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Critical behavior and universality in gravitational collapse of a charged scalar field
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We summarize results from a study of spherically symmetric collapse affasged (comple¥ massless
scalar field. We present an analytic argument which conjectures the generalization of the mass-scaling relation
and echoing phenomena, originally discovered by Choptuik, fockiz@gedcase. Furthermore, we study the
behavior of the self-similar critical solution undexternalperturbations — addition of a cosmological constant
A and under a variation of the charge coupling constnFinally, we study the scaling relation of the
black-hole charge. Using an analytic argument, we conjecture that black holes of infinitesimal mass are neutral
or obey the relatiolQgy<Mgy . We verify our predictions with numerical resulf§0556-282(97)00106-9

PACS numbd(s): 04.40.Nr, 04.70.Bw

I. INTRODUCTION behavior. Using a semiquantitative argument, which is based
upon different behavior of the mass and charge under the

Gravitational collapse is one of the most interesting phe- i that the sianifi dinfl
nomena in general relativity. The dynamics of a sphericall)fesca Ingr—ar, we argue that the signiticance and influence

symmetric massless scalar figlt]] coupled to general rela- Of. Fhe chargg decreases during the evolution' and that the
tivity has two kinds of possible end states. Either the scalaj”t'Cal behavior appears. We provide a numerical evidence
field eventually dissipates away leaving spacetime flat or 47 the generalized mass-scaling relation and echoing phe-
black-hole forms. Numerical simulations of this model prob_nomena for the:hargeds_ltuatlon..

lem [2] have revealed a very interesting phenomena — a So far, the mass-scaling relation of the black-hole, and the

kind of critical behavior which is a feature of supercritical influence of pe.rturpations on the c_ritical evolution i_tself,.

initial conditions very close to the critical cape=p* (p is a have been studied in the context of internal perturbations in

parameter which characterizes the strength of the initial cont—h_e initial condltlons_, such as a de\{latlon of the field’s am-
plitude from the critical one. It is of interest to compare this

figuration, andp* is the threshold valye More precisely, " .
Choptuik found a power-law dependence of the black-holézgteigr?rgﬁgggttrg r?énﬁ)rncgi[]‘aaiopgﬁjmﬁg%’;hzl\‘/fg‘r%? t’r?:%rr‘i‘;“'
s . * ) -
mass on critical separatign-—p* of the form cal solution undeexternalperturbations such as the addition
of a cosmological constant. In addition, we examine the
Bl (1) effect of varying the charge coupling constantWe show
(p—p*)?, p>p*. that the mass of the black hole depends as a power on these
parameters. This resembles the situation in the magnetization
Subsequently the same type of critical behavior has beephase transition in which the magnetization depends as a
observed for other collapsing fields: the collapse of axisympower on the external magnetic field.
metric gravitational wave packef8], the collapse of spheri- The existence of charged critical behavior stems from the
cally symmetric radiative fluidg4]. In all these model prob-  fact that the influence of the charge is weakd decreasing
lems the critical exponeng turned out to be close to the near the critical solution. One may wonder whether there is
value originally found by Choptuik3~0.37, suggesting a another critical phenomenon in the strongly charged case.
universal behavior. However, Mais$f] has shown that for Since there is no stationary charged massless scalar field
fluid collapse models with an equation of state given byconfiguration[7] we do not expect to find here a critical
p=Kkp the critical exponent strongly depends on the parambehavior of the type discussed B§] for the Yang-Mills
eterk. model. While we cannot rule out the existence of another
The second key feature of Choptuik’s results is tim  type of critical point, we did not find one while searching
versality of the precisely critical §=p*) evolution at the numerically the parameter space in the strong charge regime.
threshold of black-hole formation — it was found that the In all cases calculated we have found that the charged scalar
critical solution has a discrete self-similar behavidiscrete field carried away the excess charge when the initial charge
echoing with a period\). was larger than the initial mass and a finite mass black hole
In this paper we show that it is possible to generalizeformed. We discuss the strong field regime elsewhere.
Choptuik’s results for spherically symmetric collapse of an The plan of the paper is as follows. In Sec. Il we describe
electrically chargedcompleX massless scalar fie[é]. This  the evolution equations. In Sec. Il we describe the algorithm
generalization is not trivial. The invariance of the neutraland numerical methods. In Sec. IV we describe our discreti-
evolution equations under the rescaling-au, r—ar, is  zation and error analysis. In Sec. V we describetbapreti-
crucial for the self-similarity of the critical evolution. The cal estimates and compare them with ewmericalresults.
introduction of chargéwhich corresponds to an addition of a Sections V A and V B establish both qualitatively and quan-
parameter with the dimension of length) destroys the re- titatively the generalization of the mass-scaling relation and
scaling invariance and might, therefore, destroy the criticaechoing phenomena for thehargedcase. In Sec. V C we

0, psp~,
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study the behavior of the critical evolution under external ro——
perturbations. In Sec. V D we study the charge-mass relation Q(U.f)=47Tief r(h*h—hh*)dr, (8)
for infinitesimal black holes. We show that fgr—p* —0 0
the black-hole charge tends to zero more rapidly than it$q the potential as

mass and that black holes of infinitesimal mass, which can be

created from near-critical evolutions, are neutral, or obey the r
relation Qgu<Mpy. We conclude in Sec. VI with a brief Ao:j

Q
r—zgdr. 9)
summary of our results.

