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The gravitational properties of theonly static plane-symmetric vacuum solution of Einstein’s field equations
without a cosmological term~Taub’s solution, for brevity! are presented: some already known properties
~geodesics, weak field limit, and pertainment to the Schwarzschild family of spacetimes! are reviewed in a
physically much more transparent way, as well as new results about its asymptotic structure, possible match-
ings, and the nature of the source are furnished. The main results point to the fact that the solution must be
interpreted as representing the exterior gravitational field due to anegativemass distribution, confirming
previous statements to that effect in the literature. Some analogies to Kasner’s spatially homogeneous cosmo-
logical model are also mentioned.@S0556-2821~97!02606-4#

PACS number~s!: 04.20.Jb, 04.20.Cv

I. INTRODUCTION

The main aim of this paper is to provide a detailed inter-
pretative investigation of the vacuum plane-symmetric
spacetimes of general relativity. Some generic motivating
reasons may be adduced for that.

First, the presence of so-called topological defects~mono-
poles, cosmic strings, domain walls, and textures!, arising
from cosmological phase transitions~symmetry breaking!,
have become quite fashionable in the study of the very early
universe, particularly as concerns their deep consequences
for large-scale structure formation and cosmic background
radiation anisotropies@1–3#. All these objects have peculiar
gravitational properties; generic walls or shells~and also tex-
tures, to that effect!, however, seem to have a slightly more
acceptable~mathematical! behavior in the sense that, con-
trary to one- or two-dimensional trapped regions, their space
times can be described by curvature tensors well defined as
mathematical distributions@4#.

Secondly, the Casimir effect associated with the vacuum
bounded by two infinite parallel plates, when treated in a
fully consistent way, should take into account the proper
gravitational field of the plates@5#. In this setting, it turns out
to be an issue for quantum field theory in curved spacetime.

Thirdly, when trying to formalize, in a more precise way,
the equivalence between inertial and gravitational effects, the
problem of what the general relativistic model of a spatially
homogeneous gravitational field is has to be faced. Its reso-
lution, from a naive Newtonian point of view, suggests again
the paying attention to the vacuum plane-symmetric solu-
tions of Einstein’s field equations. Of course, the determina-
tion of the Newtonian gravitational field outside a static, in-
finite, uniformly dense planar slab is a trivial exercise;

however, as we shall see, the general relativistic situation is
not so plain.

The paper is organized as follows. In Sec. II, we expose
the properties of Taub’s plane-symmetric vacuum model:
isometries, singularity, kinematics of the observers adapted
to the symmetries, timelike and null geodesics~including
geodesic deviation for timelike ones!. These aspects have
already been dealt with in the literature@6–9#; however, not
only for the sake of completeness and fixing conventions, but
also for further clarification and generalization do we delve
again into them. In Sec. III, we study the asymptotic struc-
ture as well as the Newtonian limit. In Sec. IV, we prove that
Taub’s global solution is the limit of the mirror-symmetric
matching of two Taub domains, to the ‘‘left’’ and ‘‘right’’ of
a negative mass planar shell. In Sec. V, we discuss the main
implications of our results and present a conclusion. We also
provide an Appendix where the plane-symmetric vacuum so-
lutions are shown, via Cartan’s invariant technique, to be
parametric limits of a generalized Schwarzschild family of
spacetimes. The signature of the metric, except for Sec. IV,
is 22; alsoc58pG51.

II. PLANE-SYMMETRIC VACUUM MODELS

A. Metrics

Einstein’svacuumfield equations, without a cosmological
term, for a plane-symmetric geometry, will be satisfied by
only two nontrivial distinctsingle solutions @10#: Taub’s
static metric and Kasner’s spatially homogeneous one. Both
these solutions, which we shall henceforth refer to simply as
Taub’s and Kasner’s solutions, are particular cases of Kas-
ner’s generalized solutions@11# ~see Appendix!.

Taub’s geometry(T):

ds~T!
2 5

1

z2/3
dt22z4/3~dx21dy2!2dz2, ~2.1!

5
1

r
dt22r 2~dx21dy2!2rdr 2, ~2.2!
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with coordinate ranges

2`,t,x,y,1`, 0,r,1` and

0,z,1`, or 2`,z,0; ~2.3!

Kasner’s geometry(K):

ds~K !
2 5dt22t4/3~dx21dy2!2

1

t2/3
dz2, ~2.4!

5tdt22t2~dx21dy2!2
1

t
dr2, ~2.5!

with coordinate ranges

2`,x,y,z,r,1` and 0,t,1`, or 2`,t,0.
~2.6!

The only nonvanishing Carminati-McLenaghan algebraic
invariants@12# for Taub’s and Kasner’s solutions are

I 1~T!5
64

27z4
, I 2~T!52

256

243z6
, ~2.7!

and

I 1~K !5
64

27t4
, I 2~K !5

256

243t6
, ~2.8!

whereI 1 :5RabgdRabgd and I 2 :5Rab
mnRmn

lrRlr
ab.

