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The Barrabe`s-Israel theory of lightlike shells in general relativity is used to show explicitly that in general
a lightlike shell is accompanied by an impulsive gravitational wave. The gravitational wave is identified by its
Petrov-typeN contribution to a Diracd-function term in the Weyl conformal curvature tensor~with the d
function singular on the null hypersurface history of the wave and shell!. An example is described in which an
asymptotically flat static vacuum Weyl space-time experiences a sudden change across a null hypersurface in
the multipole moments of its isolated axially symmetric source. A lightlike shell and an impulsive gravitational
wave are identified, both having the null hypersurface as history. The stress-energy in the shell is dominated~at
large distance from the source! by the jump in the monopole moment~the mass! of the source with the jump
in the dipole moment mainly responsible for the stress being anisotropic. The gravitational wave owes its
existence principally to the jump in the quadrupole moment of the source confirming what would be expected.
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PACS number~s!: 04.30.Db, 04.20.Jb

I. INTRODUCTION

Very few exact solutions of Einstein’s vacuum field equa-
tions exist describing gravitational waves from an isolated
source having wave fronts homeomorphic to a two-sphere
~we will refer to such waves loosely as ‘‘spherical waves’’!.
The principal example is the Robinson-Trautman@1# family
of solutions. These are very special, however, because if the
wave fronts are sufficiently smooth~free of conical singulari-
ties! and the field~Riemann tensor! contains no ‘‘wire’’ or
‘‘directional’’ singularities then the solutions approach a
Schwarzschild limit exponentially in time@2,3#. A limiting
case is Penrose’s@4# spherical impulsive gravitational wave
propagating through flat space-time. Another interesting
class of solutions in the present context has been found by
Alekseev and Griffiths@5#. When these solutions have the
property that the curvature tensor of the space-time contain-
ing the history of the wave involves a Diracd function which
is singular on the null hypersurface history of the wave, the
coefficient of thed function is singular along a generator of
this null hypersurface~a wire singularity!. The object of the
present paper is to present an example of a wire singularity-
free spherical impulsive gravitational wave propagating
through a vacuum. To construct this we will use the
Barrabès-Israel~BI! @6# theory of lightlike shells in general
relativity. This is an extension to the null case of the usual
extrinsic curvature technique@7# for studying non-null shells

of matter. The Ricci tensor of the space-time in general ex-
hibits ad function behavior singular on the null hypersurface
history of the shell~the coefficient of thed function is con-
structed from the surface stress-energy tensor of the shell and
this tensor is calculated using the BI approach!.

The present work relies upon a property of lightlike sin-
gular hypersurfaces already announced in@6#, although not
fully developed there as that paper was only concerned with
shells, and which we now recall. In the present context a
singular hypersurface in space-time is described covariantly
by the existence of finite jumps across the hypersurface in its
extrinsic curvature. In the null case considered here these
become jumpsgab5gba , a,b51,2,3 in the ‘‘transverse ex-
trinsic curvature’’ of the hypersurface, defined in Eqs.~2.6!
and ~2.7! below. As a result the Ricci tensor and the Weyl
tensor of the space-time contain Diracd-function terms sin-
gular on the hypersurface and having coefficients calculated
from gab . If the singular hypersurface is lightlike the results
obtained in@6# show that only four of the six components of
gab contribute to the coefficient of thed function in the Ricci
tensor and are therefore related to the surface stress-energy
tensor of the lightlike shell~this does not hold for a timelike
or spacelike hypersurface since in this case there is a one to
one correspondence between the surface stress-energy tensor
andgab!. It follows that the coefficient of thed function in
the Weyl tensor which is linear in the full set of thegab can
be split into two parts, one calculated with the four compo-
nents ofgab used in the calculation of the surface stress-
energy tensor~the matter part! and another part calculated
with the remaining two components ofgab not used in the
calculation of the matter part. This latter part is shown to be
of Petrov-typeN. It represents an impulsive gravitational

*Electronic address: barrabes@celfi.phys.univ-tours.fr
†Electronic address: bressang@celfi.phys.univ-tours.fr
‡Electronic address: phogan@ollamh.ucd.ie

