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Gravitational radiation reaction to a particle motion
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A small mass particle traveling in a curved spacetime is known to trace a background geodesic in the lowest
order approximation with respect to the particle mass. In this paper, we discuss the leading order correction to
the equation of motion of the particle, which presumably describes the effect of gravitational radiation reaction.
We derive the equation of motion in two different ways. The first one is an extension of the well-known
formalism by DeWitt and Brehme developed for deriving the equation of motion of an electrically charged
particle. Constructing the conserved rank-two symmetric tensor, and integrating it over the interior of the world
tube surrounding the orbit, we derive the equation of motion. Although the calculation in this approach is
straightforward, it contains less rigorous points. In contrast with the electromagnetic case, in which there are
two different charges, i.e., the electric charge and the mass, the gravitational counterpart has only one charge.
This fact prevents us from using the same renormalization scheme that was used in the electromagnetic case.
In order to overcome this difficulty, we put an ansatz in evaluating the integral of the conserved tensor on a
three spatial volume which defines the momentum of the small particle. To make clear the subtlety in the first
approach, we then consider the asymptotic matching of two different schemes: i.e., the internal scheme in
which the small particle is represented by a spherically symmetric black hole with tidal perturbations and the
external scheme in which the metric is given by small perturbations on the given background geometry. The
equation of motion is obtained from the consistency condition of the matching. We find that in both ways the
same equation of motion is obtained. The resulting equation of motion is analogous to that derived in the
electromagnetic case. We discuss implications of this equation of m§86656-282197)02304-7

PACS numbd(s): 04.30.Db, 04.25-g

I. INTRODUCTION The post-Newtonian study of the binary system is devel-
oped by many authors. Damour and co-worké&tsconsider
The problem of radiation reaction has long been one ofvhat the motion of the compact objects means within the
the fundamental theoretical issues in general relativity. Startpost-Newtonian study. The series of works by Blanchet and
ing from the historical works of Eddington in his 1922 book Damour[8] formulate the rigorous prescription of the radia-
[1], Chandrasekhar and Esposif) discussed the radiation tion zone applying the matched asymptotic expansion tech-
reaction of the self-gravitating fluid emphasizing the impor-nique, and along this way, Blanch] discusses the radia-
tance of the time asymmetric part of the metric appearing irtion reaction force in the post-Newtonian expansion. Though
the post-Newtonian expansion, and Burke and ThdBle the post-Newtonian is applicable to quite general situations,
found a resistive potential which compactly expresses theéhe calculation becomes increasingly difficult as one goes to
radiation reaction. Recently this problem has come to be okigher orders.
increasing importance because the detection of gravitational As an alternative approach, perturbations of a black hole
waves becomes a reality with the present technology. They an orbiting small particle has been studj&@]. However,
gravitational waves from an inspiraling binary is one of thein all the previous works, the rate of change of orbital pa-
most promising sources expected to be detected by the neaameters are assumed to be determined by the energy bal-
future interferometric gravitational wave detectors such asnce. Although this prescription is powerful, the background
the Laser Interferometric Gravitational Wave Observatoryblack hole is required to have a sufficient number of Killing
(LIGO), VIRGO, and Laser Interferometer Space Antennavector fields in order to relate the outgoing gravitational
(LISA) [4,5]. In order to extract the information of the bina- waves with the rate of change of orbital parameters of the
ries from the last inspiraling stage, it is neccessary to conparticle. The Kerr black hole is an important example which
struct accurate theoretical templates of the gravitational wavdoes not have a sufficient number of Killing vector fields and
forms [6], in which the radiation reaction to the orbit plays so rigorous discussions are restricted to the case in which the
an important role. particle is in a circular or an equatorial orbit. Thus the effect
of the radiation reaction on the motion of a small mass par-
ticle in a general curved spacetime is an important target of
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spacetime was discussed by DeWitt and Brelftig (DB). metric is approximated by the linear perturbations on the
In the electromagnetic case, the total energy momentum terpackground spacetime generated by a pointlike particle.
sor composed of the particle and field contributions satisfieghen we consider a limited class of coordinate transforma-
the conservation law. Its divergence is integrated over th&on which keeps the meaning of the center of the particle
interior of the tube surrounding the particle orbit with infini- unambiguous and match the external metric with the internal
tesimal length. The part of the integration which does notone in the matching region where the both approximations
vanish in the small tube radius limit is transformed into the@re valid. Then we find that for an arbitrary orbit the consis-
surface integrations over the both ends of the tube and ovdfnt coordinate transformation does not exist, and this con-
the surface of the tube by using the Gauss’ theorem. Thélstenc_y condition determme; the.equauc')n of motion, which
integrations over the top and bottom of the tube give thdS NO _dlfferent _from thqt obtained in the first approach. _

definition of the particle momenta at both ends and the dif- 'S paper is organized as follows. In Sec. Il we explain

ference between them represents the change of the momdfi€ covariant expansion method of the tensor Green's func-
tum during this infinitesimal time interval, which is to be 10N, which becomes important in both approaches discussed

equated with the momentum flow given by the integration!” the succgeding two seqtions. In Sec. lll we discuss the first
over the surface of the tube. In this way the equation offPProach, i.e., an extension of the DeWitt-Brehme electro-
motion is obtained. As shown below. also in the case offi@dnetic radiation reaction equation of motion to the gravi-
gravitational radiation reactions, we can construct a cont@tional counter part. Section IV is devoted to the second
served rank-two tensor defined on the background spacetim@PProach, i.e., the matched asymptotic expansion method to
composed of the matter field and the metric perturbationderive the equation of motion of a small black hole. We find
However, there is an important difference between electro?0th approaches give the same equation of motion. In Sec. V
magnetic and gravitational cases. In the electromagnetisn{’® discuss |m_pl|cat|ons of the result. Section VI is devoted
we can consider an extended charge distribution which &0 the conclusion. . o

supported by a certain force other than the electromagnetic W& suppose the reader is familiar with the concept of
field. Thus it will be natural to assume that the charge and Pitensors” and some useful tools developed by DB. Fol-
mass distributions of a pointlike particle are not distorted byl®Wing DB, we assign the indices,8,7,d,¢,¢, 7 for the

the effect of the radiation reaction. Therefore one may conPCint on the particle trajectoryz(r), and the indices
sistently assume that the momentum and the electric curredt:¥>¢,p,0 for the field point,x. For the readers conve-
of the particle are proportional to the four-velocity of the Ni€nce, .the notation and basic formulas are summarized in
particle. Moreover the electromagnetic chamgés not di-  APPendix A.

rectly related to the energy momentum of the particle which

is proportional to the mass. Hence, even if the limit of a Il. METRIC PERTURBATION

zero-particle radius is taken, the divergent self-energy

(«<e?) can be renormalized by shifting the bare mass. In th

case of the gravitational radiation reaction, it is not possibl ackground metriog,,, . The background metric is assumed

: . S . wv
to con_’slder ‘C.’UCh an ideal pom_thke pa_rtlcle because EVeYo satisfy the vacuum Einstein equations. Thus, in the follow-
force field universally couples with gravity. Even worse, theingl calculations, we use the fact that the background Ricci

role of e in the electromagnetism is also attributed no tensor vanishes. As we assume that the particle nmass
Thus the simple renormalization scheme does not make any i compared'with the background curvature sdajeye

sense. In order to overcome this difficulty, we put an ansat%\pproximateﬁgw by the linear perturbation induced by a

:E:t (tekl]gcteimglengggegtgtm&vi?ﬁglﬂte ?all?ina St'rr]g"&llirmvi\;azfa;]énpointlike particle,h,,, in the whole spacetime region except
9 9 for the vicinity of the world line of the particle. We call the

small particle radius, be proportional to the four-velocity of region in which this approximation is valid as the external

the particle, Wh'Ch will not be JUSt'f'eq within th'$ frame- zone. On the other hand, in the vicinity of the world line of
work. Under this assumption, we obtain an equation of mo-

tion in the covariant form with respect to the backgroundthe particle, the self-gravity of the particle dominates and the

spacetime which is analodous to that obtained in the case etric cannot be described by the linear perturbation induced
P ; 9 ®y a pointlike particle. We call this region the internal zone.
electromagnetic case.

. . In this section we concentrate on the external zone. The cal-
In order to develop a more rigorous formalism, we con-

. . . . culation is performed in an analogous manner to the case of
sider an extension of the matched asymptotic expansion th e scalar and vector perturbations developed by DB.
has been already developed by many authers., D E_ath Here we consider the linearized Einstein equations. We
[12] and Thorne and Hartlei3]). We assume that the inter- introduce the trace-reversed metric perturbation
nal metric which describes the geometry around the particle
is represented by a Schwarzschild black hole of small mass 1
in the lowest order approximation. As the particle moves in U (X)=h,,(X)— ng(x)h(x), (2.1
the curved background, it suffers from the tidal distortion.
This effect is taken into account by the homogeneous lineag, 4 set the harmonic gauge condition
perturbations of the black hole. Since we knex=0 and
1 homogeneous perturbations of the black hole are purely Py*r.(X)=0, (2.2
indebted to gauge degrees of freedom as long as both the
mass and angular momentum of the black hole stay constarwhere h(x) and (x) are the trace oh*”(x) and that of
we set them to vanish. We also assume that the externat*”(x), respectively, and the semicolon means the covariant

In this section, for the later use, we calculate the metric
erturbation,dg,,,, induced by a pointlike particle on the
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derivative with respect to the background metric. In this p 1 utreh(x,z) 5
gauge, the linearized Einstein equations become GL (X’Z):(Zw)z o (x.2) +vHPP(x,2)
1
—§¢”V'§§(x)+Rﬂg”p(x)zﬁgp(x):SwGTW(x)+O(h2), xIn|o(x,2)| +W*"*B(x,z) |, (2.5