0

The energy-momentum tensor of the charged scalar field is
Il. THE EVOLUTION EQUATIONS [9]

We consider a spherically symmetric charged scalar field 1
¢. _This is a combina_tion of two real scalar fiel_dsl, b2, Tab=§(¢;a¢;*b+ Ebp) + 5(_ b.aieApd* + BhieAgd
which are combined into a complex omle= ¢, +i¢,. The
electromagnetic field is described by the potentialwhich

1
i_s defined up to the addjtio_n of a gradient qf a scalar func- +ohieApd—dpieAd* )+ EFachdQCd
tion. The electromagnetic field tensbris defined as @A,
i.e., Fap=2A[pq) - +e?AApdd* +L0ap. (10
The total Lagrangian of the scalar field and electromag- b b
netic field is[9] The nontrivial Einstein equations are
1 . ab * . * 2 g,l’ *
L:_E(¢;a+|eAa¢)g (¢;b_|eAb¢ ) Gy : FEZBWh,rh,w (12)
o FuFagtg @ g . 1519.,909 il g terme L&
16w ur - r—zga—raa =om S9N N T a0 7|
,r
wheree is a constant an@* is the complex conjugate of (12

¢ Regularity at the origin requireg{u,0)=g(u,0). The bound-

ary conditionh(u,0)=h(u,0) forces us to integrate the equa-
¢;abgab+ ieAagab(2¢;b+ ieAy )+ ieAa;bgaqu:O, tions outward, and impose the normalization
(3) g(u,0)=g(u,0)=1, which corresponds to selecting the time
coordinate as the proper time on the O central world line.
and its complex conjugate, and The solution at a given depends only on the solution at
r’'<r. We integrate Eq(11) and obtain

'Varying ¢, ¢* andA, independently, one obtairf8]

1
E,:ab:cgbc_ie(;s(qs;’;‘—ieAad,*)+ieqs*(d,;a+ieAa<;5)=0. r(h—h_)(h* 1)
(4) g(u,r)=ex 477fo—dr . (13

r

We express the metric of a spherically symmetric spacetim

in the form[1,10] %sing Egs.(11) and(12), we obtain, after integration,

__ — 2 2402 — 1(r Q?
ds’=—g(u,r)g(u,r)du®—2g(u,r)dudr+r2dQ?. (5 g(u,r)=—f( gdr. (14)

1—
rJo TZ

The radial coordinate is a geometric quantity which di-
rectly measures proper surface area, arisl a retarded time  In terms of the variablé, the wave equation, E@3), takes
null coordinate. HerelQ)? is the two-sphere metric. the form

Because of the spherical symmetry, only the radial elec-
tric field F%*= —F9 is nonvanishing. This choice satisfies
Maxwell's equation

1 1 . — Q7 —
Dh=h,—5gh,=5-(9=09)(h—h)—55(h—h)g

= ieQ —
Flae =0. © - 2—?gh—iehAo. (15
We introduce the auxiliary fielth:
Using the characteristic method, we convert the scalar-field
evolution equation, Eq15), into a pair of coupled differen-

— 1 (r
¢:hEFfohdr' Dl equations:

2 .
Using the radial component of E(f), we express the charge dh 1~~~ ~— Q° ~-— ieQ —.
contained within the sphere of radius at a retarded time  du 2r (g=g)(h—h) 2r3(h h)g 2r gh-iehA,,
u, as (16)
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The initial data for the Einstein-scalar-Maxwell equations

are just the value ofi on the initial data surfacaj=0, the

value of the paramete, and a numerical choice of the ini-

We solve these equations together with the integral equatiorfi! Position(i.e., the value of) of each ingoing null lines of

(7), (13), (14), (8), and(9). The mass contained within the
sphere of radius at a retarded tima, is

[, 5.9
M(u,r)=§(l—§ r—z . (18)
Using Egs.(13) and(14), we expresM as
_ " g_ —h)(h* —h* EQ_Z EQ_Z
M(u,r)—fo{zwg(h h)(h* —h )+2 2 dr+2 .
(19

Ill. ALGORITHM AND NUMERICAL METHODS

A numerical simulation of the special uncharged case wa
first performed by Goldwirth and Pirafl0]. Gundlach,
Price, and Pullin[11] used a version of this algorithm to
study the scaling behavior of the mass of the black hole fo

S

the grid.

The algorithm proceeds as follows: first we integrate Eqs.
(7), (13), (8), (9), and (14) alongr for a fixedu and we
obtain in succession the quantities g, Q, A, andg. The
integration is carried using a three-point Simpson method for
unequally spaced absciss@ evenly spaced grid will not
remain so during the evolutidd0]). We next use Eq$20)—
(22), to evolveh andr one time step forward. We solve the
3N ordinary differential equations using the fifth-order
Runge-Kutta methodl13]. This process is iterated as many
times as necessary: i.e., until either the field disperses or a
charged black hole forms.

The time stepAu is determined so that in each step the
change irr, is less than half the distance between it and the
null trajectoryr,_4: i.e.,

r

—Ihe
Au<n n

On

L (24)
r

the special uncharged case. We have used a version of tg,ce 4 null trajectory arrives at the origir= 0, it bounces
algorithm of Refs[10,13, for the neutral case, and we have 5y disperses along= const to infinity. The grid point is
generalized it for the charged case. However, the methodg e efore lost when the light ray hits the origin.

used in Refs[10,11] are not accurate enough for a treatment

of the critical solution itself, because each successive ec
appears on spatial and temporal scales a fater\/31 finer
than its predecessorOur improvements follow Ref[12]
(see below.

