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Some physical consequences of abrupt changes in the multipole moments of a gravitating body
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The Barrabs-Israel theory of lightlike shells in general relativity is used to show explicitly that in general
a lightlike shell is accompanied by an impulsive gravitational wave. The gravitational wave is identified by its
Petrov-typeN contribution to a Diracs-function term in the Weyl conformal curvature tengwrith the §
function singular on the null hypersurface history of the wave and)steilexample is described in which an
asymptotically flat static vacuum Weyl space-time experiences a sudden change across a null hypersurface in
the multipole moments of its isolated axially symmetric source. A lightlike shell and an impulsive gravitational
wave are identified, both having the null hypersurface as history. The stress-energy in the shell is dgatinated
large distance from the souncly the jump in the monopole mome(the masyof the source with the jump
in the dipole moment mainly responsible for the stress being anisotropic. The gravitational wave owes its
existence principally to the jump in the quadrupole moment of the source confirming what would be expected.
[S0556-282197)04106-4

PACS numbg(s): 04.30.Db, 04.20.Jb

[. INTRODUCTION of matter. The Ricci tensor of the space-time in general ex-
hibits a é function behavior singular on the null hypersurface
Very few exact solutions of Einstein’s vacuum field equa-history of the shellthe coefficient of thes function is con-
tions exist describing gravitational waves from an isolatedstructed from the surface stress-energy tensor of the shell and
source having wave fronts homeomorphic to a two-spher¢his tensor is calculated using the Bl approach
(we will refer to such waves loosely as “spherical waves” The present work relies upon a property of lightlike sin-
The principal example is the Robinson-Trautmjahfamily ~ gular hypersurfaces already announcedé@h although not
of solutions. These are very special, however, because if thiglly developed there as that paper was only concerned with
wave fronts are sufficiently smooftfree of conical singulari- shells, and which we now recall. In the present context a
tieg and the field(Riemann tensgrcontains no “wire” or  singular hypersurface in space-time is described covariantly
“directional” singularities then the solutions approach a by the existence of finite jumps across the hypersurface in its
Schwarzschild limit exponentially in timg2,3]. A limiting extrinsic curvature. In the null case considered here these
case is Penrose(gl] spherical impulsive gravitational wave become jumpsy.,= ypa, a,0=1,2,3 in the “transverse ex-
propagating through flat space-time. Another interestingrinsic curvature” of the hypersurface, defined in E¢&6)
class of solutions in the present context has been found band (2.7) below. As a result the Ricci tensor and the Weyl
Alekseev and Griffithd5]. When these solutions have the tensor of the space-time contain Dir&dunction terms sin-
property that the curvature tensor of the space-time contairgular on the hypersurface and having coefficients calculated
ing the history of the wave involves a Diréfunction which  from v, . If the singular hypersurface is lightlike the results
is singular on the null hypersurface history of the wave, theobtained in6] show that only four of the six components of
coefficient of thes function is singular along a generator of y,, contribute to the coefficient of th&function in the Ricci
this null hypersurfacéa wire singularity. The object of the tensor and are therefore related to the surface stress-energy
present paper is to present an example of a wire singularitytensor of the lightlike shellthis does not hold for a timelike
free spherical impulsive gravitational wave propagatingor spacelike hypersurface since in this case there is a one to
through a vacuum. To construct this we will use theone correspondence between the surface stress-energy tensor
Barrabs-Israel(Bl) [6] theory of lightlike shells in general and v,,). It follows that the coefficient of theé function in
relativity. This is an extension to the null case of the usuakthe Weyl tensor which is linear in the full set of thg, can
extrinsic curvature techniqUué] for studying non-null shells  be split into two parts, one calculated with the four compo-
nents of y,, used in the calculation of the surface stress-
energy tensofthe matter pajtand another part calculated