(2.3
) . _ where o(x,z) is a half of the square of geodetic interval
whereO(h®) stands for terms quadratic or of higher powerswhich is defined in Eq(1.10 of DB. Its property is summa-
in the metric perturbation. Thus we define the tensor Green'sized in Eq. (A6) of Appendix A. The functions

function G*"*A(x,z) which satisfies urreb(x,z), v***F(x,z), and wr'*F(x,z) are bitensors
pvapit v tpap which are regular in ther(x,z)—0 limit and u*"*#(x,z)
GHYP2 (X,2) = 2RM ¥ [ (X) GEP*P(X,2) satisfies the normalization condition

5 (z—x) limu#**f(x,z)=lim2g%*(x,2)g"#(x,z). (2.6

i 2.4 = -
\/—g ( ) X—Z X—Z
- If we put the form(2.5) into the left-hand side of Eq2.4),
whereg”“(x,z) is the bivector of geodetic parallel displace- the terms can be classified into three parts. One is the terms
ment defined in Eq(A7) of Appendix A andg is the deter-  which contain the factor #2(x,z) manifestly and another is
minant of the metriq,,,(x). the terms which contain Ja(x,2)|. The remaining terms have
First we consider the elementary soluti@(*"*?(x,z) no singular behavior at the(x,z)—0 limit. Since the form
which satisfies Eq(2.4) except at ther(x,z)—0 limit and (2.5 is redundant, we can set these three sets to vanish sepa-
takes the Hadamard form rately:

=—29""(x,2)9"%(x,2)

A€ ,
( ZU“W'B;g(X,Z) _ A((X)TZZ)) ul'“/a'B(X,Z)) U;§(Xiz) = O, (27)
v“”"ﬂ?g;g(x,z)—2R“§”p(x)u§"“ﬁ(x,z)=0, (2.8

Aé(x,2)
A(X,2)

+[wereBiE (x,2) — ZRMSVP(X)WfpaB(X’Z)]O-(X'Z) =0, (2.9

2uHveB(x,z)+ ( 2uHraBiE(x, z) — u’”“ﬁ(x,z)) 0.4(X,2) FUuHBE (X, 2) = 2R* ¥ (X)) UP*F( X, 2)

where we used the biscal&r(x,z) defined in Eq.(A8) in be solved along the null geodesic. Thus this equation with
Appendix A. Equation(2.7) is solved with the normalization the boundary condition (2.11) uniquely determines
(2.6) as v*"*B(x,z) on the light cone emanating from Therefore
o the hyperbolic equatiof2.8) has a unique solution. We also
urrh(x,z)=29%*(x,2)g"P(x,2) VA(x,2). (2.10  mention that***#(x,z) is divergence-free:

The functionsv#"*#(x,z) andw*"*#(x,z) are to be deter- v#7eB. (x,2)=0. (2.12
mined by solving Egs.(2.8 and (2.9. The function '
wH?eB(x,7) is not needed but the functiart*#(x,z) plays To see this we note the harmonic gauge condition on the
an important role in the following discussion. Although it is Green’s function requires
difficult to find the solution ofv#”*#(x,z) in an arbitrary )
background spacetime, its explicit form is not required for lim v#7F, (x,2)=0. (2.13
the succ%eding discussions. However it is important to note o0
that v#”*P(x,z) is uniquely determined. The reason is as . v
follows. From Eq.(2.8) one finds it satisfies a hyperbolic \éVe (azlsg;.see that the equation fgt”*%. (x,z) follows from
equation. Hence the problem is if its Cauchy data are uniqueq' o
or not. First we note the coincidence limit of H§.9), which [Uﬂvagy(x,z)];g_g:o, (2.14
gives ’ ’
where we have used the faEfg”P;p=0, which is proved by
contracting the Bianchi identities for the vacuum case. Thus
211 We conclude that Eq2.12 holds everywhere.

The Feynman propagatdB£”“?(x,z) can be derived
Then taking the null limito(x,z) — 0 of Eq.(2.9), we obtain  from the elementary solutio@f”ﬁ(x,z) by thei e prescrip-
the first-order differential equation o#**#(x,z) which can tion:

limu#r*A(x,z) = lim2g% 4(z,x)gP (Z,X) R*¢**(X).

X—Z X—Z
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1 urreB(x z) Now, using the above-obtained Green’s functions, we
2m)2| o(x Z)jLieJrv"”“ﬂ(X,Z) compute the trace-reversed metric perturbatigtf(x) in-
' duced by a pointlike particle whose energy momentum ten-
sor is given by

GE"*F(x,2)=

XIn[o(x,2)+ie]+WF*B(x,2)|. (2.19
8P (x—2(7))
The imaginary part of the Feynman propagaB#”*#(x,z) J-g9

gives the symmetric Green’s functio*"*#(x,z), from (219
which we can obtain the retarded Green’s function — - “wr N A .
G“r*F(x,z), and the advanced Green functi@f;*?(x,z) \;;vlzgrzvs:gﬁgd_t%l;?(?ﬁze(T))Z'(T) andz*(7) =dz*/dr. Itis
as : particle mamsis small compared
with the background curvature scdle Throughout this pa-
_ 1 per, we take the unit in which becomes of order 1. There
GH*F(x,2)=— §|m[G’F”aB(X.Z)] appear relations whose dimensionality looks wrong but in
those casek is omitted for notational simplicity.
At this point, we must comment on the reason why we
= %[UMVH'B(X,Z) 3(a(x,2)) consider the pointlike particle. Even in the linear perturba-
tion, in order to generate a general gravitational field in the
—vH"B(x,2)0(— 0(x,2))], (2.1 external zone, we need to consider a source with arbitrary
higher multipole moments. However, in the following dis-

THY(X)= mJ drv*(X,7)v"(X,7)

Gﬁgc’ﬁ(x,z)=20[2(x),z]a“’”ﬁ(x,z), (2.17  cussion, we are going to discuss the situation in which those
L higher moments are negligible. Thus we consider this special
ngvvaﬁ(x,z):29[2,2(x)]ewaﬁ(x,z), (2.18 case here. Later it will become clarified in what situation this

assumption becomes consistent.
whereZ (x) is an arbitrary spacelike hypersurface containing Now, for the pointlike particle, the trace-reversed metric
X, and §[3(x),z]=1—-0[z,2(x)] is equal to 1 wherz lies  perturbation/**(x) with the retarded or advanced boundary
in the past of2(x) and vanishes when lies in the future. condition is computed as

fetaad X) = =2Gm -;U”Vaﬁ(xyz(T)).za(T).ZB(T) - f Tre”admdrv“”ag(x,z(T))'z“(r)'zﬁ(r) . (220

o(x,z(7)) Foo

7= Tretiadd X)

where 7,.yaafX) is the retarded or advanced time of the par-To distinguish the spatial points on the same three-surface,

ticle and is a scalar function which is determined by we useo-,(X,z(y)) and denote the distance betweeand
z(7y) by
, =0, 2.2
X2 Trevaad) (229 €(X): =20 (x.2(7)). (2.24

0 (X),Z(Tred)) = 0(Z( Tagy) » 2 (X)) = 1. (2.22  As we are interested in the region where the linear perturba-
tion is valid, e(x) must be much greater th&m. However,

. . concentrating on the region close to the particle even in the
Throughout this paper, we take the convention that the UPP&Lyternal zone, we can take(x) is smaller than the back-

sign is assigned for the retarded boundary condition and th&round curvature scale. becauseGm is assumed to be

Iowsgr S'gPh'S for the gd&/aznced otnga.. the retarded d much smaller tharL. Thus we can consider the expansion
ince the expressiof2.20 containing the retarded or ad- assuming that(x) is small.

yanced t'me"re”a}d‘(x) IS not convenlent_for_the computations e following calculation there appear higher deriva-
in the succeeding sections, we rewrite it by introducing a . !
new parametrization of the field point. We foliate the tives ofz, such as and zwhere a dot means the covariant

spacetime with spacelike three-surfaces perpendicular to théerivative along the trajectory of the particle. Since we are
particle trajectory. More strictly, the three-surfaces are deconsidering the case in which the deviation of particle trajec-
fined as a one-parameter family af by the relation, tory from the geodesic is a small correction due to the radia-

o ,(x,2(7))z%(r)=0. We denote the value ofof the three- tion reaction, we suppose that those higher derivatives are at
sff;fa(,:e containing the pointby 7. That is most of O(e(x)). Thus we define the inverse of the reaction
-

time scalerr’l(< €(x)) as the scale of, z and so on. We

» will see later thatr; *~Gm and this assumption is found to
[U;a(X,Z( T))Z (T)]T= TX:O' (223 be consistent.
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We first consider the time retardation or advancementhe covariant derivatives of the quantities appearing in Eq.

Sretadk X) (2.27 such asr,, e(x) and so on. With the aid of the rela-
tions given in Appendix A, the derivative af, can be cal-
Sretiacd X): = Tregadd X) — T . (2.25  culated by taking the derivative of the both sides of the iden-
tity (2.23 as
The time retardation or advancemedityy qfX) is expanded L . 1 I ,
with respect toe(x): Txu= K Qua| —2°+ gRaﬁyﬁoﬁzyov )+O(e ).

(2.28

5ret/ad\£X)
1 One must be careful thaf(x,z(r))].,#[f(x,2(7))..]- -,
=Fe(x)kH(x) 1166(X)K_3(X)Z“(TX)U;Q(X,Z(TX)) since 7, is x dependent through Ed2.23. By using Eq.
(2.28 and the relations given in Appendix A, we obtain

1
2 -4 52 4 1_
245 (X) k= (x)2(7y) | +O(€"), (2.29 6;#()():_;9#&0.;01' (2.29
as given in Eq. (440 of DB where «?(x) [ (X, 2(7)].
=—[Er(x,z(r))]T:Tx. Then the expression for the trace- #
reversed metric perturbatid®.20 becomes _ a —25a: L ay,Ble
p C( @ _g,u,B _g ﬁ_K 22 Z'B+ g(g '}/gﬁ _29 '}’2.32
0| =2k ipagh gz
Yu(X)=£26MQ,,0,p| +_ Kk "2°2°—4z2 +2°9P7Z°)R, 50700 |+ O(€2), (2.30

~22707%7R 5 2P = 2R f 277 .
[07“(x.2(7)];, =50%40,,(97° = 272°)R* 5.0+ O(€?),

‘f "o (a(n) 27 )2 () (1) e (233

xfTX dr'v B, 5 Y (2(10),2(7')2% () 2P (')

x

1
K;V(X) = Z[_ (}(X,Z(Tx))];v
+0(€%,7; te). (2.27)

1

=ng( 7+ 7% 57P+ §R“,3,/52ﬁ(r‘/z‘S +0(€%).

