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Concise variable transformations between the four angles of the CKM matrix in the standard representation
advocated by the Particle Data Group and the angles of the unitarity triangles are derived. The behavior of
these transformations in various limits is explored. The straightforward extension of this calculation to other
representations and more generations is indicated.@S0556-2821~97!00501-8#

PACS number~s!: 12.15.Hh, 11.30.Er

I. STANDARD PARAMETRIZATION
VS UNITARITY ANGLES

The most popular model for parametrizing quark flavor-
changing currents andCP violation is that of mixing be-
tween quark mass and weak interaction eigenstates, as rep-
resented by the unitary Cabibbo-Kobayashi-Maskawa
~CKM! matrix @1#. Although the unitaryN3N matrix for
N quark generations possesses (N21)2 observable real pa-
rameters, these parameters may be~and have been! chosen in

countless different ways. Even if we adopt the usual
prescription of N(N21)/2 Euler rotation angles and
(N21)(N22)/2 phases in generation space, we are still
faced with the choice of which axes to use for our rotations
and in what order to perform them; this choice leads to no
less than 36 distinct but equivalent parametrizations for three
generations@2#. The particular form of the CKM matrix ad-
vocated by the Particle Data Group@3#, as originally pro-
posed by Chau and Keung@4#, is just one of these, and is
written

VCKM5S c12c13 s12c13 s13e
2 id13

2s12c232c12s23s13e
id13 c12c232s12s23s13e

id13 s23c13

s12s232c12c23s13e
id13 2c12s232s12c23s13e

id13 c23c13
D , ~1.1!

whereci j[cosuij andsi j[sinuij , the subscripts indicate the
plane of rotation, and the Euler anglesu12, u23, andu13 are
all chosen to lie in the first quadrant by a redefinition of
~unobservable! quark field phases. The phase angled13 may
not be similarly restricted:

0<u i j<
p

2
, 0<d13,2p. ~1.2!

Alternately, the CKM matrix may be described in terms
of parameters invariant under choice of convention or phase
redefinitions. The moduli of the elementsuVa i u fall into this
category but are not always the most convenient variables in
experimental measurements@5#. For example, the short-
distance contribution toBB̄ mixing, ubiquitous in neutralB
decays, is proportional touVtdVtb* u2. Unitarity information
may be more easily recovered by noting thatVV†51 is
equivalent to the orthogonality of columns or rows inV:

(
a5u,c,t, . . .

Va iVa j* 5d i j , (
i5d,s,b, . . .

Va iVb i* 5dab .

~1.3!

For two distinct columns or rows, the right-hand side is zero,
and so the condition may be depicted geometrically in com-
plex space as describing a closed polygon with one side cor-
responding to each quark generation. The conditions from
Eq. ~1.3! with 1 on the right-hand side set the scale of the
polygons. For three generations one obtains triangles, which
are special since knowledge of the angles is sufficient to
determine their shapes uniquely; thus we concentrate on the
three-generation case in this work. Equation~1.3! implies
that there are six independent triangles, called the unitarity
triangles@6#, which are pictured in Fig. 1 and labeled by the
pair of rows or columns whose orthogonality is represented.

Our chief interest in the unitarity triangles is that their
angles are convention independent. One sees this by noting
that for two complex numbersz1 andz2, the ~oriented exte-
rior! angle between them is arg(z1* z2), where the argument
function assumes its principal value,2p,arg(z)<p, for all
complexz. Thus angles in this case have the form

vab
i j [arg~Va iVa j* Vb jVb i* !. ~1.4!

Each quark index in this expression appears in both aV and
a V* , so that any phase redefinition cancels in the product.
Geometrically, the redefinition of a quark phase simply ro-
tates an entire unitarity triangle by a constant angle.*Electronic address: rlebed@ucsd.edu
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It is also known that the six unitarity triangles all have the
same area, given by the Jarlskog parameterJ @7#. This fol-
lows first because 333 unitary matrices enjoy the property
that a particular pattern of elements is invariant up to a sign,

Im~Va iVa j* Vb jVb i* !5J(
g,k

eabge i jk , ~1.5!

which definesJ for any choice ofaÞb, iÞ j , and second
because the area of a triangle with sidesz1 and z2 is
uIm(z1* z2)u/25uz1u•uz2u•usin@arg(z1* z2)#u/2. It follows that
the area of each unitarity triangle is given byuJu/2. J is the
unique convention-independentCP violation parameter of
the CKM matrix, in that all measurableCP-violating quan-
tities turn out to be proportional toJ, so that vanishing area
in any of the unitarity triangles indicates the vanishing of
CP violation in the CKM matrix.