To solve numerically Eq$16) and(17) we define a radial
gridr,, wheren=1,... N. We should emphasize thiats a
complex field:h=h;+ih,, and obtain a set of I8 coupled
differential equations:

dhln 1 N o Qﬁ s
T Z—rn(gn_gn)(hln_hln)_ Z_I,ir:,(hln_hln)gn

eQn

gnh2n+ ethAOn '

QZ

dhy, 1
2r3

du Z_rn(gn_a)(th_h_Zn)_ (th_h_Zn)gn

eQ, —
- Tngnhln_ehlnAOna (21)
n
dr, 1 99
qu_ 29 (22)
whereg andh satisfy the boundary conditions
91=01=1, hy=hy;, hy=hy. (23

tour value ofA is a half of the one used by Choptui&]. This
definition of the echoing period is based upon the time required fo
the physicalquantities, which are quadratic in the derivatives of the
scalar field to complete a cycle.

If for a given shellM >Q at some time then it is possible

2M(u,r)+Q2(u,r)
2

a2B =1—
e“P(u,r)y=1 . ;

(25)
will vanish. We identify the formation of a black hole when
there is arr value that satisfies

ri:M(Uuri)i[Mz(U-rt)_Qz(uuri)]llz- (26)
In this caser .. are the horizons of the shell.

As we approach the stage when a black hole fogps
becomes infinite. In our algorithm this means that the step
size Au—0. The numerical approach to the horizon is
stopped eventually by an overflow of or underflow of
Au. We can, still, estimate where and when a black-hole
horizon appears from the condition /r—1.

In [11] this method was used to study the scaling behavior
of the mass of the uncharged black hole. However, this
method is not accurate enough for a treatment of the critical
solution itself. The main improvements of our version for the
charged case closely resembles that of IREZ] where this
method was used to study the critical solution for the special
neutral case. We will now describe shortly the sources of
inaccuracy and the methods that we use to overcome them.

The first source of an inaccuracy arises from the fact that
the expressions for the quantitiss g, g, Ao, andM con-
tains an explicit factor of 1/which diverges at the origin.
We overcome this by using a Taylor expansiorhah r:

(27)

mThen we expand the quantitig Q, g, g, Ag, andM in
r, where the expansion coefficients are all functions of
h®, hOx = KhD) hD* K2 andh* . Thus, in order to

h=h©+hDr +h@r24+0(r3).
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treat the solution near the origin one needs to find only these T T o
coefficients. This is done by fitting the first three values of 02 t@©
h to a second-order polynomial: i.e., we solve Egj7) for o1 E E
r,, rp andrs to obtainh®, h® andh®. we then use : ]
these coefficients to evaluate the value$pofQ, g, g, and : 1
A, for the first two values of. The values of these quantities 01 3
for other values of is then determined using a three-point ; 3
Simpson method for unequally spaced abscissas. :
A second source of inaccuracy arises directly from the R
behavior of the critical solution itself — as the critical solu-
tion evolves each successive echo appears on spatial and
temporal scales a facte~ V31 finer than its predecessor.
This problem is solved as follows: Once a null trajectory 4
arrives at the origir=0 it bounces and disperses along
u= const to infinity. The grid point is, therefore, lost when
the light ray hits the origin. When the number of points de-
crease by a half we double the number of grid points by
introducing new grid points half-way between the old ones ok
and interpolating the values of the variables there. We chose I
the initial outermost grid point in such a way that this ingo- . -6 5 -4
ing light ray hits the zero-mass singularity of the critical In)
solution itself. With this choice the doubling decreases the _ ) _
grid spacing in proportion to the spatial structure and the FIG- 1. The convergence di(u,r=0) with decreasing grid

numerical resolution remains the same throughout the evolii2é- The upper panel displays the real part of the scalar field
tion. h,(u,r=0) for different relative grid spacing: 1/1600, 1/800, 1/400,

1/200, 1/100, and 1/50. The numerical errors are so small that the
different six curvegfor the different grid sizesactually overlap.
The bottom panel displays the convergence of In of the éoam-
pared to a reference solution with 1600 grid pojrats a function of
as we approach the horizon the step size decreases rap- indicates that the error near the origin is largely caused by our
idly. Furthermore, even if the grid is evenly spaced initially handling of ther =0 boundary conditions. The initial data are of

1 1 . . . * _
it will not remain so during the evolutiopl0]. However, ~@mily (¢) with amplitudeA>A* ande=1.

when we consider two grids in which one has twice the numyand side of Eq(16) contains an explicit factor of &/ which

ber of grid points as the other, the coarser grid spacing wilj, the exact solution is canceled by the boundary conditions.
remain twice the size of the finer grid, when we consider The valueh(u,r=0) influences all the other physical

