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It is shown that if a generalized definition of gauge invariance is used, gauge-invariant effective stress-
energy tensors for gravitational waves and other gravitational perturbations can be defined in a much larger
variety of circumstances than has previously been possible. In particular it is no longer necessary to average the
stress-energy tensor over a region of spacetime which is larger in scale than the wavelengths of the waves and
it is no longer necessary to restrict attention to high frequency gravitational waves.@S0556-2821~97!00906-5#

PACS number~s!: 04.30.2w

It has long been known that gravitational waves can have
an effective stress energy associated with them which alters
the background spacetime on which they propagate. One im-
portant example is the two-body problem in general relativ-
ity where the emission of gravitational radiation causes the
orbit to decay. This effect has been observed for the binary
pulsar@1#. A second example is the gravitational geon solu-
tion found by Brill and Hartle~BH! @2#. The geon consists of
high frequency gravitational waves confined to a thin spheri-
cal shell by the background geometry which they create.
Outside the shell the geometry is the same as that outside of
a static star.

To quantify the back reaction effects of gravitational
waves it is necessary to define an effective stress-energy ten-
sor for the waves. This was first done by BH and later by
Isaacson@3# for high frequency gravitational waves in a
vacuum. Burnett@4# also defined an effective stress-energy
tensor for high frequency waves both in a vacuum and in
spacetimes containing classical matter. Efroimsky@5# ex-
tended Isaacson’s definition to include lower frequency
waves and spacetimes containing classical matter. In each
case either some sort of averaging procedure or a procedure
that gives similar results to an averaging procedure was used.

An important property of the wave equation and stress-
energy tensor for gravitational waves is gauge invariance.
The usual gauge transformations used for gravitational
waves are related to infinitesimal coordinate transformations
and gauge invariance implies invariance under these trans-
formations. Isaacson showed that, in general, the wave equa-
tion for gravitational waves is approximately gauge invariant
only for high frequency waves. He also showed that for high
frequency waves the effective stress-energy tensor is gauge
invariant to leading order only if it is averaged over a region
of spacetime whose scale is large compared to the wave-
lengths of the waves. In other cases, such as low frequency
gravitational waves or the gravitational geon where the av-
eraging is over time, either the wave equation or the stress-
energy tensor, or both are not gauge invariant.

In this paper it is shown that if a generalized gauge trans-
formation which is related to arbitrary coordinate transfor-
mations is used, then it is possible to define gauge-invariant
effective stress-energy tensors for gravitational waves and
other gravitational perturbations in virtually all situations of
interest. This includes the cases of both low and high fre-
quency gravitational waves. The stress-energy tensor can be

averaged in an arbitrary manner so long as the averaging
does not affect the background geometry or it need not be
averaged at all.

Two useful methods are given for defining effective
stress-energy tensors. One works well for stress-energy ten-
sors that are averaged in some way and the other works well
when no averaging occurs. For the former method it is
shown that there is much more freedom available than has
usually been thought in defining gauge-invariant effective
stress-energy tensors for gravitational waves. In the latter
method there is much more freedom than usually thought in
defining the wave equation for the gravitational waves. In
both cases this extra freedom is due to the freedom available
in separating the metric into background and perturbed parts.

In what follows the formalism used to describe gravita-
tional waves and other gravitational perturbations in space-
times with no classical matter is given first followed by the
definition of the generalized gauge transformations. Then
gauge invariance of the perturbed Einstein tensor is estab-
lished followed by a description of the two methods of de-
fining effective stress-energy tensors. Approximate gauge in-
variance within the context of an arbitrary perturbation
expansion is next established for stress-energy tensors that
have been averaged in some arbitrary way. A method of
solving the resulting wave and back reaction equations is
given. The case of stress-energy tensors which are not aver-
aged is then considered. Finally, the generalization to space-
times containing classical matter is discussed.

To begin, consider a separation of the metric into a back-
ground partgmn and a perturbed parthmn , such that

gmn5gmn1hmn . ~1!