*Electronic address: barrabes@celfi.phys.univ-tours.fr with the remaining two components of;, not used in the
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wave and will be referred to as the wave part. The mattebecome null in a limiting case. The identification of the mat-
part mentioned above is in general Petrov-type Il. Such der and wave part of the coefficient of tt#function in the
decomposition is made explicit in Sec. Il below. Examples ofWeyl tensor is then presented. In Sec. Ill the application to
space-time geometries and singular lightlike hypersurfacefie asymptotically flat Weyl solutions is initiated by intro-
where only one of the two parts of the Weyl tensor is non-ducing these solutions, describing the transformation of the
zero are already known in the literature. On the one handine element to a form based on a family of null hypersur-
one may consider the case of spherical lightlike shells defacesu=const(say (this is just the Bond[9] form of the
scribed in[6] where only a shell exists. On the other hand the?VeY! solutions; for completeness some of the original calcu-
singular null hyperplane and the singular null cone inlations by Bondiet al. [9] are summarized in the Appendix

Minkowskian space-time studied by Penrddgprovide ex- with comments relevant to the present ap_plicatiand th(_en
amples where only an impulsive gravitational wave eXis,[‘,s_olescnblng how two such solutions with different multipole
ments can be matched across one of the null hypersur-

For more complicated geometries such as the one consider . i

here, the shell and the wave generally coexist. In addition aces,u=0 (say. The phy3|cal properties of the.boundary
cataclysmic astrophysical event such as a supernova is like .:O are worked C.)Ut n Sec. IV. Its mtgrpretgﬂon as .the
to produce a burst of neutrinos travelling outward with the listory of b(_)th a I_|ght||ke sheII_ and an impulsive gravita-
speed of lightmodelled by the lightlike shellaccompanied gﬁga:hvé a\rlgsljlt\;eSZ?i?/ea:jS)?r%ggcﬁ:ly#ﬁén%g;irme:\%cshr\:\lliqcﬁea
by a burst of outgoing gravitational wavesiodelied by the discussion in Sec. V commenting in particular on the ab-

impulsive wave. . : "
P @ sence of conical singularities on the wave front or shell and

Asymptotically flat solutions of the Weyl class of static . . . .
; ; o ) . n the asymptotic behavigf'peeling” behavion of the am-
axially symmetric vacuum gravitational fields are descrlbeaolitude of thes function in both the matter and wave parts of

by metric tensor components expressed as infinite series hat "o Wevl t
ing coefficients involving the multipole moments of the iso- e Yveyl tensor.

lated sourc¢8]. To illustrate the splitting of the Weyl tensor .

into a matter part and a wave pddr the coexistence of a !l BARRABE S-ISRAEL TECHNIQUE: THE NULL CASE
shell and a wavewe take a future directed null hypersurface
which is asymptotically a future null cone in the asymptoti-

cally flat Weyl space-time .and assume a finite abrupt chang&,i}, with Greek indices taking values 1, 2, 3, 4, be a local
takes place in these multipole moments across the null hyc':oordinate system iM* in terms of which the metric tensor
persurface. The surface stress-energy tensor concentrated ponents are +ﬁ and let{x*} be a local coordinate sys-

the null hypersurface is calculated at large distance along thf:em inM~ in terms of which the metric tensor components
null hypersurface from the history of the source and it 'Sareg;ﬁ. Let {£%1, with Latin indices taking values 1, 2, 3, be

shqwn that t.he energy denSity OT the shell, me_asured by fcal intrinsic coordinates oB and the parametric equations
radially moving observer, is dominated by the jump in theofz have the formx“ = f # (£%) say. We thus have a basis of

monopole momen{the masy of the source followed by tangent vectors,=d/3£ to 3, and we assume thad * and

terms proportional to the jumps i_n th_e dipole a_nd quadrupoIeM— are reattached o in such a way that the induced
moments of the source. Jumps in higher multipole momen(tfnetrics ons. from M* andM ~ match:

will contribute even less significantly and are not calculate
here. There is an anisotropic surface stress dominated by the ‘=g .e%B. =g .e%B 21
jump in the dipole moment. Thé function in the Weyl Gab:=Yap€a€h|+ = Yapeaep| -, (2.)
tensor has a coefficient with matter part and wave part, deyhere the colon followed by an equality sign denotes a defi-
SC”be-d above, with the matter part dominated by the ]Ump |rhition, eg| L= axi/aé‘a are the components of the tangent
the dipole moment and the wave part by the jump in theyectorse, to S evaluated on thé * side orM ™ side respec-
quadrupole moment. In the case of the matter part this is dugely. The symbol|. shall mean “evaluated on the plus or
to the anisotropic stress in the shell while for the wave part itinys side ofs.” The manifold resulting from this reattach-

is a manifestation of the well-known property of gravita- ment ofM* andM ~ on'S, will be denoted byM " UM ~. Let
tional waves from isolated sources that the lowest radiatef he normal tas with componentsi“ viewed on the plus or

multipole is the quadrupole. The Newman-Penrose compominus sides. Thus

nents of the matter and wave parts of the coefficient oféthe

function in the Weyl tensor are calculated on a null tetrad n“n |.=0 andn,e’/.=0. (2.2
asymptotically parallel transported along the future-directed . a

null geodesic generators of the null hypersurface. Thesglext choose a “transversalN on 3 and require that its

components are nonsingular on any such generatorsand projection in the plus or minus sides Bfbe the samécon-
the Weyl tensor is free of wire singularitieSince the null  tinuous so that

hypersurface chosen is asymptotically a future null cone we
can say that the impulsive gravitational wave accompanying N#eg| L= Nﬂeg‘|, (2.3
the lightlike shell is asymptotically spherical.
The paper is organized as follows: In Sec. Il the Bl tech-and, in addition, require
nique is described as it applies to lightlike shefighich
includes impulsive wavesThe method given in Bl is uni- N, N =N, N#_. (2.9
fied treatment applicable to hypersurfaces which are non-null
as well as null and to non-null hypersurfaces which mayFinally define

Consider space-tim®l to be subdivided into two halves
M* andM ~ each with boundary a null hypersurfae Let
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7 h=N,n~. (2.5
Now the “transverse extrinsic curvature” & (a generali-
zation of the usual extrinsic curvaturé] to the null casgis
defined by

K;b = Nyeg; ve;| += ’Cgav (2.6
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with N, : =N ef which is continuous across by Eq.(2.3).
The expressiori2.15 determineggi® uniquely up to a mul-
tiple of 12, It is clear from Eq(2.13 that if y,,|°=0 then
the surface stress-energy tensor is “isotropic” with

(2.19
This is equivalent, by Eq92.12 and (2.14), to S*” being

16wy 1=~ (g )11,

with the semicolon denoting covariant differentiation. Theproportional ton“n”.

jump in these components acrasss denoted by

3 Yab: = [Kabl: = Kap— Kap. (2.7)

and these quantities are independent of the choice of trans-
versal(see[6], Sec. I). We now extendy,, to a four-tensor

by padding out with zeros in a system of coordinates having
the e,'s as basis vectorg&he only condition required on the

extensiony,, beingy, ,e5€¢= v¥ap).

The Weyl conformal curvature tensor of the space-time
M*UM ™ has in general a part concentratedXand given

by [6]
o(u).
(2.19

Here the square brackets denote skew symmetrization and

a” uy

8
KN _ KA\ _ [k )] a oK\
c =1 2gnlyM n, 16751, 8,1+ 3~ S4o ]

A calculation now of the Einstein tensor of the space—time&;”v is the usual determinant of Kroneckés. It has been
MTUM ™ results in general in an energy-momentum-stresgointed out in[6] that there is a part of the first term in the

tensor concentrated an of the form|[6]

