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We summarize results from a study of spherically symmetric collapse of acharged~complex! massless
scalar field. We present an analytic argument which conjectures the generalization of the mass-scaling relation
and echoing phenomena, originally discovered by Choptuik, for thechargedcase. Furthermore, we study the
behavior of the self-similar critical solution underexternalperturbations — addition of a cosmological constant
L and under a variation of the charge coupling constante. Finally, we study the scaling relation of the
black-hole charge. Using an analytic argument, we conjecture that black holes of infinitesimal mass are neutral
or obey the relationQBH!MBH . We verify our predictions with numerical results.@S0556-2821~97!00106-9#

PACS number~s!: 04.40.Nr, 04.70.Bw

I. INTRODUCTION

Gravitational collapse is one of the most interesting phe-
nomena in general relativity. The dynamics of a spherically
symmetric massless scalar field@1# coupled to general rela-
tivity has two kinds of possible end states. Either the scalar
field eventually dissipates away leaving spacetime flat or a
black-hole forms. Numerical simulations of this model prob-
lem @2# have revealed a very interesting phenomena — a
kind of critical behavior which is a feature of supercritical
initial conditions very close to the critical casep5p* (p is a
parameter which characterizes the strength of the initial con-
figuration, andp* is the threshold value!. More precisely,
Choptuik found a power-law dependence of the black-hole
mass on critical separationp2p* of the form

MBH}H 0, p<p* ,

~p2p* !b, p.p* .
~1!

Subsequently the same type of critical behavior has been
observed for other collapsing fields: the collapse of axisym-
metric gravitational wave packets@3#, the collapse of spheri-
cally symmetric radiative fluids@4#. In all these model prob-
lems the critical exponentb turned out to be close to the
value originally found by Choptuikb'0.37, suggesting a
universal behavior. However, Maison@5# has shown that for
fluid collapse models with an equation of state given by
p5kr the critical exponent strongly depends on the param-
eterk.

The second key feature of Choptuik’s results is theuni-
versality of the precisely critical (p5p* ) evolution at the
threshold of black-hole formation — it was found that the
critical solution has a discrete self-similar behavior~discrete
echoing with a periodD).

In this paper we show that it is possible to generalize
Choptuik’s results for spherically symmetric collapse of an
electrically charged~complex! massless scalar field@6#. This
generalization is not trivial. The invariance of the neutral
evolution equations under the rescalingu→au, r→ar, is
crucial for the self-similarity of the critical evolution. The
introduction of charge~which corresponds to an addition of a
parameter with the dimension of length21) destroys the re-
scaling invariance and might, therefore, destroy the critical

behavior. Using a semiquantitative argument, which is based
upon different behavior of the mass and charge under the
rescalingr→ar, we argue that the significance and influence
of the charge decreases during the evolution and that the
critical behavior appears. We provide a numerical evidence
for the generalized mass-scaling relation and echoing phe-
nomena for thechargedsituation.

So far, the mass-scaling relation of the black-hole, and the
influence of perturbations on the critical evolution itself,
have been studied in the context of internal perturbations in
the initial conditions, such as a deviation of the field’s am-
plitude from the critical one. It is of interest to compare this
phenomenon to other critical phenomenon, such as magneti-
zation phase transition, and to study the behavior of the criti-
cal solution underexternalperturbations such as the addition
of a cosmological constantL. In addition, we examine the
effect of varying the charge coupling constante. We show
that the mass of the black hole depends as a power on these
parameters. This resembles the situation in the magnetization
phase transition in which the magnetization depends as a
power on the external magnetic field.

The existence of charged critical behavior stems from the
fact that the influence of the charge is weak~and decreasing!
near the critical solution. One may wonder whether there is
another critical phenomenon in the strongly charged case.
Since there is no stationary charged massless scalar field
configuration@7# we do not expect to find here a critical
behavior of the type discussed by@8# for the Yang-Mills
model. While we cannot rule out the existence of another
type of critical point, we did not find one while searching
numerically the parameter space in the strong charge regime.
In all cases calculated we have found that the charged scalar
field carried away the excess charge when the initial charge
was larger than the initial mass and a finite mass black hole
formed. We discuss the strong field regime elsewhere.

The plan of the paper is as follows. In Sec. II we describe
the evolution equations. In Sec. III we describe the algorithm
and numerical methods. In Sec. IV we describe our discreti-
zation and error analysis. In Sec. V we describe ourtheoreti-
cal estimates and compare them with ournumericalresults.
Sections V A and V B establish both qualitatively and quan-
titatively the generalization of the mass-scaling relation and
echoing phenomena for thechargedcase. In Sec. V C we
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study the behavior of the critical evolution under external
perturbations. In Sec. V D we study the charge-mass relation
for infinitesimal black holes. We show that forp2p*→0
the black-hole charge tends to zero more rapidly than its
mass and that black holes of infinitesimal mass, which can be
created from near-critical evolutions, are neutral, or obey the
relationQBH!MBH . We conclude in Sec. VI with a brief
summary of our results.

II. THE EVOLUTION EQUATIONS

We consider a spherically symmetric charged scalar field
f. This is a combination of two real scalar fieldsf1 , f2,
which are combined into a complex onef5f11 if2. The
electromagnetic field is described by the potentialA, which
is defined up to the addition of a gradient of a scalar func-
tion. The electromagnetic field tensorF is defined as 2dA,
i.e., Fab52A[b;a] .