The separation is arbitrary. Following BH, the Einstein ten-
sor can similarly be divided into a part describing the curva-
ture due to the background geometry and that due to the
perturbation by writing

Gmn~g!5Gmn~g!1nGmn~g,h!50. ~2!

Here and hereafter, indices of tensors are sometimes sup-
pressed for notational simplicity. It is important to note that
nG is defined by this equation.

From Eq.~2! it is seen that the quantitynG is conserved
with respect to the background geometryg. It can also be
seen thatnG is invariant under coordinate transformations
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which change the perturbed geometry but leave the back-
ground geometry alone. This property leads to the invariance
of nG under the generalized gauge transformations which
are defined below.

Consider an arbitrary coordinate transformation. It is al-
ways possible to write such a transformation in the form

x̄m5xm1jm. ~3!

If the functional form of the background geometry is not
allowed to change under this coordinate transformation, that
is if ḡ5g1h̄, thenh̄ is given implicitly by the equation

gmn~x!1hmn~x!5gmn~ x̄!1h̄mn~ x̄!1@gma~ x̄!1h̄ma~ x̄!#ja
,n

1@gan~ x̄!1h̄an~ x̄!#ja
,m

1@gab~ x̄!1h̄ab~ x̄!#ja
,mjb

,n . ~4!

Here, derivatives ofj are with respect tox and notx̄.
A generalized gauge transformation is defined as one in

which the quantityh̄(x) is substituted forh(x) into the ex-
pression of interest. Ifh, j and their derivatives are small
enough, then to leading order this gauge transformation is
equivalent to the usual one used for gravitational waves
which is

h̄mn~x!5hmn~x!2gma~x!ja
,n2gan~x!ja

,m2gmn,aja.
~5!

The quantitynG plays an important role in the defini-
tions of gravitational wave stress-energy tensors which fol-
low. To prove its invariance under generalized gauge trans-
formations first note that, since the functional form of the
background metric is not to be changed by the coordinate
transformation~3!,

Ḡ„ḡ~ x̄!…5G„g~ x̄!…1nḠ„g~ x̄!,h̄~ x̄!…50. ~6!

Having obtainednḠ„g( x̄),h̄( x̄)… via a coordinate transfor-
mation, it is next useful to consider it simply as a function of
x̄. If this is done and it is evaluated atx̄5x, then combining
Eq. ~6! with Eq. ~2! gives

nḠ„g~x!,h̄~x!…5nG„g~x!,h~x!…. ~7!

If Eq. ~4! is solved forh̄(x) as a function ofh(x) and this
solution is substituted forh̄(x), thennG is gauge invariant
if it retains its original functional form after these substitu-
tions, that is if

nG„g~x!,h̄~x!…5nG„g~x!,h~x!…. ~8!

To show that Eq.~8! is correct, first note that the Einstein
tensor can be written in terms of a particular combination of
the metric tensor and its derivatives which is the same in any
coordinate system. This implies thatnḠ can be computed
by direct substitution ofh̄ into nG. Thus,

nḠ„g~x!,h̄~x!…5nG„g~x!,h̄~x!…. ~9!

Combining Eqs.~7! and ~9! gives Eq.~8!. This proves that
nG is invariant under gauge transformations of the form
h(x)→h̄(x).

The next question to be addressed is the solution of Eq.
~2!. It is not possible to solve Eq.~2! directly without speci-
fying in some way the split between the background geom-
etry and the perturbed geometry. One can, of course, either
fix g and solve forh or vice versa. However, to describe
gravitational waves the most useful methods are the follow-
ing.

~1! Define an effective stress-energy tensor for the per-
turbed geometry which is conserved with respect to the back-
ground geometry and invariant under generalized gauge
transformations, but which is otherwise arbitrary. Then, one
can write Eq.~2! as

nGmn~g,h!528pTGmn~g,h!, ~10a!

Gmn~g!58pTGmn~g,h!. ~10b!

~2! Impose a gauge-invariant equation which specifies the
perturbed geometry. For gravitational waves it is the wave
equation. It has the general form

Hmn~g,h!50. ~11!

