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Relating CKM parametrizations and unitarity triangles
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Concise variable transformations between the four angles of the CKM matrix in the standard representation
advocated by the Particle Data Group and the angles of the unitarity triangles are derived. The behavior of
these transformations in various limits is explored. The straightforward extension of this calculation to other
representations and more generations is indicd®@556-282(97)00501-§

PACS numbds): 12.15.Hh, 11.30.Er

I. STANDARD PARAMETRIZATION countless different ways. Even if we adopt the usual
VS UNITARITY ANGLES prescription of N(N—1)/2 Euler rotation angles and
(N—1)(N—2)/2 phases in generation space, we are still
The most popular model for parametrizing quark flavor-faced with the choice of which axes to use for our rotations
changing currents an@P violation is that of mixing be- and in what order to perform them; this choice leads to no
tween quark mass and weak interaction eigenstates, as relpss than 36 distinct but equivalent parametrizations for three
resented by the unitary Cabibbo-Kobayashi-Maskawagenerationg2]. The particular form of the CKM matrix ad-
(CKM) matrix [1]. Although the unitaryNX N matrix for  vocated by the Particle Data GrodiB], as originally pro-
N quark generations possessés—<1)? observable real pa- posed by Chau and Keurid], is just one of these, and is
rameters, these parameters maydred have beerchosen in  written

—is
C12C13 S12C13 Sise 13
is is
Verm=| —S12023— C12575513€' 713 C1Lp3— $15573515€' 713 S»3C13 |, (1.1
is is
$12S237 C12C23513€ 13 —C1Sp3— S12€23513€ “13 Cp3Cy3

wherec;; =cos; ands;j=sing;, the subscripts indicate the For two distinct columns or rows, the right-hand side is zero,
plane of rotation, and the Euler angleés,, 6,3, andf#,;are  and so the condition may be depicted geometrically in com-
all chosen to lie in the first quadrant by a redefinition of plex space as describing a closed polygon with one side cor-
(unobservablequark field phases. The phase anglg may  responding to each quark generation. The conditions from

not be similarly restricted: Eqg. (1.3) with 1 on the right-hand side set the scale of the
polygons. For three generations one obtains triangles, which

T are special since knowledge of the angles is sufficient to
0<fyj=5, 0=dz<2m. (1.2 determine their shapes uniquely; thus we concentrate on the

three-generation case in this work. Equatidn3) implies

that there are six independent triangles, called the unitarity

Alternately, the CKM matrix may be described in terms - > : b
y y g|angles[6], which are pictured in Fig. 1 and labeled by the

of parameters invariant under choice of convention or phase'® o
redefinitions. The moduli of the elemerjié,;| fall into this P&l of rows or columns whose orthogonality is represented.
category but are not always the most convenient variables in OUr chief interest in the unitarity triangles is that their
experimental measuremenfs]. For example, the short- angles are convention independent. One sees this by noting
distance contribution t®B mixing, ubiquitous in neutraB :ihoart) f;)r: t\lléob(;?\:vn:éixtﬂgmEg?&;d)zz\;vthh;(gotr;]eenfrd uer)r:t:r-n
decays, is proportional toV,qVi|2. Unitarity information ang . . 2/ 9

may be more easily recovered by noting thav'=1 is function assumes its principal value,m<arg(z) < , for all

equivalent to the orthogonality of columns or rows\n complexz. Thus angles in this case have the form

wlg=argV ViV Vi) (1.4
> VoiViai= 6 » > VoiV3i=0ap- B iVajVpiVapi

a=u,Ct, ... i=d,s,b, ...
1.3 Each quark index in this expression appears in bothand
a V*, so that any phase redefinition cancels in the product.
Geometrically, the redefinition of a quark phase simply ro-
*Electronic address: rlebed@ucsd.edu tates an entire unitarity triangle by a constant angle.
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ds e properties, and may be usg®l to reconstruct the full CKM
VgVl 8 — 3 VeaVes matrix except for the sign od, which has been determined
oL —\ ud Ye . o .
@l Vuch*b77' by experiment to be positivEL0]. The success of this ap-