The total Lagrangian of the scalar field and electromag-
netic field is@9#

L52
1

2
~f ;a1 ieAaf!gab~f ;b* 2 ieAbf* !

2
1

16p
FabFcdg

acgbd, ~2!

wheree is a constant andf* is the complex conjugate of
f.

Varying f, f* andAa independently, one obtains@9#

f ;abg
ab1 ieAag

ab~2f ;b1 ieAbf!1 ieAa;bg
abf50,

~3!

and its complex conjugate, and

1

4p
Fab;cg

bc2 ief~f ;a* 2 ieAaf* !1 ief* ~f ;a1 ieAaf!50.

~4!

We express the metric of a spherically symmetric spacetime
in the form @1,10#

ds252g~u,r !ḡ~u,r !du222g~u,r !dudr1r 2dV2. ~5!

The radial coordinater is a geometric quantity which di-
rectly measures proper surface area, andu is a retarded time
null coordinate. HeredV2 is the two-sphere metric.

Because of the spherical symmetry, only the radial elec-
tric field F0152F10 is nonvanishing. This choice satisfies
Maxwell’s equation

F [ab;c]50. ~6!

We introduce the auxiliary fieldh:

f5h̄[
1

r E0
r

hdr. ~7!

Using the radial component of Eq.~4!, we express the charge
contained within the sphere of radiusr , at a retarded time
u, as

Q~u,r !54p ieE
0

r

r ~ h̄* h2h̄h* !dr, ~8!

and the potential as

A05E
0

r Q

r 2
gdr. ~9!

The energy-momentum tensor of the charged scalar field is
@9#

Tab5
1

2
~f ;af ;b* 1f ;a* f ;b!1

1

2
~2f ;aieAbf*1f ;b* ieAaf

1f ;a* ieAbf2f ;bieAaf* !1
1

4p
FacFbdg

cd

1e2AaAbff*1Lgab . ~10!

The nontrivial Einstein equations are

Grr :
2

r

g,r
g

58ph̄,r h̄,r* , ~11!

Gur :
1

r 2
ḡFgḡ1r

ḡ

g S gḡD
,r

21G58pS 12 ḡh̄,r h̄,r*1
1

8p
g
Q2

r 4 D .
~12!

Regularity at the origin requiresg(u,0)5ḡ(u,0). The bound-
ary conditionh(u,0)5h̄(u,0) forces us to integrate the equa-
tions outward, and impose the normalization
g(u,0)5ḡ(u,0)51, which corresponds to selecting the time
coordinate as the proper time on ther50 central world line.

The solution at a givenr depends only on the solution at
r 8,r . We integrate Eq.~11! and obtain

g~u,r !5expF4pE
0

r ~h2h̄!~h*2h̄* !

r
drG . ~13!

Using Eqs.~11! and ~12!, we obtain, after integration,

ḡ~u,r !5
1

r E0
r S 12

Q2

r 2 Dgdr. ~14!

In terms of the variableh, the wave equation, Eq.~3!, takes
the form

Dh[h,u2
1

2
ḡh,r5

1

2r
~g2ḡ!~h2h̄!2

Q2

2r 3
~h2h̄!g

2
ieQ

2r
gh̄2 iehA0 . ~15!

Using the characteristic method, we convert the scalar-field
evolution equation, Eq.~15!, into a pair of coupled differen-
tial equations:

dh

du
5

1

2r
~g2ḡ!~h2h̄!2

Q2

2r 3
~h2h̄!g2

ieQ

2r
gh̄2 iehA0 ,

~16!
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dr

du
52

1

2
ḡ. ~17!

We solve these equations together with the integral equations
~7!, ~13!, ~14!, ~8!, and ~9!. The mass contained within the
sphere of radiusr at a retarded timeu, is

M ~u,r ![
r

2 S 12
ḡ

g
1
Q2

r 2 D . ~18!

Using Eqs.~13! and ~14!, we expressM as

M ~u,r !5E
0

r F2p
ḡ

g
~h2h̄!~h*2h̄* !1

1

2

Q2

r 2 Gdr1 1

2

Q2

r
.

~19!

III. ALGORITHM AND NUMERICAL METHODS

A numerical simulation of the special uncharged case was
first performed by Goldwirth and Piran@10#. Gundlach,
Price, and Pullin@11# used a version of this algorithm to
study the scaling behavior of the mass of the black hole for
the special uncharged case. We have used a version of the
algorithm of Refs.@10,12#, for the neutral case, and we have
generalized it for the charged case. However, the methods
used in Refs.@10,11# are not accurate enough for a treatment
of the critical solution itself, because each successive echo
appears on spatial and temporal scales a factoreD'A31 finer
than its predecessor.1 Our improvements follow Ref.@12#
~see below!.

To solve numerically Eqs.~16! and~17! we define a radial
grid r n , wheren51, . . . ,N. We should emphasize thath̄ is a
complex field:h̄5h̄11 i h̄2, and obtain a set of 3N coupled
differential equations:

dh1n
du

5
1

2r n
~gn2ḡn!~h1n2h̄1n!2

Qn
2

2r n
3 ~h1n2h̄1n!gn

1
eQn

2r n
gnh̄2n1eh2nA0n , ~20!

dh2n
du

5
1

2r n
~gn2ḡn!~h2n2h̄2n!2

Qn
2

2r n
3 ~h2n2h̄2n!gn

2
eQn

2r n
gnh̄1n2eh1nA0n , ~21!

drn
du

52
1

2
ḡn , ~22!

whereg andh satisfy the boundary conditions

ḡ15g151, h̄115h11, h̄215h21. ~23!

