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A small mass particle traveling in a curved spacetime is known to trace a background geodesic in the lowest
order approximation with respect to the particle mass. In this paper, we discuss the leading order correction to
the equation of motion of the particle, which presumably describes the effect of gravitational radiation reaction.
We derive the equation of motion in two different ways. The first one is an extension of the well-known
formalism by DeWitt and Brehme developed for deriving the equation of motion of an electrically charged
particle. Constructing the conserved rank-two symmetric tensor, and integrating it over the interior of the world
tube surrounding the orbit, we derive the equation of motion. Although the calculation in this approach is
straightforward, it contains less rigorous points. In contrast with the electromagnetic case, in which there are
two different charges, i.e., the electric charge and the mass, the gravitational counterpart has only one charge.
This fact prevents us from using the same renormalization scheme that was used in the electromagnetic case.
In order to overcome this difficulty, we put an ansatz in evaluating the integral of the conserved tensor on a
three spatial volume which defines the momentum of the small particle. To make clear the subtlety in the first
approach, we then consider the asymptotic matching of two different schemes: i.e., the internal scheme in
which the small particle is represented by a spherically symmetric black hole with tidal perturbations and the
external scheme in which the metric is given by small perturbations on the given background geometry. The
equation of motion is obtained from the consistency condition of the matching. We find that in both ways the
same equation of motion is obtained. The resulting equation of motion is analogous to that derived in the
electromagnetic case. We discuss implications of this equation of motion.@S0556-2821~97!02304-7#

PACS number~s!: 04.30.Db, 04.25.2g

I. INTRODUCTION

The problem of radiation reaction has long been one of
the fundamental theoretical issues in general relativity. Start-
ing from the historical works of Eddington in his 1922 book
@1#, Chandrasekhar and Esposito@2# discussed the radiation
reaction of the self-gravitating fluid emphasizing the impor-
tance of the time asymmetric part of the metric appearing in
the post-Newtonian expansion, and Burke and Thorne@3#
found a resistive potential which compactly expresses the
radiation reaction. Recently this problem has come to be of
increasing importance because the detection of gravitational
waves becomes a reality with the present technology. The
gravitational waves from an inspiraling binary is one of the
most promising sources expected to be detected by the near-
future interferometric gravitational wave detectors such as
the Laser Interferometric Gravitational Wave Observatory
~LIGO!, VIRGO, and Laser Interferometer Space Antenna
~LISA! @4,5#. In order to extract the information of the bina-
ries from the last inspiraling stage, it is neccessary to con-
struct accurate theoretical templates of the gravitational wave
forms @6#, in which the radiation reaction to the orbit plays
an important role.

The post-Newtonian study of the binary system is devel-
oped by many authors. Damour and co-workers@7# consider
what the motion of the compact objects means within the
post-Newtonian study. The series of works by Blanchet and
Damour@8# formulate the rigorous prescription of the radia-
tion zone applying the matched asymptotic expansion tech-
nique, and along this way, Blanchet@9# discusses the radia-
tion reaction force in the post-Newtonian expansion. Though
the post-Newtonian is applicable to quite general situations,
the calculation becomes increasingly difficult as one goes to
higher orders.

As an alternative approach, perturbations of a black hole
by an orbiting small particle has been studied@10#. However,
in all the previous works, the rate of change of orbital pa-
rameters are assumed to be determined by the energy bal-
ance. Although this prescription is powerful, the background
black hole is required to have a sufficient number of Killing
vector fields in order to relate the outgoing gravitational
waves with the rate of change of orbital parameters of the
particle. The Kerr black hole is an important example which
does not have a sufficient number of Killing vector fields and
so rigorous discussions are restricted to the case in which the
particle is in a circular or an equatorial orbit. Thus the effect
of the radiation reaction on the motion of a small mass par-
ticle in a general curved spacetime is an important target of
theoretical investigation.

On the other hand, the effect of the electromagnetic radia-
tion reaction on the motion of a charged particle in a curved
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spacetime was discussed by DeWitt and Brehme@11# ~DB!.
In the electromagnetic case, the total energy momentum ten-
sor composed of the particle and field contributions satisfies
the conservation law. Its divergence is integrated over the
interior of the tube surrounding the particle orbit with infini-
tesimal length. The part of the integration which does not
vanish in the small tube radius limit is transformed into the
surface integrations over the both ends of the tube and over
the surface of the tube by using the Gauss’ theorem. The
integrations over the top and bottom of the tube give the
definition of the particle momenta at both ends and the dif-
ference between them represents the change of the momen-
tum during this infinitesimal time interval, which is to be
equated with the momentum flow given by the integration
over the surface of the tube. In this way the equation of
motion is obtained. As shown below, also in the case of
gravitational radiation reactions, we can construct a con-
served rank-two tensor defined on the background spacetime,
composed of the matter field and the metric perturbation.
However, there is an important difference between electro-
magnetic and gravitational cases. In the electromagnetism,
we can consider an extended charge distribution which is
supported by a certain force other than the electromagnetic
field. Thus it will be natural to assume that the charge and
mass distributions of a pointlike particle are not distorted by
the effect of the radiation reaction. Therefore one may con-
sistently assume that the momentum and the electric current
of the particle are proportional to the four-velocity of the
particle. Moreover the electromagnetic chargee is not di-
rectly related to the energy momentum of the particle which
is proportional to the massm. Hence, even if the limit of a
zero-particle radius is taken, the divergent self-energy
(}e2) can be renormalized by shifting the bare mass. In the
case of the gravitational radiation reaction, it is not possible
to consider such an ideal pointlike particle because every
force field universally couples with gravity. Even worse, the
role of e in the electromagnetism is also attributed tom.
Thus the simple renormalization scheme does not make any
sense. In order to overcome this difficulty, we put an ansatz
that the particle momentum, defined in a similar way as in
the electromagnetism but without taking the limit of the
small particle radius, be proportional to the four-velocity of
the particle, which will not be justified within this frame-
work. Under this assumption, we obtain an equation of mo-
tion in the covariant form with respect to the background
spacetime which is analogous to that obtained in the case of
electromagnetic case.

In order to develop a more rigorous formalism, we con-
sider an extension of the matched asymptotic expansion that
has been already developed by many authors~e.g., D’Eath
@12# and Thorne and Hartle@13#!. We assume that the inter-
nal metric which describes the geometry around the particle
is represented by a Schwarzschild black hole of small mass
in the lowest order approximation. As the particle moves in
the curved background, it suffers from the tidal distortion.
This effect is taken into account by the homogeneous linear
perturbations of the black hole. Since we knowl 50 and
1 homogeneous perturbations of the black hole are purely
indebted to gauge degrees of freedom as long as both the
mass and angular momentum of the black hole stay constant,
we set them to vanish. We also assume that the external

metric is approximated by the linear perturbations on the
background spacetime generated by a pointlike particle.
Then we consider a limited class of coordinate transforma-
tion which keeps the meaning of the center of the particle
unambiguous and match the external metric with the internal
one in the matching region where the both approximations
are valid. Then we find that for an arbitrary orbit the consis-
tent coordinate transformation does not exist, and this con-
sistency condition determines the equation of motion, which
is no different from that obtained in the first approach.

This paper is organized as follows. In Sec. II we explain
the covariant expansion method of the tensor Green’s func-
tion, which becomes important in both approaches discussed
in the succeeding two sections. In Sec. III we discuss the first
approach, i.e., an extension of the DeWitt-Brehme electro-
magnetic radiation reaction equation of motion to the gravi-
tational counter part. Section IV is devoted to the second
approach, i.e., the matched asymptotic expansion method to
derive the equation of motion of a small black hole. We find
both approaches give the same equation of motion. In Sec. V
we discuss implications of the result. Section VI is devoted
to the conclusion.

We suppose the reader is familiar with the concept of
‘‘bitensors’’ and some useful tools developed by DB. Fol-
lowing DB, we assign the indicesa,b,g,d,e,z,h for the
point on the particle trajectory,z(t), and the indices
m,n,j,r,s for the field point,x. For the reader’s conve-
nience, the notation and basic formulas are summarized in
Appendix A.

II. METRIC PERTURBATION

In this section, for the later use, we calculate the metric
perturbation,dgmn , induced by a pointlike particle on the
background metric,gmn . The background metric is assumed
to satisfy the vacuum Einstein equations. Thus, in the follow-
ing calculations, we use the fact that the background Ricci
tensor vanishes. As we assume that the particle mass,m, is
small compared with the background curvature scale,L, we
approximatedgmn by the linear perturbation induced by a
pointlike particle,hmn , in the whole spacetime region except
for the vicinity of the world line of the particle. We call the
region in which this approximation is valid as the external
zone. On the other hand, in the vicinity of the world line of
the particle, the self-gravity of the particle dominates and the
metric cannot be described by the linear perturbation induced
by a pointlike particle. We call this region the internal zone.
In this section we concentrate on the external zone. The cal-
culation is performed in an analogous manner to the case of
the scalar and vector perturbations developed by DB.

Here we consider the linearized Einstein equations. We
introduce the trace-reversed metric perturbation

cmn~x!5hmn~x!2
1

2
gmn~x!h~x!, ~2.1!

and set the harmonic gauge condition

cmn
;n~x!50, ~2.2!

whereh(x) and c(x) are the trace ofhmn(x) and that of
cmn(x), respectively, and the semicolon means the covariant
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derivative with respect to the background metric. In this
gauge, the linearized Einstein equations become

2
1

2
cmn;j

j~x!1Rm
j
n

r~x!cjr~x!58pGTmn~x!1O~h2!,

~2.3!

whereO(h2) stands for terms quadratic or of higher powers
in the metric perturbation. Thus we define the tensor Green’s
functionGmnab(x,z) which satisfies

Gmnab;j
;j~x,z!22Rm

j
n

r~x!Gjrab~x,z!

522ḡa~m~x,z!ḡn)b~x,z!
d~4!~z2x!

A2g
, ~2.4!

whereḡma(x,z) is the bivector of geodetic parallel displace-
ment defined in Eq.~A7! of Appendix A andg is the deter-
minant of the metricgmn(x).

First we consider the elementary solutionG
*
mnab(x,z)

which satisfies Eq.~2.4! except at thes(x,z)→0 limit and
takes the Hadamard form

G
*
mnab~x,z!5

1

~2p!2 S u
mnab~x,z!

s~x,z!
1vmnab~x,z!

3 lnus~x,z!u1wmnab~x,z! D , ~2.5!

where s(x,z) is a half of the square of geodetic interval
which is defined in Eq.~1.10! of DB. Its property is summa-
rized in Eq. ~A6! of Appendix A. The functions
umnab(x,z), vmnab(x,z), and wmnab(x,z) are bitensors
which are regular in thes(x,z)→0 limit and umnab(x,z)
satisfies the normalization condition

lim
x→z

umnab~x,z!5 lim
x→z

2ḡa~m~x,z!ḡn)b~x,z!. ~2.6!