In the above and in what follows, we omit the suffix ret/adv

to ¢, for notational simplicity. The detailed derivation of (2.32

the above formula is provided in Appendix A. Hereafter we

also suppress the argumentsz(r,), and 7, unless there

arises ambiguity. Then using these results and Eg.11), after some compu-
The covariant derivative of the metric perturbation alsotations, we obtain the first and second derivatives of the met-

becomes necessary in Sec. lll. For this purpose, we calculaté perturbationy,,,(x):

- [2 T Y S . o
Y e(X)=2G Mg, .0 Vﬁgﬁ( = Kk 1z297P g — ;z“zﬁzy— Zz(“zB)ZVi 27\ RA) ¥ 297¢+ 2R P 272%7¢

2. . 2 Ce 2 . . 2. .
— ZHaRB) ¥ F0 i€ B 5iv7976_ _S(appP) Sgiezl__ — Sa,B 50 1€
ez YRPV Y 20 ER"‘,; 0 72%2 ez RP 5ei272°07 2 3ezaz R s 2°0°€Z

¥ ﬁ d7'v 0 5 N2y, 2(7' )z ()2 (') |+ O(eL 7 Y, (2.33

Yn DB, 0. ,(x,2(,)) is replaced by— e(x)N; () Q; .
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d)

- 2 .. .. 2. . 8. )
— -15a 5 -2 S ; 0| a5 55 10) as, ;
zpw;gp(x)—2Gmgwgvﬁg§ygp5[—?K 2°7P| 97+ k %27z -0 Yo =z 277539 ?z( P2

2. 2. L4 2 1
- Ez("‘RB)J&z€+ Ez"zﬁRVfgzezg%— Zz(“Rﬁ)E(7§z5)zfz§+ ;R“Eﬁg 9"°+272°— ?0'70'5 z7¢

. . 2. . 4. . . . 4 . . .
— —72(aRB) (v 10765k - _707BRY 8 _si€git_ __F(aRB) (Y5267 — 7978 5+ (YRI) NS
32 RPNV V2%0 3632“2 R7 oo 32 R 2 Y0 V280027 36320‘2 o' "R 26072

T—l
+0 eO,VT). (2.39

2. .. e
+ ?ZQZBZ(VR'S)Eg”U’EZgU’”

We note that among the terms on the right-hand side of thepacetimeg,,,(x), we can construct a quantity analogous to

above expressions, the terms involving the Riemann tensdhe conserved energy-momentum tensor in the electromag-

will not contribute to the equation of motion, as will be netic case.

shown later. We divide the metrig,,,(x) into the background and the
Using the above expressions, one can directly check thateviation from it,g,,,(x), as

1//W?‘f§—2R“§sz,//§P=0 is satisfied fore#0 to the order in _

which we are concerned. To the contrary, the harmonic 00(X) =0,,(X) + 89 ,,(X). 3.1

auge condition is not automatically satisfied. We find _ .
gaug y The background metric is assumed to be a solution of the

vacuum Einstein equations. We write the Einstein equations

g :8Gm@ sa (2.39 with matter source, whose degrees of freedom are repre-
O “ sented by symbolically, as
Generally speaking, thus obtained metric perturbation satis- G*'[g+ 6g]=8mGT*"[g+ 49, ¢]. 3.2

fies the harmonic gauge condition only when the sourc wv v .
energy-momentum tensor satisfies the divergence free con 5—6 e;ps)an&s [g+og] and T*[g+ 89, ] with respect to
tion, which, in the present pointlike particle case, leads to the Yur

conclusion that the source trajectory must be a geodesic. G* g+ 8g]= GO+ GLR 5g]+ G2 5g],

This point is totally different from the electromagnetic coun- (3.3
terpart, in which the Lorentz gauge condition is related to the
electric charge conservation. However this does not mean the THg+ 89, p]1=TO# [ p]+TEDH 59, ¢], (3.4

breakdown of our formalism. Since is assumed to be a

higher order quantity, the missing of the harmonic conditionwhere the superscriptn] represents the terms of theh

is responsible for the neglection of the higher order perturorder in the metric perturbatiodg and the superscript

bations. (n+) represents thath or higher order terms. Then the
Einstein equations are rewritten as

V| - T(O) ] + (1+) vy
Ill. DEWITT AND BREHME’S APPROACH 709 ¢ =T [o1+T [59,¢]

In this section, we develop our discussion in an analogous - L@ZHW[ 5q]= LG(lmv[ 5q].
way to the electromagnetic counterpart given by DeWitt and 87G 87wG
Brehme. First we derive the “conserved” rank-two symmet- (3.5

ric tensor. Integrating its divergence over the interior of the

world tube surrounding the particle, we derive the equatiorFrom theO(6g) terms of the contracted Bianchi identities,

of motion including the effect of the gravitational radiation we find G(l)/”;v[ 89]=0 when the background is a solution

reaction. of the vacuum Einstein equations. Here we note again that
the semicolon means the covariant derivative with respect to
the background metric. Thus we obtain the covariant conser-

A. Conservation law vation law

In the formalism developed by DeWitt and Brehme, cru- ".,[89,¢]=0, (3.6
cially important was the conserved energy-momentum ten- '
sor, which consists of the matter and field contributions. Inwhich is what we needed.
the case of gravity, the matter energy-momentum tensor is One can see that if the mass of the particle is small
divergence free by itself in the sense of the covariant derivaenough and so the metric perturbatiég,,,(x) is negligibly
tive with respect to the total metrig,,,(x). Thus the situa- small, the conserved tensof*’[5g,¢] reduces to
tion looks different. However, if we choose the backgroundT(®#*[ ] which is independent ofég, which implies
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T [$]=0. Thus, in the lowest order of the metric per- Sube= IX=X(T, € Q) 1< 7<75},  (3.13
turbation, one observes that the point particle moves along
the background geodesic. A

We shall now specify our consideration to the case in 2cad T =1X=X(7,€,Q");0< €< €ypg - (3.19
which 6g,,,(x) is so small that we can repla&g,,, by the
linear perturbatiorh ,, induced byT(®#*[ ¢]. Then the con-

served tensof™” can be approximated as The volume measure is given = /—g(x)d*x. The in-
tegral measures OB e aNd 2 of 7) have been already de-
f]uv[ 5g,¢]%77“}[h,¢] rived in DB:
1
=TOwvr + TDay h, - G@wrrn1. _ N
[#] .61 g7g & 1N d5,(0s,, = [ k() Gpax,Z(NQT+O(D)]]s,,

(3.7 x d2Qdr, (3.19

The first and second terms on the right-hand side of the equa-

tion vanish outside the matter distribution, while the third dEM(x)|Ecap(T)
term bilinear inh does not vanish anywhere. Therefore it

may be interpreted as the gravitational contribution to the B
energy-momentum tensor. The third term is expressed in _A(X,Z(T))E
terms of the trace-reversed metric perturbatig), as

20,,00,2(7)2%(7)]5 - ded?0)

(3.19

G(Z)/w[ h]= % szm’“’[ h]— %{ %( W‘g;“— ¢Mp;§_ lpfp:u)
[see Eqgs(4.35 and(4.45 of DB with R*¥(z)=0. See also

X (W ot W e bey) + UM 0™ Eq. (1.51) of DB. Note that our measure is with respect to
) ) — ) the vector, while DB defines it with respect to the vector
P I Y P ST+ gt density] ’
. . : Now integrating the null quantity*”. (x) over V. and
X (= PP gt 20 B0, vl i) OverVune

using the integration by part, we obtain
(3.8

The derivation of the above formula is given in Appendix B. —
¢ PP 0= [ QVE (2P ) T 00

Viube
B. World tube around the particle —
. . ° = J d2,(X)9%(2(7), 2(7)
Following DB, we introduce a further parametrization Siupet Zcaf 72) ~ Zcad 71)
which distinguishes the points on the same three-surface pa- B
rametrized byr. It is defined by an implicit relation between Xaﬁu(z( Tx),X)T'”(X)—f dV[@B(z(r—),z( 7))
x and the four parameters, i.e.,, €, andQ' (i=1,2,3): tube
. XgP ,(z(10),%)],, (%), (3.17)
7.a(%,2(1)) =~ en (1), (3.9 S
where=? . Q'Q'=1. Heren,(r,) is a set of orthonormal where T=(11+7)/2. The reason why

basis on the three-hypersurfacergfatz(7,). It is defined by g_zlg(z(T),z(rx))EBM(z(rx),x) is multiplied is to make the
integrand to be a vector a(7) and to behave as a scalar
N,i(7)2%(7)=0, (3.10 with respect tox, so that the integration is done in the cova-
riant manner.

g“PZ(7)N,i(T)Ngi(1) =&, (3.1
at somer, and Fermi-Walker transported along the trajec- C. Gravitational radiation damping
tory. In the following, we also us@“:=n%Q'. The world To evaluate the second and third lines of E8117), we

tube of the particle is defined in the same manner as in DBygye to put an assumption on the matter configuration. We
We consider the four-volume of the interior of the world (gke the tube radiugye SO that the tube is in the external
tube between two three-surfacesmfand 7,: zone. Therefore, the metric perturbation on the tube surface
3.wbe CaAN be approximated by that induced by a pointlike
Vibe={X=X(7,6,Q);11<7<71,,0<e<ey,d. (3.12 particle given in Eq(2.20. Noting that no contribution of
matter to7*"[ h, ¢] exists thereZ*"[h,¢] can be computed
We define the surfaces of this volume: as
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G o7 L apesy qeap tgen |+ 2l apersyy siayB 4 | gy
ypm 9" (x,2(74))9" s(X,2( 7)) p —4z°72P + Q20 —Eg +? —4z°2P27Q),—72'*Q) +§g 27Q,

T*'Th,¢]=
— | 82\*vA_ 70— 4V, 2P 27010+ 29°PV 5,270 %72 — 40 VP 27720+ 2V [ *0P27Z°

.. 1
—g“ﬁvyﬁfzvzmwﬂ(“vﬁ)—Eg“ﬁvym +T4'+0| z

Tfl 1) 3
st (3.18

wherez,z, z are evaluated at= 7, and we have defined L . dEV(x)g_“_ﬁ(z(r_),z( VTP (27 TR (X)
cad 7)., €<€g
=M(€o,1)g"4(2(7),2(7)2%(7) + GIPO(M, 7, *, yng).

