point, let us note that our aim

Herez,Z are functions ofe. Recall now that our statistical in this paper is not to give a physical motivation for some
mechanical system has a regime in which the entropy departicular choice of the ensemble of quantum states. Rather

pends linearly on the area in the case when the statistical sume wanted to show how the entropy arises naturally when
one considers correspondence between classical and quan-

tum pictures of geometry. We also wanted to illustrate this

“In fact, in this case we would obtain tha¢A) growsslowerthan  idea following some simple choice of the ensemble of quan-
A tum states, and to present a technique which turns out to be
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useful. Having this in mind, let us discuss our choice of 12 1”2
considering the statd$) as distinguishable ones.

We were counting the number of different diffeomor-
phism equivalence classes (@imple surface spin networks
approximating one and the same total surface area. This S
means that two surface spin networks which can be trans-
formed one into another by a diffeomorphism on the surface v
should have been considered as specifying the same mi-
crostate. Let us now consider the two sta@@s It is easy to
see that there exists a diffeomorphism which maps one state
into the other; this diffeomorphism simply rearranges two
pointsp’,p” on the surface. Therefore, on the first sight, the FIG. 6. Surface state which does not contribute to the surface
states(6) should have been considered as a single state. area, thus, producing the degeneracy.

Does this mean that the result obtained is physically
meaningless and is simply an exercise in statistical mechargwd)

ics? Th o boli that th It ol®) being equal to zero because of the fact that we con-
Ics s There are some reasons to believe that the result oy spin networks with no tangential edga&’e would like
tained is more than that. So let us give some possible moti-

vations for our strange choice of considering sta@sas fo general_ize our res_ult counting #liper) surface spin net-
different quantum states. works which approximate one and the same total _surface
One possibility, which is argued by Rove[ls], is that area. However, we face the problem trying to consider all
points on the surface are physically distinguishable, and sStat€s- Namely, eigenvalues given by the formitlaare de-
are the states). This, in fact, happens in the case of somedenerate and.we have to take this dege.neracy into account
systems for which the surfacplays the role of the bound- V\{hen calcula‘ung_the entrqpy. Let us consider, for example, a
ary. It might be the case thabundary conditionpartly (or ~ Simple state, which contains one vertex of valence (eee
even completely break diffeomorphism invariance on the Fig.- 6. For this state we gef'=j“=0, and, therefore,
boundary. This would mean that some spin networks whicf\s=0. A moment of consideration shows that there are, in
are usually considered as specifying one and the same quak&ct, an infinite number of similar surface states that do not
tum state, should, in fact, be considered as different quantumive any contribution to the area &. Thus we find that
states. This case of systems with boundaries is subtle arelgenvalueAs=0 is infinitely degenerate. Similarly, we find
deserves special attention. Let us only note the possible coithat all eigenvalues given by the formuld) are infinitely
nection of our result, viewed from this point, with the results degenerate. Therefore, if we would like to take into account
of Carlip [6]. all different surface states we would get an infinite value for
The other possibility, which has also been argueldinis  our geometrical entropy.
that some othefin fact, loop states on the surface make | et us note, however, that the states which we have just
some of the state5) belong to different diffeomorphism considered are rather pathological. Namely, we observe that
equivalence classes of spin networks. Indeed, the surfacgna deformations of the surface (see Fig. & (with the

'?]Op states Wh(ijCh x"e ct;nsidere(; as giving ”?f confribut:on :]Qspin network state being not deformezhuse a change in the
the areas, and, thus, forgot about, may affect largely t equantum area” ofS. Let us consider a one parameter fam-

number of different diffeomorphism equivalence classes OTIy of surfacesS, , e < [0,1] such thaS,— S whene—0. For

states which approximate one and the same aréa b see our examplgsee Fig. , if surfacesS, approach the surface

this, let us introduce a loop configuration on the surface. Thi . e
loop configuration divides the surface into regions. It is cleasrs from below we have lim.oAs =As=0 (here byAs we

that some of the statei$) will belong to different equiva- denote an eigenvalue of the operatayon the quantum state
lence classes, for there will no longer be a diffeomorphismwe consider. However, if we choose the family of surfaces
“connecting” different regions. Thus the number of differ- approaching S from above we have lim,Ag

ent diffeomorphism equivalence classes which approximate J3#Ag=0 (we measure areas in the unitsd@). Thus
= = )

one and the same total ardan this case is larger thaninthe | " w0 «toc \which cause the degeneracy are “patho-
case when there are no loops on the surface. So loops on tpe

surface may allow one to distinguish states of the fg6in ogical” when considered as surface states, for “quantum
y a 9 area” of S in these states behaves noncontinually under
(for more details sef7]).

Of course, neither of these motivations gives a final physi—s’ma1II deformations o8. This observation suggests that we

cal justification of the result obtained. But let us repeat thapave to exclude these states when we consider an ensemble

- . . ; of surface states. A natural way to do it would be to change
this is not what we aimed at in this paper. We hope, how,, L o ,
. . .__the approximation criterion between macro- and microde-
ever, that the above discussion shows at least that the issue”. . o
. L scriptions. Namely, let us strengthen our criterion in the fol-
deserves a further investigation.