If we put the form~2.5! into the left-hand side of Eq.~2.4!,
the terms can be classified into three parts. One is the terms
which contain the factor 1/s2(x,z) manifestly and another is
the terms which contain lnus(x,z)u. The remaining terms have
no singular behavior at thes(x,z)→0 limit. Since the form
~2.5! is redundant, we can set these three sets to vanish sepa-
rately:

S 2umnab;j~x,z!2
D ;j~x,z!

D~x,z!
umnab~x,z! Ds ;j~x,z!50, ~2.7!

vmnab;j
;j~x,z!22Rm

j
n

r~x!vjrab~x,z!50, ~2.8!

2vmnab~x,z!1S 2vmnab;j~x,z!2
D ;j~x,z!

D~x,z!
vmnab~x,z! Ds ;j~x,z!1umnab;j

;j~x,z!22Rm
j
n

r~x!ujrab~x,z!

1@wmnab;j
;j~x,z!22Rm

j
n

r~x!wjrab~x,z!#s~x,z!50, ~2.9!

where we used the biscalarD(x,z) defined in Eq.~A8! in
Appendix A. Equation~2.7! is solved with the normalization
~2.6! as

umnab~x,z!52ḡa~m~x,z!ḡn)b~x,z!AD~x,z!. ~2.10!

The functionsvmnab(x,z) andwmnab(x,z) are to be deter-
mined by solving Eqs.~2.8! and ~2.9!. The function
wmnab(x,z) is not needed but the functionvmnab(x,z) plays
an important role in the following discussion. Although it is
difficult to find the solution ofvmnab(x,z) in an arbitrary
background spacetime, its explicit form is not required for
the succeeding discussions. However it is important to note
that vmnab(x,z) is uniquely determined. The reason is as
follows. From Eq.~2.8! one finds it satisfies a hyperbolic
equation. Hence the problem is if its Cauchy data are unique
or not. First we note the coincidence limit of Eq.~2.9!, which
gives

lim
x→z

vmnab~x,z!5 lim
x→z

2ḡa
~j~z,x!ḡb

r)~z,x!Rmjnr~x!.

~2.11!

Then taking the null limits(x,z)→0 of Eq.~2.9!, we obtain
the first-order differential equation ofvmnab(x,z) which can

be solved along the null geodesic. Thus this equation with
the boundary condition ~2.11! uniquely determines
vmnab(x,z) on the light cone emanating fromz. Therefore
the hyperbolic equation~2.8! has a unique solution. We also
mention thatvmnab(x,z) is divergence-free:

vmnab
;n~x,z!50. ~2.12!

To see this we note the harmonic gauge condition on the
Green’s function requires

lim
s→0

vmnab
;n~x,z!50. ~2.13!

We also see that the equation forvmnab
;n(x,z) follows from

Eq. ~2.8!:

@vmnab
;n~x,z!# ;j;j50, ~2.14!

where we have used the factRmjnr
;r50, which is proved by

contracting the Bianchi identities for the vacuum case. Thus
we conclude that Eq.~2.12! holds everywhere.

The Feynman propagatorGF
mnab(x,z) can be derived

from the elementary solutionG
*
mnab(x,z) by thei e prescrip-

tion:
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GF
mnab~x,z!5

1

~2p!2 S u
mnab~x,z!

s~x,z!1 i e
1vmnab~x,z!

3 ln@s~x,z!1 i e#1wmnab~x,z! D . ~2.15!

The imaginary part of the Feynman propagatorGF
mnab(x,z)

gives the symmetric Green’s functionḠmnab(x,z), from
which we can obtain the retarded Green’s function
Gret

mnab(x,z), and the advanced Green functionGadv
mnab(x,z)

as

Ḡmnab~x,z!52
1

2
Im@GF

mnab~x,z!#

5
1

8p
@umnab~x,z!d„s~x,z!…

2vmnab~x,z!u„2s~x,z!…#, ~2.16!

Gret
mnab~x,z!52u@S~x!,z#Ḡmnab~x,z!, ~2.17!

Gadv
mnab~x,z!52u@z,S~x!#Ḡmnab~x,z!, ~2.18!

whereS(x) is an arbitrary spacelike hypersurface containing
x, andu@S(x),z#512u@z,S(x)# is equal to 1 whenz lies
in the past ofS(x) and vanishes whenz lies in the future.

Now, using the above-obtained Green’s functions, we
compute the trace-reversed metric perturbationcmn(x) in-
duced by a pointlike particle whose energy momentum ten-
sor is given by

Tmn~x!5mE dtvm~x,t!vn~x,t!
d~4!

„x2z~t!…

A2g
,

~2.19!

wherevm(x,t)5ḡm
a„x,z(t)…ż

a(t) andża(t)5dza/dt. It is
also assumed that the particle massm is small compared
with the background curvature scaleL. Throughout this pa-
per, we take the unit in whichL becomes of order 1. There
appear relations whose dimensionality looks wrong but in
those casesL is omitted for notational simplicity.

At this point, we must comment on the reason why we
consider the pointlike particle. Even in the linear perturba-
tion, in order to generate a general gravitational field in the
external zone, we need to consider a source with arbitrary
higher multipole moments. However, in the following dis-
cussion, we are going to discuss the situation in which those
higher moments are negligible. Thus we consider this special
case here. Later it will become clarified in what situation this
assumption becomes consistent.

Now, for the pointlike particle, the trace-reversed metric
perturbationcmn(x) with the retarded or advanced boundary
condition is computed as

c ret/adv
mn ~x!562GmS F 1

ṡ„x,z~t!…
umn

ab„x,z~t!…ża~t!żb~t!G
t5tret/adv~x!

2E
7`

tret/adv~x!

dtvmn
ab„x,z~t!…ża~t!żb~t!D , ~2.20!

wheret ret/adv(x) is the retarded or advanced time of the par-
ticle and is a scalar function which is determined by

s„x,z~t ret/adv!…50, ~2.21!

u„S~x!,z~t ret!…5u„z~tadv!,S~x!…51. ~2.22!

Throughout this paper, we take the convention that the upper
sign is assigned for the retarded boundary condition and the
lower sign is for the advanced one.

Since the expression~2.20! containing the retarded or ad-
vanced timet ret/adv(x) is not convenient for the computations
in the succeeding sections, we rewrite it by introducing a
new parametrization of the field pointx. We foliate the
spacetime with spacelike three-surfaces perpendicular to the
particle trajectory. More strictly, the three-surfaces are de-
fined as a one-parameter family oft by the relation,
s ;a„x,z(t)…ż

a(t)50. We denote the value oft of the three-
surface containing the pointx by tx . That is

@s ;a„x,z~t!…ża~t!#t5tx
50. ~2.23!

To distinguish the spatial points on the same three-surface,
we uses ;a„x,z(tx)… and denote the distance betweenx and
z(tx) by

e~x!:5A2s„x,z~tx!…. ~2.24!

As we are interested in the region where the linear perturba-
tion is valid,e(x) must be much greater thanGm. However,
concentrating on the region close to the particle even in the
external zone, we can takee(x) is smaller than the back-
ground curvature scaleL, becauseGm is assumed to be
much smaller thanL. Thus we can consider the expansion
assuming thate(x) is small.

In the following calculation there appear higher deriva-

tives of ż, such asz̈ and z
...
where a dot means the covariant

derivative along the trajectory of the particle. Since we are
considering the case in which the deviation of particle trajec-
tory from the geodesic is a small correction due to the radia-
tion reaction, we suppose that those higher derivatives are at
most ofO„e(x)…. Thus we define the inverse of the reaction

time scalet r
21
„,e(x)… as the scale ofz̈, z

...
and so on. We

will see later thatt r
21'Gm and this assumption is found to

be consistent.
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We first consider the time retardation or advancement
d ret/adv(x):

d ret/adv~x!:5t ret/adv~x!2tx . ~2.25!

The time retardation or advancement,d ret/adv(x) is expanded
with respect toe(x):

d ret/adv~x!

57e~x!k21~x!S 17
1

6
e~x!k23~x! z

...
a~tx!s ;a„x,z~tx!…

2
1

24
e2~x!k24~x!z̈2~tx!D 1O~e4!, ~2.26!

as given in Eq. ~4.40! of DB,1 where k2(x)
52@s̈„x,z(t)…#t5tx

. Then the expression for the trace-
reversed metric perturbation~2.20! becomes

cmn~x!562GmḡmaḡnbS 6
2

e
k21żażb24ż~az̈b)

22żgs ;dżeRgde
~ażb)62eRa

g
b

dż
gżd

2E
7`

tx
dt8vab

a8b8„z~tx!,z~t8!…ża8~t8!żb8~t8!1s;g

3E
7`

tx
dt8vab

a8b8
;g
„z~tx!,z~t8!…ża8~t8!żb8~t8! D

1O~e2,t r
21e!. ~2.27!

In the above and in what follows, we omit the suffix ret/adv
to cmn for notational simplicity. The detailed derivation of
the above formula is provided in Appendix A. Hereafter we
also suppress the argumentsx, z(tx), and tx unless there
arises ambiguity.

The covariant derivative of the metric perturbation also
becomes necessary in Sec. III. For this purpose, we calculate

the covariant derivatives of the quantities appearing in Eq.
~2.27! such astx , e(x) and so on. With the aid of the rela-
tions given in Appendix A, the derivative oftx can be cal-
culated by taking the derivative of the both sides of the iden-
tity ~2.23! as

tx;m5k22ḡmaS 2 ża1
1

6
Ra

bgds ;bżgs ;dD1O~e3!.

~2.28!

One must be careful that@ f „x,z(tx)…# ;mÞ@ f „x,z(t)…;m#t5tx
since tx is x dependent through Eq.~2.23!. By using Eq.
~2.28! and the relations given in Appendix A, we obtain

e ;m~x!52
1

e
ḡmas ;a, ~2.29!

@s ;a
„x,z~tx!…# ;m

5ḡmbF2gab2k22żażb1
1

6
~gaggbe22gagżbże

1 żagbgże!Rgdezs
;ds ;zG1O~e2!, ~2.30!

@ ḡma
„x,z~tx!…# ;n5

1

2
ḡm

bḡng~ggd2 żgżd!Rab
des

;e1O~e2!,

~2.31!

k ;n~x!5
1

2k
@2s̈„x,z~tx!…# ;n

5
1

2k
ḡnaS z̈a1 żas ;b z

...
b1

2

3
Ra

bgdż
bs ;gżdD 1O~e3!.

~2.32!

Then using these results and Eq.~2.11!, after some compu-
tations, we obtain the first and second derivatives of the met-
ric perturbationcmn(x):

cmn;j~x!52GmḡmaḡnbḡjgS 2e3k21żażbs ;g2
1

e
żażbz̈g2

4

e
ż~az̈b)żg62ż~aRb)

d
g

eż
dże62Ra

d
b

eż
gżdże

2
2

e
ż~aRb)

d
g

eż
ds ;e2

2

e
Ra

d
b

es
;gżdże2

2

e
ż~aRb)

dezż
gżds ;eżz2

2

3e
żażbRg

dez ż
ds ;eżz

7E
7`

tx
dt8vab

a8b8
;g
„z~tx!,z~t8!…ża8~t8!żb8~t8! D 1O~e1,t r

21!, ~2.33!