Vire(x): =% f;dr'vwﬁug(x,z<r'))'za/(r'fzﬁ’(r'>, o

(3.19
We call the matter which satisfies this assumption as an ideal
pointlike particle.
[ - < Outside the radiug,, the metric is approximated by that
- ’ov ’ a'c \SB (-t 0
VAX)"*LJ” 0 v pr (X0 Z(7'))2% (1) 2P (7). induced by a pointlike particle, E¢2.20. Then the cap
(3.20  integration forep= €< eype is evaluated by using E¢3.18

to give

Here we have denoted the terms which contain the Riemanrf & (oY B Y

d , X)T*Th
tensor by7%”, which is at most ofd(1/€?). It is not neces- caf €0 20097 p(2(7),2(m)g" (27,0 YT TM](X)
sary to write them down explicitly because they do not affect

the equation of motion, as will be shown later. — Zsz (i_ i&) 8

Noting that the terms containing odd number @fs in 2 € €y g ﬁ(Z(T) 2Am)Z(7)
the integrand vanish wheit?Q) integration is done, and that
[d020%0F=(47/3)(g**+z°ZP), the integration over the +0(Tr1,ewb9} (3.23
surface of the tub& .. for small §7:= r,— 1, is evaluated
as Thus setting

B B 7 Gn? -
L dS.,(X)g° (@), 2(1))GP. 2 70 )T Th](X) (o, H=m(n)+ 35—~ (3.2
tube
, 7 _ 2 _ s we obtain
= — Sa__ _a\—= y
Gm |< 2Etumz 3z V5927272

f d3 ,(x)9%4(2(7),2(7)
2ca;:( 7))~ Eca;{ 1)

2.
—§zaV7ﬁ+(va VT V) 2P
X gP ,(z(7), ) T*"[h](x)

—%vﬁ(THO(T;l,ewbe) S7+0(87%). (3.21)

H _ 7sz],,__ o
=lim(n)+ = Z(n)+m(7n)z%(7) 5T+O(57'2).
2 €ype

(3.25
The surface integration over the caj,, requires the

knowledge of the metric in the internal zone. We assume that Finally, we consider the remaining volume integral
the matter configuration and the metric is not perturbed mucI:fVt de[g 59 M] 7**. Since[g® 59 ,J ,~€(), again we
and is kept spherically symmetric inside the radlusexpect that the integration far<e, vanishes for the ideal
€o(>Gm) to sufficient accuracy. In other words, locally the point-like particle to sufficient accuracy. The integration for
particle behaves as if it were an isolated object. Mathematiz> ¢, is at most ofO(Gn?e,87). Thus we may neglect the
Ca”y, we assume that the cap integration dot €0, which in contribution from the volume integraL
an unrigorous manner defines the particle momentum Ppytting all results together, we obtain the equation of mo-
pjo(r), is proportional taz“(7): tion
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m( T)i“+h’1( T)-Za IV. MATCHED ASYMPTOTIC EXPANSION

> > In this section we give an alternative derivation of the
= : SB7Y76 4 Zyavy 5B tion of motion obtained in the previous section in a
=G| 52V, 52P272°+ 22V 52 equatio | p |
3 3 more rigorous way by using the matched asymptotic expan-
e sion technique.
—(Vy V5=V, P27

} A. Matching scheme

1 _
+ ZVe+ O(€ewper 77 1) (3.26

2 To begin with, we state the general concept of the asymp-
totic matching. We first prepare the metrics in both internal

The leading contributions from the terms proportional to theand external zones by using different schemes. In the internal
Riemann tensor which we have neglected are at most of theone, we expect that the metric can be described by using the
zeroth order iney e (OF €5). As they should be vectors, they black hole perturbation. Namely, we assume that the particle

must take the fornG mzR;LVpU'Zu'Zp'Za OerZR,uVPU_gVP'Za' by is represented by a Schwarzschild black hole in the lowest

means of the dimensional argument. Thus all the leading"der of approximation. In the present case, the perturbation

terms disappear and the remaining terms become higher of8 caused by the tidal effects of the curvature of the space-
der in eype (OF €0). time in which the particle travels. We call this construction

Now we consider the normalization condition Of the metri_c the int_ernal schem_e. In order _to make this
(z(r))i“(r)iﬁ(r)zo This gives scheme valid, t.he linear extension of the internal zone
Yap ' 9 around the particle must be much smaller than the back-
ground curvature scale. We wuse the coordinate
m( T):sz[§vlg 2770+ EVB'ZE], (3.27 {X&={T,X"} (a:Q,1,2,3i=1,2,3) for the internal sc_hemg
3P 6 and|X|(:= yX'X") is assumed to represent the physical dis-
tance scaléin this section, we adopt the Minkowskian sum-
and it can be integrated as mation rule oma,b, . .., and theKronecker summation rule
oni,j, ... over the repeated indigedn the external zone,
5 . 1 as discussed in the previous sections, we expect that the met-
gzﬁz%L 1—2957> W)y (2( 7))], (3.28 ric is represented by the perturbations induced by a particle
on a given background spacetime. We call this construction
) of the metric the external scheme. We require that the met-
where we have defined rics obtained in both schemes be matched in the matching
region of both zones, by considering the coordinate transfor-
) ur(X) mation between the internal and external zones. Safely, we
. may assume the existence of the matching region as long as
= 726G mf g A0 4yer g (,2(7 )2 (7)2% ('), ~ GM<L~1.we set the matching radius|ag| ~ (GmL)¥? by
Fo using the spatial coordinates of the internal scheixe,
(3.29 Then, writing down the metric in the internal scheme, we
have two independent small parameteSL andGmv/|X| in
the matching region. The power expansion with respect to
hese two small parameters allows us to consider the match-
ing order by order.
First we consider the expansion of the internal scheme.
Recalling that the perturbation in the internal zone is induced
by the external curvature which is characterized by the

m(7)z*. o ) ) ) lengthL, the metric can be expanded in powerdX¥f/L as
Substituting Eq(3.27) into Eq. (3.26), we finally obtain

m(7)=mj 1+

which is the part of the trace-reversed metric perturbatio
due to thev ,,,45(X,2) term (i.e., the so-called tail terjin
the Green’s functior{see Eq.(2.20]. Since ¢, is ex-
pected to be 0O(Gm), Eqg. (3.29 tells us that we can con-
sistently replacen(7) by min Eq. (3.26 except for the term,

- 1 1
Gan(X) = OHap(X) + T PHas(X) + 7P Hap(X) -+,

. .. .. .. 1 .
mz(7)=—m 52“252725+ 9*¥(2)272° - Egaﬁ(z)zﬁzy (4.1)
e bio L s g where (OH,(X) represents the unperturbed black hole met-
—22'97(92°= 79%(2)g7(2) | (7) ric. We expect that?H,,(X) will be given by the standard
linear perturbation of the black hole. Later, we find that the
X (o) gy 6(2(7)), (330 matching condition requires thdt’H,,(X) should vanish,

which is consistent with the notion that the spacetime curva-
where we have also used the relatiov,z,(z(7)) tureis ofO(1/L?2). Thus the standard black hole perturbation
= Y(o)ap:,(2(7)) Which follows from Eq.(2.11. If we im-  theory applies up t6?’H,(X). As is known well, the linear
pose the physical boundary condition with no incomingperturbations of the Schwarzschild black h¢lel] can be
waves from the past null infinity, we should take the upperdecomposed by using the tensor harmonics, which are clas-
sign (i.e., the retarded boundary conditjoof Eq. (3.29 for  sified by the total angular momenturd, The monopole
¥w)py- The meaning of this equation is discussed in Sec. Vmode J=0) corresponds to the mass perturbation. Thus we
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may set this mode to vanish since it is natural to suppose that Enm))Hab~|x|<mfn). (4.3
the change of mass due to the radiation reaction is small. The

dipole modes {=1) are related to the translation and rota- |y order to write down the external metric in terms of the

tion. The translation modes are purely gauge and thus we Sgiternal coordinates, we consider the coordinate transforma-
them to vanish to fix the center of the black hole. As we argjon from x to (T,X') given in the form

considering a nonrotating black hole, we also set the rota-

tional modes to vanish. In general, the higher modes contain 0. ,(x,2(T))=— F(T,X). (4.4)
gauge degrees of freedom as well as the physical ones. How- ’

ever, for these higher modes, we do not give any principle tQye assumexi=0 corresponds to the center of the particle,
fix the gauge for the moment. Further we expand the metrig(azza(-r)1 hence F,=0 at XI=0. We suppose that the

with respect tolGnv[X| as right-hand side of Eq4.4) can be expanded in positive pow-

ers of X' as
(OH 15(X) = Dap+ GM)Hap(X) + (GMZPHap(X) + - -,

L) L Gm,, F(TX)=f i(T)Xi+Ef (XX
L Hab(x):E(O)Hab(x)+ T(l)Hab(x) “ “ 2
2 1 o

+@E%§Hab(x)+'“a +§fa”k(T)x'xek+..._ (4.5
1 1 Gm Although it is possible that more complicated terms such as
F(Z)Hab(X) ZFEgiHab(X) + FE%;Hab(X) X'XI/|X| may appear, we simply ignore these kinds of terms.