Phenomenologically, much is already known about the
unitarity triangles. As schematically indicated in Fig. 1, four
of them are nearly flat because they possess one side much
shorter than the other two. Of the remaining two, thebd
triangle is of greatest current interest to experimentalists: Its
sides, which are expected to be of comparable length, repre-
sent the least well-known elements of the CKM matrix and
will be accessible in severalB factories currently under de-
velopment. There is already a large literature dedicated to
methods of measuring the sides of thebd triangle and ex-
tracting its angles, denoteda, b, andg; see Ref.@8# for a
recent review.

II. A COMPLETE SET OF UNITARITY ANGLES

All that has been said up to this point is already several
years old. What has been appreciated only recently is that the
angles of the unitarity triangles enjoy a number of elegant

properties, and may be used@9# to reconstruct the full CKM
matrix except for the sign ofJ, which has been determined
by experiment to be positive@10#. The success of this ap-
proach follows from the observation that the six triangles
have 18 distinct sides in all, but only nine distinct angles.
One sees this by noticing thatvab

i j appears in both theij and
ab triangles, halving the potential number; furthermore, ap-
plying the condition that the angles of any given triangle add
to p shows that these nine angles may be written as sums
and differences of only four independent angles. Since this is
also the number of independent parameters in the three-
generation CKM matrix, the angles may be used as a basis
for all convention-independent quantities.

To be specific, we follow@9# in defining the interior
angles:

a[p2uv tu
bdu,

b[p2uvct
bdu,

e[p2uvct
sbu,

e8[p2uvuc
dsu. ~2.1!

These definitions are used to label the angles in Fig. 1. In
particular,a andb ~not to be confused with the indices of
vab
i j ) are the same angles traditionally used in the literature

for the bd triangle, so these angles form a natural and very
useful basis for describing invariants of the CKM matrix.
The form of these expressions is chosen so that each of
a, b, e, e8 lies in the range (0,p). Note that the quantities
vab
i j as defined in Eq.~1.4! appear different from, but are

formally identical to, those in Ref. @9#, since
arg(z1 /z2* )5arg(z1z2).

Observe that, although the parametersvab
i j do indeed con-

tain the sum total of the unitarity information, some informa-
tion is lost in the definitions~2.1!, since magnitudes ofvab

i j

are taken. In fact, all that is lost is the orientation of the
angles, namely, whether they are constructed in the clock-
wise or counterclockwise direction. Since the angles must
still form closed triangles, this formulation merely surrenders
one’s ability to distinguish between a particular triangle and
its mirror image. This freedom corresponds to the sign of
J, as indicated by Eqs.~1.4! and ~1.5!.

Reference@9# shows how to reconstruct all measurable
phases and moduli of the CKM matrix given only the angles
of the unitarity triangles. On the other hand, all of the pa-
rametrizations of the CKM matrix perform the same func-
tion, but in terms of quantities interpreted in a convention-
dependent way. In the remainder of this paper, we derive a
complete set of concise relations between the two parametri-
zations for the particular standard form of Eq.~1.1!. Then we
check that the transformations obey the appropriate limits for
vanishingCP violation in the CKM matrix and consider the
transformations in a phenomenologically useful limit. Fi-
nally, we indicate the straightforward generalization to other
parametrization choices and more quark generations.