1In DB, s ;a„x,z(tx)… is replaced by2e(x)nia(tx)V i .
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cmn;jr~x!52GmḡmaḡnbḡjgḡrdF2
2

e3
k21żażbS ggd1k22żgżd2

3

e2
s ;gs ;dD 2

2

e3
żażbz̈~gs ;d)2

8

e3
ż~az̈b)ż~gs ;d)

1
2

e
ż~aRb)

e
gdże1

2

3e
żażbRg

e
d

zż
eżz1

4

e
ż~aRb)

e
~g

zż
d)żeżz1

2

e
Ra

e
b

zS ggd1 żgżd2
1

e2
s ;gs ;dD żeżz

2
4

e3
ż~aRb)

e
~g

zs
;d)żes ;z2

2

3e3
żażbRg

e
d

zs
;es ;z2

4

e3
ż~aRb)

ezhż
~gs ;d)żes ;zżh2

4

3e3
żażbs ;~gRd)

ezhż
es ;zżh

1
2

3e3
żażbż~gRd)

ezhs ;eżzs ;hG1OS e0,
t r

21

e D . ~2.34!

We note that among the terms on the right-hand side of the
above expressions, the terms involving the Riemann tensor
will not contribute to the equation of motion, as will be
shown later.

Using the above expressions, one can directly check that
cmn;j

j22Rm
j
n

rcjr50 is satisfied foreÞ0 to the order in
which we are concerned. To the contrary, the harmonic
gauge condition is not automatically satisfied. We find

cmn
;n5

8Gm

e
ḡm

az̈
a. ~2.35!

Generally speaking, thus obtained metric perturbation satis-
fies the harmonic gauge condition only when the source
energy-momentum tensor satisfies the divergence free condi-
tion, which, in the present pointlike particle case, leads to the
conclusion that the source trajectory must be a geodesic.
This point is totally different from the electromagnetic coun-
terpart, in which the Lorentz gauge condition is related to the
electric charge conservation. However this does not mean the
breakdown of our formalism. Sincez̈ is assumed to be a
higher order quantity, the missing of the harmonic condition
is responsible for the neglection of the higher order pertur-
bations.

III. DEWITT AND BREHME’S APPROACH

In this section, we develop our discussion in an analogous
way to the electromagnetic counterpart given by DeWitt and
Brehme. First we derive the ‘‘conserved’’ rank-two symmet-
ric tensor. Integrating its divergence over the interior of the
world tube surrounding the particle, we derive the equation
of motion including the effect of the gravitational radiation
reaction.

A. Conservation law

In the formalism developed by DeWitt and Brehme, cru-
cially important was the conserved energy-momentum ten-
sor, which consists of the matter and field contributions. In
the case of gravity, the matter energy-momentum tensor is
divergence free by itself in the sense of the covariant deriva-
tive with respect to the total metric,g̃mn(x). Thus the situa-
tion looks different. However, if we choose the background

spacetimegmn(x), we can construct a quantity analogous to
the conserved energy-momentum tensor in the electromag-
netic case.

We divide the metricg̃mn(x) into the background and the
deviation from it,dgmn(x), as

g̃mn~x!5gmn~x!1dgmn~x!. ~3.1!

The background metric is assumed to be a solution of the
vacuum Einstein equations. We write the Einstein equations
with matter source, whose degrees of freedom are repre-
sented byf symbolically, as

Gmn@g1dg#58pGTmn@g1dg,f#. ~3.2!

We expandGmn@g1dg# andTmn@g1dg,f# with respect to
dgmn as

Gmn@g1dg#5G~0!mn1G~1!mn@dg#1G~21 !mn@dg#,
~3.3!

Tmn@g1dg,f#5T~0!mn@f#1T~11 !mn@dg,f#, ~3.4!

where the superscript (n) represents the terms of thenth
order in the metric perturbationdg and the superscript
(n1) represents thenth or higher order terms. Then the
Einstein equations are rewritten as

Tmn@dg,f#:5T~0!mn@f#1T~11 !mn@dg,f#

2
1

8pG
G~21 !mn@dg#5

1

8pG
G~1!mn@dg#.

~3.5!

From theO(dg) terms of the contracted Bianchi identities,
we findG(1)mn

;n@dg#50 when the background is a solution
of the vacuum Einstein equations. Here we note again that
the semicolon means the covariant derivative with respect to
the background metric. Thus we obtain the covariant conser-
vation law

Tmn
;n@dg,f#50, ~3.6!

which is what we needed.
One can see that if the mass of the particle is small

enough and so the metric perturbationdgmn(x) is negligibly
small, the conserved tensorTmn@dg,f# reduces to
T(0)mn@f# which is independent ofdg, which implies
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T(0)mn
;n@f#50. Thus, in the lowest order of the metric per-

turbation, one observes that the point particle moves along
the background geodesic.

We shall now specify our consideration to the case in
which dgmn(x) is so small that we can replacedgmn by the
linear perturbationhmn induced byT

(0)mn@f#. Then the con-
served tensorTmn can be approximated as

Tmn@dg,f#'Tmn@h,f#

5T~0!mn@f#1T~1!mn@h,f#2
1

8pG
G~2!mn@h#.

~3.7!

The first and second terms on the right-hand side of the equa-
tion vanish outside the matter distribution, while the third
term bilinear inh does not vanish anywhere. Therefore it
may be interpreted as the gravitational contribution to the
energy-momentum tensor. The third term is expressed in
terms of the trace-reversed metric perturbationcmn as

G~2!mn@h#5 1
2cG~1!mn@h#2 1

2 $ 1
2 ~cmj;r1cmr;j2cjr;m!

3~cn
j;r1cn

r;j2cjr
;n!1cmj

;rjc
nr

1cnj
;rjc

mr2cmn
;rjc

rj2 1
4c ;mc ;n1 1

4g
mn

3~2cjr;scjr;s12cjr;scrs;j1 1
2c ;jc ;j!%.

~3.8!

The derivation of the above formula is given in Appendix B.

B. World tube around the particle

Following DB, we introduce a further parametrization
which distinguishes the points on the same three-surface pa-
rametrized byt. It is defined by an implicit relation between
x and the four parameters, i.e.,tx , e, andV i ( i51,2,3):

s ;a„x,z~tx!…52ena i~tx!V
i , ~3.9!

where( i51
3 V iV i51. Herena i(tx) is a set of orthonormal

basis on the three-hypersurface oftx atz(tx). It is defined by

na i~t!ża~t!50, ~3.10!

gab
„z~t!…na i~t!nb j~t!5d i j , ~3.11!

at sometx and Fermi-Walker transported along the trajec-
tory. In the following, we also useVa:5na

iV
i . The world

tube of the particle is defined in the same manner as in DB.
We consider the four-volume of the interior of the world
tube between two three-surfaces oft1 andt2:

Vtube5$x5x~t,e,V i !;t1<t<t2 ,0<e<e tube%. ~3.12!

We define the surfaces of this volume:

S tube5$x5x~t,e tube,V
i !;t1<t<t2%, ~3.13!

Scap~t!5$x5x~t,e,V i !;0<e<e tube%. ~3.14!

The volume measure is given bydV5A2g(x)d4x. The in-
tegral measures onS tube andScap(t) have been already de-
rived in DB:

dSm~x!uS tube
5@e2k2~x!ḡma„x,z~t!…Va1O~e5!#uS tube

3d2Vdt, ~3.15!

dSm~x!uScap~t!

5
1

D„x,z~t!…
e2s ;ma„x,z~t!…ża~t!uScap~t!ded2V

~3.16!

@see Eqs.~4.35! and~4.45! of DB with Rab(z)50. See also
Eq. ~1.51! of DB. Note that our measure is with respect to
the vector, while DB defines it with respect to the vector
density.#

Now integrating the null quantityTmn
;n(x) overVtube and

using the integration by part, we obtain

05E
Vtube

dVḡā
b„z~ t̄ !,z~tx!…ḡ

b
m„z~tx!,x…Tmn

;n~x!

5E
S tube1Scap~t2!2Scap~t1!

dSn~x!ḡā
b„z~ t̄ !,z~tx!…

3ḡb
m„z~tx!,x…Tmn~x!2E

Vtube

dV@ ḡā
b„z~ t̄ !,z~tx!…

3ḡb
m„z~tx!,x…# ;nTmn~x!, ~3.17!

where t̄5(t11t2)/2. The reason why
ḡā

b„z( t̄),z(tx)…ḡ
b

m„z(tx),x… is multiplied is to make the
integrand to be a vector atz( t̄) and to behave as a scalar
with respect tox, so that the integration is done in the cova-
riant manner.

C. Gravitational radiation damping

To evaluate the second and third lines of Eq.~3.17!, we
have to put an assumption on the matter configuration. We
take the tube radiuse tube so that the tube is in the external
zone. Therefore, the metric perturbation on the tube surface
S tube can be approximated by that induced by a pointlike
particle given in Eq.~2.20!. Noting that no contribution of
matter toTmn@h,f# exists there,Tmn@h,f# can be computed
as
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Tmn@h,f#5
Gm2

4p
ḡm

a„x,z~tx!…ḡ
n

b„x,z~tx!…H 1

e4
S 24żażb1VaVb2

1

2
gabD 1

1

e3
S 24żażbz̈gVg27z̈~aVb)1

7

2
gabz̈gVgD

2
1

e2
S 8ż~aVb)

gdż
~gVd)24Vgd

~ażb)żgVd12gabVgdeż
gVdże24V~aVb)

gdż
gżd12Vgd

~aVb)żgżd

2gabVgdeż
gżdVe1V~aVb)2

1

2
gabVgVgD J 1TRmn1OS z..., t r21

e2
,
1

e
D , ~3.18!

wherez,ż, z̈ are evaluated att5tx , and we have defined

Vmnj~x!:57E
7`

tx
dt8vmna8b8;j„x,z~t8!…ża8~t8!żb8~t8!,

~3.19!

Vm~x!:57E
7`

tx
dt8vn

na8b8;m„x,z~t8!…ża8~t8!żb8~t8!.

~3.20!

Here we have denoted the terms which contain the Riemann
tensor byTRmn , which is at most ofO(1/e2). It is not neces-
sary to write them down explicitly because they do not affect
the equation of motion, as will be shown later.

Noting that the terms containing odd number ofV ’s in
the integrand vanish whend2V integration is done, and that
*dV2VaVb5(4p/3)(gab1 żażb), the integration over the
surface of the tubeS tube for small dt:5t22t1 is evaluated
as

E
S tube

dSn~x!ḡā
b„z~ t̄ !,z~tx!…ḡ

b
m„z~tx!,x…Tmn@h#~x!