*
VuaVus VusVes proach follows from the observation that the six triangles
have 18 distinct sides in all, but only nine distinct angles.
One sees this by noticing tha»fj,ﬁ appears in both thi and
sb . ct ap triangles, halving the potential number; furthermore, ap-
6 VisVir . 5 VesVis plying the condition that the angles of any given triangle add
V. VF [ VasVib V““;% 6 to m ;hows that these nine_ angles may be writte_n as sums
e cb¥tb and differences of only four independent angles. Since this is
also the number of independent parameters in the three-
generation CKM matrix, the angles may be used as a basis
bd v,V tu VisVas for all convention-independent quantities.
To be specific, we follow[9] in defining the interior
Vb Vad VisVia ViaVad VisVup angles:

_ bd
FIG. 1. The unitarity triangles for three quark generations, as a=m—|oy],
presented in Ref9]. The triangles are labeled by the pair of rows
or columns whose orthogonality is represented. The angles as num- B=m— |wbd
bered are £a; 2=p8; 3=m—(a+ ) (conventionally calledy if et
closure of the triangle is not assumpdl=B+e¢—¢€'; 5=
—(a+Bte—¢€'); 6=¢, T=a+pB—€';8=m—(B+e);9=¢€".In

all cases, the arrows on the complex vectors are oriented counter-
clockwise, indicating the experimental positivity &f

e=n—[u3,

_ ) o 6'E7T—|w3§. (2.1
It is also known that the six unitarity triangles all have the

same area, given by the Jarlskog param@tEr]. This fol-

lows first because 83 unitary matrices enjoy the property These definitions are used to label the angles in Fig. 1. In

that a particular pattern of elements is invariant up to a signparticular,a and 8 (not to be confused with the indices of
wgﬁ) are the same angles traditionally used in the literature
for the bd triangle, so these angles form a natural and ver

'm(VaivziVBivzi):J% €apy€ijk (1.9 yseful basis fogr describing invgriants of the CKM matrix.y
' The form of these expressions is chosen so that each of

which defines] for any choice ofa+ 3, i#], and second @; B, € €' lies in the range (Gr). Note that the quantities
because the area of a triangle with sides and z, is  @ap @s defined in Eq(1.4) appear different from, but are
[ImM(Z% 2,)|/2=|z4|- || - |siMarg(zX 2,)1]/2. It follows that formally identical to, those in Ref.[9], since
the area of each unitarity triangle is given /2. J is the ~ ar9(21/z3) =arg(z.z,). )
unique convention-independe@P violation parameter of ~ Observe that, although the parametef; do indeed con-
the CKM matrix, in that all measurabl@P-violating quan-  tain the sum total of the unitarity information, some informa-
tities turn out to be proportional td, so that vanishing area tion is lost in the definitiong2.1), since magnitudes ab,) ;
in any of the unitarity triangles indicates the vanishing ofare taken. In fact, all that is lost is the orientation of the
CP violation in the CKM matrix. angles, namely, whether they are constructed in the clock-
Phenomenologically, much is already known about thewise or counterclockwise direction. Since the angles must
unitarity triangles. As schematically indicated in Fig. 1, four still form closed triangles, this formulation merely surrenders
of them are nearly flat because they possess one side muehe’s ability to distinguish between a particular triangle and
shorter than the other two. Of the remaining two, thet  its mirror image. This freedom corresponds to the sign of
triangle is of greatest current interest to experimentalists: Itd, as indicated by Eqg1.4) and (1.5).
sides, which are expected to be of comparable length, repre- Reference[9] shows how to reconstruct all measurable
sent the least well-known elements of the CKM matrix andphases and moduli of the CKM matrix given only the angles
will be accessible in sever@ factories currently under de- of the unitarity triangles. On the other hand, all of the pa-
velopment. There is already a large literature dedicated toametrizations of the CKM matrix perform the same func-
methods of measuring the sides of the triangle and ex- tion, but in terms of quantities interpreted in a convention-
tracting its angles, denoted, 8, and y; see Ref[8] for a  dependent way. In the remainder of this paper, we derive a
recent review. complete set of concise relations between the two parametri-
zations for the particular standard form of Efj.1). Then we
check that the transformations obey the appropriate limits for
vanishingCP violation in the CKM matrix and consider the
All that has been said up to this point is already severatransformations in a phenomenologically useful limit. Fi-
years old. What has been appreciated only recently is that theally, we indicate the straightforward generalization to other
angles of the unitarity triangles enjoy a number of eleganparametrization choices and more quark generations.