PHYSICAL REVIEW D 15 MARCH 1997VOLUME 55, NUMBER 6

550556-2821/97/55~6!/3477~8!/$10.00 3477 © 1997 The American Physical Society



wave and will be referred to as the wave part. The matter
part mentioned above is in general Petrov-type II. Such a
decomposition is made explicit in Sec. II below. Examples of
space-time geometries and singular lightlike hypersurfaces
where only one of the two parts of the Weyl tensor is non-
zero are already known in the literature. On the one hand,
one may consider the case of spherical lightlike shells de-
scribed in@6# where only a shell exists. On the other hand the
singular null hyperplane and the singular null cone in
Minkowskian space-time studied by Penrose@4# provide ex-
amples where only an impulsive gravitational wave exists.
For more complicated geometries such as the one considered
here, the shell and the wave generally coexist. In addition a
cataclysmic astrophysical event such as a supernova is likely
to produce a burst of neutrinos travelling outward with the
speed of light~modelled by the lightlike shell! accompanied
by a burst of outgoing gravitational waves~modelled by the
impulsive wave!.

Asymptotically flat solutions of the Weyl class of static
axially symmetric vacuum gravitational fields are described
by metric tensor components expressed as infinite series hav-
ing coefficients involving the multipole moments of the iso-
lated source@8#. To illustrate the splitting of the Weyl tensor
into a matter part and a wave part~or the coexistence of a
shell and a wave! we take a future directed null hypersurface
which is asymptotically a future null cone in the asymptoti-
cally flat Weyl space-time and assume a finite abrupt change
takes place in these multipole moments across the null hy-
persurface. The surface stress-energy tensor concentrated on
the null hypersurface is calculated at large distance along the
null hypersurface from the history of the source and it is
shown that the energy density of the shell, measured by a
radially moving observer, is dominated by the jump in the
monopole moment~the mass! of the source followed by
terms proportional to the jumps in the dipole and quadrupole
moments of the source. Jumps in higher multipole moments
will contribute even less significantly and are not calculated
here. There is an anisotropic surface stress dominated by the
jump in the dipole moment. Thed function in the Weyl
tensor has a coefficient with matter part and wave part, de-
scribed above, with the matter part dominated by the jump in
the dipole moment and the wave part by the jump in the
quadrupole moment. In the case of the matter part this is due
to the anisotropic stress in the shell while for the wave part it
is a manifestation of the well-known property of gravita-
tional waves from isolated sources that the lowest radiated
multipole is the quadrupole. The Newman-Penrose compo-
nents of the matter and wave parts of the coefficient of thed
function in the Weyl tensor are calculated on a null tetrad
asymptotically parallel transported along the future-directed
null geodesic generators of the null hypersurface. These
components are nonsingular on any such generators andso
the Weyl tensor is free of wire singularities. Since the null
hypersurface chosen is asymptotically a future null cone we
can say that the impulsive gravitational wave accompanying
the lightlike shell is asymptotically spherical.

The paper is organized as follows: In Sec. II the BI tech-
nique is described as it applies to lightlike shells~which
includes impulsive waves!. The method given in BI is uni-
fied treatment applicable to hypersurfaces which are non-null
as well as null and to non-null hypersurfaces which may

become null in a limiting case. The identification of the mat-
ter and wave part of the coefficient of thed function in the
Weyl tensor is then presented. In Sec. III the application to
the asymptotically flat Weyl solutions is initiated by intro-
ducing these solutions, describing the transformation of the
line element to a form based on a family of null hypersur-
facesu5const ~say! ~this is just the Bondi@9# form of the
Weyl solutions; for completeness some of the original calcu-
lations by Bondiet al. @9# are summarized in the Appendix
with comments relevant to the present application! and then
describing how two such solutions with different multipole
moments can be matched across one of the null hypersur-
faces,u50 ~say!. The physical properties of the boundary
u50 are worked out in Sec. IV. Its interpretation as the
history of both a lightlike shell and an impulsive gravita-
tional wave is verified asymptotically using the BI technique
and the results derived in Sec. II. The paper ends with a
discussion in Sec. V commenting in particular on the ab-
sence of conical singularities on the wave front or shell and
on the asymptotic behavior~‘‘peeling’’ behavior! of the am-
plitude of thed function in both the matter and wave parts of
the Weyl tensor.