5Gm2H S 2
7

2e tube
z̈ā2

2

3
żāVb̄ ḡ d̄ ż

b̄ żḡ żd̄

2
2

3
żāVb̄ ż

b̄1~Vā
b̄ ḡ1Vā

ḡ b̄2Vb̄ ḡ
ā !żb̄ żḡ

2
1

2
Vā D ~ t̄ !1O~t r

21 ,e tube!J dt1O~dt2!. ~3.21!

The surface integration over the capScap requires the
knowledge of the metric in the internal zone. We assume that
the matter configuration and the metric is not perturbed much
and is kept spherically symmetric inside the radius
e0(@Gm) to sufficient accuracy. In other words, locally the
particle behaves as if it were an isolated object. Mathemati-
cally, we assume that the cap integration fore<e0, which in
an unrigorous manner defines the particle momentum
pe0

a (t), is proportional toża(t):

E
Scap~t!,e,e0

dSn~x!ḡā
b„z~ t̄ !,z~tx!…ḡ

b
m„z~tx!,x…Tmn@h#~x!

5m~e0 ,t!ḡā
b„z~ t̄ !,z~t!…żb~t!1Gm2O~m,t r

21 ,e tube!.

~3.22!

We call the matter which satisfies this assumption as an ideal
pointlike particle.

Outside the radiuse0, the metric is approximated by that
induced by a pointlike particle, Eq.~2.20!. Then the cap
integration fore0<e<e tube is evaluated by using Eq.~3.18!
to give

E
Scap~t!,e.e0

dSn~x!ḡā
b„z~ t̄ !,z~tx!…ḡ

b
m„z~tx!,x…Tmn@h#~x!

52
7

2
Gm2F S 1e0 2

1

e tube
D ḡā

b„z~ t̄ !,z~t!…żb~t!

1O~t r
21 ,e tube!G . ~3.23!

Thus setting

m~e0 ,t!5m~t!1
7

2

Gm2

e0
, ~3.24!

we obtain

E
Scap~t2!2Scap~t1!

dSn~x!ḡā
b„z~ t̄ !,z~tx!…

3ḡb
m„z~tx!,x…Tmn@h#~x!

5F Hm~ t̄ !1
7

2

Gm2

e tube
J z̈ā~ t̄ !1ṁ~ t̄ !żā~ t̄ !Gdt1O~dt2!.

~3.25!

Finally, we consider the remaining volume integral
*VtubedV@ ḡā

bḡ
b

m# ;nTmn. Since @ ḡā
bḡ

a
m# ;n'eV, again we

expect that the integration fore,e0 vanishes for the ideal
point-like particle to sufficient accuracy. The integration for
e.e0 is at most ofO(Gm

2e0dt). Thus we may neglect the
contribution from the volume integral.

Putting all results together, we obtain the equation of mo-
tion
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m~t!z̈a1ṁ~t!ża

5Gm2H 23żaVbgdż
bżgżd1

2

3
żaVbż

b

2~Va
bg1Va

gb2Vbg
a!żbżg

1
1

2
Va1O~e tube,t r

21!J . ~3.26!

The leading contributions from the terms proportional to the
Riemann tensor which we have neglected are at most of the
zeroth order ine tube ~or e0). As they should be vectors, they
must take the formGm2Rm

nrsż
nżrżs orGm2Rm

nrsg
nrżs by

means of the dimensional argument. Thus all the leading
terms disappear and the remaining terms become higher or-
der in e tube ~or e0).

Now we consider the normalization condition
gab„z(t)…ż

a(t) z̈b(t)50. This gives

ṁ~t!5Gm2H 53Vbgdż
bżgżd1

1

6
Vbż

bJ , ~3.27!

and it can be integrated as

m~t!5mH 11S 56żbżg1
1

12
gbgDc~v !bg„z~t!…J , ~3.28!

where we have defined

c~v !mn~x!

:572GmE
7`

tx
dt8vmna8b8„x,z~t8!…ża8~t8!żb8~t8!,

~3.29!

which is the part of the trace-reversed metric perturbation
due to thevmnab(x,z) term ~i.e., the so-called tail term! in
the Green’s function@see Eq.~2.20!#. Sincec (v)bg is ex-
pected to be ofO(Gm), Eq. ~3.28! tells us that we can con-
sistently replacem(t) bym in Eq. ~3.26! except for the term,
ṁ(t) ża.

Substituting Eq.~3.27! into Eq. ~3.26!, we finally obtain

mz̈a~t!52mS 12żażbżgżd1gab~z!żgżd2
1

2
gad~z!żbżg

2
1

4
żagbg~z!żd2

1

4
gad~z!gbg~z! D ~t!

3c~v !bg;d„z~t!…, ~3.30!

where we have also used the relationVabg„z(t)…
5c (v)ab;g„z(t)… which follows from Eq.~2.11!. If we im-
pose the physical boundary condition with no incoming
waves from the past null infinity, we should take the upper
sign ~i.e., the retarded boundary condition! of Eq. ~3.29! for
c (v)bg . The meaning of this equation is discussed in Sec. V.

IV. MATCHED ASYMPTOTIC EXPANSION

In this section we give an alternative derivation of the
equation of motion obtained in the previous section in a
more rigorous way by using the matched asymptotic expan-
sion technique.

A. Matching scheme

To begin with, we state the general concept of the asymp-
totic matching. We first prepare the metrics in both internal
and external zones by using different schemes. In the internal
zone, we expect that the metric can be described by using the
black hole perturbation. Namely, we assume that the particle
is represented by a Schwarzschild black hole in the lowest
order of approximation. In the present case, the perturbation
is caused by the tidal effects of the curvature of the space-
time in which the particle travels. We call this construction
of the metric the internal scheme. In order to make this
scheme valid, the linear extension of the internal zone
around the particle must be much smaller than the back-
ground curvature scale. We use the coordinate
$Xa%5$T,Xi% (a50,1,2,3;i51,2,3) for the internal scheme
and uXu(:5AXiXi) is assumed to represent the physical dis-
tance scale~in this section, we adopt the Minkowskian sum-
mation rule ona,b, . . . , and theKronecker summation rule
on i , j , . . . over the repeated indices!. In the external zone,
as discussed in the previous sections, we expect that the met-
ric is represented by the perturbations induced by a particle
on a given background spacetime. We call this construction
of the metric the external scheme. We require that the met-
rics obtained in both schemes be matched in the matching
region of both zones, by considering the coordinate transfor-
mation between the internal and external zones. Safely, we
may assume the existence of the matching region as long as
Gm!L;1. we set the matching radius atuXu;(GmL)1/2 by
using the spatial coordinates of the internal scheme,Xi .
Then, writing down the metric in the internal scheme, we
have two independent small parametersuXu/L andGm/uXu in
the matching region. The power expansion with respect to
these two small parameters allows us to consider the match-
ing order by order.

First we consider the expansion of the internal scheme.
Recalling that the perturbation in the internal zone is induced
by the external curvature which is characterized by the
lengthL, the metric can be expanded in powers ofuXu/L as

g̃ab~X!5 ~0!Hab~X!1
1

L
~1!Hab~X!1

1

L2
~2!Hab~X!1•••,

~4.1!

where (0)Hab(X) represents the unperturbed black hole met-
ric. We expect that(1)Hab(X) will be given by the standard
linear perturbation of the black hole. Later, we find that the
matching condition requires that(1)Hab(X) should vanish,
which is consistent with the notion that the spacetime curva-
ture is ofO(1/L2). Thus the standard black hole perturbation
theory applies up to(2)Hab(X). As is known well, the linear
perturbations of the Schwarzschild black hole@14# can be
decomposed by using the tensor harmonics, which are clas-
sified by the total angular momentum,J. The monopole
mode (J50) corresponds to the mass perturbation. Thus we
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may set this mode to vanish since it is natural to suppose that
the change of mass due to the radiation reaction is small. The
dipole modes (J51) are related to the translation and rota-
tion. The translation modes are purely gauge and thus we set
them to vanish to fix the center of the black hole. As we are
considering a nonrotating black hole, we also set the rota-
tional modes to vanish. In general, the higher modes contain
gauge degrees of freedom as well as the physical ones. How-
ever, for these higher modes, we do not give any principle to
fix the gauge for the moment. Further we expand the metric
with respect toGm/uXu as

~0!Hab~X!5hab1Gm~1!
~0!Hab~X!1~Gm!2~2!

~0!Hab~X!1•••,

1

L
~1!Hab~X!5

1

L ~0!
~1!Hab~X!1

Gm

L ~1!
~1!Hab~X!

1
~Gm!2

L ~2!
~1!Hab~X!1•••,

1

L2
~2!Hab~X!5

1

L2~0!
~2!Hab~X!1

Gm

L2 ~1!
~2!Hab~X!

1
~Gm!2

L2 ~2!
~2!Hab~X!1•••. ~4.2!

Note that, from the definitions of the expansion parameters,
the component of the metric behaves as

~n!
~m!Hab;uXu~m2n!. ~4.3!

In order to write down the external metric in terms of the
internal coordinates, we consider the coordinate transforma-
tion from x to (T,Xi) given in the form

s ;a„x,z~T!…52Fa~T,X!. ~4.4!

We assumeXi50 corresponds to the center of the particle,
xa5za(T), henceFa50 at Xi50. We suppose that the
right-hand side of Eq.~4.4! can be expanded in positive pow-
ers ofXi as

Fa~T,X!5 f a i~T!Xi1
1

2
f a i j ~T!XiXj

1
1

3!
f a i jk~T!XiXjXk1•••. ~4.5!

Although it is possible that more complicated terms such as
XiXj /uXu may appear, we simply ignore these kinds of terms.
We shall find it is consistent within the order of the approxi-
mation to which we are going to develop our consideration
below. Heref a i1••• i n

(T) is totally symmetric fori 1••• i n and

is at most ofO(L2(n21)). Using Eqs.~A9! and ~A11! in
Appendix A, the total derivative of Eq.~4.4! gives the im-
portant relation

ḡa
m„z~T!,x…dxm5S dza

dT
~T!1

Df a
i

dT
~T!Xi1

1

2

Df a
i j

dT
~T!XiXj1

1

2
Ra

bgd„z~T!…f b
i~T!

dzg

dT
~T! f d

j~T!XiXj1O~ uXu3! DdT
1S f a

i1 f a
i j ~T!Xj1

1

2
f a

i jk~T!XjXk1
1

6
Ra

bgd„z~T!…f b
j~T! f g

i~T! f d
k~T!XjXk1O~ uXu3! DdXi . ~4.6!

Then, with the aid of Eqs.~4.4! and~4.6!, the external metric
g̃mn(x) can be transformed into that written in terms of the
internal coordinates by the relation

g̃ab~X!dXadXb5g̃mn~x!dxmdxn. ~4.7!

Generally, as the external metric can be expanded by
Gm/uXu, we write it as

g̃ab~X!5gab~X!1Gm~1!hab~X!1~Gm!2~2!hab~X!1•••.
~4.8!