points at the same physical location. We will discuss, thereQUantities, and at each and every valuerofit provides,
fore,_our numerical convergence in terms of the initial gridtherefore, a good measure of the overall accuracy of the cal-
spacing. o o _ _ culations. Three reasons lead to the crucial importance of
We denote the relative size of the initial grid spacing by checking the behavior of the solution near the origin, in order
| From condition(24) we see that the spaciriu is propor- g establish our confidence in the numerical resyltsThe
tional tol. As we have mentioned, we treat Eq$6) and ik of numerical instability caused by the explicit factor of
(17) as ordinary differential equations im, and we solve 1/r; (2) the solution at some value ofdepends only on the
these USi”% a fifth-order Runge-Kutta metfaa], the error  gojution atr’' <r, so a numerical error in the quantitynear
term isO(1°). _ o r=0, would cause an error at eachand in all the relevant
The calculation of the quantitiels, Q, g, g, A, and  physical quantities(3) the critical solution itself, which is
M in these equations is nontrivial, and is given by E@$,  the main issue of this work, appears on ever smaller spatial
(8), (13), (14), (9), and(19), respectively. The integrals are scales during its evolution, leading to the formation of a
discretized using the three-point Simpson method, the errofero-mass singularity at="0.
term in the integration i©(1°f), wheref*) is the fourth Since there are no useful analytical solutions available,
derivative of the integrand [13]. we use the numerical solution with the finest resolutieith
As we go from one grid to a finer or@e., doubling the 1600 grid points as the reference solution. We compare this
grid when the number of grid points reach half of the originalsolution with the solutions of 800, 400, 200, 100, and 50 grid
numbej we have to interpolate to obtain the values at thepoints. Our error estimate is the square root of the average
new grid points. The error term in the interpolation is (over different u value$ of the squared difference of
o(1%. h(u,r=0) between a given calculation and the reference
A critical source of error is the boundary conditions one.
g=g andh=h atr=0 [14]. We treat these boundary con-  Figure 1 displays the error in(u,r =0). In this figure the
ditions by approximating the true value bfu,r=0) using initial data are of family ¢), with amplitudeA=1.1 and
an interpolation according to Ed27), the error term is e=1 (see Sec. V for a discussion of initial dat&or these
O(I®). The situation is even more complicated: The right-initial conditions the gravitational field is strong\fA*),

=0)

of » =

h,(r

02 F =

L ©
r Slope=3.035

6 . ]

In{(Error)

-8 .

IV. DISCRETIZATION AND ERROR ANALYSIS
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—— — — : TABLE I. Scalar field profiles of several families of solutions.

02 1" (q) ]
 so-vieeo Family Form of initial data e
g o 5
g 1 @ r—0.2\2 0
7 ] H(r)=Ar’exg —
) . ] 0.1
o 02 -
o1 &(r)=Aexp(—44r )cog100r) 0
s | 1 (© ) r-0.252) r-0.152 1
I 2 P =Ar’exp —|—57 +iAr%exg — o1
0 0.2 0.4 06 ) '
u (d) &(r)=Aexp(44r)cog100r) +iAexp—75r)cog200r) 1
4
r© b
-6 :—S'°Pe=4-°‘2 ) E A. The critical solution
7 — ‘ We begin with the critical solutionpg=p*) itself. First,
EaoF x 3 we had to find the value of the critical parameter. L&t
E_m b ] denote the value ofi at which the singularity forms. We
; ) ] define
-14 [ ]
y R T R T=—In[(u* —u)/u*], (29)
6 -5 -4
Ing) R=r/(u* —u)=(r/u*)e’. (29

FIG. 2. The convergence ¢f(u,r =0.03) with decreasing grid In terms of these variables, the critical solution for the neu-
size|. The upper panel displays the real part of the scalar fieldral case is characterized by a discrete self-simildéiyi.e.,
h,(u,r=0.03) for different relative grid spacing: 1/1600, 1/800, h(R,T) and any other form-invariant quantity such Mgr
1/400, 1/200, 1/100, and 1/50. The numerical errors are so smabir dM/dr are periodic functions of.
that the different six curves actually overlap. The bottom panel Charge destroys the invariance of the neutral evolution
establishes the convergence of the In of the efcompared to a equations under the rescaling-au, r—ar, wherea is an
reference solution with 1600 grid pointas a function of In of the  rpjitrary positive constant. The different scaling of the mass
!nma! grid §ize,I.The slope is 4.0 0.05. This slope indicates that 5.4 charge under the rescaling-ar, suggests however,
in th.IS regime f[h.e. discretization error due ‘to t.he interpolation isthat the charge will decrease faster than the mass under re-
dominant. The initial data are the same as in Fig. 1. scaling. Hence we expect that critically will appear. As the

critical solution evolves its structure appears on ever smaller
and the scalar field undergoes a terminal gravitational colspatial(and temporalscales. For the neutral case we know
lapse into a charged black hole. The top part of Fig. 1 estalthat each successive echo appears on spatial and temporal
lishes visually that the code converges. The bottom part ofcales which are a factar '=e*~ \/31 smaller than its pre-
Fig. 1 shows that the numerical error varies|38*°%% as  decessor. Under the rescaling-ar we have
we vary the grid spacind,. This power indicates that the _—

error near the origin is dominated by the=0 boundary h—h, (30)
conditions.
We also calculate, in a similar manner, the error in 9—09, (31)

h(u,r=0.03). The top part of Fig. 2 displays again numeri- 2
cal errors that are so small that the different curtfes the Q—a’Q, (32)
different gridg actually overlap. The bottom part of Fig. 2 A,—aA, (33
establishes the stability and convergence of the code: the ° '

error varies ad*%=9%0% This power indicates that in this — T .