II. BARRABÈ S-ISRAEL TECHNIQUE: THE NULL CASE

Consider space-timeM to be subdivided into two halves
M1 andM2 each with boundary a null hypersurfaceS. Let
$x1

m%, with Greek indices taking values 1, 2, 3, 4, be a local
coordinate system inM1 in terms of which the metric tensor
components aregab

1 and let$x2
m% be a local coordinate sys-

tem inM2 in terms of which the metric tensor components
aregab

2 . Let $ja%, with Latin indices taking values 1, 2, 3, be
local intrinsic coordinates onS and the parametric equations
of S have the formx6

m 5 f 6
m (ja) say. We thus have a basis of

tangent vectorsea5]/]ja to S and we assume thatM1 and
M2 are reattached onS in such a way that the induced
metrics onS from M1 andM2 match:

gab :5gabea
aeb

bu15gabea
aeb

bu2 , ~2.1!

where the colon followed by an equality sign denotes a defi-
nition, ea

au65]x6
a /]ja are the components of the tangent

vectorsea to S evaluated on theM1 side orM2 side respec-
tively. The symbolu6 shall mean ‘‘evaluated on the plus or
minus side ofS.’’ The manifold resulting from this reattach-
ment ofM1 andM2 onS will be denoted byM1øM2. Let
n be normal toS with componentsn6

m viewed on the plus or
minus sides. Thus

nmnmu650 and nmea
mu650. ~2.2!

Next choose a ‘‘transversal’’N on S and require that its
projection in the plus or minus sides ofS be the same~con-
tinuous! so that

Nmea
mu15Nmea

mu2 ~2.3!

and, in addition, require

NmN
mu15NmN

mu2 . ~2.4!

Finally define

3478 55C. BARRABÈS, G. F. BRESSANGE, AND P. A. HOGAN



h21:5Nmn
m. ~2.5!

Now the ‘‘transverse extrinsic curvature’’ ofS ~a generali-
zation of the usual extrinsic curvature@7# to the null case! is
defined by

Kab
6 :52Nmea;n

m eb
nu65Kba

6 , ~2.6!

with the semicolon denoting covariant differentiation. The
jump in these components acrossS is denoted by

1
2gab :5@Kab#:5Kab

1 2Kab
2 , ~2.7!

and these quantities are independent of the choice of trans-
versal~see@6#, Sec. II!. We now extendgab to a four-tensor
by padding out with zeros in a system of coordinates having
theea’s as basis vectors~the only condition required on the
extensiongmn beinggmnea

meb
n5gab!.

A calculation now of the Einstein tensor of the space-time
M1øM2 results in general in an energy-momentum-stress
tensor concentrated onS of the form @6#

Tmn5Smnd~u!, ~2.8!

where the equation ofS is taken to beu(xm)50, the normal
to S has the formnm5u,m , with the comma denoting partial
differentiation,d(u) is the Diracd function andSmn is given
by @6#

16ph21Smn52g (mnn)2gnmnn2g†gmn. ~2.9!

Here round brackets denote symmetrization and

gm:5gmnnn , g†:5gmnm , g:5gmngmn , ~2.10!

with the calculation of these quantities carried out on either
side ofS. We drop the plus or minus designation in such
instances. The physical interpretation of these formulas is
discussed in detail in BI. The surface stress-energy tensor
Smn in Eq. ~2.9! has the property that

Smnnn50, ~2.11!

and thus it can be expressed on the tangent basisea as

Smn5Sabea
meb

n , ~2.12!

with ~see@6#!

16ph21Sab52g
*
c(al b)~gcdl

d!2g
*
ab~gcdl

cl d!2 l al b~g
*
cdgcd!.

~2.13!

The three-vectorl a is defined via the expansion

nm5 l aea
m , ~2.14!

remembering that sinceS is null the normal toS is also
tangent toS. From Eq.~2.14! and the orthogonality ofnm,
ea

m it follows thatgabl
b50. We note that sinceS is null the

induced metric with componentsgab is degenerate or singu-
lar. In Eq. ~2.13! g

*
ab is a type of generalized inverse ofgab

defined by@6#

g
*
acgbc5db

a2h l aNb , ~2.15!

with Nb :5Nmeb
m which is continuous acrossS by Eq.~2.3!.