THY=S*"5(u), (2.9

where the equation & is taken to bai(x*) =0, the normal
to > has the forrm ,=u
differentiation, §(u) is the Diracé function andS*” is given

by [6]
1677 1S =2yHn" — yntnv— yTgrr, (2.9
Here round brackets denote symmetrization and

yri=9y*"n,, Y:=0""v,, (2.10

yhi=yn,,

with the calculation of these quantities carried out on either

«» With the comma denoting partial

coefficient of thes function in Eq.(2.17) that is constructed
from a part ofy,, which does not contribute to the surface
stress-energy tensor. This part of Ef.17) therefore is de-
coupled from the matter part. It describes an impulsive gravi-
tational wave propagating with the shell and having0 as
the history of its wave front. To display this decomposition
of Eq. (2.17) it is perhaps simplest to look first at the intrin-
sic form (2.13 for the stress-energy tensor. It is clear from
Eqg. (2.13 that a part ofy,,, which we will denote byy,,
does not contribute to the stress-energy tensor. Jhisat-
isfies

(2.18

This means thay,,, has two independent componerasfact

A'}’abl b= 0, giba’ab: 0.

side of 3. We drop the plus or minus designation in suchWhich is related to the two degrees of freedom of polariza-

instances. The physical interpretation of these formulas igo
discussed in detail in Bl. The surface stress-energy tens

S*”in Eq. (2.9) has the property that

S$#*n,=0, (2.11
and thus it can be expressed on the tangent lmgsis
Str=Sbetel (2.12

with (see[6])

1677~ 18%0=29%A12) (ol D) — g2yl 19— 131P(gS%yc ).
(2.13

The three-vectot? is defined via the expansion

n*=|%ek, (2.19
remembering that sinc® is null the normal toX, is also
tangent toX. From Eq.(2.14) and the orthogonality of*,
e it follows thatg,,|®=0. We note that sinc& is null the

induced metric with componentg,;, is degenerate or singu-

lar. In Eq.(2.13 g2° is a type of generalized inverse of,
defined by[6]

05%°9bc= 65— 71Ny, (2.19

n in general present in the impulsive gravitational wave

cSjretermined below by,,). The decomposition of Eq2.17)

into wave and matter parts is best described by giving the
components of these parts on the oblique b@si,N“}.
Using Eq.(2.17) and having off the part ofy,, described
above we find we can write

CK)\,(LV:(WK)\MV—’_MK)\[LV)&(U)' (219)

The componentyV,, ,,e<ebete) andW,, , e<ebe’N” of

. h KN v - KApv
W, v Vanish identically while
WK}\;LVegN)\egNV: _%n_laabi (22@
with

- d
Yab= Yab— 7 0% 'YCdgab_277|d7d(aNb)+ 72 Yed 19NaNp .
(2.2

One easily checks that thig,, satisfies Eq(2.18. Multiply-
ing the components dW,, ,, on the oblique basis bl and
using Eq.(2.14 and the first of Eq(2.18) gives

W (2.22

so that this part of Eq2.19 is typeN in the Petrov classi-
fication with n* as fourfold degenerate principal null direc-
tion. Thus this part of the Weyl tensor in EQ.19 describes

K)\,u,VnK: 0’
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an impulsive gravitational wave with propagation directionsion of the Schwarzschild expressii@i for U. Correspond-

n* in space-time and witlu=0 as the history of its wave
front. Now the components of the matter part of E2.19
on the oblique basis are

M K)\,U,Vegei;egeg: 87(GaraSe1b— YoraSe1a)

167

T3 S 9arcdib » (2.233

& ‘3
M 2 SaGC[aNb] )

efehesN”= 3
(2.23h

KAV _87Tgc[aeg]SaBNB+

S2N,N .
(2.230

A
M s N €N" = — 8BS, ey Ne NP+ —-

HereS,,: =S, e4ep which, of course, is not simply related
to $2® in Eq. (2 13 by lowering indices becausg,, is de-
generate. We note that 8 is isotropic in the sense de-
scribed in Eq(2.16), or in the sentence following EqR.16),
then S,,=0 and in addition we see from Ed2.23 that

M .»=0 in this case. Finally we note that from the results

of Sec. Ill of[6] one can deduce that the matter pér}, ,, is
in general Petrov-type-Il and may specialise to type-Iil.