The initial data for the Einstein-scalar-Maxwell equations
are just the value ofh on the initial data surface,u50, the
value of the parametere, and a numerical choice of the ini-
tial position~i.e., the value ofr ) of each ingoing null lines of
the grid.

The algorithm proceeds as follows: first we integrate Eqs.
~7!, ~13!, ~8!, ~9!, and ~14! along r for a fixed u and we
obtain in succession the quantitiesh̄, g, Q, A0, andḡ. The
integration is carried using a three-point Simpson method for
unequally spaced abscissas~an evenly spaced grid will not
remain so during the evolution@10#!. We next use Eqs.~20!–
~22!, to evolveh andr one time step forward. We solve the
3N ordinary differential equations using the fifth-order
Runge-Kutta method@13#. This process is iterated as many
times as necessary: i.e., until either the field disperses or a
charged black hole forms.

The time stepDu is determined so that in each step the
change inr n is less than half the distance between it and the
null trajectoryr n21: i.e.,

Du,
r n2r n21

ḡn
. ~24!

Once a null trajectory arrives at the originr50, it bounces
and disperses alongu5 const to infinity. The grid point is
therefore lost when the light ray hits the origin.

If for a given shellM.Q at some time then it is possible
that

ē 2b~u,r !512
2M ~u,r !

r
1
Q2~u,r !

r 2
~25!

will vanish. We identify the formation of a black hole when
there is anr value that satisfies

r65M ~u,r6!6@M2~u,r6!2Q2~u,r6!#1/2. ~26!

In this caser6 are the horizons of the shell.
As we approach the stage when a black hole formsḡn

becomes infinite. In our algorithm this means that the step
size Du→0. The numerical approach to the horizon is
stopped eventually by an overflow ofḡ or underflow of
Du. We can, still, estimate where and when a black-hole
horizon appears from the conditionr1 /r→1.

In @11# this method was used to study the scaling behavior
of the mass of the uncharged black hole. However, this
method is not accurate enough for a treatment of the critical
solution itself. The main improvements of our version for the
charged case closely resembles that of Ref.@12# where this
method was used to study the critical solution for the special
neutral case. We will now describe shortly the sources of
inaccuracy and the methods that we use to overcome them.

The first source of an inaccuracy arises from the fact that
the expressions for the quantitiesh̄, g, ḡ, A0, andM con-
tains an explicit factor of 1/r which diverges at the origin.
We overcome this by using a Taylor expansion ofh in r :

h5h~0!1h~1!r1h~2!r 21O~r 3!. ~27!

Then we expand the quantitiesh̄, Q, g, ḡ, A0, andM in
r , where the expansion coefficients are all functions of
h(0), h(0)* , h(1), h(1)* , h(2), andh(2)* . Thus, in order to

1Our value ofD is a half of the one used by Choptuik@2#. This
definition of the echoing period is based upon the time required for
thephysicalquantities, which are quadratic in the derivatives of the
scalar field to complete a cycle.
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treat the solution near the origin one needs to find only these
coefficients. This is done by fitting the first three values of
h to a second-order polynomial: i.e., we solve Eq.~27! for
r 1 , r 2, and r 3 to obtainh(0), h(1), andh(2). We then use
these coefficients to evaluate the values ofh̄, Q, g, ḡ, and
A0 for the first two values ofr . The values of these quantities
for other values ofr is then determined using a three-point
Simpson method for unequally spaced abscissas.

A second source of inaccuracy arises directly from the
behavior of the critical solution itself — as the critical solu-
tion evolves each successive echo appears on spatial and
temporal scales a factoreD'A31 finer than its predecessor.
This problem is solved as follows: Once a null trajectory
arrives at the originr50 it bounces and disperses along
u5 const to infinity. The grid point is, therefore, lost when
the light ray hits the origin. When the number of points de-
crease by a half we double the number of grid points by
introducing new grid points half-way between the old ones
and interpolating the values of the variables there. We chose
the initial outermost grid point in such a way that this ingo-
ing light ray hits the zero-mass singularity of the critical
solution itself. With this choice the doubling decreases the
grid spacing in proportion to the spatial structure and the
numerical resolution remains the same throughout the evolu-
tion.

IV. DISCRETIZATION AND ERROR ANALYSIS

Our grid is highly nonuniform inu if a horizon forms —
as we approach the horizon the step sizeDu decreases rap-
idly. Furthermore, even if the grid is evenly spaced initially,
it will not remain so during the evolution@10#. However,
when we consider two grids in which one has twice the num-
ber of grid points as the other, the coarser grid spacing will
remain twice the size of the finer grid, when we consider
points at the same physical location. We will discuss, there-
fore, our numerical convergence in terms of the initial grid
spacing.

We denote the relative size of the initial grid spacing by
l . From condition~24! we see that the spacingDu is propor-
tional to l . As we have mentioned, we treat Eqs.~16! and
~17! as ordinary differential equations inu, and we solve
these using a fifth-order Runge-Kutta method@13#, the error
term isO( l 6).