The expression~2.15! determinesg
*
ac uniquely up to a mul-

tiple of l al c. It is clear from Eq.~2.13! that if gabl
b50 then

the surface stress-energy tensor is ‘‘isotropic’’ with

16ph21Sab52~g
*
cdgcd!l

al b. ~2.16!

This is equivalent, by Eqs.~2.12! and ~2.14!, to Smn being
proportional tonmnn.

The Weyl conformal curvature tensor of the space-time
M1øM2 has in general a part concentrated onS and given
by @6#

Ckl
mn5H 2hn[kgl]

[mnn]216pd [m
[kSn]

l]1
8p

3
Sa

admn
kl J d~u!.

~2.17!

Here the square brackets denote skew symmetrization and
dmn

kl is the usual determinant of Kroneckerd’s. It has been
pointed out in@6# that there is a part of the first term in the
coefficient of thed function in Eq.~2.17! that is constructed
from a part ofgmn which does not contribute to the surface
stress-energy tensor. This part of Eq.~2.17! therefore is de-
coupled from the matter part. It describes an impulsive gravi-
tational wave propagating with the shell and havingu50 as
the history of its wave front. To display this decomposition
of Eq. ~2.17! it is perhaps simplest to look first at the intrin-
sic form ~2.13! for the stress-energy tensor. It is clear from
Eq. ~2.13! that a part ofgab , which we will denote byĝab ,
does not contribute to the stress-energy tensor. Thisĝab sat-
isfies

ĝabl
b50, g

*
abĝab50. ~2.18!

This means thatĝab has two independent components~a fact
which is related to the two degrees of freedom of polariza-
tion in general present in the impulsive gravitational wave
determined below byĝab!. The decomposition of Eq.~2.17!
into wave and matter parts is best described by giving the
components of these parts on the oblique basis$ea

m ,Nm%.
Using Eq. ~2.17! and having off the part ofgab described
above we find we can write

Cklmn5~Wklmn1Mklmn!d~u!. ~2.19!

The componentsWklmnea
keb

lec
med

n andWklmnea
keb

lec
mNn of

Wklmn vanish identically while

Wklmnea
kNlec

mNn52 1
2h21ĝab , ~2.20!

with

ĝab5gab2
1
2 g*

cdgcdgab22h l dgd(aNb)1h2gcdl
cl dNaNb .

~2.21!

One easily checks that thisĝab satisfies Eq.~2.18!. Multiply-
ing the components ofWklmn on the oblique basis byl

a and
using Eq.~2.14! and the first of Eq.~2.18! gives

Wklmnn
k50, ~2.22!

so that this part of Eq.~2.19! is type-N in the Petrov classi-
fication with nm as fourfold degenerate principal null direc-
tion. Thus this part of the Weyl tensor in Eq.~2.19! describes
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an impulsive gravitational wave with propagation direction
nm in space-time and withu50 as the history of its wave
front. Now the components of the matter part of Eq.~2.19!
on the oblique basis are

Mklmnea
keb

lec
med

n58p~ga[dSc]b2gb[dSc]a!

1
16p

3
Sa

aga[cgd]b , ~2.23a!

Mklmnea
keb

lec
mNn528pgc[aeb]

a SabN
b1

16p

3
Sa

aGc[aNb] ,

~2.23b!

Mklmnea
kNlec

mNn528pSabe(a
a Nc)N

b1
4p

3
Sa

aNaNc .

~2.23c!

HereSab :5Smnea
meb

n which, of course, is not simply related
to Sab in Eq. ~2.13! by lowering indices becausegab is de-
generate. We note that ifSmn is isotropic in the sense de-
scribed in Eq.~2.16!, or in the sentence following Eq.~2.16!,
then Sab50 and in addition we see from Eq.~2.23! that
Mklmn50 in this case. Finally we note that from the results
of Sec. III of @6# one can deduce that the matter partMklmn is
in general Petrov-type-II and may specialise to type-III.

III. ASYMPTOTICALLY FLAT WEYL SPACE TIMES

To illustrate the theory outlined in Sec. II we consider the
asymptotically flat Weyl static axially symmetric solutions of
Einstein’s vacuum field equations@8#. The line element of
these space-times has the form

ds252R2e22U~e2kdQ21sin2Qdf2!