. ASYMPTOTICALLY FLAT WEYL SPACE TIMES

To illustrate the theory outlined in Sec. Il we consider the

ing to Eq.(3.3) we have, for Eq(3.2b),

m2

2mD
k=—ﬁ5i¥®—FCO@ Sif@+--- . (3.4

The line element3.1) with U andk in the forms(3.3) and
(3.4) can be transformed to the Bondi forfthe procedure
for doing this, due to Bondet al. [9], is outlined in the
Appendi®

ds?=—r2{f " 1d#?+f sirfd¢?} +2gdudr

+2hdudé+cdu?, (3.5
with
Q. 4

f=1—F;S|n29+O(r ), (3.63
g=1+0(r"%, (3.6b

2D 30 )
h= — sing+ = singcos9+ O(r ~3), (3.60

2m 2D
C=1-———7 cos— ?—3 (3cogH—1)+0(r 4.

(3.60

asymptotically flat Weyl static axially symmetric solutions of For our present purpose it is useful to have solutithg)

Einstein’s vacuum field equatiori8]. The line element of
these space-times has the form

ds’=—R% 2Y(e?*d®%+sinf@d¢?)
— e 2UgR2+ e2Y(t?, (3.2

where U,k are functions of the coordinaté€3, R given by
the infinite series

U= nZO ot P, (3.23
e — aap(l+1)(m+1) Pm=Pi+1Pm+1
| &0 [+m+2 RITm+2 '
(3.2H

wherea, (n=0,1,2,..) are constants anB,=P,( cos0) is
the Legendre polynomial of degreein the variable co®.
The first few terms in the serié¢8.28 may be written

m D co® L3 Pa(cod)
U=—g R QM) s+

(3.3

where, following Bondiet al. [9], we have written the con-
stantsay,a,,a,, in a form so that we can identifjn as the
mass of the isolated sourcB, as the dipole moment of the
source andQ as its quadrupole moment. The momebts
and Q appear in Eq(3.3) in such a way that iD=Q=0
then Eq.(3.3) represents the leading terms in th& Bxpan-

expressed in a coordinate system based on a family of null
hypersurfaces. In the form(3.5 the hypersurfaces
u=constant areexactlynull (i.e., for allr and not just for
larger; this is clearly pointed out in the AppendiXNeglect-

ing O(r ~%)-termsu=constant are generated by the geodesic
integral curves of the future-pointing null vector fiebr
andr is an affine parameter along them. These curves have
expansiorp and sheaw given by

1
p:F+0(r*5), (3.7a

3
o= 2—3 sinf6+0(r ~®),

(3.7b
demonstrating that for large valuesrofspecifically, neglect-
ing O(r~% termg the null hypersurfacesi=const in the
space-time with line elemeri8.5 are future null cones.

To illustrate the theory described in Sec. Il we subdivide
the space-tim& with line elemen{3.5) into two halvesM ~
andM " havingu=0 (say as common boundary. To the past
of u=0, corresponding to<0, the space-tim& ™ is given
by Egs. (3.5 and (3.6) with parameterdm_,D_,Q_,...}
and coordinategs“ =(6_,¢_ ,r_,u), while to the future of
u=0, corresponding to>0, the space-timé * is given by
Egs.(3.5 and(3.6) with parameter§m, ,D, ,Q, ,...} and
coordinates x%#=(6,,¢,,r,,u). We have taken
u,=u_=u here for convenience. To save on subscripts we
shall henceforth drop the minus subscriptxdh and on the
parameter¢§m_,D_,Q_,...} and also usé, ¢, r as intrin-
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sic coordinates on=0[i.e., in the notation of Sec. Il we are
putting &=(6,¢,r)]. The line element oru=0 induced
fromM™ i

di2=—r2{f 62 +f, sirfe,d¢?}, (3.9

with
f,=1— % sirf6, +0(r; %, (3.9

+
while the induced line element an=0 from M " is

di?=—rf"1de?+f sirfed¢?}, (3.10

with
f= —95|n2¢9+0(r‘4). (3.11)