Il. A COMPLETE SET OF UNITARITY ANGLES
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ll. THE TRANSFORMATIONS gents; why cotangents are superior for our purposes will be-
. . . come evident. In fact, simply inserting the elements of Eq.
First observe that the following relation holds for all com- (1.1) into Egs.(1.4) and(2.1) obtains the desired transforma-

plexz: tion in one direction for all angles of the unitarity triangles.
R We use the following compact notatios; c, t, and ¢, re-
_ :_LZ) spectively, represent sine, cosine, tangent, and cotangent,
cof w—|arg 2)|] . (3.2 - ok .
[Im(z)| while the indicesx, y, z, and &, respectively, represent

015, 023, 613, and ,3. A number in the index indicates a
Since the argument function is related to the arctangent funamultiple angle so that, for example,,=sin26,3. Cotan-

tion, it is clear that one will obtain the cleanest expressiongjents of the nine anglg®r their supplemenjsappearing in
for the unitarity angles in terms of their tangents or cotan-the unitarity triangles are

+¢,£,S,—Cg —¢,tS,—Cy
cota= —¥=2 "2 COI(a+,8)=L,
B |s4l
+1t,t,S,—Cs —t,£,S,—Cs
COT(a-I—ﬂ—E'):L, COt(a+,8+e—e')=L,
|Ssl ISsl
2_ 2.2 2_ 22
(sy— stz)SZy_ S2xC2yS:Cs (cx— stz)52y+ S2xC2yS;Cs
cot B= , Cote= ,
SZXSZ| SS| SZsz| S§|
2_ 22 2_ 22
(CE—S555)Soxt CoySoyS,C s (Sy— CySy)Sox— CoxSoyS,Cs
cot e/ =—L Y2 o , cofBte—¢€')= y 2= e ,
S2ySz|S¢S| SZySz|35|
2112 2\2_27_ 1 2 2 2 2 2
{SZX[Z 52y(1+sz) - Sz] -2 54xs4y52(1+sz)C5_ 32y52(1_32xC5)}
cot(B+e)= . 3.2

SZxSZySzC§| Sz9|

Several comments are in order. First, it is obvious that theransformations. As is well knowrCP violation does not
first four of these expressions are quite simple, the next fouoccur in the CKM matrix if any of the following conditions
are of intermediate complexity, and the last is quite compli-hold:
cated. The origin of this distinction becomes clear with a
glance at Eq(1.1): The elements with complicated forms in ™ ..
the lower-left 2<2 submatrix(each the sum of a real and a 0;=0,7 foranyofij=12,23,13, 8,3=0, 7.
complex number respectively, appear 1, 2, or 4 times in (3.3
using Eq. (1.4 to compute the corresponding first four,
middle four, and final expressions in E@.2). This feature In such cases our transformatidi®s2) must satisfy the prop-
is repeated in any parametrization of the CKM matrix usingerty that the unitarity angles collapse to zero area. To see
Euler angles and phases. Since the angles appearing in tHés, note that the denominator of each expression in Eqg.
first four expressions in Eq3.2) are independent, and the (3.2), as seen from Eqs¢1.4), (1.5, and(3.2), is just[J]. In
cotangent function is one-to-one on 49, these four simple the standard parametrizatich.1),
expressions contain all the information of the CKM matrix
except the sign od. The chosen CKM parametrization picks 3231201232302351305335131 (3.4
out particular combinations of the basis angless, €, and
€' in which the transformation equations are simple. It isso thatJ is seen to vanish when any of the conditions in Eq.
now clear that cotangents are chosen over tangents so th@&3) is satisfied. If one could ignore the numerators in Eqg.
adding the quantities in Eq3.2) in order to invert them is (3.1), each expression in Eq3.2) would become singular
simpler. under the condition$3.3), making each unitarity angle 0 or