The calculation of the quantitiesh̄, Q, g, ḡ, A0, and
M in these equations is nontrivial, and is given by Eqs.~7!,
~8!, ~13!, ~14!, ~9!, and ~19!, respectively. The integrals are
discretized using the three-point Simpson method, the error
term in the integration isO( l 5f (4)), where f (4) is the fourth
derivative of the integrandf @13#.

As we go from one grid to a finer one~i.e., doubling the
grid when the number of grid points reach half of the original
number! we have to interpolate to obtain the values at the
new grid points. The error term in the interpolation is
O( l 4).

A critical source of error is the boundary conditions
ḡ5g and h̄5h at r50 @14#. We treat these boundary con-
ditions by approximating the true value ofh(u,r50) using
an interpolation according to Eq.~27!, the error term is
O( l 3). The situation is even more complicated: The right-

hand side of Eq.~16! contains an explicit factor of 1/r , which
in the exact solution is canceled by the boundary conditions.

The valueh(u,r50) influences all the other physical
quantities, and at each and every value ofr . It provides,
therefore, a good measure of the overall accuracy of the cal-
culations. Three reasons lead to the crucial importance of
checking the behavior of the solution near the origin, in order
to establish our confidence in the numerical results:~1! The
risk of numerical instability caused by the explicit factor of
1/r ; ~2! the solution at some value ofr depends only on the
solution atr 8,r , so a numerical error in the quantityh near
r50, would cause an error at eachr , and in all the relevant
physical quantities;~3! the critical solution itself, which is
the main issue of this work, appears on ever smaller spatial
scales during its evolution, leading to the formation of a
zero-mass singularity atr50.

Since there are no useful analytical solutions available,
we use the numerical solution with the finest resolution~with
1600 grid points! as the reference solution. We compare this
solution with the solutions of 800, 400, 200, 100, and 50 grid
points. Our error estimate is the square root of the average
~over different u values! of the squared difference of
h(u,r50) between a given calculation and the reference
one.

Figure 1 displays the error inh(u,r50). In this figure the
initial data are of family (c), with amplitudeA51.1 and
e51 ~see Sec. V for a discussion of initial data!. For these
initial conditions the gravitational field is strong (A.A* ),

FIG. 1. The convergence ofh(u,r50) with decreasing grid
size. The upper panel displays the real part of the scalar field
h1(u,r50) for different relative grid spacing: 1/1600, 1/800, 1/400,
1/200, 1/100, and 1/50. The numerical errors are so small that the
different six curves~for the different grid sizes! actually overlap.
The bottom panel displays the convergence of ln of the error~com-
pared to a reference solution with 1600 grid points! as a function of
ln of the initial grid size l . The slope is 3.0360.06. This slope
indicates that the error near the origin is largely caused by our
handling of ther50 boundary conditions. The initial data are of
family (c) with amplitudeA.A* ande51.
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and the scalar field undergoes a terminal gravitational col-
lapse into a charged black hole. The top part of Fig. 1 estab-
lishes visually that the code converges. The bottom part of
Fig. 1 shows that the numerical error varies asl 3.0360.06 as
we vary the grid spacing,l . This power indicates that the
error near the origin is dominated by ther50 boundary
conditions.

We also calculate, in a similar manner, the error in
h(u,r50.03). The top part of Fig. 2 displays again numeri-
cal errors that are so small that the different curves~for the
different grids! actually overlap. The bottom part of Fig. 2
establishes the stability and convergence of the code: the
error varies asl 4.0160.05. This power indicates that in this
regime the discretization error due to the interpolation~used
in the grid doubling! is the dominant one.

V. THEORETICAL PREDICTIONS VS NUMERICAL
RESULTS

In this section we present our theoretical predictions and
numerical results for the gravitational collapse of neutral and
charged scalar fields. The numerical results presented arise
from a study of several families of solutions, whose initial
scalar fieldf[h̄ profiles are listed in Table I:

Families (a) and (b) represent uncharged scalar-field
while families (c) and (d) represent charged~complex! sca-
lar field. The amplitudeA is the critical parameterp.

A. The critical solution

We begin with the critical solution (p5p* ) itself. First,
we had to find the value of the critical parameter. Letu*
denote the value ofu at which the singularity forms. We
define

T[2 ln@~u*2u!/u* #, ~28!

R[r /~u*2u!5~r /u* !eT. ~29!

In terms of these variables, the critical solution for the neu-
tral case is characterized by a discrete self-similarity@2#, i.e.,
h(R,T) and any other form-invariant quantity such asM /r
or dM/dr are periodic functions ofT.

Charge destroys the invariance of the neutral evolution
equations under the rescalingu→au, r→ar, wherea is an
arbitrary positive constant. The different scaling of the mass
and charge under the rescalingr→ar, suggests however,
that the charge will decrease faster than the mass under re-
scaling. Hence we expect that critically will appear. As the
critical solution evolves its structure appears on ever smaller
spatial~and temporal! scales. For the neutral case we know
that each successive echo appears on spatial and temporal
scales which are a factora21[eD'A31 smaller than its pre-
decessor. Under the rescalingr→ar we have

h̄→h̄, ~30!

g→g, ~31!

Q→a2Q, ~32!

Ao→aAo , ~33!

ḡ[ḡo1ḡe→ḡo1a2ḡe , ~34!