FIG. 1. The unitarity triangles for three quark generations, as
presented in Ref.@9#. The triangles are labeled by the pair of rows
or columns whose orthogonality is represented. The angles as num-
bered are 1[a; 2[b; 3[p2(a1b) ~conventionally calledg if
closure of the triangle is not assumed!; 4[b1e2e8; 5[p
2(a1b1e2e8); 6[e; 7[a1b2e8; 8[p2(b1e); 9[e8. In
all cases, the arrows on the complex vectors are oriented counter-
clockwise, indicating the experimental positivity ofJ.
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III. THE TRANSFORMATIONS

First observe that the following relation holds for all com-
plex z:

cot@p2uarg~z!u#52
Re~z!

uIm~z!u
. ~3.1!

Since the argument function is related to the arctangent func-
tion, it is clear that one will obtain the cleanest expressions
for the unitarity angles in terms of their tangents or cotan-

gents; why cotangents are superior for our purposes will be-
come evident. In fact, simply inserting the elements of Eq.
~1.1! into Eqs.~1.4! and~2.1! obtains the desired transforma-
tion in one direction for all angles of the unitarity triangles.
We use the following compact notation:s, c, t, andc” , re-
spectively, represent sine, cosine, tangent, and cotangent,
while the indicesx, y, z, and d, respectively, represent
u12, u23, u13, andd13. A number in the index indicates a
multiple angle so that, for example,s2y[sin2u23. Cotan-
gents of the nine angles~or their supplements! appearing in
the unitarity triangles are

cot a5
1c” xc” ysz2cd

usdu
, cot~a1b!5

2c” xtysz2cd

usdu
,

cot~a1b2e8!5
1txtysz2cd

usdu
, cot~a1b1e2e8!5

2txc” ysz2cd

usdu
,

cot b5
~sx

22cx
2sz

2!s2y2s2xc2yszcd

s2xszusdu
, cot e5

~cx
22sx

2sz
2!s2y1s2xc2yszcd

s2xszusdu
,

cot e85
~cy

22sy
2sz

2!s2x1c2xs2yszcd

s2yszusdu
, cot~b1e2e8!5

~sy
22cy

2sz
2!s2x2c2xs2yszcd

s2yszusdu
,

cot~b1e!5
$s2x

2 @ 1
4 s2y

2 ~11sz
2!22sz

2#2 1
2 s4xs4ysz~11sz

2!cd2s2y
2 sz

2~12s2x
2 cd

2!%

s2xs2yszcz
2usdu

. ~3.2!

Several comments are in order. First, it is obvious that the
first four of these expressions are quite simple, the next four
are of intermediate complexity, and the last is quite compli-
cated. The origin of this distinction becomes clear with a
glance at Eq.~1.1!: The elements with complicated forms in
the lower-left 232 submatrix~each the sum of a real and a
complex number!, respectively, appear 1, 2, or 4 times in
using Eq. ~1.4! to compute the corresponding first four,
middle four, and final expressions in Eq.~3.2!. This feature
is repeated in any parametrization of the CKM matrix using
Euler angles and phases. Since the angles appearing in the
first four expressions in Eq.~3.2! are independent, and the
cotangent function is one-to-one on (0,p), these four simple
expressions contain all the information of the CKM matrix
except the sign ofJ. The chosen CKM parametrization picks
out particular combinations of the basis anglesa, b, e, and
e8 in which the transformation equations are simple. It is
now clear that cotangents are chosen over tangents so that
adding the quantities in Eq.~3.2! in order to invert them is
simpler.

Second, as for the sign ofJ, note that the dependence of
each expression in Eq.~3.2! on theCP-violating phased13
occurs only through the functional forms cosd13 or usind13u
and so is insensitive to the variable change
d13→(2p2d13); this is explicitly how the parametrization
of Eq. ~1.1! is sensitive to the sign ofJ but the angles of Ref.
@9# are not.

Finally, important limiting cases are evident from these

transformations. As is well known,CP violation does not
occur in the CKM matrix if any of the following conditions
hold:

u i j50,
p

2
for any of i j512, 23, 13, d1350, p.

~3.3!