We now reattacitvl ~ andM ™ on u=0 requiring Eqs(3.8)
and (3.10 to be the same line elemefgee Eq.(2.1)] and
this requirement gives the “matching conditions”

0,=0+ [%] sind co9+O(r %), (3.12a
¢ =9, (3.12n
ro= [Q] ——> (1-3cog0)+0(r 3, (3.129
with [Q]: =Q. —Q_. From the perspective of the space-

time M~ UM ™ we have an asymptotically flat Weyl solution
M~ undergoing an abrupt finite jump in its multipole mo-
ments across a null hypersurfage=0 resulting in the Weyl
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-3
esl. = % sin26+ O(r‘5),0,1— Q] (1—3cog6)
+0(r 4),0!. (4.20
The normal tou=0 is

n,dx“|.=du. 4.3

As transversal on the minus side we can take

_ D Q
N,=|0,0,15—— 2 Cod— 53 (3cog6-1)

+0(r %], (4.9

and thus when viewed on the plus side we find, after insist-
ing on Egs.(2.3) and (2.4) being satisfied, that the compo-
nents of the transversal aré\ o« With

3[Q]

*Ny=— el sin20+0(r %), (4.53
*N,=0, (4.5b
+N3—1+E 1-3cog6)+0(r %), (450

1 m D

TNy=5— —— —Q— cosf+ (ngi) (1-3cogh)
+0O(r = %. (4.50
Now 7 given by Eq.(2.5) has the form

7=1+0(r"3). (4.6)

solutionM ™. We now apply the BI theory, with special ref- The transverse extrinsic curvature on the plus and minus
erence to the results of Sec. Il to study the physical propersides ofu=0 is calculated now from Eq2.6). On the minus

ties of the null hypersurface=0.

IV. LIGHTLIKE SHELL AND GRAVITATIONAL WAVE

To apply the BI theory as outlined in Sec. Il we first
calculate the tangent basis vectegs= 9/9&% on the plus and
minus sides oE:u=0. With x4 given in terms ok # =x* by
Eg. (3.12 and with &=(0,¢,r) we find that

efl-= a4, (4.9
while
el =1+ @ cos¥+0(r 4,0, Z[Qz] sin26
+0(r3),0|, (4.2a
e4.=(0,1,0,0, (4.2b

side we find
r 3D
’Ch:g—m— —— o+ 5 Q 5 (13— 29 cog6)+O(r ~3),
(4.79
K1,=0, (4.7
r 3D
Ko=3 sirfg—m sirf6— —— cog Sha
Q , -3
+4,2(3-19 cogh)sife+0(r3), (4.79
3D 6Q 4
Kiz= Tz sind+ —5 sind cosh+0O(r %), (4.70
K5=0, (4.7
K3=0(r ). 4.79)
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On the plus side we have 3[D]
167St= ), (4.11b
r 3D,
Kiy=5—m,— —— cos+ 75 Q* 7 (13-29 cod6)
4m] 12D 3
—5 (11— 25 cog6)+O(r ~3), (4.8a
+0(r %). (4.119
K1,=0, (4.80  Thus the stress in the lightlike shell with histo=0 is
anisotropic due primarilyfor larger) to the jump in the
L , 3D, ) dipole moment P] [on account of(4.11H]. The surface
Ko=75 sirf6—m, sir’6— [ cosy sirfo energy density of the shell measured by a radially moving
observer(see[6]) is, by (4.119, a positive multiple of
Q- .
+ 4,2 (3719 cogo)sinto 1 m ]+3[D] 3[Q]
[Q] g 4ar?
= (3+7 cog)sirth+0(r 3 (4.80
+O(r‘3)]. (4.12
Kis=—7 sing+0(r ), (4.80  This is dominated by the jump in the monopole momiine
mass of the sourge It would be natural to assume that
Kh=0 (4.80 [m] <0 so that the source suffers a mass loss. In this case
28 = ' also the energy density4.12) is positive throughout the
Ki=0(r 9. (4.8 shell. It is clear from Eqsi4.119 and(4.11b that the stress