We shall find it is consistent within the order of the approxi-

(Gm)?2 mation to which we are going to develop our consideration

+ ?g;Hab(X)ﬂL el (42 below. Heref,; ...; (T) is totally symmetric foii, - - -i, and

is at most ofO(L~(""Y)). Using Egs.(A9) and (A1) in
Note that, from the definitions of the expansion parametersAppendix A, the total derivative of Eq4.4) gives the im-
the component of the metric behaves as portant relation

a a
1

ar Dt a7

i 1Dfaij i 1 dz¥ s i 3
(X + 5 g7 (TXXI+ SR, 5@ THIA(T) 57 (MTXXI+O(|X[) |dT

g%,Z(T),x)dx#= 3 5

1 . 1 . )
+| 4+ f”‘ij(T)XJ + Ef“ijk(T)XJXk+ 6Raﬁya(Z(T))fBj(T)fyi(T)f‘Sk(T)XJXk-I- O(|X|3)) dX'. (4.6
|
Then, with the aid of Eq44.4) and(4.6), the external metric © Gm(l)
9,.,(x) can be transformed into that written in terms of the GMy)hap(X) =G Mp)hap(X) + ——(1)Nan(X)

internal coordinates by the relation

Gm(z)
5 aqyb_= v + P_(l)hab(x)"— SR
Jan(X)dX?dX°=g,,,(X)dx* dx". (4.7
2 _ 2(0) (Gm)?
Generally, as the external metric can be expanded by (GM)%(2)hap(X) =(Gm) <2>hab(x)+T(2)hab(x)
GnV/|X|, we write it as
(G m)z(z)
+ ? Z)hab(x)+ BRI (4.9
aab(x):gab(x)"‘Gm(l)hab(X)"" (Gm)z(Z)hab(X)+ T
4.8 As before,
Enm))hab~|x|(m‘”). (4.10

ThenGm(3)h,p(X) can be recognized as the linear perturba-

tion on the background,,(X). Further we expand it with _
respect tdX|/L as For brevity, we call{ih,p, or {7/Hap the () component

and the matching condition for them as th® (natching. In
the matching regiofi| X|~(GmL)*?], the () component is
of O((GMV/L)(M*M’2) The matching condition requires that

1 1
—(0) (1) (2 .
9an(X) = (0)Man(X) + [0)Nab(X) + 20)han(X) + - -, all the corresponding terms in Eq#.2) and(4.9) should be
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identical. Then what we have to do is to equate the terms ofve set the perturbation @f=0,1 modes to vanish. Thus we
the same power ifX| to desired accuracy. Thus the condi- conclude that we may sétH,,=0.

tion for the (') matching is

Gm"

>

ry Hab
m'—n'=m-n LT ()
m'sm
n’ m)n+1
_ E (Gm) (m/)H 10 ( |X|(m n)
I Lm' (n’)Mab Lm+1

(4.11

B. Geodesic:(3) and (§) matching

The @) matching becomes

_(dz 2 (Gm)
—-1= ﬁ) (T)y+0O - (TT) component,
(4.13

s

7 (Mfa(M+0

m .
T) (Ti) components,

(4.19

), (ij) components.

(4.19

Gm
6ij = f4(MTa(T)+ 0|

We begin with the ) and ) matchings, which are of Equations(4.14 and (4.15 indicate thatf*(T) are spatial

O((Gm/L)%) and of O((GnYL)Y in the matching region,

triad basis along the orbit: i.e.,

respectively. First we consider the external scheme. In these

matchings the external metric is the background itself. Here,

the necessary order of expansion|X| is O(|X|). Since
9,.,(X)dx“dx"=g,(2)9%,.(z.X)97 (z,x)dx*dx" [see Eq.
(1.33 of DB], we get

g (X)dx“dx”

_[ dz

a7 (DM + G (Mg (TX

X2

Lz

)2 dz* _ Df,
(M+257(M 47

Lz

ol X

T

)XI+0

aT ”dex

+ 15T fo(T) + 2fai(T)fajk(T)Xk

L_

+0 dXidXi. (4.12

Comparing the above with E¢4.9) and looking at the de-
pendence onX, one can readily extract ouso) ap and
(O)hab to the lowest order ifGm/L.

Next we consider the internal scheme. T@)ac(omponent

is trivially given by the flat Minkowski metric. To know the D (dz* Gm1l
() component of the internal scheme, it is better to consider aT\aT (T=0 T L

¢ _dZf Gm
f“k("')f'gk("'):SJ“B(Z(T)%L T (M7 (M0l T )
(4.1
The (§) matching becomes
0= dT(T) dT (T)XI
Gm [X|
O(T T) (TT) component, (4.17

Z(TﬁmmT»o+ﬂmT>

dT

Gm|[X| .
+0 — ) (Ti) components, (4.18

— a k
0—2fa(i(T)f j)k(T)X +0 TT

), (ij) components.
(4.19

Then the covarianT derivative of Eq.(4.13 and that of
Eq. (4.14 with Eq. (4.17) result in the background geodetic
motion:

(4.20

all the ¢) components at the same time. Namely we consider

the linear perturbation of the black holéH,,. For this

One can see that the internal time coordindtbecomes a

purpose, we consider the decomposition of the linear pertumproper time of the orbit from Eq4.13) in the lowest order in
bation in terms of the tensor harmonics as discussed in ApSm/L. In the same manner, E.17 and the covarianT
pendix C. Since the time scale associated with the perturbaterivative of Eq.(4.15 with the (ij) antisymmetric part of
tion should be of the order of the background curvature scal€q. (4.18 give the geodetic transport of the tridd;(T),

L, it is much larger than the matching radiu6raL)2.

Therefore the perturbation may be regarded as static. It is
known that all the physical static perturbations regular on the
black hole horizon behave as|X|? asymptotically, where

J is the angular momentum eigenvalue. However,
(MH,,, there exists no term which behaves agX|™,

(m=2). Hence, except for gauge degrees of freedom,
(MH,, contains onlyJ=0,1 modes. As mentioned before,

D fa o Gm1l )
g iM=0 T/ (4.21)
inFurther, from Egs(4.18 and(4.19, we can see
N Gm1l
F5(M=0|—1 (4.22
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C. Hypersurface condition: (3) matching

We now proceed to th(—:(%I matching, in which the exter-
nal metric is still given by the background but there appea
nontrivial perturbations of the internal scheme. Although it is

of O(GnmV/L) in the matching region an®((Gm/L)?)

higher than the remaininﬁx component, we consider it first

for the reason which will be clarified below.

In order to obtain{Z)h,,, we expand the external metric

in terms of the internal coordinates up @(|X|?), i.e., we
have to go one order higher than Eg.12. Then the g)
matching becomes

1<2)|—| =R T dz* TB(T dz’ T2 (T)XIXI
[20HT1= Rapye(@(M) 57 (DA 47 (MF5(T)

Gm |X|?

- z) (TT) component, (4.23
1o 1dz ik
zoHni=5 7 (Diaik(MXIX

L2

2 dz* 8 ) s ik
+§Raﬁyﬁ(Z(T))ﬁ(T)f (MM FT)XIX

Gm |X|? .
- 17/ (Ti) component, (4.249

Lo, =1 (T F%(T)XEX!
L20Mj afi i)kl

1 a B S kyel
+ 3 Rapys @M DM (T)XEX

(Gm|X|2
0]

T?) (ij) component, (4.29

where Eqgs(4.21) and(4.22 have been used to simplify the

expressions. Since there appear terms which desdri2
perturbations of the internal scheme, t%& (natching does

not determind *;;,c without specifying the gauge condition of

the internal scheme. Here we fix it as follows.
As before, we first sef=0,1 modes oft3H,, equal to
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Let us now turn to the modes higher thams-1. The
(TT) component containd=2 mode, but it just determines
Ithe physical perturbation of the internal metric. The higher
modes are absent from the beginning. Th&)(component
containsJ=2 and 3 modes. As for thd=2 mode, it does
not involve f{j, . Hence it also gives the physical perturba-
tion of the internal metric. Thd=3 mode of the Ti) com-
ponent of {3hyy is given by

1dz* ik Gm |X|?
7 a7 (D (MXX+O| =

3 _T) (4.28

where(ijk) means to take the symmetric traceless part of the
indices(see Appendix € Since this is a pure gauge degree

of freedom, we may set it to vanish. Then combining this

with Eqg. (4.26), we find

dz® Gm 1
ﬁ(T)faijk(T):O iz (4.29
We do not discuss the highémodes in thei() component,
since it does not give us any information which is necessary
to derive the equation of motion.

Then, from Eqs(4.14), (4.22), and(4.29, we find

dz® _odz
F(T)U;Q(X(T,X),Z(T))— - F(T)FQ(TIX)
|X|*

to the lowest order irGm/L. Comparing this with the hy-
persurface condition of,, Eq. (2.23, one finds that the
T=constant hypersurface differs from the=constant hy-
persurface only by (e*)=0(|X|%). Then following the cal-
culations done in Sec. Il again, one finds they are unaltered
even if we replace E¢2.23 with
[0, 2(7)2%(7)] =, = O( ). (4.3

The only effect of this replacement is to ad@e*) to the
right-hand side of the equivalent formula13) in Appendix
A. Thus T can be identifiedr, to the lowest order in

zero. Applying the discussion given in Appendix C, we find GMVL. The reason why we have done ti§ (hatching prior

the (TT) component does not contail=0,1 modes. As for
the (Ti) component, it contains nd=0 mode but the

to the remaining%) matching is to establish this equivalence
of Tandr,.

J=1 mode is present. Setting it to vanish to the lowest order

in GnVL, we find

dz® Gm1
ﬁ(T)faikk(T):O o+ i3 (4.26

Turning to the {j) component, we find the term with the

Riemann tensor contains neith&=0 nor 1 mode(see Ap-
pendix Q. Hence the vanishing af=0,1 modes implies

Gm1
[foi(M (M) ]3201=0 TF), (4.27)

where[ - - - ];-01 means theJ=0,1 parts of the quantity.