2e2k22UdR21e2Udt2, ~3.1!

whereU,k are functions of the coordinatesQ, R given by
the infinite series

U5 (
n50

`
an
Rn11 Pn , ~3.2a!

k52 (
l ,m50

`
alam~ l11!~m11!

l1m12 S PlPm2Pl11Pm11

Rl1m12 D ,
~3.2b!

wherean ~n50,1,2,...! are constants andPn5Pn~ cosQ! is
the Legendre polynomial of degreen in the variable cosQ.
The first few terms in the series~3.2a! may be written

U52
m

R
2
D cosQ

R2 2~Q1 1
3m

3!
P2~cosQ!

R3 1••• ,

~3.3!

where, following Bondiet al. @9#, we have written the con-
stantsa0 ,a1 ,a2 , in a form so that we can identifym as the
mass of the isolated source,D as the dipole moment of the
source andQ as its quadrupole moment. The momentsD
andQ appear in Eq.~3.3! in such a way that ifD5Q50
then Eq.~3.3! represents the leading terms in the 1/R expan-

sion of the Schwarzschild expression@8# for U. Correspond-
ing to Eq.~3.3! we have, for Eq.~3.2b!,

k52
m2

2R2 sin
2Q2

2mD

R3 cosQ sin2Q1••• . ~3.4!

The line element~3.1! with U andk in the forms~3.3! and
~3.4! can be transformed to the Bondi form~the procedure
for doing this, due to Bondiet al. @9#, is outlined in the
Appendix!

ds252r 2$ f21du21 f sin2udf2%12gdudr

12hdudu1cdu2, ~3.5!

with

f512
Q

r 3
sin2u1O~r24!, ~3.6a!

g511O~r24!, ~3.6b!

h5
2D

r
sinu1

3Q

r 2
sinucosu1O~r23!, ~3.6c!

c512
2m

r
2
2D

r 2
cosu2

Q

r 3
~3 cos2u21!1O~r24!.

~3.6d!

For our present purpose it is useful to have solutions~3.1!
expressed in a coordinate system based on a family of null
hypersurfaces. In the form~3.5! the hypersurfaces
u5constant areexactlynull ~i.e., for all r and not just for
larger ; this is clearly pointed out in the Appendix!. Neglect-
ing O(r24)-termsu5constant are generated by the geodesic
integral curves of the future-pointing null vector field]/]r
and r is an affine parameter along them. These curves have
expansionr and shears given by

r5
1

r
1O~r25!, ~3.7a!

s5
3Q

2r 4
sin2u1O~r25!, ~3.7b!

demonstrating that for large values ofr @specifically, neglect-
ing O(r24) terms# the null hypersurfacesu5const in the
space-time with line element~3.5! are future null cones.

To illustrate the theory described in Sec. II we subdivide
the space-timeM with line element~3.5! into two halvesM2

andM1 havingu50 ~say! as common boundary. To the past
of u50, corresponding tou,0, the space-timeM2 is given
by Eqs.~3.5! and ~3.6! with parameters$m2 ,D2 ,Q2 ,...%
and coordinatesx2

m 5(u2 ,f2 ,r2 ,u), while to the future of
u50, corresponding tou.0, the space-timeM1 is given by
Eqs.~3.5! and ~3.6! with parameters$m1 ,D1 ,Q1 ,...% and
coordinates x1

m 5(u1 ,f1 ,r1 ,u). We have taken
u15u25u here for convenience. To save on subscripts we
shall henceforth drop the minus subscript onx2

m and on the
parameters$m2 ,D2 ,Q2 ,...% and also useu, f, r as intrin-
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sic coordinates onu50 @i.e., in the notation of Sec. II we are
putting ja5(u,f,r )#. The line element onu50 induced
from M1 is

dl1
2 52r1

2 $ f1
21du1

2 1 f1 sin2u1df1
2 %, ~3.8!

with

f1512
Q1

r1
3 sin2u11O~r1

24!, ~3.9!

while the induced line element onu50 fromM2 is

dl252r 2$ f21du21 f sin2udf2%, ~3.10!

with

f512
Q

r 3
sin2u1O~r24!. ~3.11!