ThenGm(1)hab(X) can be recognized as the linear perturba-
tion on the backgroundgab(X). Further we expand it with
respect touXu/L as

gab~X!5 ~0!
~0!hab~X!1

1

L ~0!
~1!hab~X!1

1

L2~0!
~2!hab~X!1•••,

Gm~1!hab~X!5Gm~1!
~0!hab~X!1

Gm

L ~1!
~1!hab~X!

1
Gm

L2 ~1!
~2!hab~X!1•••,

~Gm!2~2!hab~X!5~Gm!2~2!
~0!hab~X!1

~Gm!2

L ~2!
~1!hab~X!

1
~Gm!2

L2 ~2!
~2!hab~X!1•••. ~4.9!

As before,

~n!
~m!hab;uXu~m2n!. ~4.10!

For brevity, we call(n)
(m)hab or (n)

(m)Hab the (n
m) component

and the matching condition for them as the (n
m) matching. In

the matching region@ uXu;(GmL)1/2#, the (n
m) component is

of O„(Gm/L)(m1n)/2
…. The matching condition requires that

all the corresponding terms in Eqs.~4.2! and~4.9! should be
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identical. Then what we have to do is to equate the terms of
the same power inuXu to desired accuracy. Thus the condi-
tion for the (n

m) matching is

(
m82n85m2n

m8<m

~Gm!n8

Lm8 ~n8!

~m8!hab

5 (
m82n85m2n

m8<m

~Gm!n8

Lm8 ~n8!

~m8!Hab1OS ~Gm!n11

Lm11 uXu~m2n!D .
~4.11!

B. Geodesic:„0
0
… and „0

1
… matching

We begin with the (0
0) and (0

1) matchings, which are of
O„(Gm/L)0… and ofO„(Gm/L)1/2… in the matching region,
respectively. First we consider the external scheme. In these
matchings the external metric is the background itself. Here,
the necessary order of expansion inuXu is O(uXu). Since
gmn(x)dx

mdxn5gab(z)ḡ
a

m(z,x)ḡ
b

n(z,x)dx
mdxn @see Eq.

~1.33! of DB#, we get

gmn~x!dxmdxn

5F S dzdTD
2

~T!12
dza

dT
~T!

Df a i

dT
~T!Xi1OS uXu2

L2 D GdT2
12Fdza

dT
~T! f a i~T!1

dza

dT
~T! f a i j ~T!Xj

1 f a
i~T!

Df a j

dT
~T!Xj1OS uXu2

L2 D GdTdXi
1F f a

i~T! f a j~T!12 f a
i~T! f a jk~T!Xk

1OS uXu2

L2 DGdXidXj . ~4.12!

Comparing the above with Eq.~4.9! and looking at the de-
pendence onX, one can readily extract out(0)

(0)hab and

(0)
(1)hab to the lowest order inGm/L.
Next we consider the internal scheme. The (0

0) component
is trivially given by the flat Minkowski metric. To know the
(0
1) component of the internal scheme, it is better to consider
all the (n

1) components at the same time. Namely we consider
the linear perturbation of the black hole(1)Hab . For this
purpose, we consider the decomposition of the linear pertur-
bation in terms of the tensor harmonics as discussed in Ap-
pendix C. Since the time scale associated with the perturba-
tion should be of the order of the background curvature scale
L, it is much larger than the matching radius (GmL)1/2.
Therefore the perturbation may be regarded as static. It is
known that all the physical static perturbations regular on the
black hole horizon behave as;uXuJ asymptotically, where
J is the angular momentum eigenvalue. However, in
(1)Hab , there exists no term which behaves as;uXum,
(m>2). Hence, except for gauge degrees of freedom,
(1)Hab contains onlyJ50,1 modes. As mentioned before,

we set the perturbation ofJ50,1 modes to vanish. Thus we
conclude that we may set(1)Hab50.

The (0
0) matching becomes

215S dzdTD
2

~T!1OSGmL D , ~TT! component,

~4.13!

05
dza

dT
~T! f a i~T!1OSGmL D , ~Ti ! components,

~4.14!

d i j5 f a
i~T! f a j~T!1OSGmL D , ~ i j ! components.

~4.15!

Equations~4.14! and ~4.15! indicate thatf a i(T) are spatial
triad basis along the orbit: i.e.,

f a
k~T! f b

k~T!5gab
„z~T!…1

dza

dT
~T!

dzb

dT
~T!1OSGmL D .

~4.16!

The (0
1) matching becomes

052
dza

dT
~T!

Df a i

dT
~T!Xi

1OSGmL uXu
L D , ~TT! component, ~4.17!

05
dza

dT
~T! f a i j ~T!Xj1 f a

i~T!
Df a j

dT
~T!Xj

1OSGmL uXu
L D , ~Ti ! components, ~4.18!

052 f a~ i~T! f a
j )k~T!Xk1OSGmL uXu

L D , ~ i j ! components.

~4.19!

Then the covariantT derivative of Eq.~4.13! and that of
Eq. ~4.14! with Eq. ~4.17! result in the background geodetic
motion:

D

dT S dza

dT D ~T!5OSGmL 1

L D . ~4.20!

One can see that the internal time coordinateT becomes a
proper time of the orbit from Eq.~4.13! in the lowest order in
Gm/L. In the same manner, Eq.~4.17! and the covariantT
derivative of Eq.~4.15! with the (i j ) antisymmetric part of
Eq. ~4.18! give the geodetic transport of the triadf a

i(T),

D

dT
f a

i~T!5OSGmL 1

L D . ~4.21!

Further, from Eqs.~4.18! and ~4.19!, we can see

f a
i j ~T!5OSGmL 1

L D . ~4.22!
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C. Hypersurface condition: „0
2
… matching

We now proceed to the (0
2) matching, in which the exter-

nal metric is still given by the background but there appear
nontrivial perturbations of the internal scheme. Although it is
of O(Gm/L) in the matching region andO„(Gm/L)1/2…
higher than the remaining (1

0) component, we consider it first
for the reason which will be clarified below.

In order to obtain(0)
(2)hab , we expand the external metric

in terms of the internal coordinates up toO(uXu2), i.e., we
have to go one order higher than Eq.~4.12!. Then the (0

2)
matching becomes

1

L2~0!
~2!HTT5Rabgd„z~T!…

dza

dT
~T! f b

i~T!
dzg

dT
~T! f d

j~T!XiXj

1OSGmL uXu2

L2 D , ~TT! component, ~4.23!

1

L2~0!
~2!HTi5

1

2

dza

dT
~T! f a i jk~T!XjXk

1
2

3
Rabgd„z~T!…

dza

dT
~T! f b

j~T! f g
i~T! f d

k~T!XjXk

1OSGmL uXu2

L2 D , ~Ti ! component, ~4.24!

1

L2~0!
~2!Hi j5 f a~ i~T! f a

j )kl~T!XkXl

1
1

3
Rabgd„z~T!…f a

i~T! f b
k~T! f g

j~T! f d
l~T!XkXl

1OSGmL uXu2

L2 D , ~ i j ! component, ~4.25!

where Eqs.~4.21! and~4.22! have been used to simplify the
expressions. Since there appear terms which describeJ52
perturbations of the internal scheme, the (0

2) matching does
not determinef a

i jk without specifying the gauge condition of
the internal scheme. Here we fix it as follows.

As before, we first setJ50,1 modes of(0)
(2)Hab equal to

zero. Applying the discussion given in Appendix C, we find
the (TT) component does not containJ50,1 modes. As for
the (Ti) component, it contains noJ50 mode but the
J51 mode is present. Setting it to vanish to the lowest order
in Gm/L, we find

dza

dT
~T! f a ikk~T!5OSGmL 1

L3D . ~4.26!

Turning to the (i j ) component, we find the term with the
Riemann tensor contains neitherJ50 nor 1 mode~see Ap-
pendix C!. Hence the vanishing ofJ50,1 modes implies

@ f a~ i~T! f a
j )kl~T!#J50,15OSGmL 1

L2D , ~4.27!

where@•••#J50,1 means theJ50,1 parts of the quantity.

Let us now turn to the modes higher thanJ51. The
(TT) component containsJ52 mode, but it just determines
the physical perturbation of the internal metric. The higher
modes are absent from the beginning. The (Ti) component
containsJ52 and 3 modes. As for theJ52 mode, it does
not involve f i jk

a . Hence it also gives the physical perturba-
tion of the internal metric. TheJ53 mode of the (Ti) com-
ponent of (0)

(2)hab is given by

1

2

dza

dT
~T! f a^ i jk &~T!XjXk1OSGmL uXu2

L2 D , ~4.28!

where^ i jk & means to take the symmetric traceless part of the
indices~see Appendix C!. Since this is a pure gauge degree
of freedom, we may set it to vanish. Then combining this
with Eq. ~4.26!, we find

dza

dT
~T! f a i jk~T!5OSGmL 1

L2D . ~4.29!

We do not discuss the higherJ modes in the (i j ) component,
since it does not give us any information which is necessary
to derive the equation of motion.

Then, from Eqs.~4.14!, ~4.22!, and~4.29!, we find

dza

dT
~T!s ;a„x~T,X!,z~T!…52

dza

dT
~T!Fa~T,X!

5OS uXu4

L4
L D , ~4.30!

to the lowest order inGm/L. Comparing this with the hy-
persurface condition oftx , Eq. ~2.23!, one finds that the
T5constant hypersurface differs from thetx5constant hy-
persurface only byO(e4)5O(uXu4). Then following the cal-
culations done in Sec. II again, one finds they are unaltered
even if we replace Eq.~2.23! with

@s ;a„x,z~t!…ża~t!#t5tx
5O~e4!. ~4.31!

The only effect of this replacement is to addO(e4) to the
right-hand side of the equivalent formula~A13! in Appendix
A. Thus T can be identifiedtx to the lowest order in
Gm/L. The reason why we have done the (0

2) matching prior
to the remaining (1

0) matching is to establish this equivalence
of T andtx .

D. External perturbation: „1
0
… matching

Now we proceed to the first nontrivial order inGm/uXu.
For this purpose, we must develop the external scheme.
However, since the time slicing by the internal time coordi-
nateT is now identical to that bytx in the lowest order in
Gm/L, we can use the previously obtained formula~2.27!
for the external metric perturbation.

There remains the (1
0) matching among the matchings

which becomes ofO„(Gm/L)1/2… in the matching region.
This matching relates the masses of the particle in both
schemes. Since this matching is ofO„(uXu/L)0…, it is allowed
to consider as if the background external metric were flat. As
is well known, the linear perturbation induced by a pointlike
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particle of massm in the flat background spacetime is ex-
actly equal to the asymptotic metric of a Schwarzschild black
hole of massm in the linear order inm. This fact indicates
that the matching gives a consistency condition at this order.