Finally, let us discuss the possibility to generalize the re-IOWIng way. We fix a valueA of the total area of, which

sult obtained considering arbitrary open surface spin netvvoreeflnes our macrostate. We choose one parameter f&pily

states. First, let us take into account surface spin networkgaZf two surfaces such thal.— S,e—0. Let us now say that a

which have no tangential edges, allowing, however, vertice pin rftwlclrliAstatehI‘ ipprgx'm?;es our n|1acrofstate if
of arbitrary valence. In this case we have to use a gener 'Imfjo s{I')=A, whereAs (I') is the eigenvalue of opera-
formula (1) for eigenstates of area operatofwith all  tor As, corresponding to the eigenstdte
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The new approximation criterion states that we have tdHere byA(j) we denoted the contribution to the area from a
consider only “good” surface quantum states. By definition, single “particle” of the sortj:
“quantum area” of S in “good” surface quantum states
does not change under small deformations of the suatte . Ay
is easy to seegthat “good” quantum states are those which AGD=NIGHD. (A2)
have onl'y bivalgnt \(ertices, i.e., precisely those states whicRote that the sum ovérstarts fromj = 1/2 and runs over all
we considered in this paper. Thus we conclude that the resulfysitive integers and half-integers. It is straightforward to

obtained above gives the geometrical entr§ff) of amac- (516 the sum over numbens of different “particles” in Eg.
rostate of a fixed total ared, the quantum states that ac- (A1); this gives

count for this entropy being all states which approximate

in the strong sense, i.e., those for which “quantum area”

does not change under small deformations of the surface Q(a)=H 1 .
Furthermore, the entrop$(A) is the same both for open and i 1—exd —aA(j)]
for closed surfaces. Thus the result obtained is general in the

sense that we consider all quantum surface states which apphe area as a function of parameteris given by the for-

(A3)

proximateA in the strong sense. mula (4). In our case it gives
Let us conclude by saying that the notion of geometrical
entropy is, presumably, valid not only in the form explored Aj)exd — aAj)]
here(when we fixed only one macroscopic parameter — the Ala)= E (A4)
i

surface arer but also in a more general context. For ex- 1-exd —aA())]

ample, it is of interest to calculate the entrofg) which
corresponds to a given two-metric on the surface, which is
genuine geometrical entropy.

To see what dependence Afon « this implies we replace
fhe sum over sping by the sum over integergcolors
|=2j. ThenA(l) =1/2\1?+2I. For values of >1 we have

the approximation
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APPENDIX: COUNTING UNORDERED SETS a’), l—exp—x

OF PUNCTURES

Recall now that we are interested in the depend&(¢ for
large values oA\ (as compared with unijy We see from Eq.
(A7) that large values oA correspond to smal. In the
limit «—0 the integral in Eq(A7) can easily be calculated:

In this appendix we would like to show that the entropy
S(A) in the case when one considers s@p as undistin-
guishable is proportional to the square root of the area.

Since we do not distinguish between sé, all states
I' which enter Eq(3) are just unordered sef$,,j,, ...} of 5
spins. One can describe each such state by a set J“ « Xexp—x @ (A8)
{n;,.nj,. ...} of numbers of sping,,j,, ... in this state. It o l—exp—x 6°
is convenient to imagine each state defined by a set
{i1.i2, ...} as acollection of different particles. Particles of S0, finally, for large values oA (or, equivalently, for small
a particular sorf correspond to punctures carrying the spina), we have the following dependence:

j- There can be many particles of the same sort in a state and )
we denote the corresponding number of such particles by A(a)zl (A9)
n;. Having this analogy in mind it is easy to see that in our 2

case the statistical su@(«) is given by
This gives the dependen&A) of the entropy on the area.

Namely, in the limit of largeA we can neglect the logarith-
) (A1) mic term in Eq.(5) as compared with the larger first term.
Thus we get

Qa)=2, exp(—a_zznjm

{n;} j=1
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s= Z /A (A10)

V3

So, in the case when one considers unordered sets of punc-
tures, the geometrical entrofy(A) is proportional to the
square root of the area.

[1] A. Ashtekar and J. Lewandowski, Class. Quantum Gfa.
55 (1997.

[2] R. De Pietri and C. Rovelli, Phys. Rev. B, 2664(1996.

[3] C. Rovelli and H. Morales-Tédh Nucl. Phys.B451, 325
(1999; K. Krasnov, Phys. Rev. 33, 1874(1996.

[4] L. Smolin, J. Math. Phys(N.Y.) 36, 6417(1995.

[5] C. Rovelli, Phys. Rev. Letfr7, 3288(1996.

[6] S. Carlip, “Statistical mechanics and black hole entropy,” Re-
port No. gr-qc/9509024unpublished

[7] K. Krasnov, “On statistical mechanics of Schwarzschild black
holes,” Report No. gr-qc/960504@npublished