In such cases our transformations~3.2! must satisfy the prop-
erty that the unitarity angles collapse to zero area. To see
this, note that the denominator of each expression in Eq.
~3.2!, as seen from Eqs.~1.4!, ~1.5!, and~3.1!, is just uJu. In
the standard parametrization~1.1!,

J5s12c12s23c23s13c13
2 sd13

, ~3.4!

so thatJ is seen to vanish when any of the conditions in Eq.
~3.3! is satisfied. If one could ignore the numerators in Eq.
~3.1!, each expression in Eq.~3.2! would become singular
under the conditions~3.3!, making each unitarity angle 0 or
p so that the unitarity triangles would collapse. However, in
some cases the numerator factors cancel factors in the de-
nominator, and so some of the angles continue to assume
finite values even when certain conditions in Eq.~3.3!
are satisfied. For example, foru23→p/2, cota→2cosd13/
usind13uÞ`. In such cases, however, the unitarity triangles
may still be seen to collapse. For, in the given example,
consider thebd triangle in Fig. 1. In the same limit,
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cotb→1cosd13/usind13u and cot(a1b)→2`, so thata and
b add top. Thus the sidesuVubVud* u anduVcbVcd* u are paral-
lel, requiringuVtbVtd* u to have zero length for the triangle to
close, and the triangle collapses. All limiting cases from Eq.
~3.3! lead to trivial unitarity triangles using similar observa-
tions.

The anglesa, b, e, and e8 as defined in Eq.~2.1! are
bounded between 0 andp. However, not all values for all of
the angles are simultaneously allowed. In order for the uni-
tarity triangles to close, their allowed ranges must be corre-
lated. If one chooses them in the ordera, b, e, e8, one re-
quires

0,a,p, 0,b,p2a, 0,e,p2b,

max~0,a1b1e2p!,e8,b1min~a,e!. ~3.5!

We now derive the inverse transformations to Eq.~3.2!.
As pointed out above, four combinations of the angles are
particularly convenient to work with for this purpose, and for
convenience we use the following notation for them:

A[cot a, B[cot~a1b!,

C[cot~a1b2e8!, D[cot~a1b1e2e8!. ~3.6!

From Eq. ~3.2! one sees that differences ofA, B, C, and
D eliminate the cosd13 factor, and quotients eliminate the
usind13u. In particular,

A2B5c” xsz~c” y1ty!/usdu, A2D5c” ysz~c” x1tx!/usdu,

C2D5txsz~c” y1ty!/usdu, C2B5tysz~c” x1tx!/usdu.
~3.7!

The quantities given here are manifestly non-negative, as
may be checked using the range constraints~3.5! and the
monotonic decrease of cotangent over (0,p). One other com-
bination is particularly simple:

BD2AC5szcd~c” x1tx!~c” y1ty!/usdu2. ~3.8!

From here it is trivial to obtain expressions for the param-
eters of the standard form~1.1!:

cotu12[c” x5AA2B

C2D
, cotu23[c” y5AA2D

C2B
,

sinu13[sz5A~A2B!~A2D !~C2B!~C2D !

~A2B1C2D !21~BD2AC!2
,

cosd13[cd5
BD2AC

A~A2B1C2D !21~BD2AC!2
. ~3.9!

It is permissible to use only the positive branches of square
roots since the anglesu12, u23, u13 in Eq. ~1.1! are chosen
to lie in the first quadrant, and cotangent and sine are one-
to-one on (0,p/2). Note that only cosd13 can be determined,
reflecting the discrete ambiguity betweend13 and
(2p2d13). One may be troubled by the fact that parameters
specific to a particular representation of the CKM matrix are
written here in terms of its invariants, but this indicates only
that the interpretation of a given parameter as a phase or
rotation about particular axes, not its value, is convention
dependent. The situation is analogous to Lorentz invariance:
The norm of the momentum four-vector of a free particle is
most easily computed in the rest frame, where the zero com-
ponent of the vector has the interpretation of rest massm, but
m is also numerically the norm of the vector in any frame.

One can also see explicitly from the transformations~3.9!
how theCP-vanishing cases of~3.3! are recovered when the
unitarity triangles collapse. If the anglesa, b, e, or e8 ap-
proach 0 orp, then the cotangents either become singular, as
for A when a→0,p, or two of them become degenerate,
such asA andB whenb→0,p. In such cases, the expres-
sions in~3.9! are seen to assume the values of Eq.~3.3!. For
completeness, we present the Jarlskog parameter in these
variables, which is seen to satisfy the same degeneracy con-
straints:

uJu5
~A2B!~A2D !~C2B!~C2D !@~A2B!~11CD!1~C2D !~11AB!#

@~A2B1C2D !21~BD2AC!2#2
. ~3.10!