In order to directly check the consistency, we rewrite Eq.
~2.27! in terms of the internal coordinates. From Eq.~4.10!,
we have only to consider the first term of the right-hand side
of Eq. ~2.27!. Using Eqs.~4.6!, and ~4.7! and the fact that
e5As ;as ;a5AFa(T,X)Fa(T,X), the trace-reverse of Eq.
~2.27! is transformed to give

Gm~1!
~0!hab~X!dXadXb5GmS 2

uXu
dT21

2

uXu
dXidXi D ,

~4.32!

which corresponds to the asymptotic form of the Schwarzs-
child black hole of massm in the harmonic coordinates.

E. Radiation reaction: „1
1
… and „1

2
… matchings

There are many components which become of
O„(Gm/L)1… and O„(Gm/L)3/2… in the matching region.
However, we are interested in the leading order correction to
the equation of motion with respect toGm/L and we found
in Sec. IV B that in the lowest order the terms which behave
as ;uXu0 or uXu1 determines the motion of the particle.
Therefore we consider the (1

1) and (1
2) matchings here.

In order to perform the (1
1) and (1

2) matchings, the calcu-
lation in obtaining Eq.~4.32! must be done to the linear order
in uXu. This can be done in the same way with the aid of the
expression ofk2(x) given in Appendix A. Using further the
results obtained in Sec. IV B and C, we find the matching
equations

Gm

L ~1!
~1!HTT5H S dzdTD 2~T!11J 1Gm

dza

dT
~T!

dzb

dT
~T!Qab~T!1OXSGmL D 2C , ~TT! component, ~4.33!

Gm

L ~1!
~1!HTi5

dza

dT
~T! f a i~T!1Gm

dza

dT
~T! f b

i~T!Qab~T!1OXSGmL D 2C , ~Ti ! component, ~4.34!

Gm

L ~1!
~1!Hi j5$ f a

i~T! f a j~T!2d i j %1Gmfa i~T! f b
j~T!Qab~T!1OXSGmL D 2C , ~ i j ! component, ~4.35!

Gm

L2 ~1!
~2!HTT52

dza

dT
~T!

Df a i

dT
~T!Xi1GmH dza

dT
~T!

dzb

dT
~T! f g

i~T!Qabg~T!Xi2
1

3uXu3
f a i~T! f a

jkl~T!XiXjXkXl

2
5

3uXu
Rabgd„z~T!…

dza

dT
~T! f b

i~T!
dzg

dT
~T! f d

j~T!XiXj J 1OXSGmL D 2 uXu
L

C , ~TT! component, ~4.36!

Gm

L2 ~1!
~2!HTi5

dza

dT
~T! f a i j ~T!Xj1 f a

i~T!
Df a j

dT
~T!Xj1GmH dza

dT
~T! f i

b~T! f j
g~T!Qabg~T!Xj22Rabgd„z~T!…

dza

dT
~T! f b

i~T!

3
dzg

dT
~T! f d

j~T!Xj2
2

3uXu
Rabgd„z~T!…

dza

dT
~T! f b

j~T! f g
i~T! f d

k~T!XjXkJ 1OXSGmL D 2 uXu
L

C , ~Ti ! component,

~4.37!

where

GmQab~T!:5h~v !ab„z~T!…,

GmQabg~T!:5h~v !ab;g„z~T!…, ~4.38!

with

h~v !mn~x!:5c~v !mn~x!2
1

2
gmn~x!c~v !~x!. ~4.39!

Note that h(v)mn(x) is the metric perturbation due to
vmnab(x,z) in the Green’s function. The (i j ) component of
the (1

2) matching is not presented here since it will not be
used in the following discussion.

According to the discussion given in Sec. IV B, we have

(1)
(1)Hab50. Thus the right-hand sides of Eqs.~4.33!, ~4.34!,
and ~4.35! must vanish. As for(1)

(2)Hab , we cannot set them
equal to zero. However, again from the condition that there
are noJ50,1 modes, the corresponding parts on the right-
hand sides of Eqs.~4.36! and ~4.37! must vanish if they are
extracted out. Following the discussion given in Appendix C,
one finds the terms involving the Riemann tensor contains no
J50,1 mode. Furthermore, theJ50,1 mode of the term in-
volving f a

jkl in Eq. ~4.36! is proportional to

@ f a~ i~T! f a
j )kl~T!#J50,1, ~4.40!

which vanishes at the lowest order inGm/L by Eq. ~4.27!.
Hence theJ51 modes of the remaining terms in Eqs.~4.36!
and ~4.37! are extracted out to give
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052
dza

dT
~T!

Df a i

dT
~T!1Gm

dza

dT
~T!

dzb

dT
~T! f g

i~T!Qabg~T!

1OXSGmL D 2 1LC , ~TT! component, ~4.41!

05 f a[ i~T!
Df a

j ]

dT
~T!1GmQabg~T!

dza

dT
~T! f b

[ i~T! f g
j ]~T!

1OXSGmL D 2 1LC , ~Ti ! component ~4.42!

The J50 mode of Eq.~4.36! is shown to vanish, while that
of Eq. ~4.37! exists but it does not contain useful informa-
tion. The matching condition for this mode just gives the
equation which determines (dza/dT) f a i i to the first order in
Gm/L.

The covariantT derivative of Eq.~4.33! and that of Eq.
~4.34! with Eq. ~4.41! give the equation of motion with lead-
ing correction due to the radiation reaction

D

dT

dza

dT
~T!52

Gm

2
@Qa

bg~T!1Qa
gb~T!2Qbg

a~T!#

3
dzb

dT
~T!

dzg

dT
~T!1OXSGmL D 2 1LC . ~4.43!

The leading correction to the evolution of the ‘‘triad’’ basis,
f a

i(T), are also obtained from Eq.~4.41! and the covariant
T derivatives of Eq.~4.35! with Eq. ~4.42! as

D

dT
f a

i~T!52
Gm

2
@Qa

bg~T!1Qa
gb~T!2Qbg

a~T!#

3 f b
i~T!

dzg

dT
~T!1OXSGmL D 2 1LC . ~4.44!

Since the internal time coordinateT is not properly nor-
malized in the external metric, we define the proper time,
t5t(T), such that (dz/dt)2521. It is easy to see that we
should choose

dt

dT
511

Gm

2
Qab~T!

dza

dt
~T!

dzb

dt
~T!1OXSGmL D 2C .

~4.45!

Since the second term on the right-hand side of this equation
is proportional to the small perturbation induced by the par-
ticle, it is guaranteed to stay small even after a long time
interval compared with the reaction time scale
t r5O„(Gm/L)21L…. Then Eq.~4.43! becomes

D

dt

dza

dt
~t!52

Gm

2 S dza

dt

dzb

dt

dzg

dt

dzd

dt
12gab~z!

dzg

dt

dzd

dt

2gad~z!
dzb

dt

dzg

dt D ~t!Qbgd~t!

1OXSGmL D 2 1LC . ~4.46!

It is easy to see that this equation is identical to that obtained
at the end of the previous section.

Also, the triad bases are not properly normalized in the
external metric. Thus we define,ea

i(t), such that
ea i(t)e

a
j (t)5d i j ande

a
i(t)5(d i j1si j ) f

a
j2Gm(dza/dT)

3(dzb/dT) f g
iQbg , wheresi j is of O(Gm/L) and the last

term is added so as to satisfy the orthonormal condition,
ea i(t)(dz

a/dt)(t)50 @see Eq.~4.34!#. We find

si j52
Gm

2
Qab~t! f a

i~t! f b
j~t!1OXSGmL D 2C , ~4.47!

and again this is guaranteed to stay small. Then the evolution
of the normalized triadea

i(t) becomes

D

dt
ea

i~t!52
Gm

2 S dza

dt

dzb

dt
eg

i

dzd

dt
1gab~z!

dzg

dt
ed

i

2gad~z!eb
i

dzg

dt D ~t!Qbgd~t!1OXSGmL D 2 1LC .
~4.48!

V. IMPLICATIONS

In this section, we first consider the physical meaning of
the equation of motion obtained in the preceding two sec-
tions. Since the equation of motion we have obtained con-
tains an unknown functionvmnab(x,z), we need to give a
method to explicitly determine the particle trajectory. Here
we consider a couple of possibilities to calculate it in the
case of a specific background, such as Kerr spacetime.

In order to make the meaning of the equation of motion
manifest, we divide the perturbed metric in the external
scheme into two pieces as

hmn~x!5h~u!mn~x!1h~v !mn~x!, ~5.1!

whereh(v)mn(x) is the part due to the tail term@defined in
Eq. ~4.39!# andh(u)mn(x) is the part due to theumnab term in
the Green’s function@corresponding to the first term on the
right-hand side of Eq.~2.20!#. The singular behavior of the
perturbed metric in the coincidence limit is totally due to
h(u)mn(x). Thus, we introduce the regularized perturbed
spacetime defined by

g̃~v !mn~x!:5gmn~x!1h~v !mn~x!, ~5.2!

which has no singular behavior any more. Then we find the
equation of motion~4.43! and the evolution equation of the
triad basis~4.44! coincide with the geodesic equation and the
geodetic parallel transport, respectively, in this regularized
perturbed spacetime,g̃(v)mn . To see this let us consider the
parallel transport of a vectorAa along a geodesic
xa5za( t̃) in this spacetime. It is given by

D̃ ~v !

dt̃
Aa:5

D

dt̃
Aa1dG~v !

a
bgA

b
dzg

dt̃
50, ~5.3!

to the linear order inh(v)nm where

dG~v !
a

bg :5
1

2
~h~v !

a
b;g1h~v !

a
g;b2h~v !bg

;a!. ~5.4!
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Then one recovers Eqs.~4.43! and ~4.44! by identifying t̃
with T and replacingAa with dza/dT or f a

i . This fact is the
main result of this paper.

We note that the present equation of motion is analogous
to that in the electromagnetic case, except that the instanta-
neous reaction force which is proportional to higher deriva-
tives of the particle velocity is absent in the present case.
This is because the particle traces the geodesic in the lowest
order of approximation. If an external force field exists, the
assumption of the geodesic motion in the lowest order breaks
down and furthermore the contribution of the external force
field to the energy momentum tensor must be taken into
account. Since this fact makes the problem too complicated,
it is beyond the scope of the present paper.

Now let us consider the way how to constructg̃(v)mn . As
stated in the beginning of this section, in order to evaluate
the particle trajectory explicitly, a practical scheme to calcu-
late g̃(v)mn must be developed. Unfortunately, we do not
have any scheme which can be satisfactorily applied when
calculating the particle trajectory with the effect of the radia-
tion reaction, even on a specific background spacetime such
as a Kerr black hole. Here we just give a few primitive
discussions on this matter. For definiteness, we focus on the
case of the retarded boundary condition.

Basically, there seems to be two approaches for calculat-
ing g̃(v)mn ~or equivalentlyh(v)mn). The first one is to calcu-
late h(v)mn directly. The second one is to calculate
hmn5h(u)mn1h(v)mn and subtracth(u)mn from it. In the fol-
lowing, we discuss only the first approach. As for the second
approach, we have nothing to mention here, but this direction
of research may be fruitful.