As concerns Taub’s solution, we call attention to the fol-
lowing properties:~i! it is not only plane-symmetric, but also
static; ~ii ! it has a timelike singularity atz50 (r50); ~iii ! its
algebraic invariants vanish whenz,r→1` ~suggesting it is
asymptotically flat at spatial infinity in thez direction; see
Sec. III!. Kasner’s solution presents ‘‘dual’’ properties:~i! it
is not only plane-symmetric, but alsospatially homogeneous
~beware, it isnotstationary!; ~ii ! it has a spacelike singularity
at t50; ~iii ! its algebraic invariants vanish whent→1`.

B. Kinematics of adapted observers and geodesics

The motion of the observers adapted to those coordinate
systems (ua5d0

a/Ag00) is covariantly characterized as: for
Taub’s solution, Eq.~2.1!, they constitute arigid nonrotating
accelerated frame, whereas for Kasner’s solution, Eq.~2.4!,
they constitute adeforming nonrotating geodesic frame. The
results for Taub’s observers are obvious since they are mani-
festly static, so that they remain at rest with respect to one
another and with respect to the singularity too. This is a
consequence of the physically more intuitive fact that the
proper time, as measured by a static observer, for a photon to
travel to and back from a second static observer is indepen-
dent of the emission event. Half this proper time defines the
so-calledradar distancebetween the two observers, which is
a coordinate-independent concept. Specifically, for Taub’s
spacetime, this radar distance between two static observers
O1 andO2 with respective spatial coordinates (x,y,r 1) and
(x,y,r 2), as measured byO1, is given by

Ds~O1 ,O2!5Ag00~r 1!U E
r1

r2A2g33~r !/g00~r !drU
5

1

2Ar 1
ur 2
22r 1

2uÞDs~O2 ,O1!. ~2.9!

As explicitly displayed, this radar distance isnot symmetric,
a feature which already happens to Rindler’s observers in
Minkowski spacetime and is due to the relativity of the si-
multaneity for the different instantaneous inertial frames at-
tached to each observer. We also notice that, as the radial
coordinate distanceDr (O1 ,O2):5ur 22r 1u increases, so
does the radar distance.

The isometries of Taub’s model imply the existence of
three constants of motion for the geodesics,

1

r
ṫ5:E5const.0, ~2.10!

r 2ẋ5:px5const, ~2.11!

r 2ẏ5:py5const, ~2.12!

where a dot denotes a derivative with respect to an affine
parametert ~the proper time, for timelike geodesics!. Fur-
thermore, the invariance of the character of the geodesic
(gabẋ

aẋb5e:50 or11, for null or timelike geodesics, re-
spectively! implies now

ṙ 25E22V~r !, ~2.13!

with

V~r !:5
1

r 3
~puu

21er 2!>0 ~2.14!

and

puu :5Apx21py
2. ~2.15!

The motion in the coordinater is thus reduced to a usual
one-dimensional problem with theeffective potential~2.14!
and r coordinateacceleration

r̈5
1

2r 4
~3puu

21er 2!>0. ~2.16!

From either Eqs.~2.13!–~2.15! or Eqs.~2.15!,~2.16!, we see
that we have two qualitatively distinct cases, according to the
mass and/or the initial conditions of the test particle:~a!
massless particles in purely ‘‘perpendicular’’ motion
(e5puu50); ~b! massive particles (e51) or massless par-
ticles in ‘‘transverse’’ motion (e50Þpuu). Case~a! implies
V(r )[0, r̈[0. These null geodesicsdo attain the singular-
ity. Case~b! impliesV(r )→1`, r̈→1` when r→01 and
V(r )→01 , r̈→01 when r→1`. These geodesics can
never attainthe singularity.

In fact, all massive geodesic particles or even generic
(puuÞ0) massless geodesic particles arerepelled from the
singularity as described by the static observersr5const.
This is clear from the following. As shown at the beginning
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of this section, the static observers are at rest with respect to
each other and with respect to the singularity. Since ther
coordinate for a geodesic particle eventually increases with-
out bound, it will cross the static observers receding further
and further away from the singularity. Furthermore, a geode-
sic particle initially at rest will be displaced to increasing
values ofr , as can be derived from Eq.~2.16!. This implies
that, relative to the static observers, a geodesic particle is
accelerated away from the singularity. This description is
consistent with the negative mass interpretation for the
sources of Taub’s spacetime, as discussed at the end of this
subsection, in the Appendix and in Sec. IV.

Equations~2.13! and ~2.14! may be trivially integrated,
whereupon one can easily see that null geodesics in purely
‘‘perpendicular’’ motion @case ~a! above# ‘‘reach’’ the
boundaryr51` ~to be defined in Sec. III! only after an
infinite interval of affine parameter.

To further interpret the model, let us now calculate, from
the geodesic deviation equation, the relative acceleration be-
tween two geodesics at instantaneous rest with respect to the
singularity (ẋu05 ẏu05 ṙ u050). We find

D2h0

Dt2 U
0

50,

D2hA

Dt2 U
0

51
1

2r 3
hA, ~A51,2!, ~2.17!