D. External perturbation: (9) matching

Now we proceed to the first nontrivial order @nv|X|.

For this purpose, we must develop the external scheme.
However, since the time slicing by the internal time coordi-
nateT is now identical to that byr, in the lowest order in
Gm/L, we can use the previously obtained form@#a27)

for the external metric perturbation.

There remains the(l)I matching among the matchings
which becomes oO((GnVL)¥?) in the matching region.
This matching relates the masses of the particle in both
schemes. Since this matching is@€(|X|/L)?), it is allowed
to consider as if the background external metric were flat. As
is well known, the linear perturbation induced by a pointlike
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particle of masam in the flat background spacetime is ex- E. Radiation reaction: (1) and ({) matchings
actly equal to the asymptotic metric of a Schwarzschild black .
hole of masan in the linear order if. This fact indicates There are many components which become of

that the matching gives a consistency condition at this ordelO((GnvL)*) and O((Gm/L)%*?) in the matching region.

In order to directly check the consistency, we rewrite Eq.However, we are interested in the leading order correction to
(2.27) in terms of the internal coordinates. From E4.10, the equation of motion with respect @m/L and we found
we have only to consider the first term of the right-hand siden Sec. IV B that in the lowest order the terms which behave
of Eq. (2.27). Using Egs.(4.6), and(4.7) and the fact that as ~|X|° or |X|! determines the motion of the particle.
€=\ 0= F(T,X) F*(T,X), the trace-reverse of Eq. Therefore we consider thd)(and €) matchings here.

(2.27) is transformed to give In order to perform thel) and ¢) matchings, the calcu-
2 2 lation in obtaining Eq(4.32 must be done to the linear order
GmM(Phap(X)dXedXP=Gm |7|de+ de'dx' in |X|. This can be done in the same way with the aid of the
4.32 expression ok?(x) given in Appendix A. Using further the
' results obtained in Sec. IVB and C, we find the matching
which corresponds to the asymptotic form of the Schwarzsequations
child black hole of massn in the harmonic coordinates.

Gmy, d 2 dz* _ d7* m) 2
T(l)HTT: (M+1 +Gm (T) T(T)®a,8(T)+O —] |, (TT) component, (4.33
Gm, d “ dz* .
— (JHTi= o7 (Dia(T)+Gm—= (T)f'g(T) ap(T) +O( ) (Ti) component, (4.34
Tm(l) ={f(T)f oj(T) = 8} + GMIY(T)FE(T)O ,4(T)+O ) ) (ij) component, (439
Gm, dz* dz¢ _ d7f | i ycky!
T H=2g7 (T dT T (M gF (MM 4p,(TX 3|X|3fai<T>f“jkl<T>XX‘XX
5 dz* Gm\?|X|
3% aﬁ'yﬁ(z(T))dT(T)f (T) (T)f (T)XIX+0 - ) (TT) component, (4.36

Gm dz¢ N
L2 (1)HT| dT( ) aIJ(T)XJ+f |(T)

)XI+Gm dza(T)fﬁ TfN(T)O,4(T)X —2R ( (T))g TfA(T)
aT i( i aBy aByd z dT( i

Gm
o[

2
) %) (Ti) component,

32 1y (yxi— (z(T))dZ (AT (T o THXIXE
X“aT j 3|X| Rapys dT K

(4.37

where According to the discussion given in Sec. IV B, we have
(1)Hab 0. Thus the right-hand sides of Eq4.33), (4.34),
GMO ,45(T):=h()ap(z(T)), and (4.35 must vanish. As fOIfl)Hab, we cannot set them
equal to zero. However, again from the condition that there
GmMO ,5,(T):=h(,y0p,(2(T)), (4.38 are noJ=0,1 modes, the corresponding parts on the right-
hand sides of Eqg4.36 and(4.37) must vanish if they are
with extracted out. Following the discussion given in Appendix C,
one finds the terms involving the Riemann tensor contains no
1 J=0,1 mode. Furthermore, thk=0,1 mode of the term in-
R w) e (X) = () (X)) — ng(x)t//(w(x). (4.39  volving f% in Eq. (4.36) is proportional to

fai(M (M li=01, 4.4
Note that h(v)w(x) is the metric perturbation due to a6 (T ]1-01 (440
U,uvaﬁ(x z) in the Green'’s function. Theif) component of which vanishes at the lowest order Gm/L by Eq. (4.27).
the (1) matching is not presented here since it will not beHence thel=1 modes of the remaining terms in E¢4.36)
used in the following discussion. and (4.37) are extracted out to give
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dz* _ Df, dz* dZf Also, the triad bases are not properly normalized in the
0=2d—T(T) aT (T)+Gmd_T(T)d_T(T)fyi(T)G)a,By(T) external metric. Thus we defineg®(7), such that
eai(T)eaj(T):éij ande“i(7)=(5ij-I—Sij)f“j—Gm(dZ"/dT)
2 X(dz?/dT)f7@4,, wheres;; is of O(GnV/L) and the last
+0 (T) {)» (TT) component, (44D term is added so as to satisfy the orthonormal condition,
e,i(7)(dz*/d7)(7)=0 [see Eq(4.34]. We find

Gm 2)
T) , (4.4

2
+O(<T) [)' (Ti) component (442 and again this is guaranteed to stay small. Then the evolution
of the normalized triag®;(7) becomes
The J=0 mode of Eq(4.36 is shown to vanish, while that

dT

d 142
0= 14(T) g (1) + GO 1 (T) = (T)FAL(T)E7(T)

Gm 8
Sij =~ 5 04g(Nf(NFF(1)+0

of Eq. (4.37) exists but it does not contain useful informa- D N Gm/dz* dZ dZ° op dz¥ s

tion. The matching condition for this mode just gives the ;& (7=~ 5 | G- G-¢i g, 79" (@4

equation which determinesl¢*/dT)f; to the first order in

GnL. wss 5 97 Gm\?1
The covariantT derivative of Eq.(4.33 and that of Eq. 972" | (1Opgys(N+O\| | /-

(4.34 with Eq. (4.4]) give the equation of motion with lead-

ing correction due to the radiation reaction (4.48
D dz¢ m
7 g (T == 510, (T +0%,(T)=05,(T)] V. IMPLICATIONS

In this section, we first consider the physical meaning of

2 the equation of motion obtained in the preceding two sec-

T) L (443 tons. Since the equation of motion we have obtained con-
tains an unknown functiom ,,,,5(x,2), we need to give a

The leading correction to the evolution of the “triad” basis, method to explicitly determine the particle trajectory. Here

f«(T), are also obtained from E@4.41) and the covariant we consider a couple of possibilities to calculate it in the

dz? T dz” T O(
“ar (Mar(D*

T derivatives of Eq(4.35 with Eq. (4.42 as case of a specific background, such as Kerr spacetime.
b G In order to make the meaning of the equation of motion
Do M . @ _ @ manifest, we divide the perturbed metric in the external
gt (D=7 5 10% (N +0%(T)=0,5,(T)] scheme into two pieces as
dz” Gm\?1 —
X f,BI(T)d_ZT(T)+O( Tfn) E) . (444) h,LLV(X)_h(u)ﬂv(x)+h(v)ﬂv(x)! (51)

) ) ) , i whereh,),.,(X) is the part due to the tail terfefined in
Smce _the internal time cogrdmaﬂé is not properly nor- g (4.39] andhy,.,(x) is the part due to tha,,, ,; term in
mf\hzed in the external metric, we define the proper timey,e Green's functioficorresponding to the first term on the
7=7(T), such that §z/d7)"=—1. It is easy to see that We (jght hand side of Eq(2.20]. The singular behavior of the
should choose perturbed metric in the coincidence limit is totally due to
dr Gm dz¢  dzf Gm) 2) hwur(X). Thus, we introduce the regularized perturbed
L

T 1+ T“B(T)F(T) E(THO( spacetime defined by

(4.45

Since the second term on the right-hand side of this equation

is proportional to the small perturbation induced by the parWhich has no singular behavior any more. Then we find the
ticle, it is guaranteed to stay small even after a long timeequation of motior(4.43 and the evolution equation of the
interval compared with the reaction time scaletriad basig4.44) coincide with the geodesic equation and the

a(v),u,v(x)::gy,v(x)—f_h(v)y,v(x)l (52)

7,=0((Gm/L) "1L). Then Eq.(4.43 becomes geodetic parallel transport, respectively, in this regularized
5 5 perturbed spacetimg,,, . To see this let us consider the
EE( )__G_m ﬁd_zﬁﬁd_sz QB(Z)E’d_Z parallel transport of a vectorA® along a geodesic
dr a7 \P7 " 2 \4dr dr dr dr <Y dr dr x¥=z%(7) in this spacetime. It is given by
dz? dz’) = y
— “‘52—— ® D(U) a._D a a dZ_
9°%(2) 57 g7 1 (T Opys(7) S AT= AT O A= =0, (63
Gm\?1 . .
@] - ) (4.49  to the linear order irh(,,, where