: ; o i =gt +a°ge, 34
regime the discretization error due to the interpolatiosed 9707000 ™2 e 34
in the grid doubling is the dominant one. M=M,+M,—aM,+a*M,, (35)

whereg, and M, are the parts ofy and M which do not

V. THEORETICAL PREDICTIONS VS NUMERICAL depend one, andg.,M. are the additions in the charged

RESULTS case. Sinca<1 Egs.(30)—(35) show that if echoing begins

In this section we present our theoretical predictions an
numerical results for the gravitational collapse of neutral an Additionally, as the oscillations proceed the scalar field
charged scalar fields. The numerical results presented ari%ﬁ)proaches a ,real function times a constant pfse This
from a study of several families of solutions, whose initial |o54s to an additional decrease in the charge of the form
scalar fieldp=h profiles are listed in Table I:

Families @) and () represent uncharged scalar-field Q—a‘Q, (36)
while families () and d) represent charge@omplex sca-
lar field. The amplitudeé is the critical parametep. A,—atA,, (37)

hen the significance and influence of the charge on the evo-
ution near the origin decreases along the evolution.
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9=0o+0o— 0o+ a%Qe, (38 '

| (@)+(o)+(c)+()
M=M,+M,—aM,+a%*M,, (39 i

whereé is a positive constansee Sec. V D

When both effects are combined we find th@/M
decreases approximately with each echo &M
—at™9(Q/M). Looking at the right-hand side of E(L6),
we find that the various terms scale according to

Max{2M/r)

1 - — 1 . _
5797 (9ot ge) J(h—h)— 5——(g—go)(h—h)

al+2e
_Tge(h_ ), (40)

Q2 —  atrag2
>3(h=hg——F7—(h-h)g, (41 -
6 8 10
(1+§) T
eQ — altde
2r 2r FIG. 3. lllustration of the universality of the critical evolution in

the gravitational collapse of a chargétbmplex scalar field. max
ehA—al*9ehA,. (43) (2M/r) is plotted as a function of the logarithmic tinfefor the
neutral families &), (b) and for the charged familiex) and d)

From here we learn that as the evolution proceeds, the |a§ftrom near-c_ritical _evolutior)sThe curves w_ere shifted horizontal_ly

three terms on the right-hand side of E(.6) become (b_ut not vgrtlcally in order to overlap the flrs_t _e_cho of ea_ch family

smaller relative to the first term by a factor larger thatn with t.he first echo of family &). After an "."t'al evo.'”t'on .the

with each echo. From these arguments we expect to find that' antity max(M/r) S.emes down to a periodic behavior Tnwith .
o . . a periodA~1.73, which corresponds to the one found by Choptuik

for near-critical evolutions the influence of the charge on th&ior the neutral case

evolution should decrease with each echo. '

We expect, therefore, that in the precisely critical case
(p=p*) and in the limit of an infinite train of echoes, the
influence of the charge on the evolution near origin will be
“washed out” and the solution will reach the Choptuik so-
lution. Sincea<<1 we expect the influence of the charge on | @+b)+e)+Hd)
the evolution to be negligible even after a small number of
echoes. Thus, once echoing begins the solution will approach
the neutral one rapidly. Our numerical solution verifies these
predictions. Figure 3 shows the quantity mak{&) as a
function of T for near-critical evolution of families ),

(b), (c), and @d). The solutions of families)-(d) were
shifted horizontally but not vertically with respect to family
(a) in order that the first echo of each family will overlap the =
first echo of family @). After an initial phase of evolution

the quantity max(®1/r) settles down to a periodic behavior o1 [ .
in T. The period isA=~1.73 which corresponds to previous
numerical results found by ChoptuiR] for the neutral case.

Figure 3 also provides a numerical evidence for diné
versality of the strong-field evolution of a critical configura-
tion. In order to verify that this universality exists for each
and every value of we display in Fig. 4 profiles oM/r as
a function of R for T values at which the quantity S S|
max(2M/r) reaches its maximum as a function ®f (It 0 05 ' 1 18
should be emphasized that Fig. 4 is composedtiGybrofiles R
— 4 for each family) The close similarity of the profiles g 4. The profiles oM/r for each of the four families, as a
illustrates two important properties: function of the logarithmic coordina in those times at which the

(1) For each family by itself, the critical solution is peri- guantity max(M/r) reaches its maximum as a function Bf (It

odic. Each successive echo appears on spatial and tempogabuld be emphasized that this figure is composed from 16 profiles
scales a factoe®~ /31 finer than its predecessor. — 4 for each family.

T T T T T T T T T T T T T

02 -
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(2) The close similarity of the profiles illustrates the e e A Rl ma e
unigueness of the critical solution and its independence of ) ] ) 1
s . . I Slope=0.377 ] -4 - Slope=0.375 —
the initial profile and charge. s 3 - 1

B. Scaling behavior of the black-hole mass

Ty
~Ton

We turn now to the power-law dependence of the black- ™ ¢ ] 8 .
hole mass. The critical solution by itself does not yield the o F E i 1
black-hole scaling relation. We should perturb the critical : : ] 0 [ .
initial conditions. This would lead to a dynamical instability =~ ' " =t e B e —
— a growing deviation from the critical evolution towards In(a) In(a)
either subcritical dissipation or supercritical charged black- . e
hole formation. To describe the run away from the critical 20 @ b0-0.378 I ggpﬁom ]
evolution we consider a perturbation mode with a power-law i 1 4T ’ 7
dependenca (u* —u) ™ “ [4,5], where\«(p—p*). Assume 4 .
the range of validity of the perturbation theory is restricted to & | 1 Sel ]
some maximal deviatiow from the critical evolution, i.e., s 7 [ ’ ]
the evolution is approximately self-similar until the deviation i ]
from the critical solution reach the valwe From here on the e 7 P 1
evolution is outside the scope of the perturbation theory — T DT D T 1]
there is subcritical dissipation of the field or supercritical 2 -5 10 5 25 20 5 10
black-hole formation. In either case, the evolution from this n(@) Ina)
stage on has no self-similar character.