In this case Eq.~2! is the back reaction equation and the
effective stress-energy tensor for the gravitational waves is

TGmn~g,h!52
1

8p
nGmn~g,h!. ~12!

BH used method~1! and made the following definition for
their effective stress-energy tensor:

TGmn~g,h!52
1

8p
^nGmn~g,h!&. ~13!

Here, the angular brackets indicate a time average. This was
useful for the problem they were considering which was the
gravitational geon. Isaacson’s definition is the same except
that the average is over a region of spacetime which is large
in scale compared to the wavelengths of the waves, but
smaller in size than the scale on which the background ge-
ometry varies. The definitions of BH and Isaacson can be
extended to any averaging procedure which does not affect
G(g). It is clear from the above proof of the invariance of
nG under generalized gauge transformations that the BH
stress-energy tensor is gauge invariant.

Once a gauge is chosen^nG& is still not specified. It can
be set equal to any symmetric second rank tensor which does
not depend on the variables which are averaged over and is
conserved with respect to the background geometry. This is
because Eq.~10a! ensures thatnG will always have the
correct average. One interesting choice that can be made is
^nG&50. In this case the background geometry is an exact
solution to Einstein’s equations and the gravitational waves
do not alter this geometry. The choice implicitly made by
BH and Isaacson is discussed below.

Method ~2! can be used to define an effective stress-
energy tensor without averaging. One gauge-invariant choice
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for the wave equation isH5nG. This is equivalent to using
method~1! and choosinĝnG&50.

So far, the discussion has been formal with exact results.
If an expansion of the form

nG5n1G1n2G1••• ~14!

exists then it can immediately be seen from Eqs.~2! and~14!
that tonth order it is the quantityn1G1•••1nnG that is
conserved with respect to the background geometry.
Throughout when discussing the order of the approximation,
quantities whose value is of the same order asnnG are
considered to be nth order quantities.

Gauge invariance is more difficult. Under an arbitrary
gauge transformation,h can change dramatically and in the
new gauge the appropriate perturbation expansion fornG
might be very different from that in the original gauge. This
would make it impossible to usefully compare terms in the
two expansions. Thus, when using perturbation expansions it
is usually necessary to restrict gauge transformations to those
which are small enough so thath̄ is of the same order of
magnitude ash @3#. Then, the perturbation expansions of
nG in both gauges are similar and can be compared. There-
fore, throughout this paper, whenever a perturbation expan-
sion is used, it is assumed that gauge transformations are
small enough so thath̄ is of the same order of magnitude as
h.

The proof of gauge invariance given above implies that
n1G1•••1nnG is gauge invariant tonth order. This
means that, in general,n1G by itself is only gauge invariant
to first order andn2G by itself is not gauge invariant at all.
There are exceptions. For the high frequency waves consid-
ered by Isaacson,n1G and^n2G& are both gauge invariant
to second order.

If, for some arbitrary type of averaging, definition~13! is
used along with a perturbation expansion, then Eqs.~10a!
and ~10b! become

n1G1•••1nnG5^n1G1•••1nnG&, ~15a!

G~g!52^n1G1•••1nnG&. ~15b!

As discussed above it is still necessary, in a particular gauge,
to explicitly fix the right-hand sides of these equations. Once
this is done their general form assures gauge invariance to
nth order. BH and Isaacson implicitly fix the values of their
stress-energy tensors by imposing the condition

^n1G&50. ~16!

This is a reasonable condition to impose because they are
considering high frequency gravitational waves andn1G is
linear inh in that case.

It is important to understand that the condition~16! ~as
opposed to the stress-energy tensor itself! is only gauge in-
variant to first order in general and even in Isaacson’s case is
only gauge invariant to second order. Thus, when a transfor-
mation is made from the original gauge where this condition
is imposed to a new gauge, care must be taken to determine
the correct form of̂ n1G& in the new gauge. In general, it

no longer vanishes. It is this fact which makes it possible for
the combination̂ n1G1•••1nnG& to be gauge invariant
to nth order.

Isaacson developed a practical method of solving Eqs.
~15a! and ~15b! for the perturbation expansion that he used.
It is easily extended to a general perturbation expansion. One
first expandsh in the following way:

h5h~1!1h~2!1•••. ~17!