It is easy to see that this equation is identical to that obtained

1
: . @ = (Nt Ny @, (5.
at the end of the previous section. () py =50 M) "y~ Nwrpy - 54
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Then one recovers Eq$4.43 and (4.44 by identifying s by DeWitt and DeWitt[15] by assuming the background
with T and replacingA® with dz*/dT or f¢;. This factis the  gravitational field is weak so that its metric is given by the

main result of this paper. small perturbation on the Minkowski metric:
We note that the present equation of motion is analogous 0
to that in the electromagnetic case, except that the instanta- 9ur™ N T hiw. (5.7

neous reaction force which is proportional to higher deriva-
tives of the particle velocity is absent in the present caseDeWitt and DeWitt calculated the relevant part of the
This is because the particle traces the geodesic in the lowe&reen’s function perturbatively to the first order hﬁ)z by
order of approximation. If an external force field exists, theusing the Minkowski Green’s function. An analogous calcu-
assumption of the geodesic motion in the lowest order breakiation seems possible in the case of gravity to evaluate
down and furthermore the contribution of the external forceh,,, ,,, though it seems difficult to develop such calculations
field to the energy momentum tensor must be taken intqo higher orders im;bg,
account. Since this fact makes the prOblem too Complicated, Before C|Osing this Section’ we give comments on some
it is beyond the scope of the present paper. proposals to the equation of motion including the effect of
Now let us consider the way how to constragty,,. AS  the gravitational radiation reaction. One is the use of the
stated in the beginning of this section, in order to evaluatgadiative Green’s functiota half of the difference between
the particle trajectory explicitly, a practical scheme to calcu-the retarded and advanced Green’s functiamshe case of a
late g(,),, must be developed. Unfortunately, we do notKerr background16]. As seen easily by using the results
have any scheme which can be satisfactorily applied whegbtained in the previous section, the use of the radiative
calculating the particle trajectory with the effect of the radia-Green’s function instead of the retarded one results in the

tion reaction, even on a specific background spacetime suglpjacement ofy,y,,(x) by #/2% (x), which is defined by
. . Lo (v)uv (v)uv '
as a Kerr black hole. Here we just give a few primitive

discussions on this matter. For definiteness, we focus on the +oo

case of the retarded boundary condition. W, (X): = —GmJ’ d7'vgyer g (X,2(7"))
Basically, there seems to be two approaches for calculat- o

ing "g'(v),w (or equivalentlyh,,,,). The first one is to calcu- x 2% (7128 (+'). (5.9

late h,,, directly. The second one is to calculate

Ny =N+ Ny @nd subtrachy),, from it. In the fol- 41450y has proved that the back reaction force computed
lowing, we discuss only the first approach. As for the second,ging the radiative Green’s function correctly gives the loss

approach, we have nothing to mention here, but this directio¢ (1o energy and the component of the angular momentum

of research may be fruitful. _ _ _of the particle in quasiperiodic orbits. However, we do not
_ By definition,h,),,, evaluated on the particle trajectory is think that this fact indicates the correctness of the prescrip-
independent of the past history of the partitieherefore if  ion hecause those constants of motion are special ones
we consider the metric defined by which reflect the existence of the corresponding Killing vec-
1 tor field. For example, it is still uncertain if the radiative
5 P5T— = po Green’s function is useful in evaluating radiation reaction
y22 v g,uV(X)g (X) .
2 effect on the Carter constant. We would like to come back to
A, this point in future publication.
Xf g dT’G;e;aB(X,Z(T’))'Za(T')'ZB( ), Recently Ori has argued also in the case of a Kerr back-
—o ground that the partial wave decomposition of the retarded
(5.5 Green'’s function with respect to the spheroidal harmonics as
' schematically shown above would result in the automatic
for any finite A7 (>0), it will not containhy,,,, when it is removal of the divergence when averaged over several or-
evaluated on the particle trajectory. The difference betweeRita! periods[17], thus making it possible to derive the ra-
h(AVT) andhy,,,, comes from the integral over the small in- diation reaction to the Carter constant. We do not think r_ns
m argument works. Let us consider expansion of the Newtonian

(A7) —
h,,”(x)=

Yuv

terval: potential of a particle off the origin of the coordinates by
T . . using the spherical harmonics. If one calculates the self-force

~Gmf dr’vp(mﬁ(x,z(T’))z“(r’)zﬁ(r’). (5.6)  on the particle, one finds the contribution from each partial

AT wave is finite. However, the net self-force is intrinsically

) ) ) o ) ill-defined and if one sums up all the contributions from the
Sincev ,,4p(x,2) is a regular function, this integral will be gifferent modes, it is easy to see that thus obtained self force
negligible for a sufficiently smallA7. Thus limy,oh(”  diverges. Thus the finiteness of the partial wave contribu-
will give heyp, - tions does not imply that of their sum.

In the case of the electromagne(iectoy Green'’s func-
tion, a calculation along the above strategy was performed V. CONCLUSION
In this paper, we have derived the equation of motion of a

2There is a possibility that the future light cone emanating fromparticle on a given background including the effect of the
z crosses the particle trajectory. Since inclusion of this possibilitygravitational radiation reaction, i.e., with corrections of order
makes the problem too complicated, we do not consider it here. (Gm) wherem is the mass of the particle. Although we use
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the terminology “radiation reaction” here, it may not be matched asymptotic expansion is very powerful, there is a
appropriate in a strict sense because the equation of motidsig possibility that we can extend the present analysis to the
we have derived may well contain something more than juscase of a spinning particl@1].

the radiation reaction. In fact, in the electromagnetic case,
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magnetic counter part developed by DeWitt and Brehme
[11]. Due to the nature of gravitational interaction, there ap-
pears an ambiguity concerning the renormalization of mass APPENDIX A NOTATION AND BASIC FORMULAS

of the particle, which cannot be resolved within this ap-  Here in this appendix, we summarize our notation and

proach. We have then derived the equation of motion by,asic formulas. As for the formulas already derived in DB,
setting an ansatz which seems physically reasonable withoyje just write down the results.

justification. In order to overcome this problem, we have
developed a method based on the matched asymptotic expan-
sion, assuming the local geometry around the particle is de-
scribed by a spherically symmetric black hole plus tidal per- (i) The Riemann tensor and the Ricci tensor are defined
turbations. This latter approach has proved to be venpy

powerful and we have succeeded in obtaining the same equa-

1. Basic notation

tion of motion as obtained in the former approach. R =T e p = T et TH G D= TG 7, (AD)
The correction term ofO(Gm) is found to be entirely ot

given by the part of the metric perturbation which is due to Ruv =R e, (A2)

the tail term of the Green’s function. Defining the regular-

ized metric as the background plus this tail part of the per- Ri=R",. (A3)

turbation, we have found that the equation of motion is the
geodesic equation on this regularized perturbed metric.
Assuming the background is almost flat, DeWitt and De-
Witt [15] evaluated the tail part explicitly for the electromag-
netic case. Analogous calculation for the gravitational case
was done by Carmelil9] and it was shown that the tail part i
correctly reproduces the lowest order post-Newtonian correc- Qial2(10): =[Qia(X,2) Je=2(y
tions to the equation of motion. However, no such calcula-
tion has been done for the background with strong gravity, Q;u(%,2(m)): =[Q: (X, 2) Jz=2(r, » (Ad)
such as a black hole geometry. It is a challenging subject to
formulate a systematic method to evaluate the tail part of thavhile
metric when the background gravity is strong. .
It is important to note that the particle does not have to be[ Q(X,2(7))].,. 1 = Q.. (X,2( 7))+ Q.o (X, 2( 7)) Z*(7y) T . -
a black hole but the resultant equation of motion can be (AS)
equally applicable to any compact bodies such as neutron
stars. The essential assumption here is that the only scale
associated with the particle 8m and the structure is basi- 9€
cally spherically symmetric. In this sense, we have shown L
the strong equivalence principle to the first ordeGm. o(%,2)= 39" (x)0,,(X,2)0;,(X,2)
We also emphasize that our result gives a justification of
the so-called black hole perturbation approach for the first
time. In the black hole perturbation approach, one calculates
the gravitational radiation from a particle orbiting a black
hole with the assumption that the particle is a pointlike ob-
ject with the energy momentum tensor described bydhe  (v) The defining equations of the parallel displacement
function. Although this approach has been fruitful, there hagjyector[Eqgs.(1.31) and(1.32) of DB]:
been always skepticism about the validity of #é&inctional

(i) Symmetrization and antisymmetrization of the tensor
indices are described by =(t*"+t"*)/2 and tl*"]
=(t*"—t"*)/2, respectively.

(iii) For an arbitrary bitensa®,

(iv) The basic equations satisfied by a half the squared
odetic intervab(x,z) [Egs.(1.11) and(1.12 of DB]:

— %g“ﬁ(z)a;a(X,Z)(T;g(Xaz),

limo(x,z)=0. (A6)

X—Z

source. What we have shown in this paper justifies the use of Jpa(%,2)977(X) 0 5(X,2) =0,
the § function in the source energy momentum tensor.
In this paper, we have considered a particle which is es- g_/m;ﬁ(x,z)gﬁy(z)g;y(x,z)20,
sentially structureless. The next step will be to include the
intrinsic angular momentum of the patrticle, i.e., to consider a Iimg_,f’(x,z)z 8,° (A7)

spinning particle. As we have found the method of the x—z
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(vi) The definition ofA(x,z) [Egs.(1.50), (1.51), (1.60,
and (1.61) of DB]:

A(X,Z)::|?M(Z,X)O';M’3(X,Z)|. (AS)

2. Basic formulas
(i) Equation(1.28 of DB:

0. 0p(X,2) =0 op(2) + %Rayﬁ‘s(z)o;y(x,z)o;ﬁ(x,z) +0(€d).
(A9)
(ii)
EW;B(X’Z) =30"7(x,2) R, 55(2) a%(x,2)+O(€?),

?a;v(xlz) = %W'B(X,Z)EV(X,Z) Raﬁy&(z) o’ 5(X,Z) + 0(62) ’
(A10)

which can be obtained from Egl.40 and (1.4 of DB.
(iii) Equations(1.53), (1.64), and(1.73 of DB:

7 up(X,2)
_ 1
:_gp,a(x!z) gaﬂ(z)_ gRaylgé‘(Z)(T;V(X,Z)U;[S(X,Z)

+0(€%). (Al11)

3473

0 (X,2(7))= = Gap(Z(1))2%(1,) (1) + O(€).
(Alo6)

In the above computation, we used E¢&9), (2.23), and the
normalization condition ¢z d7)?=—1+0O(Gn/L), which
was proved to be consistent in Secs. Ill and IV. Then we
obtain

1

a(x,z(7))

= Tret/ad¥ X)
1 e
e (17 e 250, (0,2(7)

— 1e2(x)Z%(1,) + O(€%)). (A17)

Noting the explicit form ofu***A(x,z) in Eq. (2.10, it is
necessary  to  compute [AYAX,Z()]=r 00