We now reattachM2 andM1 on u50 requiring Eqs.~3.8!
and ~3.10! to be the same line element@see Eq.~2.1!# and
this requirement gives the ‘‘matching conditions’’

u15u1
@Q#

r 3
sinu cosu1O~r24!, ~3.12a!

f15f, ~3.12b!

r15r1
@Q#

2r 2
~123 cos2u!1O~r23!, ~3.12c!

with [Q]:5Q12Q2 . From the perspective of the space-
timeM2øM1 we have an asymptotically flat Weyl solution
M2 undergoing an abrupt finite jump in its multipole mo-
ments across a null hypersurfaceu50 resulting in the Weyl
solutionM1. We now apply the BI theory, with special ref-
erence to the results of Sec. II, to study the physical proper-
ties of the null hypersurfaceu50.

IV. LIGHTLIKE SHELL AND GRAVITATIONAL WAVE

To apply the BI theory as outlined in Sec. II we first
calculate the tangent basis vectorsea5]/]ja on the plus and
minus sides ofS:u50. With x1

m given in terms ofx2
m 5xm by

Eq. ~3.12! and withja5(u,f,r ) we find that

ea
mu25da

m , ~4.1!

while

e1
mu15F11

@Q#

r 3
cos2u1O~r24!,0,

3@Q#

2r 2
sin2u

1O~r23!,0G , ~4.2a!

e2
mu15~0,1,0,0!, ~4.2b!

e3
mu15F23@Q#

2r 4
sin2u1O~r25!,0,12

@Q#

r 3
~123 cos2u!

1O~r24!,0G . ~4.2c!

The normal tou50 is

nmdx
mu65du. ~4.3!

As transversal on the minus side we can take

2Nm5F0,0,1,122
m

r
2
D

r 2
cosu2

Q

2r 3
~3 cos2u21!

1O~r24!G , ~4.4!

and thus when viewed on the plus side we find, after insist-
ing on Eqs.~2.3! and ~2.4! being satisfied, that the compo-
nents of the transversal are1Nm with

1N152
3@Q#

2r 2
sin2u1O~r23!, ~4.5a!

1N250, ~4.5b!

1N3511
@Q#

r 3
~123 cos2u!1O~r24!, ~4.5c!

1N45
1

2
2
m1

r
2
D1

r 2
cosu1

~2Q12Q!

2r 3
~123 cos2u!

1O~r24!. ~4.5d!

Now h given by Eq.~2.5! has the form

h511O~r23!. ~4.6!

The transverse extrinsic curvature on the plus and minus
sides ofu50 is calculated now from Eq.~2.6!. On the minus
side we find

K11
2 5

r

2
2m2

3D

r
cosu1

Q

4r 2
~13229 cos2u!1O~r23!,

~4.7a!

K12
2 50, ~4.7b!

K22
2 5

r

2
sin2u2m sin2u2

3D

r
cosu sin2u

1
Q

4r 2
~3219 cos2u!sin2u1O~r23!, ~4.7c!

K13
2 5

3D

r 2
sinu1

6Q

r 3
sinu cosu1O~r24!, ~4.7d!

K23
2 50, ~4.7e!

K33
2 5O~r25!. ~4.7f!

55 3481SOME PHYSICAL CONSEQUENCES OF ABRUPT . . .



On the plus side we have

K11
1 5

r

2
2m12

3D1

r
cosu1

Q1

4r 2
~13229 cos2u!

1
@Q#

4r 2
~11225 cos2u!1O~r23!, ~4.8a!

K12
1 50, ~4.8b!

K22
1 5

r

2
sin2u2m1 sin2u2

3D1

r
cosu sin2u

1
Q1

4r 2
~3219 cos2u!sin2u

1
@Q#

4r 2
~317 cos2u!sin2u1O~r23! ~4.8c!

K13
1 5

3D1

r 2
sinu1O~r23!, ~4.8d!

K23
1 50, ~4.8e!

K33
1 5O~r25!. ~4.8f!