By definition,h(u)mn evaluated on the particle trajectory is
independent of the past history of the particle.2 Therefore if
we consider the metric defined by

hmn
~Dt!~x!5S dm

rdn
s2

1

2
gmn~x!grs~x! D

3E
2`

tx2Dt

dt8Grsab
ret

„x,z~t8!…ża~t8!żb~t8!,

~5.5!

for any finiteDt (.0), it will not containh(u)mn when it is
evaluated on the particle trajectory. The difference between
hmn
(Dt) andh(v)mn comes from the integral over the small in-
terval:

;GmE
tx2Dt

tx
dt8vrsab„x,z~t8!…ża~t8!żb~t8!. ~5.6!

Sincevrsab(x,z) is a regular function, this integral will be
negligible for a sufficiently smallDt. Thus limDt→0hmn

(Dt)

will give h(v)mn .
In the case of the electromagnetic~vector! Green’s func-

tion, a calculation along the above strategy was performed

by DeWitt and DeWitt@15# by assuming the background
gravitational field is weak so that its metric is given by the
small perturbation on the Minkowski metric:

gmn5hmn1hmn
~b! . ~5.7!

DeWitt and DeWitt calculated the relevant part of the
Green’s function perturbatively to the first order inhmn

(b) by
using the Minkowski Green’s function. An analogous calcu-
lation seems possible in the case of gravity to evaluate
h(v)mn , though it seems difficult to develop such calculations
to higher orders inhmn

(b) .
Before closing this section, we give comments on some

proposals to the equation of motion including the effect of
the gravitational radiation reaction. One is the use of the
radiative Green’s function~a half of the difference between
the retarded and advanced Green’s functions! in the case of a
Kerr background@16#. As seen easily by using the results
obtained in the previous section, the use of the radiative
Green’s function instead of the retarded one results in the
replacement ofc (v)mn(x) by c (v)mn

rad (x), which is defined by

c~v !
rad

bg~x!:52GmE
2`

1`

dt8vbga8b8„x,z~t8!…

3 ża8~t8!żb8~t8!. ~5.8!

Gal’tsov has proved that the back reaction force computed
using the radiative Green’s function correctly gives the loss
of the energy and thez component of the angular momentum
of the particle in quasiperiodic orbits. However, we do not
think that this fact indicates the correctness of the prescrip-
tion because those constants of motion are special ones
which reflect the existence of the corresponding Killing vec-
tor field. For example, it is still uncertain if the radiative
Green’s function is useful in evaluating radiation reaction
effect on the Carter constant. We would like to come back to
this point in future publication.

Recently Ori has argued also in the case of a Kerr back-
ground that the partial wave decomposition of the retarded
Green’s function with respect to the spheroidal harmonics as
schematically shown above would result in the automatic
removal of the divergence when averaged over several or-
bital periods@17#, thus making it possible to derive the ra-
diation reaction to the Carter constant. We do not think his
argument works. Let us consider expansion of the Newtonian
potential of a particle off the origin of the coordinates by
using the spherical harmonics. If one calculates the self-force
on the particle, one finds the contribution from each partial
wave is finite. However, the net self-force is intrinsically
ill-defined and if one sums up all the contributions from the
different modes, it is easy to see that thus obtained self force
diverges. Thus the finiteness of the partial wave contribu-
tions does not imply that of their sum.

VI. CONCLUSION

In this paper, we have derived the equation of motion of a
particle on a given background including the effect of the
gravitational radiation reaction, i.e., with corrections of order
(Gm) wherem is the mass of the particle. Although we use

2There is a possibility that the future light cone emanating from
z crosses the particle trajectory. Since inclusion of this possibility
makes the problem too complicated, we do not consider it here.
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the terminology ‘‘radiation reaction’’ here, it may not be
appropriate in a strict sense because the equation of motion
we have derived may well contain something more than just
the radiation reaction. In fact, in the electromagnetic case,
the existence of the effect which can be termed as ‘‘the in-
duced polarization force on the background spacetime’’ is
reported by many authors@18#. The existence and the physi-
cal meaning of it in the gravitational case is left for future
study.

We have derived the equation of motion in two different
ways. First we have considered an extension of the electro-
magnetic counter part developed by DeWitt and Brehme
@11#. Due to the nature of gravitational interaction, there ap-
pears an ambiguity concerning the renormalization of mass
of the particle, which cannot be resolved within this ap-
proach. We have then derived the equation of motion by
setting an ansatz which seems physically reasonable without
justification. In order to overcome this problem, we have
developed a method based on the matched asymptotic expan-
sion, assuming the local geometry around the particle is de-
scribed by a spherically symmetric black hole plus tidal per-
turbations. This latter approach has proved to be very
powerful and we have succeeded in obtaining the same equa-
tion of motion as obtained in the former approach.

The correction term ofO(Gm) is found to be entirely
given by the part of the metric perturbation which is due to
the tail term of the Green’s function. Defining the regular-
ized metric as the background plus this tail part of the per-
turbation, we have found that the equation of motion is the
geodesic equation on this regularized perturbed metric.

Assuming the background is almost flat, DeWitt and De-
Witt @15# evaluated the tail part explicitly for the electromag-
netic case. Analogous calculation for the gravitational case
was done by Carmeli@19# and it was shown that the tail part
correctly reproduces the lowest order post-Newtonian correc-
tions to the equation of motion. However, no such calcula-
tion has been done for the background with strong gravity,
such as a black hole geometry. It is a challenging subject to
formulate a systematic method to evaluate the tail part of the
metric when the background gravity is strong.

It is important to note that the particle does not have to be
a black hole but the resultant equation of motion can be
equally applicable to any compact bodies such as neutron
stars. The essential assumption here is that the only scale
associated with the particle isGm and the structure is basi-
cally spherically symmetric. In this sense, we have shown
the strong equivalence principle to the first order inGm.

We also emphasize that our result gives a justification of
the so-called black hole perturbation approach for the first
time. In the black hole perturbation approach, one calculates
the gravitational radiation from a particle orbiting a black
hole with the assumption that the particle is a pointlike ob-
ject with the energy momentum tensor described by thed
function. Although this approach has been fruitful, there has
been always skepticism about the validity of thed functional
source. What we have shown in this paper justifies the use of
the d function in the source energy momentum tensor.

In this paper, we have considered a particle which is es-
sentially structureless. The next step will be to include the
intrinsic angular momentum of the particle, i.e., to consider a
spinning particle. As we have found the method of the

matched asymptotic expansion is very powerful, there is a
big possibility that we can extend the present analysis to the
case of a spinning particle@21#.
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APPENDIX A: NOTATION AND BASIC FORMULAS

Here in this appendix, we summarize our notation and
basic formulas. As for the formulas already derived in DB,
we just write down the results.

1. Basic notation

~i! The Riemann tensor and the Ricci tensor are defined
by

Rm
njr :5Gm

nj,r2Gm
nr,j1Gm

srGs
nj2Gm

sjG
s

nr , ~A1!

Rmn :5Rj
mjn , ~A2!

R:5Rm
m . ~A3!

~ii ! Symmetrization and antisymmetrization of the tensor
indices are described byt (mn)5(tmn1tnm)/2 and t [mn]

5(tmn2tnm)/2, respectively.
~iii ! For an arbitrary bitensorQ,

Q;a„x,z~tx!…:5@Q;a~x,z!#z5z~tx! ,

Q;m„x,z~tx!…:5@Q;m~x,z!#z5z~tx! , ~A4!

while

@Q„x,z~tx!…# ;m :5Q;m„x,z~tx!…1Q;a„x,z~tx!…ż
a~tx!tx;m .

~A5!

~iv! The basic equations satisfied by a half the squared
geodetic intervals(x,z) @Eqs.~1.11! and ~1.12! of DB#:

s~x,z!5 1
2g

mn~x!s ;m~x,z!s ;n~x,z!

5 1
2g

ab~z!s ;a~x,z!s ;b~x,z!,

lim
x→z

s~x,z!50. ~A6!

~v! The defining equations of the parallel displacement
bivector @Eqs.~1.31! and ~1.32! of DB#:

ḡma;n~x,z!gns~x!s ;s~x,z!50,

ḡma;b~x,z!gbg~z!s ;g~x,z!50,

lim
x→z

ḡm
a~x,z!5dm

a. ~A7!
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~vi! The definition ofD(x,z) @Eqs.~1.50!, ~1.51!, ~1.60!,
and ~1.61! of DB#:

D~x,z!:5uḡam~z,x!s ;mb~x,z!u. ~A8!

2. Basic formulas

~i! Equation~1.28! of DB:

s ;ab~x,z!5gab~z!1
1

3
Ra

g
b

d~z!s ;g~x,z!s ;d~x,z!1O~e3!.

~A9!

~ii !

ḡma
;b~x,z!5 1

2 ḡ
mg~x,z!Ra

gbd~z!s ;d~x,z!1O~e2!,

ḡma
;n~x,z!5 1

2 ḡ
mb~x,z!ḡn

g~x,z!Ra
bgd~z!s ;d~x,z!1O~e2!,

~A10!

which can be obtained from Eqs.~1.40! and ~1.41! of DB.
~iii ! Equations~1.51!, ~1.64!, and~1.73! of DB:

s ;mb~x,z!

52ḡm
a~x,z!S gab~z!2

1

6
Ragbd~z!s ;g~x,z!s ;d~x,z! D

1O~e3!. ~A11!

~iv! Here we give the formulas which we need to expand
Eq. ~2.20! to obtain Eq.~2.27!. Since we want to express Eq.
~2.20! in terms of tx defined by Eq.~2.23! instead of
t ret/adv(x), we expand each factor of each term which con-
sists of Eq.~2.20! with d ret/adv(x), Eq. ~2.26!. We first con-
sider @ṡ„x,z(t)…#t5tret/adv(x)

, which is expanded as

@ṡ„x,z~t!…#t5tret/adv~x!5ṡ„x,z~tx!…1s̈„x,z~tx!…d ret/adv~x!

1
1
2 z
...
„x,z~tx!…d ret/adv

2 ~x!

1
1
3! s

....
„x,z~tx!…d ret/adv

3 ~x!1O~e4!.

~A12!

Each term is computed as

ṡ„x,z~tx!…5s ;a„x,z~tx!…ż
a~tx!50, ~A13!

s̈„x,z~tx!…5:2k2~x!

5s ;ab„x,z~tx!…ż
a~tx!ż

b~tx!1s;a„x,z~tx!…z̈
a~tx!

5S gab„z~tx!…1
1

3
Ra

g
b

d
„z~tx!…s ;g„x,z~tx!…

3s ;d„x,z~tx!…D ża~tx!ż
b~tx!

1s ;a„x,z~tx!…z̈
a~tx!1O~e3!, ~A14!

s
...
„x,z~tx!…5s ;a„x,z~tx!…z

...
a~tx!1O~e2!, ~A15!

s
....
„x,z~tx!…52gab„z~tx!…z̈

a~tx!z̈
b~tx!1O~e!.