M[Mo1Me→aMo1a3Me , ~35!

where ḡo andM0 are the parts ofḡ andM which do not
depend one, and ḡe ,Me are the additions in the charged
case. Sincea,1 Eqs.~30!–~35! show that if echoing begins
then the significance and influence of the charge on the evo-
lution near the origin decreases along the evolution.

Additionally, as the oscillations proceed the scalar field
approaches a real function times a constant phase@15#. This
leads to an additional decrease in the charge of the form

Q→ajQ, ~36!

Ao→ajAo , ~37!

FIG. 2. The convergence ofh(u,r50.03) with decreasing grid
size l . The upper panel displays the real part of the scalar field
h1(u,r50.03) for different relative grid spacing: 1/1600, 1/800,
1/400, 1/200, 1/100, and 1/50. The numerical errors are so small
that the different six curves actually overlap. The bottom panel
establishes the convergence of the ln of the error~compared to a
reference solution with 1600 grid points! as a function of ln of the
initial grid size,l . The slope is 4.0160.05. This slope indicates that
in this regime the discretization error due to the interpolation is
dominant. The initial data are the same as in Fig. 1.

TABLE I. Scalar field profiles of several families of solutions.

Family Form of initial data e

(a)
f~r!5Ar2expF2Sr20.2

0.1 D 2G 0

(b) f~r!5Aexp~244r !cos~100r ! 0

(c)
f~r!5Ar2expF2Sr20.25

0.1 D 2G1 iAr 2expF2Sr20.15

0.1 D 2G 1

(d) f~r!5Aexp~44r !cos~100r !1 iAexp~275r !cos~200r ! 1
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ḡ[ḡo1ḡe→ḡo1a2jḡe , ~38!

M[Mo1Me→aMo1a2jMe , ~39!

wherej is a positive constant~see Sec. V D!.
When both effects are combined we find thatQ/M

decreases approximately with each echo asQ/M
→a(11j)(Q/M ). Looking at the right-hand side of Eq.~16!,
we find that the various terms scale according to

1

2r
@g2~ ḡo1ḡe!#~h2h̄!→

1

2ar
~g2ḡo!~h2h̄!

2
a~112j!

2r
ḡe~h2h̄!, ~40!

Q2

2r 3
~h2h̄!g→

a~112j!Q2

2r 3
~h2h̄!g, ~41!

eQ

2r
gh̄→

a~11j!eQ

2r
, ~42!

ehAo→a~11j!ehAo . ~43!

From here we learn that as the evolution proceeds, the last
three terms on the right-hand side of Eq.~16! become
smaller relative to the first term by a factor larger thana2

with each echo. From these arguments we expect to find that
for near-critical evolutions the influence of the charge on the
evolution should decrease with each echo.

We expect, therefore, that in the precisely critical case
(p5p* ) and in the limit of an infinite train of echoes, the
influence of the charge on the evolution near origin will be
‘‘washed out’’ and the solution will reach the Choptuik so-
lution. Sincea!1 we expect the influence of the charge on
the evolution to be negligible even after a small number of
echoes. Thus, once echoing begins the solution will approach
the neutral one rapidly. Our numerical solution verifies these
predictions. Figure 3 shows the quantity max(2M /r ) as a
function of T for near-critical evolution of families (a),
(b), (c), and (d). The solutions of families (b)-(d) were
shifted horizontally but not vertically with respect to family
(a) in order that the first echo of each family will overlap the
first echo of family (a). After an initial phase of evolution
the quantity max(2M /r ) settles down to a periodic behavior
in T. The period isD'1.73 which corresponds to previous
numerical results found by Choptuik@2# for the neutral case.

Figure 3 also provides a numerical evidence for theuni-
versalityof the strong-field evolution of a critical configura-
tion. In order to verify that this universality exists for each
and every value ofr we display in Fig. 4 profiles ofM /r as
a function of R for T values at which the quantity
max(2M /r ) reaches its maximum as a function ofT. ~It
should be emphasized that Fig. 4 is composed of16 profiles
— 4 for each family.! The close similarity of the profiles
illustrates two important properties:

~1! For each family by itself, the critical solution is peri-
odic. Each successive echo appears on spatial and temporal
scales a factoreD'A31 finer than its predecessor.

FIG. 3. Illustration of the universality of the critical evolution in
the gravitational collapse of a charged~complex! scalar field. max
(2M /r ) is plotted as a function of the logarithmic timeT for the
neutral families (a), (b) and for the charged families (c) and (d)
~from near-critical evolutions!. The curves were shifted horizontally
~but not vertically! in order to overlap the first echo of each family
with the first echo of family (a). After an initial evolution the
quantity max(2M /r ) settles down to a periodic behavior inT with
a periodD'1.73, which corresponds to the one found by Choptuik
for the neutral case.

FIG. 4. The profiles ofM /r for each of the four families, as a
function of the logarithmic coordinateR in those times at which the
quantity max(2M /r ) reaches its maximum as a function ofT. ~It
should be emphasized that this figure is composed from 16 profiles
– 4 for each family.!
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~2! The close similarity of the profiles illustrates the
uniqueness of the critical solution and its independence of
the initial profile and charge.