Second, as for the sign df note that the dependence of « so that the unitarity triangles would collapse. However, in
each expression in E¢3.2) on the CP-violating phases;;  some cases the numerator factors cancel factors in the de-
occurs only through the functional forms &g or |siné; 4 nominator, and so some of the angles continue to assume
and so is insensitive to the variable changefinite values even when certain conditions in E®.3
613— (27— 619); this is explicitly how the parametrization are satisfied. For example, f@h;— 7/2, coiw— —cosd; 3/
of Eq. (1.1) is sensitive to the sign af but the angles of Ref. |sind g #«. In such cases, however, the unitarity triangles
[9] are not. may still be seen to collapse. For, in the given example,

Finally, important limiting cases are evident from theseconsider thebd triangle in Fig. 1. In the same limit,
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cotB—+cosdy3/|sind; 4 and cot@+ B)——, so thate and ~ From here it is trivial to obtain expressions for the param-
B add toar. Thus the sidefV,,V*4 and|V ,V%, are paral- eters of the standard ford.1):
lel, requiring|V,V7y| to have zero length for the triangle to

close, and the triangle collapses. All limiting cases from Eq. b A—B o o — A-D
(3.3 lead to trivial unitarity triangles using similar observa- COth1,=Ex= Cc-D' COW2s=Ey= C-B’
tions.

The anglesa, B, €, and e’ as defined in Eq(2.1) are — — — —
bounded between 0 and. However, not all values for all of sind;=s,= \/(A B)(A D)(ZC B)(C D)Z,
the angles are simultaneously allowed. In order for the uni- (A—B+C-D)°+(BD—-AC)

tarity triangles to close, their allowed ranges must be corre-
lated. If one chooses them in the order g, €, €', one re- BD—AC
quires C0S513=Cs=

J(A—B+C—-D)%+(BD—AC)? 39

O<a<m, 0<B<m—a, O0<e<wm—g,
It is permissible to use only the positive branches of square
max0,a+p+e—m)<e'<p+min(a,e). (3.5  roots since the angle;,, 6,3, 013 in Eq. (1.1) are chosen
to lie in the first quadrant, and cotangent and sine are one-
to-one on (0x/2). Note that only co;; can be determined,
?eflecting the discrete ambiguity betweed;; and
(27— 813). One may be troubled by the fact that parameters
specific to a particular representation of the CKM matrix are
A=cota, B=cotla+p), written here in terms of its invariants, but this indicates only
that the interpretation of a given parameter as a phase or
C=cot{la+B—¢€'), D=cota+pB+e—¢'). (3.6) rotation about particular axes, not its value, is convention
dependent. The situation is analogous to Lorentz invariance:
From Eq. (3.2 one sees that differences &f B, C, and  The norm of the momentum four-vector of a free particle is
D eliminate the co&5 factor, and quotients eliminate the most easily computed in the rest frame, where the zero com-

We now derive the inverse transformations to E2}2).
As pointed out above, four combinations of the angles ar
particularly convenient to work with for this purpose, and for
convenience we use the following notation for them:

|sindy4. In particular, ponent of the vector has the interpretation of rest madsut
m is also numerically the norm of the vector in any frame.
A—B=¢,s,(¢,+1))/[ss], A—D=¢,s,(¢,+1,)/[s4, One can also see explicitly from the transformati¢®§)

how theC P-vanishing cases dB.3) are recovered when the
C-D=ts,(€,+ty)l[ss], C—B=tys,(&xtt,l[s. unitarity triangles collapse. If the angles 8, €, or €' ap-
(3.7 proach 0 orr, then the cotangents either become singular, as
The quantities given here are manifestly non-negative, afor A when a—0,7, or two of them become degenerate,
may be checked using the range constrai@$) and the sych qu and B when 8—0,7. In such cases, the expres-
monotonic decrease of cotangent over«)0,0ne other com-  SIONs in(3.9) are seen to assume the values of ). For

bination is particularly simple: completeness, we present the Jarlskog parameter in these
variables, which is seen to satisfy the same degeneracy con-
BD—AC=5,Ca(Ey+ 1) (€, +ty)/|s4% (3.9 straints:

(A—B)(A—D)(C—B)(C—D)[(A—B)(1+CD)+(C—D)(1+AB)]
[(A—B+C—D)2+(BD—AC)Z? : (310

9]=

Finally, we consider the transformations in the phenom-Note the particular vanishing behaviors of the angles as
enologically interesting case a&f <e<1. It is straightfor- ¢€,e’ —0. Also note that in this limitS;3= 7— a— 8=y, us-
ward to show from Eqs(3.9) that ing the experimentally determined positive signJof

61,= \JcotB—cot( a+ B) e¥?+ O(€%?),
12= \colg— cotla+ B)e (™) IV. OTHER PARAMETRIZATIONS

0,5= \/COtB— cotl a+ B) €' Y2+ O( &' 2¢), From the construction detailed above, it should be clear
that an analogous program can be carried out for any param-
(€' )12 etrization using Euler angles and phases, leading to concise
13=——— +O(e'2e37?), transformation expressions. The key point is that in such
sin(a+B) parametrizations elements more complicated than a real

number times a phase, which complicate the calculation in
S13=m—sgnJ)(a+B—€')+0(€ e). (3.11) Eq. (1.4), are relegated to a>2 minor submatrix. The
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unique element of the CKM matrix that does not share arow Finally, we show how any four independent moduli
or column index with this 2 minor is thus distinguished; |V,| form an equivalent set to the four independent unitarity
in the case of the standard forth.1), this element isV,;,. angles or standard CKM angles modulo the sigd.dbhow-

The angles of the unitarity triangles for which the analogousng they are equivalent to the unitarity angles requires using
expressions to Eq3.2) are simple are exactly those adjacentthe normalization of rows and columns of the CKM matrix
to a side containing the distinguished element\ofas is to compute the other five moduli, and using the full set to
clear for the case we have considered, from Fig. 1. As aneompute the lengths of the sidésnd hence the anglesf
other example, consider the original CKM parametrization ofthe unitarity triangles. Starting instead with the standard
Kobayashi and Maskawd.]: form (1.1, one computes the remaining five moduli as be-
fore and then extractg8,3, 6,3, and 6,5, respectively, from
[Vubls [Veul/|Vil, and |Vyd/|Vugl. 813 may be extracted
from any of the four moduli in the lower-left’22 subma-
trix, but because a number and its complex conjugate have
the same norm, this process is insensitive to the transforma-
tion 815— (27— 613), or equivalently the sign of. Similar
remarks apply to any particular representation.

C1 —S$1C3 —S$183

Vim=| S1€2 €1CoC3—5,53€'% C1CyS3+5,C3€"°

$1S, C1S,C3+CyS3e'®  €1S,53— CpCze'?
(4.1

Here the distinguished elementVs, and the simplest ex-
pressions to use will be the cotangentsaf(a+p), €, If it turns out that there are more than three generations of

and (38+e—€'). quarks, the angles of the unitarity polygons are no longer

A similar treatment for the Wolfenstein parametrization Sufficient to determine the entire structure of the CKM ma-
[11], defined by trix. In four generations, for example, a square and a rect-
angle have the same angles but are not similar figures. Nor

1., 3 are moduli alone enough, as one sees from comparing

1- 57‘ A AN (p=im) rhombi and squares. It is clear that one then requires both

unitarity angles and moduli. Nevertheless, generalizations of
Vw= Y 1_1)\2 A\2 ' Euler forms like Eq.(1.1) to more than three generations
2 must continue to have “distinguished” elements for which

AN3(1—p—in) —AN2 1 expressions relating convention-dependent CKM angles to

convention-independent angles of unitarity polygons remains

usefully succinct.
is not immediately possible, since the matrix is only unitary

to corrections of ordex“. Only once an extension rendering
it fully unitary, of which there are many possible choices, is

4.2
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