~A16!

In the above computation, we used Eqs.~A9!, ~2.23!, and the
normalization condition (dz/dt)25211O(Gm/L), which
was proved to be consistent in Secs. III and IV. Then we
obtain

F 1

ṡ„x,z~t!…
G

t5tret/adv~x!

56
1

e~x!k~x! ~17 1
3 e~x! z

...
a~tx!s ;a„x,z~tx!…

2 1
8 e2~x!z̈2~tx!1O~e3!!. ~A17!

Noting the explicit form ofumnab(x,z) in Eq. ~2.10!, it is
necessary to compute @D1/2

„x,z(t)…#t5tret/adv(x)
,

@ ḡma„x,z(t)…#t5tret/adv(x)
and @ ża(t)#t5tret/adv(x)

. In the same
way,

@D1/2
„x,z~t!…#t5tret/adv~x!511O~e3!, ~A18!

@ ḡma„x,z~t!…#t5tret/adv~x!

5ḡma„x,z~tx!…6
1

2
ḡm

b
„x,z~tx!…Rabgd„z~tx!…

3s ;g
„x,z~tx!…ż

d~tx!e~x!1O~e3!, ~A19!

@ ża~t!#t5tret/adv~x!5 ża~tx!7e~x!k21~x!z̈a~tx!

1
1
2 e2~x! z

...
a~tx!1O~e3!. ~A20!

Putting them into the first term in the parentheses of Eq.
~2.20!, and using Eq.~2.11! and the fact

Am~x!5ḡm
a~x,z!@Aa~z!2s ;b~x,z!Aa;b~z!1O~e2!#,

~A21!

in computing the second term, we obtain Eq.~2.27!.

APPENDIX B: SECOND-ORDER VARIATION
OF THE EINSTEIN TENSOR

We derive Eq. ~3.8! by taking the variation of the
Einstein-Hilbert action. We first compute the Einstein-
Hilbert action of the metric,g̃mn5gmn1hmn . For this pur-
pose we define a differential operatordg :

dgQ~g!5 lim
e→0

Q~g1eh!2Q~g!

e
, ~B1!

dg
2Q~g!5 lim

e→0

Q~g1eh!1Q~g2eh!22Q~g!

2e2
. ~B2!

We first note the first variation of the Einstein tensor taken
from a standard textbook:
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G~1!mn5~2hmn;j1hjm;n1hjn;m! ;j

2h;mn2gmn~hjr
;jr2h;j;j! ~B3!

5~2cmn;j1cjm;n1cjn;m! ;j2gmncjr
;jr ,

~B4!

wherecmn5hmn2(1/2)gmnh.
Since we are interested only in the second-order variation,

we compute the terms proportional toh2 in the action

~dg
2~A2g!R!5~dg

2A2g!R1~dgA2gdgg
mn

1A2gdg
2gmn!Rmn1~A2gdgg

mn

1gmndgA2g!dgRmn1A2ggmndg
2Rmn

52A2gS hmn2
1

2
gmnhD dgRmn

1A2ggmndg
2Rmn , ~B5!

where we have used the assumption that the background
spacetime is vacuum,Rmn50. Now

dgRmn5~dgG
j
mj! ;n2~dgG

j
mn! ;j , ~B6!

dg
2Rmn5~dg

2Gj
mj! ;n2~dg

2Gj
mn! ;j1dgG

j
rndgG

r
mj

2dgG
j
rjdgG

r
mn . ~B7!

Inserting these into Eq.~B5! and using

dgG
j
mn5

1

2
~hj

m;n1hj
n;m2hmn

;j!, ~B8!

we obtain the second-order variation of the Einstein-Hilbert
action:

L ~2!5
1

16pG

1

A2g
dg
2~2A2gR!

5
1

64pG
@2hmn;jh

mn;j12hmn;jh
jm;n

22hmn
;nh;m1h;mh

;m#

5
1

64pG S 2cmn;jc
mn;j12cmn;jc

jm;n1
1

2
c ;mc ;mD ,

~B9!

wherec5ca
a52h and we have discarded unimportant to-

tal divergence terms.
We note

dS

dg̃mn
@ g̃#5

dS

dgmn
@g1dg#. ~B10!

Thus the second-order variation of the Einstein tensor can be
obtained by taking the variation of the action with respect to
gmn :

d

dgmn
E L ~2!A2gd4x5

1

16pGE d4xA2g~2G~2!mn!.

~B11!

Hence,

G~2!mn528pGF2dL ~2!

dgmn
1gmnL ~2!G . ~B12!

Carrying out the variation ofL (2) one finds

G~2!mn52 1
2 @ 1

2 ~cmj;r1cmr;j2cjr;m!~cn
j;r1cn

r;j2cjr
;n!

1cmj
;rjc

rn1cnj
;rjc

rm2cmn
;jrcjr

2~cmncjr
;r! ;j2 1

4c ;mc ;n1 1
4g

mn

3~2crs;jc
rs;j12crs;jc

jr;s1 1
2c ;jc

;j!#

1 1
2cG~1!mn. ~B13!

Note that if h is a linear perturbation which satisfies
G(1)mn@h#50, the tensorTG

mn :52(1/8pG)G(2)mn describes
the conserved energy momentum tensor of the perturbed
gravitational field.

APPENDIX C: TENSOR HARMONICS EXPANSION

Here we briefly review the construction of the scalar and
the vector harmonics in terms of the symmetric trace-free
~STF! tensor@20#. We introduce the notation

A^ i1i2••• i l & , ~C1!

to represent the totally symmetric and trace-free part of
Ai1i2••• i l

. More explicitly in the cases ofl 52,3,

A^ i j &5A~ i j !2
1
3d i j Akk ,

A^ i jk &5A~ i jk !2
1
5 ~d i j A~kmm!1d jkA~ imm!1dkiA~ jmm!!.

~C2!

The spherical harmonics expansion of a scalar function
A on the unit sphere can be written as

A5 (
l 50

`

A^ i1i2••• i l &n
^ i1ni2•••ni l &, ~C3!

whereni5Xi /uXu. In this case, the orderl , which is associ-
ated with the angular dependence, is equivalent to the total
angular momentum,J. Thus theJ mode of the (TT) compo-
nent of the metric perturbation is totally determined by its
angular dependence. Namely, the terms in the (TT) compo-
nent of the metric perturbation which contain

1,ni ,n^ inj &, ~C4!

correspond to theJ50,1,2 modes, respectively.
Next we consider the expansion of a vector fieldAi :

Ai5 (
l 50

`

Ai ^ i1i2••• i l &n
^ i1ni2•••ni l &. ~C5!

In this case the term of thel th order in the angular depen-
dence is decomposed intoJ5l 11, l and l 21. This is
done by using the Clebsch-Gordan reduction formula@20#
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UiTi1i2••• i l 5Ri ^ i1i2••• i l &
~1 ! 1

l

l 11
e j i ^ i l Ri1i2••• i l 21& j

~0!

1
2l 21

2l 11
d i ^ i l Ri1i2••• i l 21&

~2 ! , ~C6!

whereTi1i2••• i l is a STF tensor of orderl and

Ri1i2••• i l 11

~1 ! :5U ^ i l 11
Ti1i2••• i l & ,

Ri1i2••• i l
~0! :5UjTk^ i1i2••• i l 21

e i l & jk ,

Ri1i2••• i l 21

~2 ! :5UjTji 1i2••• i l 21
. ~C7!

We perform the decomposition explicitly forl <2 here. For
l 50, there exists noJ50 mode and it trivially corresponds
to theJ51 mode. Forl 51, the decomposition is performed
as

Ai j n
j5F SA~ i j !2

1

3
d i j AkkD1A[ i j ]1

1

3
d i j AkkGnj , ~C8!

and the first, second, and third terms in the square brackets
correspond to theJ52, 1, and 0 modes, respectively. For
l 52, we obtain the decomposition formula as

Ai ^ jk&n
^ jnk)5@A^ i jk &1

2
3 emi^ jBk&m

~2! 1 3
5d i ^ jBk&

~1!#n^ jnk&, ~C9!

where

Bi j
~2!5

1

2
~Ak^mi&e jkm1Ak^mj&e ikm!,

Bk
~1!5Ai ^ jk&d i j , ~C10!

and the first, second, and third terms correspond to the
J53, 2, and 1 modes, respectively.

As an example, let us consider a vector

dza

dT
Rabgd f

b
j f

g
i f

d
kX

jXk, ~C11!

which appears in the (0
2) and (1

2) matchings in Sec. IV. First
we decompose it in terms of its angular dependence as

dza

dT
Rabgd f

g
i S f b

^ j f
d
k&X

^ jXk&1
1

3
f b

kf
d
kuXu2D . ~C12!

Using the relation~4.16! and the fact that the Ricci tensor
vanishes, the second term in the parentheses is rewritten as

1

3

dza

dT
Rabgd f

g
i

dzb

dT

dzd

dT
uXu2, ~C13!

and is found to be zero due to the symmetry of the Riemann
tensor. Thus we have only to consider the first term in the
parenthesis of Eq.~C12!, which is decomposed further with
the aid of formulas~C10! and ~C9! as

dza

dT
RabgdS f g

^ i f
b
j f

d
k&1

2

3
emi^ jFk&m

~2!gbd

1
3

5
d i ^ jFk&

~1!gbdDX^ jXk&, ~C14!

where

Fi j
~2!gbd :5 1

2 ~ f g
mf

b
^nf

d
i &e jmn1 f g

mf
b

^nf
d
j &e imn!,

Fi
~1!gbd :5 1

2 ~ f g
kf

b
i f

d
k1 f g

kf
b
kf

d
i !2 1

3 f
g
i f

b
kf

d
k .

~C15!

It is easy to see that the first and third terms vanish due to the
symmetry of the Riemann tensor and the Ricci flatness. Thus
only theJ52 mode remains.

As for a tensor field, it is not necessary for us to give
general discussion here. The only term which requires our
consideration is

Rabgd f
a
i f

b
kf

g
j f

d
mX

kXm, ~C16!

which appears in the (i j ) component of the (0
2) matching. In

this case, it is better to use the symmetry of the Riemann
tensor from the beginning. First, we define the spatial triad
components of the Riemann tensor by

Ri jkm :5Rabgd f
a
i f

b
j f

g
kf

d
m . ~C17!

Introducing a symmetric tensor defined by

Ri j5
1

4
e ikme jnsRkmns, ~C18!

we can expressRik jm in terms ofRi j as

Ri jkm5eni jeskmRns . ~C19!

Then the symmetric tensorRi j is decomposed into symmet-
ric trace-free~STF! tensors as

Ri j5R^ i j &1
1

3
d i jRkk . ~C20!

Counting the number of indices, we find that the first and
second terms in Eq.~C20! correspond toJ52 and 0 modes,
respectively. However, again owing to the symmetry of the
Riemann tensor and the Ricci flatness, theJ50 mode van-
ishes and only theJ52 mode remains.
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