We consider a perturbation in the initial conditions that FIG. 5. The Iog_arithmic time of a black-hole formation, plotted
develops into a charged black hole. The timg(p— p*) as— Tgy as a function of Ing) [wherea= (p— p*)/p* ] for the four

required to reach a deviatian is given by the relation famil_ies. The average sl_ope isak+ 0.37, which is _cons_istent with _
relation(46). The oscillations seen above the straight line are physi-

AUu*—u,) “=o. (44)  cal[6].
Of course, a larger initial perturbation requires a smaller time MM=Me =t CcMmi0e (32604 (48)
u, — the horizon is formed sooner. The logarithmic time
T, is given by We substitute Eq(45) into Eq. (48) and, assuming that

M andC do not depend op— p*, obtain

1
To= =g nP=P)* by 49 InMgy=cict (Ua)in(p—p*)+O[eX(p—p*)23+6)],

whereb, depends o andu*. “9)
In a following papel6,16] we prove that one should add where ¢y is a family-dependent constant. Using the usual
a periodic term F[In(p—p*)] to T, to obtain the total loga- definition of the mass critical exponent, §:
rithmic time Tgy until the horizon formation. Theeriodic ~ Mg (p—p*)#, we find thatg= 1/a.
termF[In(p—p*)] has a universal perioss=A/B. Thus, the Thus, according to the perturbation theory, the critical ex-
complete dependence dfgy on the critical separation ponents describes both the scaling relation of the black-hole
p—p*, for both the neutral and the charged cases, is giveinass and the deviation rate from the critical evolution caused
by by perturbations. In a following papef6,16] we show that
one should add a periodic ter#[ In(p—p*)] with a univer-
1 sal periodw = A/ to the scaling relatiori49).
Teu=——In(p—p*)+FlIn(p—p*)]+byx.  (46) Figure 6 displays Inf) as a function of Irg), wherem is
the normalized black-hole mass in units of the initial mass in
Figure 5 displays—Tgy as a function of In§), where the critical solution. The points are well fit by a straight line
a=(A—A*)/A*. The calculated points are well fit by a whose slope is8~0.37 which is consistent witl8=1/a.
straight line whose slope is @~0.37. This is consistent The measured value of the critical expongrin the charged
with relation (46). case agrees with the one of Choptuik for neutral collapse.
The exponent is related tog, the critical exponent that Thus, Fig. 6 presents a generalization of the mass-scaling
describes the power-law dependence of the black-hole masghenomenon for thehargedcase.

We defineM (™ as the mass aftar echoes. Following this In the neutral case the black-hole mass is proportional to
definition we define its radius and either the mass or the radius could be the
physical order parameter. In the charged case the black hole

MO =M +MO=1+C)M, (47 radius equalM + (M2—Q?)¥2 and in general it is no longer

proportional toM. However, as we approach the critical so-
whereM, is the part ofM which does not depend amand
M. is the charge contribution in the charged case. From Eqs.—
(35) and(39) it follows that See alsq17].
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FIG. 6. Scaling of the black-hole mass: i(vs In(@) for the FIG. 7. Power-law dependence of the black-hole mass on the

neutral families &), (b) and for thecharged families (c) and gosmologica_l constant. Im)_is plotted vs Ine_A) for the fourfami-

(d). mis the normalized black-hole mass in units of the initial mass/i€S- The points are well fit by a straight line whose slope &, 1/

in the critical solution. The points are well fit by a straight line Where 16~ . This provides an evidence for the power-law depen-

whose slope ig~0.37 which is consistent wit=1/a. The mea- denc.e. of the black-hole mass on external parameters. The initial
sured value of the critical exponeptin the charged case agrees conditions are foA=A*.

with the one previously found for the neutral case. The oscillations

above the straight line are physid#,,16,17. unperturbed solution forms a zero-mass singularity. The per-
turbation could lead to a finite mass black hole and we ex-
ﬁmine the dependence of this mass on ¢kternal param-

lution, the significance of the charge decreases with eac
eters:A ore.

echo. The quantitQ/M becomes smaller as the black-hole

mass gets sma@l_lefr and it is impossible to distinguish between 1. Cosmological constani
the two possibilities.

We first examine the effect of an addition of a cosmologi-

cal constant to a critical solution. The amplitude was set to

C. External perturbations to the critical solution the critical value A* (for A=0). We then add a

So far, the mass-scaling relation of the black hole, and thé0smological-constant}, and study its influence on the evo-
influence of perturbations on the critical evolution itself, lution. A>0 led to a dissipation of the critical solution and,
have been studied in the context of internal perturbations i®n the other hand\ <0 gave rise to a finite-mass black-hole
the initial conditions, such as a deviation of the field’s am-formation.
plitude from the critical one. It is of interest to study the ~ForA#0, the generalization of Eq14) is
behavior of the critical solution undeixternalperturbations.