From Eqs.~4.7! and ~4.8! the jump gab in the transverse
extrinsic curvature defined by Eq.~2.7! has the following
components:

g11522@m#2
6@D#

r
cosu1

@Q#

r 2
~12227 cos2u!1O~r23!,

~4.9a!

g22522@m#sin2u2
6@D#

r
cosu sin2u

1
3@Q#

r 2
~122 cos2u!sin2 u1O~r23!, ~4.9b!

g1250, g2350, ~4.9c!

g135
3@D#

r 2
sinu1O~r23!, ~4.9d!

g335~r25!, ~4.9e!

where, in keeping with earlier notation, we have put
[m] :5m12m and [D] :5D12D. Finally ĝab in Eq.
~2.21! turns out to have all but two components vanishing
identically. These two components are

ĝ115
1
2 ~g112csc2ug22!1O~r23!, ~4.10a!

ĝ2252ĝ11sin
2u1O~r23!. ~4.10b!

Now the leading terms in the surface stress-energy tensorSmn

are calculated from Eqs.~2.9! or ~2.13!. In the system of
coordinates of theM2 side, we findSm45S125S2350 while

S115O~r27!, S225O~r27!, ~4.11a!

16pS1352
3@D#

r 4
sinu1O~r25!, ~4.11b!

16pS3352
4@m#

r 2
2
12@D#

r 3
cosu1

3@Q#

r 4
~5211 cos2u!

1O~r25!. ~4.11c!

Thus the stress in the lightlike shell with historyu50 is
anisotropic due primarily~for large r ! to the jump in the
dipole moment [D] @on account of~4.11b!#. The surface
energy density of the shell measured by a radially moving
observer~see@6#! is, by ~4.11c!, a positive multiple of

s :52
1

4pr 2 H @m#1
3@D#

r
cosu2

3@Q#

4r 2
~5211 cos2u!

1O~r23!J . ~4.12!

This is dominated by the jump in the monopole moment~the
mass of the source!. It would be natural to assume that
[m],0 so that the source suffers a mass loss. In this case
also the energy density~4.12! is positive throughout the
shell. It is clear from Eqs.~4.11a! and~4.11b! that the stress
in the shell is smaller in magnitude than the energy density.

It is convenient to define, in view of the line element
~3.5!, a null tetrad

Mm5S 2
1

r&
f 1/2,2

i

r& sinu
f21/2,0,0D , ~4.13a!

M̄m5S 2
1

r&
f 1/2,

i

r& sinu
f21/2,0,0D , ~4.13b!

nm5@0,0,11O~r24!,0#, ~4.13c!

Nm5SO~r23!,0,2
c

2
,1D , ~4.13d!

with f ,c given Eqs.~3.6a! and~3.6d!, respectively. This tet-
rad is asymptotically parallel transported along the integral
curves of]/]r . On this tetrad the Newman-Penrose compo-
nents of the matter part of thed function ~2.19! in the Weyl
tensor ~which we denote byMCA with A50,1,2,3,4! are
given, using Eq.~2.23!, by

MC050, MC150, MC25O~r25!, ~4.14a!

MC35
3&@D#

4r 3
sinu1O~r24!, ~4.14b!

MC450. ~4.14c!

This is thus predominantly Petrov type-III~with nm as gen-
erate principal null direction! due to the anisotropy in the
stress~4.11b! ~which in turn is due to [D]Þ0!. The leading
term in ~4.14b! has clearly no singularity for 0<u<p ~and
thus no wire singularity!. All Newman-Penrose components
on the null tetrad~4.13! of the wave part of thed function
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~2.19! in the Weyl tensor~which we denote byWCA! vanish
with the exception, calculated from Eqs.~2.20! and~4.13!, of

WC452
3@Q#

4r 4
~327 cos2u!1O~r25!. ~4.15!

This impulsive gravitational wave clearly owes its existence
primarily to the jump in the quadrupole moment of the
source acrossu50 and also is manifestly free of wire singu-
larities.

V. DISCUSSION

The degenerate metric induced onu50, the history of an
outgoing lightlike shell and of an impulsive gravitational
wave~as has been verified asymptotically using the BI tech-
nique in Sec. IV!, is given asymptotically by Eqs.~3.8! and
~3.9!. The line element~3.9! can be written, putting cosu5x,
as

dl252r 2$G21dx21Gdf2%, ~5.1!

with

G5~12x2!H 12
Q~12x2!

r 3
1O~r24!J , ~5.2!

which, for eachr , is a standard form for the line element on
a two surface of revolution embedded in three-dimensional
Euclidean space~see, for example@10#! with 21<x<11
and 0<f,2p. The Gaussian curvature isK/r 2 with

K52
1

2
G9511

4Q

r 3
P2~x!1O~r24!. ~5.3!