B. Scaling behavior of the black-hole mass

We turn now to the power-law dependence of the black-
hole mass. The critical solution by itself does not yield the
black-hole scaling relation. We should perturb the critical
initial conditions. This would lead to a dynamical instability
— a growing deviation from the critical evolution towards
either subcritical dissipation or supercritical charged black-
hole formation. To describe the run away from the critical
evolution we consider a perturbation mode with a power-law
dependencel(u*2u)2a @4,5#, wherel}(p2p* ). Assume
the range of validity of the perturbation theory is restricted to
some maximal deviations from the critical evolution, i.e.,
the evolution is approximately self-similar until the deviation
from the critical solution reach the values. From here on the
evolution is outside the scope of the perturbation theory —
there is subcritical dissipation of the field or supercritical
black-hole formation. In either case, the evolution from this
stage on has no self-similar character.

We consider a perturbation in the initial conditions that
develops into a charged black hole. The timeus(p2p* )
required to reach a deviations is given by the relation

l~u*2us!2a5s. ~44!

Of course, a larger initial perturbation requires a smaller time
us — the horizon is formed sooner. The logarithmic time
Ts is given by

Ts52
1

a
ln~p2p* !1bk , ~45!

wherebk depends ons andu* .
In a following paper@6,16# we prove that one should add

a periodic termF@ ln(p2p* )# to Ts to obtain the total loga-
rithmic time TBH until the horizon formation. Theperiodic
termF@ ln(p2p* )# has a universal periodÃ5D/b. Thus, the
complete dependence ofTBH on the critical separation
p2p* , for both the neutral and the charged cases, is given
by

TBH52
1

a
ln~p2p* !1F@ ln~p2p* !#1bk . ~46!

Figure 5 displays2TBH as a function of ln(a), where
a5(A2A* )/A* . The calculated points are well fit by a
straight line whose slope is 1/a'0.37. This is consistent
with relation ~46!.

The exponenta is related tob, the critical exponent that
describes the power-law dependence of the black-hole mass.
We defineM (n) as the mass aftern echoes. Following this
definition we define

M ~o!5Mo
~o!1Me

~o![~11C!Mo
~o! , ~47!

whereMo is the part ofM which does not depend one and
Me is the charge contribution in the charged case. From Eqs.
~35! and ~39! it follows that

M ~n!5Mo
~o!e2nD1CMo

~o!e2~312j!nD. ~48!

We substitute Eq.~45! into Eq. ~48! and, assuming that
M (o) andC do not depend onp2p* , obtain

lnMBH5ck1~1/a!ln~p2p* !1O@e2~p2p* !2b~11j!#,

~49!

where ck is a family-dependent constant. Using the usual
definition of the mass critical exponent, b:
MBH}(p2p* )b, we find thatb51/a.

Thus, according to the perturbation theory, the critical ex-
ponentb describes both the scaling relation of the black-hole
mass and the deviation rate from the critical evolution caused
by perturbations. In a following paper2 @6,16# we show that
one should add a periodic termC@ ln(p2p* )# with a univer-
sal periodÃ5D/b to the scaling relation~49!.

Figure 6 displays ln(m) as a function of ln(a), wherem is
the normalized black-hole mass in units of the initial mass in
the critical solution. The points are well fit by a straight line
whose slope isb'0.37 which is consistent withb51/a.
The measured value of the critical exponentb in the charged
case agrees with the one of Choptuik for neutral collapse.
Thus, Fig. 6 presents a generalization of the mass-scaling
phenomenon for thechargedcase.

In the neutral case the black-hole mass is proportional to
its radius and either the mass or the radius could be the
physical order parameter. In the charged case the black hole
radius equalsM1(M22Q2)1/2 and in general it is no longer
proportional toM . However, as we approach the critical so-

2See also@17#.

FIG. 5. The logarithmic time of a black-hole formation, plotted
as2TBH as a function of ln(a) @wherea5(p2p* )/p* # for the four
families. The average slope is 1/a'0.37, which is consistent with
relation~46!. The oscillations seen above the straight line are physi-
cal @6#.
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lution, the significance of the charge decreases with each
echo. The quantityQ/M becomes smaller as the black-hole
mass gets smaller and it is impossible to distinguish between
the two possibilities.

C. External perturbations to the critical solution

So far, the mass-scaling relation of the black hole, and the
influence of perturbations on the critical evolution itself,
have been studied in the context of internal perturbations in
the initial conditions, such as a deviation of the field’s am-
plitude from the critical one. It is of interest to study the
behavior of the critical solution underexternalperturbations.
In particular, we have studied the behavior of the critical
evolution under an addition of a cosmological constantL.
This is analogous to the addition of anexternalmagnetic
field to a system of magnetic moments and studying the
magnetization dependence on the strength of the external
field exactly at the critical temperatureTc ~atT5Tc the mag-
netization is zero without an external magnetic field, just as
the zero-mass singularity forA5A* andL50). The anal-
ogy arises from the fact that in both cases theexternalper-
turbation, magnetic field or a cosmological constant, forces
the order parameter to have a nonzero value atT5Tc or at
A5A* , correspondingly. We have considered also the effect
of variation of the charge coupling constant,e on the system.

The external perturbation,L ~or a variation ofe), is ex-
pected to yield a dynamical instability — a growing devia-
tion from the critical evolution toward either subcritical dis-
sipation or supercritical black-hole formation. The

unperturbed solution forms a zero-mass singularity. The per-
turbation could lead to a finite mass black hole and we ex-
amine the dependence of this mass on theexternalparam-
eters:L or e.