In particular, we have studied the behavior of the critical ;

evolution under an addition of a cosmological constAnt au,r)=1/rf [1—(Q?r?)— Ar?]gdr. (50)
This is analogous to the addition of a@xternal magnetic 0

field to a system of magnetic moments and studying the .

magnetization dependence on the strength of the externd? @ddition, one should add the term

field exactly at the critical temperatufe (at T=T,. the mag-

netization is zero withogt an external magnetic field, just as —A/2rg(h—h_), (51)
the zero-mass singularity fek=A* and A=0). The anal-
ogy arises from the fact that in both cases &xernalper-
turbation, magnetic field or a cosmological constant, force
the order parameter to have a nonzero valu€=afl; or at
A=A* correspondingly. We have considered also the effec
of variation of the charge coupling consta@n the system.

The external perturbation\ (or a variation ofe), is ex-
pected to yield a dynamical instabjlit— a growing devia-
tion from the critical evolution toward either subcritical dis-
sipation or supercritical black-hole formation. The Mgl p= pr o (— A) 2. (52)

to the right-hand side of Eq16). Evidence for theuniver-
Qisﬁality and the power-law dependence of the black hole mass
on theexternalparameterA is shown in Fig. 7 which dis-
blays Infn) as a function of Int-A) for critical initial-
conditions @A=A*). The points are well fit by a straight
line: i.e.,
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Mgn (p—P* =S A)P, (53
L © o b
4 [ Stope=0370 L 3 wheresy is a family-dependent constant.

2. Variation of the charge coupling constant e

In(m)

i \ 1 We consider now the two charged families) @nd @),
a0 F T ’ 3 for the case where=0. The amplitude was first set to its

r < ] critical valueA* for the families €) and d), with e=0. For
e=0, the initial conditions represent an uncharged complex
In(e?) scalar field. We then turn on the charge — we add a charge
coupling constang, and study its influence. We examine the
black-hole mass as a function of the charge coupling con-

LN L S R S S B B B B B B B B E

« - 1 : . :
“ Slee=0-372 . b stante (keepingA=A*). The numerical results are shown in
r o 1 Fig. 8, which displays Int) as a function of In€). The
E s « 3 points are well fit by a straight line: i.e.,
E L < 1
8 :— - - —: MBH|p:p*O€|e| Y. (54)
10 [ o . Once more we find the simple relation=24, which leads
S T A VA YAUUOY ST W N ST Y ST M [N ST ST SN NN SO S
2 5 10 5 o to the general formula
In(e?)
Mo (p—p* +Se%)”, (55)
FIG. 8. Power-law dependence of the black-hole mass on chargg&ith another family dependent constasy,.
coupling constane. In(m) is plotted vs In€’) for the charged fami- A more detailed picture of the formation of a charged
lies (c) and (d). The points are well fit by a straight line whose plack hole near the phase transition is given by considering
slope isy/2~ . The initial conditions are foA=A*. the full two-dimensional phase spage-p* and €. This

was done both for subcritical(< A*) initial conditions and
A priori there is no reason to assume a specific valué.of for supercritical A>A*) initial conditions, close to the
However, we find numerically that 8~ 8. This shows that phase transition |[A—A*|<A*). Subcriticality and super-
the addition of a cosmological constant shifts the criticalcriticality are defined here relative to a neutral configuration
parameter in a relatively simple way: with e=0. Figure 9 displays the dependence of the black-

8
2 4 A*LN(e)+B

FIG. 9. The black-hole mass, mj, as a function of Irg)=In[(A* —A)/A*] and Ing), for subcritical initial conditions A<A*). The
charge opposes gravitation but the electromagnetic energy also contributes to the gravitational binding and leads to the formation of a black
hole even from subcritical initial conditions. Black holes do not form in the flat regineB, C, and D are normalization constants:
A=1, B=16, C=—-1, D=-11.061.
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Charge opposes gravitation but the electromagnetic energy
density also contributes to the gravitational binding, and by
doing so it permits the formation of a black hole even from
subcritical initial conditions.

The critical charge coupling constagit, needed to obtain
a black hole from subcritical initial conditions, is well de-
scribed by a power-law dependence on critical separation
|A—A*|:

e*x(p*—p)°, (56)

wheree=0.5 (see Fig. 10 This confirms relation$55) de-
rived earlier.

Figure 11 displays the dependence of the black-hole mass
formed from supercritical initial conditionsA>A*) as a
function of In@) and Ing), for family (c). Near the phase
transition, the larger the critical separatipr- p* and the
charge coupling constant the larger is the black-hole mass.
The slope of the right edge of the surfaceds which is
consistent with Eq(49). The slope of the left edge of the

FIG. 10. Power-law dependence of the critical charge couplingsurface is 28, which is consistent with Eq54). The overall

constante* on the critical separatiojA—A*|, for subcritical
(A<A*) initial conditions.e* is the minimal charge coupling con-

shape is consistent with E¢5).
The tight relation between the various critical-exponents

stant needed for black-hole formation from subcritical initial condi- 3 5, andy, which all describe thénstability of the critical

tions.

evolution under a variety of differenperturbations is a
strong evidence supporting the conjecture that there exists

hole mass which forms from subcritical initial conditions one mechanism which can explain the power-law depen-

(A<A*) as a function of Iré) and Ing), for family (c). It

dence of the black-hole mass on the various parameters, both

shows that the addition of charge can lead to a black-holéor internal perturbations in the initial conditions and for
external perturbations as well.

formation from subcritical initial conditions A<A*).