Finally, we consider the transformations in the phenom-
enologically interesting case ofe8!e!1. It is straightfor-
ward to show from Eqs.~3.9! that

u125Acotb2cot~a1b!e1/21O~e3/2!,

u235Acotb2cot~a1b!e81/21O~e81/2e!,

u135
~e8e!1/2

sin~a1b!
1O~e81/2e3/2!,

d135p2sgn~J!~a1b2e8!1O~e8e!. ~3.11!

Note the particular vanishing behaviors of the angles as
e,e8→0. Also note that in this limitd135p2a2b5g, us-
ing the experimentally determined positive sign ofJ.

IV. OTHER PARAMETRIZATIONS

From the construction detailed above, it should be clear
that an analogous program can be carried out for any param-
etrization using Euler angles and phases, leading to concise
transformation expressions. The key point is that in such
parametrizations elements more complicated than a real
number times a phase, which complicate the calculation in
Eq. ~1.4!, are relegated to a 232 minor submatrix. The
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unique element of the CKM matrix that does not share a row
or column index with this 232 minor is thus distinguished;
in the case of the standard form~1.1!, this element isVub .
The angles of the unitarity triangles for which the analogous
expressions to Eq.~3.2! are simple are exactly those adjacent
to a side containing the distinguished element ofV, as is
clear for the case we have considered, from Fig. 1. As an-
other example, consider the original CKM parametrization of
Kobayashi and Maskawa@1#:

VKM5S c1 2s1c3 2s1s3

s1c2 c1c2c32s2s3e
id c1c2s31s2c3e

id

s1s2 c1s2c31c2s3e
id c1s2s32c2c3e

id
D .

~4.1!

Here the distinguished element isVud , and the simplest ex-
pressions to use will be the cotangents ofa, (a1b), e8,
and (b1e2e8).

A similar treatment for the Wolfenstein parametrization
@11#, defined by

VW5S 12
1

2
l2 l Al3~r2 ih!

2l 12
1

2
l2 Al2

Al3~12r2 ih! 2Al2 1

D ,

~4.2!

is not immediately possible, since the matrix is only unitary
to corrections of orderl4. Only once an extension rendering
it fully unitary, of which there are many possible choices, is
agreed upon can the full conversion betweenA, l, r, and
h and the unitarity angles be carried out@12#.

Finally, we show how any four independent moduli
uVa i u form an equivalent set to the four independent unitarity
angles or standard CKM angles modulo the sign ofJ. Show-
ing they are equivalent to the unitarity angles requires using
the normalization of rows and columns of the CKM matrix
to compute the other five moduli, and using the full set to
compute the lengths of the sides~and hence the angles! of
the unitarity triangles. Starting instead with the standard
form ~1.1!, one computes the remaining five moduli as be-
fore and then extractsu13, u23, andu12, respectively, from
uVubu, uVcbu/uVtbu, and uVusu/uVudu. d13 may be extracted
from any of the four moduli in the lower-left 232 subma-
trix, but because a number and its complex conjugate have
the same norm, this process is insensitive to the transforma-
tion d13→(2p2d13), or equivalently the sign ofJ. Similar
remarks apply to any particular representation.

If it turns out that there are more than three generations of
quarks, the angles of the unitarity polygons are no longer
sufficient to determine the entire structure of the CKM ma-
trix. In four generations, for example, a square and a rect-
angle have the same angles but are not similar figures. Nor
are moduli alone enough, as one sees from comparing
rhombi and squares. It is clear that one then requires both
unitarity angles and moduli. Nevertheless, generalizations of
Euler forms like Eq.~1.1! to more than three generations
must continue to have ‘‘distinguished’’ elements for which
expressions relating convention-dependent CKM angles to
convention-independent angles of unitarity polygons remains
usefully succinct.
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