1. Cosmological constantL

We first examine the effect of an addition of a cosmologi-
cal constant to a critical solution. The amplitude was set to
the critical value A* ~for L50). We then add a
cosmological-constant,L, and study its influence on the evo-
lution. L.0 led to a dissipation of the critical solution and,
on the other hand,L,0 gave rise to a finite-mass black-hole
formation.

For LÞ0, the generalization of Eq.~14! is

ḡ~u,r !51/r E
0

r

@12~Q2/r 2!2Lr 2#gdr. ~50!

In addition, one should add the term

2L/2rg~h2h̄!, ~51!

to the right-hand side of Eq.~16!. Evidence for theuniver-
sality and the power-law dependence of the black hole mass
on theexternalparameterL is shown in Fig. 7 which dis-
plays ln(m) as a function of ln(2L) for critical initial-
conditions (A5A* ). The points are well fit by a straight
line: i.e.,

MBHup5p*}~2L!1/d. ~52!

FIG. 6. Scaling of the black-hole mass: ln(m) vs ln(a) for the
neutral families (a), (b) and for thecharged families (c) and
(d).m is the normalized black-hole mass in units of the initial mass
in the critical solution. The points are well fit by a straight line
whose slope isb'0.37 which is consistent withb51/a. The mea-
sured value of the critical exponentb in the charged case agrees
with the one previously found for the neutral case. The oscillations
above the straight line are physical@6,16,17#.

FIG. 7. Power-law dependence of the black-hole mass on the
cosmological constant. ln(m) is plotted vs ln(2L) for the four fami-
lies. The points are well fit by a straight line whose slope is 1/d,
where 1/d'b. This provides an evidence for the power-law depen-
dence of the black-hole mass on external parameters. The initial
conditions are forA5A* .
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A priori there is no reason to assume a specific value ofd.
However, we find numerically that 1/d'b. This shows that
the addition of a cosmological constant shifts the critical
parameter in a relatively simple way:

MBH}~p2p*2skL!b, ~53!

wheresk is a family-dependent constant.

2. Variation of the charge coupling constant e

We consider now the two charged families, (c) and (d),
for the case wheree50. The amplitude was first set to its
critical valueA* for the families (c) and (d), with e50. For
e50, the initial conditions represent an uncharged complex
scalar field. We then turn on the charge — we add a charge
coupling constante, and study its influence. We examine the
black-hole mass as a function of the charge coupling con-
stante ~keepingA5A* ). The numerical results are shown in
Fig. 8, which displays ln(m) as a function of ln(e2). The
points are well fit by a straight line: i.e.,

MBHup5p*}ueug. ~54!

Once more we find the simple relationg'2b, which leads
to the general formula

MBH}~p2p*1Ske
2!b, ~55!

with another family dependent constant,Sk .
A more detailed picture of the formation of a charged

black hole near the phase transition is given by considering
the full two-dimensional phase spacep2p* and e2. This
was done both for subcritical (A,A* ) initial conditions and
for supercritical (A.A* ) initial conditions, close to the
phase transition (uA2A* u!A* ). Subcriticality and super-
criticality are defined here relative to a neutral configuration
with e50. Figure 9 displays the dependence of the black-

FIG. 8. Power-law dependence of the black-hole mass on charge
coupling constante. ln(m) is plotted vs ln(e2) for the charged fami-
lies (c) and (d). The points are well fit by a straight line whose
slope isg/2'b. The initial conditions are forA5A* .

FIG. 9. The black-hole mass, ln(m), as a function of ln(a)5ln@(A*2A)/A* # and ln(e), for subcritical initial conditions (A,A* ). The
charge opposes gravitation but the electromagnetic energy also contributes to the gravitational binding and leads to the formation of a black
hole even from subcritical initial conditions. Black holes do not form in the flat regime.A, B, C, andD are normalization constants:
A51, B516, C521, D5211.061.

55 3493CRITICAL BEHAVIOR AND UNIVERSALITY IN . . .



hole mass which forms from subcritical initial conditions
(A,A* ) as a function of ln(a) and ln(e), for family (c). It
shows that the addition of charge can lead to a black-hole
formation from subcritical initial conditions (A,A* ).

Charge opposes gravitation but the electromagnetic energy
density also contributes to the gravitational binding, and by
doing so it permits the formation of a black hole even from
subcritical initial conditions.

The critical charge coupling constante* , needed to obtain
a black hole from subcritical initial conditions, is well de-
scribed by a power-law dependence on critical separation
uA2A* u:

e*}~p*2p!e, ~56!

wheree50.5 ~see Fig. 10!. This confirms relations~55! de-
rived earlier.

Figure 11 displays the dependence of the black-hole mass
formed from supercritical initial conditions (A.A* ) as a
function of ln(a) and ln(e), for family (c). Near the phase
transition, the larger the critical separationp2p* and the
charge coupling constante, the larger is the black-hole mass.
The slope of the right edge of the surface isb, which is
consistent with Eq.~49!. The slope of the left edge of the
surface is 2b, which is consistent with Eq.~54!. The overall
shape is consistent with Eq.~55!.

The tight relation between the various critical-exponents
b, d, andg, which all describe theinstability of the critical
evolution under a variety of differentperturbations, is a
strong evidence supporting the conjecture that there exists
one mechanism which can explain the power-law depen-
dence of the black-hole mass on the various parameters, both
for internal perturbations in the initial conditions and for
external perturbations as well.