FIG. 11. The black-hole mass, In), is plotted as a function of laj=In[(A—A*)/A*] and Ing), for supercritical initial conditions
(A>A*). Near the phase transition, the larger the critical separg@tiop* and the charge coupling constantthe larger is the black-hole
mass. The slope of the right edge of the surfag@, ighich is consistent with Eq49). The slope of the left edge of the surface 8, 2vhich
is consistent with Eq(54). A, B, C, D are normalization constant&=1, B=8, C=1, D=23.061.
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FIG. 12. lllustration of the conjectured charge-scaling relation  FIG. 13. The decrease of the charge with each echo during the
(58). In(gan) is plotted vs Ing) for near-critical black holes, where critical evolution. The points are well fit by a straight line whose
Ogn is the normalized black-hole charge in units of the initial chargeslope is— (2+ ¢)A~—4.133.
in the critical solution. Data from the charged family) (is shown.

The .points are well fit by a straight line whose slopeobeys the  \ye find 7~0.883, in agreement with the prediction,
relation > 2,8._ Thus for_p—p*—>0 the black-hole charge tends to 7=0.883+0.007, of Gundlach and Martin-Gardi5].

zero more rapidly than its mass. The data shown in Figs. 12 and 13 come from the charged
family (c). For family (d) we have found that in general the
charge increases as the critical separapenp* increases

We have shown in Sec. V A that the black-hole chargealthough this correlation is not well described by a power-
tends to zero faster than its mass for p* —0. We demon- law dependence. The reason for this probably arises from the
strate now thaQ— 0 as a power law with a critical exponent initial phase of the evolution. The initial data in this family
larger than B (see alsd15] for an independent analysis of contains rather narrow alternating layers of positive and
this problem. DefineQ(" as the charge afterechoes. From negative charge whose relative magnitude depends dhe

D. The charge-mass relation for black holes

Egs.(32) and(36) it follows that initial evolution that precedes the critical oscillations could
() — (0)a 2+ A lead therefore, depending gnto drastically different total
Q"=Q"%e . (57 charge. Consequently, the assumption & does not de-

o _ . o pend onp—p* breaks down for this configuration. Despite
Substituting Eq.(45) into Eq. (57) and assuming tha®®  this, our numerical results qualitatively confirm our predic-

does not depend op—p* we obtain tion — the black-hole charge tends to zero with p* faster
than its mass. From here we conclude that black-holes with
In[Qgl =(2+ &) BIn(p—p* ) +dy, (58) infinitesimal mass, which, according to this mechanism, can
be created from near-critical evolutions, are neutral, or obey
whered, is a family-dependent constant. the relationQgy<Mpgy .

From this analytic argument we deduce two conclusions:
(1) The black-hole charge is expected to have a power-law

dependence on critical separatipr-p*, where the critical VI SUMMARY AND CONCLUSIONS

exponenty is closely related to the critical exponggf the We have studied the spherical gravitational collapse of a
mass according ta;=(2+¢)B; (2) the black-hole charge chargedcompley scalar field. The main issue considered is
tends to zero witlp—p* more rapidly than its mass. the generalization of the critical behavior, originally discov-

Figure 12 displays lgsy as a function of Ir€) for near-  ered by Choptuik for neutral fields, for the genecabrged
critical black holes, wheregy is the normalized black-hole case. We have shown that the significance and influence of
charge in units of the initial charge in the critical solution. the charge decreases during the evolution and consequently
The points are well fit by a straight line whose slope isthe critical behavior appears. As—p* —0 the black-hole
7~0.88. This is consistent with relatid8). charge tends to zero faster than its mass, i.e.,

Another way to determine the value gfis directly from  Qgy/Mgy—0 as p—p*. Thus, we conjecture that black
Egs.(57) and(58). Figure 13 displays Igf” as a function of  holes of infinitesimal mass, which can be created from near-
n, the number of echoes, along the critical solution. Thecritical evolutions, are neutral, or obey the relation
slope is—(2+ &) A~ —4.133. UsingA~1.73 andB~0.37 Qy<Mpy. Consequently, we find both the mass scaling
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relations for supercritical solutions and the echoing phenomeonditions, is well described by a power-law dependence on
enon for the critical solution. We show that the charge of thecritical separatiorp* — p.
black hole also depends, as a power law on the separation The tight relation between the various critical exponents
from criticality. The critical exponent i>28 [15]. B, 8, andy, which all describe thénstability of the critical

We have also studied the response of the critical solutiogVvolution under a variety of differenperturbations is a
to externalperturbations. In particular, we have studied thestrong evidence supporting the conjecture that there exists
behavior of the critical evolution under the addition of a ©ne€ mechanism which can explain the power-law depen-
cosmological constand, and the addition of charge cou- dence of the black-hole mass on the various parameters, both
pling constane to a neutral critical configuration of a com- fOF intéral perturbations and for external ones.
plex scalar field. We have found a power-law dependence of
the black-hole mass oexternalparameters\ ande. Exter-
nal perturbations can vary the critical parameter and can lead We thank Shai Ayal for technical help, Amos Ori for
to black hole formation from what was subcriticgd < p*) helpful discussions, and Carsten Gundlach for critical re-
initial conditions. The critical charge coupling constafit ~ marks. This research was supported by a grant from the US-
which is needed to form black holes from subcritical initial Israel BSF and a grant from the Israeli Ministry of Science.
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