Here, the terms on the right-hand side are defined such that
n1G(g,h

(2)) is of the same order asn2G(g,h
(1)), and so

forth. Then, to second order Eqs.~15a! and ~15b! can be
written

n1G~g,h~1!!5^n1G~g,h~1!!&, ~18a!

n1G~g,h~2!!1n2G~g,h~1!!5^n1G~g,h~2!!

1n2G~g,h~1!!&, ~18b!

G~g!52^n1G~g,h~1!!1n1G~g,h~2!!1n2G~g,h~1!!&.
~18c!

The extension to higher orders is straightforward. This
method, along with a condition which fixes the stress-energy
tensor in a particular gauge, results in a consistent set of
equations that can be solved.

As an example, consider the case of gravitational waves
which have small amplitudes, frequencies, and momenta. For
these waves the Einstein tensor can be expanded in powers
of h and its derivatives with the result thatn1G(g,h) is first
order in h, n2G(g,h) is second order, and so forth@2,3#.
The perturbed metric is expanded as in Eq.~17! and the
equations to second order are given in Eqs.~18a!–~18c!.
Sincen1G is linear inh, Eq. ~18b! implies thath(2) is of
order (h(1))2. The condition~16! can be imposed by requir-
ing that ^n1G(g,h

(n))&50 for all n.
Method ~2! results in a gauge-invariant effective stress-

energy tensor for gravitational waves when no averaging oc-
curs. If a perturbation expansion of the form~14! is used, it is
natural to define the approximate wave equation to be
n1G50. Unfortunately, this does not lead to a gauge-
invariant stress-energy tensor. However, if the expansion
~17! is used then the wave equation can be defined to be

n1G~g,h~1!!50. ~19a!

The resulting back reaction equation to second order is

G~g!52n1G~g,h~2!!2n2G~g,h~1!!. ~19b!

A proof similar to Isaacson’s proof of the approximate gauge
invariance of the wave equation shows that, in this case, the
wave and back reaction equations are gauge invariant to sec-
ond order. The stress-energy tensor is also conserved with
respect to the background geometry to second order. Thus,
the wave and back reaction equations are consistent to this
order.

It is useful to generalize the above results to the case in
which matter is present@6#. If the matter fields can be de-
scribed by a covariant action, then both the wave equation
and the stress-energy tensor for the matter can, in any coor-
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dinate system, be written as some particular combination of
the matter fields, the metric tensor, and their derivatives.
This makes it possible to split the wave equation and the
stress-energy tensor into background and perturbed parts just
as was done for the Einstein tensor in Eq.~2!. If the matter
fields are denoted byf, the wave equation byW, and the
stress-energy tensor for the matter byT, then the wave equa-
tion and Einstein’s equations can be written as

W~g,f!52nW~g,h,f!, ~20a!

G~g!58pT~g,f!18pnT~g,h,f!2nG~g,h!. ~20b!

From Eq. ~20b! it is clear that the combination
nG(g,h)28pnT(g,h,f) is conserved with respect to the
background geometry. Two proofs of exactly the same type
as that establishing the gauge invariance ofnG when no
matter is present, show that the quantitiesnW(g,h,f) and
nG(g,h)28pnT(g,h,f) are invariant under generalized
gauge transformations.

It is not difficult to show that all of the results found for
the vacuum case go over in a straightforward manner to the
case when matter is present if the substitution
nG→nG28pnT is made. Thus, regardless of whether or
not averaging occurs, it is possible to derive a self-consistent
set of equations which describe the behavior of the gravita-
tional waves and the matter fields as well as their effects
upon the background geometry.

In conclusion, use of the generalized gauge transforma-
tion implicitly given by Eq.~4! makes it possible to virtually
always define an effective stress-energy tensor for gravita-
tional waves and other perturbations which is both conserved
and gauge invariant. The stress-energy tensor may be aver-
aged in some arbitrary manner that does not affect the back-
ground geometry or it need not be averaged at all.
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