FIG. 10. Power-law dependence of the critical charge coupling
constante* on the critical separationuA2A* u, for subcritical
(A,A* ) initial conditions.e* is the minimal charge coupling con-
stant needed for black-hole formation from subcritical initial condi-
tions.

FIG. 11. The black-hole mass, ln(m), is plotted as a function of ln(a)5ln@(A2A* )/A* # and ln(e), for supercritical initial conditions
(A.A* ). Near the phase transition, the larger the critical separationp2p* and the charge coupling constante, the larger is the black-hole
mass. The slope of the right edge of the surface isb, which is consistent with Eq.~49!. The slope of the left edge of the surface is 2b, which
is consistent with Eq.~54!. A, B, C, D are normalization constants:A51, B58, C51, D523.061.
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D. The charge-mass relation for black holes

We have shown in Sec. V A that the black-hole charge
tends to zero faster than its mass forp2p*→0. We demon-
strate now thatQ→0 as a power law with a critical exponent
larger than 2b ~see also@15# for an independent analysis of
this problem!. DefineQ(n) as the charge aftern echoes. From
Eqs.~32! and ~36! it follows that

Q~n!5Q~0!e2~21j!nD. ~57!

Substituting Eq.~45! into Eq. ~57! and assuming thatQ(0)

does not depend onp2p* we obtain

lnuQBHu5~21j!b ln~p2p* !1dk , ~58!

wheredk is a family-dependent constant.
From this analytic argument we deduce two conclusions:

~1! The black-hole charge is expected to have a power-law
dependence on critical separationp2p* , where the critical
exponenth is closely related to the critical exponentb of the
mass according toh5(21j)b; ~2! the black-hole charge
tends to zero withp2p* more rapidly than its mass.

Figure 12 displays lnqBH as a function of ln(a) for near-
critical black holes, whereqBH is the normalized black-hole
charge in units of the initial charge in the critical solution.
The points are well fit by a straight line whose slope is
h'0.88. This is consistent with relation~58!.

Another way to determine the value ofh is directly from
Eqs.~57! and~58!. Figure 13 displays lnq(n) as a function of
n, the number of echoes, along the critical solution. The
slope is2(21j)D'24.133. UsingD'1.73 andb'0.37

we find h'0.883, in agreement with the prediction,
h50.88360.007, of Gundlach and Martin-Garcia@15#.

The data shown in Figs. 12 and 13 come from the charged
family (c). For family (d) we have found that in general the
charge increases as the critical separationp2p* increases
although this correlation is not well described by a power-
law dependence. The reason for this probably arises from the
initial phase of the evolution. The initial data in this family
contains rather narrow alternating layers of positive and
negative charge whose relative magnitude depends onp. The
initial evolution that precedes the critical oscillations could
lead therefore, depending onp to drastically different total
charge. Consequently, the assumption thatQ(0) does not de-
pend onp2p* breaks down for this configuration. Despite
this, our numerical results qualitatively confirm our predic-
tion — the black-hole charge tends to zero withp2p* faster
than its mass. From here we conclude that black-holes with
infinitesimal mass, which, according to this mechanism, can
be created from near-critical evolutions, are neutral, or obey
the relationQBH!MBH .

VI. SUMMARY AND CONCLUSIONS

We have studied the spherical gravitational collapse of a
charged~complex! scalar field. The main issue considered is
the generalization of the critical behavior, originally discov-
ered by Choptuik for neutral fields, for the generalcharged
case. We have shown that the significance and influence of
the charge decreases during the evolution and consequently
the critical behavior appears. Asp2p*→0 the black-hole
charge tends to zero faster than its mass, i.e.,
QBH /MBH→0 as p→p* . Thus, we conjecture that black
holes of infinitesimal mass, which can be created from near-
critical evolutions, are neutral, or obey the relation
QBH!MBH . Consequently, we find both the mass scaling

FIG. 12. Illustration of the conjectured charge-scaling relation
~58!. ln(qBH) is plotted vs ln(a) for near-critical black holes, where
qBH is the normalized black-hole charge in units of the initial charge
in the critical solution. Data from the charged family (c) is shown.
The points are well fit by a straight line whose slopeh obeys the
relationh.2b. Thus forp2p*→0 the black-hole charge tends to
zero more rapidly than its mass.

FIG. 13. The decrease of the charge with each echo during the
critical evolution. The points are well fit by a straight line whose
slope is2(21j)D'24.133.
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relations for supercritical solutions and the echoing phenom-
enon for the critical solution. We show that the charge of the
black hole also depends, as a power law on the separation
from criticality. The critical exponent ish.2b @15#.

We have also studied the response of the critical solution
to externalperturbations. In particular, we have studied the
behavior of the critical evolution under the addition of a
cosmological constantL, and the addition of charge cou-
pling constante to a neutral critical configuration of a com-
plex scalar field. We have found a power-law dependence of
the black-hole mass onexternalparametersL ande. Exter-
nal perturbations can vary the critical parameter and can lead
to black hole formation from what was subcritical (p,p* )
initial conditions. The critical charge coupling constante* ,
which is needed to form black holes from subcritical initial

conditions, is well described by a power-law dependence on
critical separationp*2p.

The tight relation between the various critical exponents
b, d, andg, which all describe theinstability of the critical
evolution under a variety of differentperturbations, is a
strong evidence supporting the conjecture that there exists
one mechanism which can explain the power-law depen-
dence of the black-hole mass on the various parameters, both
for internal perturbations and for external ones.
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