Here the prime denotes differentiation with respect tox. Ne-
glecting O(r24)-terms, we see thatG8(11)1G8~21!50
and this together withf ranging from 0 to 2p means~see
@10#! that there are no conical singularities at the north or
south poles of the two surface. In fact, by the Gauss-Bonnet
theorem it is clear from the form of the line element~5.1!
and K in Eq. ~5.3! that neglectingO(r24)-terms the two
surface is topologically spherical. Hence the lightlike shell
and the impulsive gravitational wave can be considered as-
ymptotically spherical in this sense.

Finally with MC35O(r23) andWC45O(r24) we see an
unfamiliar Peeling behavior. This is due to~a! the conven-
tional Peeling behavior occurring asymptotically in the field
of an isolated sourcewith history confined to a timelike
world tubeof compact cross section whereas the source of
MCA and WCA is a light shell and a wave with the null
hypersurfaceu50 as history in space-time and~b! since in
our case the radiation part of the field is in direct competition
with the matter part it is no surprise that, in terms ofr21, the
amplitude of the matter part dominates that of the radiation
part.
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APPENDIX: TRANSFORMATION OF WEYL SOLUTION
TO BONDI FORM

To make the present paper as self-contained as possible
we briefly outline and discuss here the transformation of the
Weyl solution given by Eq.~3.1! and ~3.2! to the Bondi@9#
form @Eqs. ~3.5! and ~3.6!#. This transformation is given in
Appendix 4 of @9#. We wish to emphasize aspects of the
procedure which are particularly relevant to the topic under
consideration in the present paper.

Starting with Eq.~3.1! the coordinate transformation

t5u1F~R,u!, ~A1!

Q5Q~R,u!, ~A2!

is made with the functionsF,Q chosen so that nodrdu or
dr2 terms appear in the line element. This will be achieved
providedF,Q satisfy the partial differential equations

e2UFRFu5R2e2k22UQRQu , ~A3!

e2UFR
25e2k22U~11R2QR

2 !, ~A4!

with the subscripts onF,Q indicating partial derivatives with
respect toR,u as appropriate. At this point the line element
reads

ds25~2R2e2k22UQu
21e2UFu

2!du22R2e22Usin2Qdf2

12e2UFRdudR12e2UFududu1e2Udu2. ~A5!

We emphasize now that the hypersurfacesu5const arenull.
Using FRu5FuR andQRu5QuR in ~A3! and ~A4! we can,
following @9#, eliminateF from ~A3! and~A4! and arrive at

QuFR4e2k24UQR
2

11R2QR
2 G

R

5R2~e2k24U!uQR . ~A6!

This equation is now solved approximately for large values
of R by ~see@9#!

Q5u1
p8

4R2 1
1

R3 S 112 q82
1

2
mp8D1••• , ~A7!

with

p54D cosu1m2~71cos2u!, ~A8!

q52Q~3 cos2u21!14mD cosu~31cos2u!

16m3~11cos2 u!, ~A9!

and the primes in Eq.~A7! onp,q indicating derivatives with
respect tou. Now F is obtained from~A3! and ~A4! as

F5R12m lnR1
1

R
~2m22 1

2p!

1
1

R2 ~22m31 1
2mp2 1

4q!1••• . ~A10!

Finally we make the transformationR5R(r ,u) given by
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R2e22Usin2Q~R2e2k22UQu
22e2UFu

2!5r 4sin2u.
~A11!

This leads, for large values ofr , to

R5r2m2
m2

2r 2
sin2u2

m

2r 2
~2D cosu1m2!sin2u1••• .

~A12!

Putting this inF given by Eq.~A10! andQ given by Eq.
~A7! we construct the transformation~A1!, ~A2! for large r
leading from Eqs.~3.1!, ~3.2! and ~3.5! and ~3.6!. We em-
phasize that although the differential Eqs.~A3! and~A4! for
F, Q and the algebraic equation~11! for R have been solved
only for large values ofr , the null hypersurfacesu5const
are exactly null~for all values ofr !.
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