From Egs.(4.7) and (4.8) the jump y,, in the transverse
extrinsic curvature defined by E@2.7) has the following
components:

yu=—2[m]- % o9+ [—Q; (12—27 cog6)+O(r 3),
(4.939
Y2o=—2[m]sirfo— il cosd Sirnto

[Q] -3 (ash
¥12=0, 723=0, (4.99

D] . _
Y13=—>— sing+O(r 3), (4.90
¥a3=(r"°), (4.9¢

where,

[m] :=m,—m and D] :=D,—D. Finally y,, in Eq.

(2.21) turns out to have all but two components vanishing

identically. These two components are

Y11= 3 (711~ €SC0y) +O(r ~3), (4.103

’3/22: - 3/118“‘120-0— O(I’fs). (410b
Now the leading terms in the surface stress-energy te®tSor
are calculated from Eqg2.9) or (2.13. In the system of
coordinates of thé/ ~ side, we finds**= S'?=$?*=0 while
st=0(r"7),

S?2=0(r "), (4.113

in keeping with earlier notation, we have put

in the shell is smaller in magnitude than the energy density.
It is convenient to define, in view of the line element
(3.5), a null tetrad

f1/2 _
rv2

MH = _ifl/Z
r

MH“=

_ f1’2,0,0> , (4.133
rv2 sind

f—1’2,0,0) , (4.13p

vZ ' rv2 sing
n*=[0,0,14+O(r ~4),0], (4.130
N“=(O(r3),0,— %1) (4.130

with f,c given Eqs.(3.6@ and(3.60, respectively. This tet-
rad is asymptotically parallel transported along the integral
curves ofdldr. On this tetrad the Newman-Penrose compo-
nents of the matter part of th&function (2.19 in the Weyl
tensor (which we denote b))"'\I’A with A=0,1,2,3,4 are
given, using Eq(2.23, by

Mp,=0, M¥,=0, M¥,=0(r %, (4.143
3v2[D

M = T[r]sm0+0( 4, (4.14h

My, =0. (4.149

This is thus predominantly Petrov type-I\lvith n* as gen-
erate principal null directiondue to the anisotropy in the
stress(4.11h (which in turn is due to D] #0). The leading
term in (4.14b has clearly no singularity for€6<s (and
thus no wire singularity All Newman-Penrose components
on the null tetrad4.13 of the wave part of theS function
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(2.19 in the Weyl tensokwhich we denote byV\IfA) vanish APPENDIX: TRANSFORMATION OF WEYL SOLUTION

with the exception, calculated from Eq2.20 and(4.13), of TO BONDI FORM
3[Q] To make the present paper as self-contained as possible
W, = — v (3—7cog0)+0(r°. (419  we briefly outline and discuss here the transformation of the

Weyl solution given by Eq(3.1) and(3.2) to the Bondi[9]

This impulsive gravitational wave clearly owes its existenceform [Egs. (3.5 and(3.6)]. This transformation is given in

source acrosa=0 and also is manifestly free of wire singu- procgdure'whi_ch are particularly relevant to the topic under
larities. consideration in the present paper.