[90a(6Z(T)]s=r 0 ANA[Z%(T) =, (- N the same
way,

[A 1/2(X! Z( T) )] 7= Tret/ad\;x) =1+ O( 63) ) (A18)

[g_/.l,a(xa Z( T))] T= TrapaddX)

— 1__
= g,ua(xlz( TX))iig,uB(Xiz( TX))Raﬁyﬁ(Z( TX))

(iv) Here we give the formulas which we need to expand
Eq. (2.20 to obtain Eq(2.27). Since we want to express Eq.
(2.20 in terms of 7, defined by Eq.(2.23 instead of
Treyaadk X), We expand each factor of each term which con-
sists of EqQ.(2.20 with 8,eyaqfX), EQ. (2.26. We first con-

X o (X,2(7))2%(7,) €(X) + O(€3), (A19)

[2%(T) )= r 0 = 2 (T F €O T HX)2%(7y)

sider[(x,2(7))],=,.,. (. Which is expanded as

Lo Z(T)] =7, 0= TG Z(T))F+ T, Z(7)) Sreyag X)
1. 2
+ 5 2(X,2(7x)) Sreyaad X)

+ 31_!5.()(’2( 7)) Sacd X) + O(€%).
(A12)

Each term is computed as
o(X,2(1))=0,4(%,2(1))2%(1,) =0,  (A13)

a(x,2(1y))=:— k?(X)

= 0. 0p(X, Z( 1)) 2% ) ZP (1) + 0. (X, Z(7,)) 2%( 7))

1
9ap@(1))+ 3R 2(2(10) 0, (%,2(7y))

X 0. 5(%,2(7y)) | 2%( 1) ZP(7)
+0.,(X,2(7))2%( ) + O(€3), (A14)
T(X,2(10)=0.(X,2(7)) 2%(1,) + O(€?), (A1)

1
+5€%(x)2%(1) +O(%). (A20)

Putting them into the first term in the parentheses of Eq.
(2.20, and using Eq(2.11 and the fact

A*(X) = 0" 4(X,2)[A%(2) — . 5(x,2) A%F(2) + O(€%)],
(A21)

in computing the second term, we obtain E2.27).

APPENDIX B: SECOND-ORDER VARIATION
OF THE EINSTEIN TENSOR

We derive Eq.(3.8) by taking the variation of the
Einstein-Hilbert action. We first compute the Einstein-
Hilbert action of the metricg,,=g,,+h,,. For this pur-
pose we define a differential operatéy:

+eh)—
5gQ(g):”mQ(g eE) Q(g), B1)
e—0
+eh)+ —eh)—2
$20(g)— im 2L+ Q;SZ N-200
e—0

We first note the first variation of the Einstein tensor taken
from a standard textbook:
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G(l)‘“’=(—h’“’?§+ hémv 4 h‘f”;").g Hence,

SL®@

~his g (e i 3 2
o

=(— l/,/ﬂ/;§+ 1/,§,u;v_|_ ,/,§V;M);§_g,uvl/,§p;§p

GPrr=—87G

+g"“”L(2)}. (B12)

nv

(B4)  Carrying out the variation of @ one finds
wherey,,=h,,—(1/2)g,,h. AT L( Ep L P E YR Y
Since we are interested only in the second-order variation,G 22y v VW o TP e V)
we compute the terms proportional hd in the action + ¢u§,p§¢pv+ t//”f-pgtﬁ”“— ,/,w,gp,l,gp
20 [— = (5% — [— wv L
O5(N—=9)R)=(5gV—g)R+(gV — 96,9 _(leﬂép;p);g_ Lyimgir 4 Lgmv

+V=g859"")R,,,+ (V- 989"
+9"" 8\ = 0) 8gR,,, + - 99" R,

1
=- \/—g( he— S g#"h| 6 R

X(_ ¢p0;§¢P0;§+2¢pU;§¢I§P;(r+ %l/f,g'/"g)]
+ 3yGR. (B13)

Note that if h is a linear perturbation which satisfies
GWrTh]=0, the tensolf&”: = — (1/87G) G(®* describes
+V-9g""5R,, (B5  the conserved energy momentum tensor of the perturbed

gravitational field.
where we have used the assumption that the background

spacetime is vacuuniy,,,=0. Now

= ¢ — 3
(gl )i (Ogl ;e (B6) Here we briefly review the construction of the scalar and
(521“5 o) (52p§ V).et 8,0E,,8,0° the vector harmonics in terms of the symmetric trace-free
peny &0 T prTen e (STPH tensor[20]. We introduce the notation

APPENDIX C: TENSOR HARMONICS EXPANSION

g Ruv
—8,¢ 8., . (B7)
¢ pete Alijiy i) (CY
Inserting these into EJB5) and using
to represent the totally symmetric and trace-free part of

1 :
69F§;LV:§(h§,u:V+ hé,.,—h,,9), (B8)  Aiji, i~ More explicitly in the cases of =2,3,

_ - o Aty = A~ 36 A
we obtain the second-order variation of the Einstein-Hilbert
action:
Ay =Adik) = 5(8ijAkmm + SikAimm) T kiAmm)-
1 1 (C2

—“ . . . .
167G g The spherical harmonics expansion of a scalar function
A on the unit sphere can be written as

= G2 G L e 64 2, h

A= Asi . onfipiz...nin) c3
—2h ,,;Vh;’u'f'h; h;#] /20 (iqipe-i,) (C3

vy o tuiv wheren'=X'/|X|. In this case, the ordef, which is associ-
~ 647G T 2 T 5 '/’ g ated with the angular dependence, is equivalent to the total
angular momentuml]. Thus theJ mode of the TT) compo-
(B9) nent of the metric perturbation is totally determined by its

wherey=*,=—h and we have discarded unimportant to- angular dependence. Namely, the terms in th&)(compo-

tal divergence terms nent of the metric perturbation which contain
We note 1,n',nfn), (CH
55 [g] 59 [g+ &q]. (B10)  correspond to thd=0,1,2 modes, respectively.
y7a% nv

Next we consider the expansion of a vector fiéld
Thus the second-order variation of the Einstein tensor can be

obtained by taking the variation of the action with respect to A= Z Ai<.li2_“i/>n<ilni2. ..ni”). (C5)
g,uv: =0
In this case the term of th&th order in the angular depen-
L@ /—qgd*x= 4y, [ G2 V)
5gﬂvf gd™x= 167 Gf d'x . dence is decomposed intb=/+1, /7 and /—1. This is

(B11 done by using the Clebsch-Gordan reduction formala
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) / 0 and is found to be zero due to the symmetry of the Riemann
UiTisi, i, =Riggi i p T mfjia/Rflfz.‘.i/_l)j tensor. Thus we have only to consider the first term in the
) parenthesis of EqC12), which is decomposed further with
2/-1 =) the aid of formulagC10 and(C9) as
+2/—+15i<i/Ri1i2"'i/—1>’ (CG) dz 2
—Ramﬁ( 748851 % + 3 emigFidm ™’
whereTiliZ,,,i/ is a STF tensor of ordef and dT 3
(+) i1 S 3 .
Riliz"'i/+1 : _U<'/+1T'1'2""/> ! +§5i<j|:(k§)w5) X<Jxk>a (C14
(0) A
Riliz..-i/-—Uka<i1i2...i/,lfi/>jky where
(=) =U.T. . . .
Riliz'“i/fl'_UJT“l'Z'“'/—l' (C7) Fi(jz)y'gﬁ-:%(fymfﬁ(nf(si)fjmn"'fymfﬁmfaj)fimn)a
We perform the decomposition explicitly fef<2 here. For FOYBS = L(§7, 48§05, + 17, F5,£9) — LE7, 15,89,
/=0, there exists nd=0 mode and it trivially corresponds (C15
to theJ=1 mode. For”=1, the decomposition is performed
as It is easy to see that the first and third terms vanish due to the
1 1 symmetry of the Riemann tensor and the Ricci flathess. Thus
Aijnj = (Am)— =8 Auc] H AT+ 5 8 Ak n, (C8 only the J=2 mode remains. -
3 3 As for a tensor field, it is not necessary for us to give

eneral discussion here. The only term which requires our

and the first, second, and third terms in the square bracke{§ sideration is

correspond to thd=2, 1, and 0 modes, respectively. For 5 o
/=2, we obtain the decomposition formula as Ragyaf At 7T omX X, (C18

AiGionInO=[ A+ S emiBign+ £81Bi’Inn®, (C9  which appears in thei) component of the3) matching. In
this case, it is better to use the symmetry of the Riemann

where tensor from the beginning. First, we define the spatial triad
2 1 components of the Riemann tensor by
Bij = 5(Akmiy€jkm ™ Ak(mj) €ikm) Rikm = Rugyaf “F8 1. (€17
Bl =Aij 5 . (C10  Introducing a symmetric tensor defined by
and the first, second, and third terms correspond to the R
J=3, 2, and 1 modes, respectively. Rij =7 €ikm€insRimns: (C19

As an example, let us consider a vector
dz*
dT

we can expresR*I™ in terms of R;; as
Ragyst? F7EoXIXK, (C11) Rijum= €"1 ™R, (C19

+ Then the symmetric tens@®;; is decomposed into symmet-

which appears in the?] and ¢) matchings in Sec. IV. Firs
PP eél © g ric trace-free(STH tensors as

we decompose it in terms of its angular dependence as

dz¢ . 1 _ 1
37 Raprol 1| 121 20X0X0+ 2 TA8%X2| . (C12 Rij=Ryij)y*+ 3 9 Rik- (C20
Using the relation(4.16 and the fact that the Ricci tensor Counting the number of indices, we find that the first and

vanishes, the second term in the parentheses is rewritten &€cond terms in EdC20) correspond td=2 and 0 modes,
respectively. However, again owing to the symmetry of the

} ﬁR £7. d_Zﬁ ES|X|2 (C13 Riemann tensor and the Ricci flatness, he0 mode van-
3dT @AY i dT AT ishes and only théd=2 mode remains.
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