Starting with Eq.(3.1) the coordinate transformation

V. DISCUSSION t=u+F(R,0), (A1)

The degenerate metric induced o&0, the history of an
outgoing lightlike shell and of an impulsive gravitational 0=0(R,0), (A2)
wave (as has been verified asymptotically using the Bl tech- ) i
nique in Sec. IV, is given asymptotically by Eq$3.8) and S gnade with the f_unctlon_§,® chosen so_that_ ndrdé or
(3.9). The line element3.9) can be written, putting cog=x, dr< terms appear in the line element. This will be achieved

as providedF,® satisfy the partial differential equations
di2= —rG~Ldx2+ Gd¢?}, (5.) e?UFrF y=R%* V050, (A3)
with e?VFi=e*"2V(1+R?0}), (A4)
Q(1-x%) with the subscripts off,® indicating partial derivatives with
— _ 2 _ -4 ’
G=(1=x91 r3 OO, (5.2 respect toR,# as appropriate. At this point the line element
reads

which, for eactr, is a standard form for the line element on

a two surface of revolution embedded in three-dimensional ds?=(—R?%e? 202+ e?YF2)d#?— R%e~?YUsirP@d ¢?
Euclidean spacésee, for exampld10]) with —1sx<+1 o o oU 2

and 0<¢$<2m. The Gaussian curvature k/r? with +2e” FrdudR+2e”"F jdudd+e““du”.  (A5)

1 4Q We emphasize now that the hypersurfaaesconst arenull.

Ks=5G"=1+—% Po(x)+0O(r=%). (5.3 Using Fry=F g and ®,=0 45 in (A3) and (A4) we can,
following [9], eliminateF from (A3) and(A4) and arrive at

Here the prime denotes differentiation with respect.tdle-

glecting O(r ~%)-terms, we see thaG'(+1)+G’'(—1)=0

and this together withp ranging from 0 to Zr means(see 0

[10]) that there are no conical singularities at the north or

south poles of the two surface. In fact, by the Gauss-Bonnethis equation is now solved approximately for large values

theorem it is clear from the form of the line elemebtl)  of R by (see[9])

and K in Eq. (5.3 that neglectingO(r ~*)-terms the two

R4e2k74ué
1+ R2®2 :RZ(eZK_AU)HR' (A6)
R

R

surface is topologically spherical. Hence the lightlike shell p’' 1 1
and the impulsive gravitational wave can be considered as- O=0+ 2t gz 30 5 mP [+, (AD)
ymptotically spherical in this sense.
Finally with ¥ ;=0(r ~3) and"¥,=0(r ") we see an  jith
unfamiliar Peeling behavior. This is due ¢a) the conven-
tional Peeling behavior occurring asymptotically in the field p=4D cosf+m?(7+cos6), (A8)
of an isolated sourcavith history confined to a timelike
world tube of compact cross section whereas the source of q=20Q(3 co26—1)+4mD cosd(3+coL o)
My, and "W, is a light shell and a wave with the null
hypersurfaceu=0 as history in space-time ar{) since in +6m’(1+cos ), (A9)

our case the radiation part of the field is in direct competition _ _ o o .
with the matter part it is no surprise that, in termgof, the ~ and the primes in EJA7) onp,q indicating derivatives with
amplitude of the matter part dominates that of the radiatiode€spect tod. Now F is obtained from(A3) and (A4) as
part.

1
F=R+2m InR+ = (2m*—%p)
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R2e~2Usir?® (R2e?<~ V@2 e2UF2) = r4sirPy. Putting this inF given by Eq.(A10) and ® given by Eq.
(A11) (A7) we construct the transformatiqil), (A2) for larger
leading from Eqs(3.1), (3.2) and (3.5 and (3.6). We em-

This leads, for large values of to phasize that although the differential E¢a3) and(A4) for
2 F, ® and the algebraic equatighl) for R have been solved
m< . m )
R=r—m-— o2 sirf9— o2 (2D cosf+m?)sirfo+--- . only for large values of, the null hypersurfacea=const

(A12) are exactly null(for all values ofr).
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