D2h3

Dt2 U
0

52
1

r 3
h3.

Note that the signs in the above equations are the opposite of
the corresponding ones in the Schwarzschild spacetime.
Thus, a set of two freely falling particles released from rest
may behave in two characteristic ways:~a! if their initial
spatial positions have equalx and y but different r , their
relative distance will instantaneously decrease, while being
repelled from the singularity;~b! if their initial spatial posi-
tions have equalr but different x and/or y, their relative
distance will instantaneously increase, while being repelled
from the singularity again. Contrary to the case of the cur-
vature field being spatially homogeneous~independent of
r ), as occurs in the Newtonian theory for the gravitational
field g, the plane symmetry of the metric field does not imply
homogeneity~neither in the metric nor the curvature fields!:
analogous spacetime measurements~such as those for the
geodesic deviation! at events with differentr coordinates
furnish distinct results.

C. Parametric limits

Some intuition on the nature of the source~singularity! of
Taub’s ~global! spacetime might also be expected to arise
from a study of the families of metrics to which it belongs.
The problem with this argument is twofold:~i! a given met-
ric may be a parametric limit of several disjoint families of
metrics, ~ii ! a given family of metrics may have different
limits, for the same limiting values of its parameters, when
the limiting process is carried out in different coordinate sys-
tems. This was first pointed out by Geroch@13#, who pre-

sented Schwarzschild’s metric in three different coordinate
systems, such that, as the mass tends to1`, the limiting
result is either singular, Minkowski’s metric or Kasner’s
~spatially homogeneous! metric. Because of the resemblance
between Kasner’s and Taub’s metrics, one naturally wonders
whether the latter is also a limit of the Schwarzschild family
of metrics as the mass tends to1`; the answer, however, is
negative, since the only Petrov typeD such limits are
Minkowski’s and Kasner’s~spatially homogeneous! space-
times@14#. Still, coordinate systems exist, for this Schwarzs-
child family of metrics, such that, now in the limit
m→2`, one ends up with Taub’s metric@8,15#. In the Ap-
pendix, we analyze a generalized Schwarzschild family of
metrics, which is closed in the sense of Geroch@13#, using an
invariant approach and extending the above results.

It is expedient to mention here some other families to
which Taub’s metric belongs. We have two subfamilies of
Weyl’s static vacuum metrics@9#: the Levi-Civita metrics
and the Parnovski-Papadopoulos metrics, then the Kerr-
Schild solutions@10# and, as already mentioned, the general-
ized Kasner metrics.

III. ASYMPTOTIC STRUCTURE
AND THE WEAK FIELD LIMIT

In this section, we introduce coordinate systems which
render explicit the null boundary structure of the spacetime
and also characterize a weak field limit to Taub’s geometry.

Let us consider the static plane-symmetric Taub metric in
the form

dsT
25

1

r
dt22rdr 22r 2~dx21dy2! ~3.1!

(0,r,`) and introduce in the manifold of Eq.~3.1! the
Kruskal-type coordinate system (u,v,x,y) defined in Table
I.

In this coordinate system, the metric~3.1! assumes the
form

dsT
25

2A2~du22dv2!

~v22u2!A2 ln~v22u2!
12ln~v22u2!~dx21dy2!.

~3.2!

We note that the curvature tensor of Eq.~3.2! tends continu-
ously to zero asv22u2→0. Asymptotic coordinates may be
introduced such that Eq.~3.2! becomes regular on
v22u250 ~see Table I!. The boundariesv22u250 are in
fact two flat null surfaces at infinity (r51`), which we
shall denote byJ1 andJ2 ~see Fig. 1!, and correspond to the
asymptotically flat regions of the spacetime.

If, in Eq. ~3.1!, we extend the domain of the coordinate
r to2`,r,`, the resulting manifold of the geometry~3.1!
is the union of a Kasner (K) spacetime to a Taub (T) space-
time, with the singular locusr50 as a common boundary.
The Kasner spacetime corresponds to the domain
2`,r,0, its singularity r50 having now a spacelike
character. A typical plane (u,v) of Kasner’s spacetime is
represented in Fig. 2. The metric inK is given by
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dsK
25

2A2~du22dv2!

~u22v2!A2 ln~u22v2!
12ln~u22v2!~dx21dy2!.

~3.3!

Expression~3.3! is obtained by interchangingu andv in the
metric components of Eq.~3.2!. Note that in theK region
0<u22v2<1, and (u,v) are still timelike and spacelike co-
ordinates, respectively.

A further coordinate system is now introduced~see Table
I!, which will be useful in examining the asymptotic form of
Taub’s metric. In the coordinate system (m,n,x,y), Taub’s
geometry~3.2! assumes the form

dsT
252

2A2dmdn

Am1n
22~m1n!~dx21dy2! ~3.4!

and Kasner’s geometry~3.3! becomes

dsK
25

2A2dmdn

Am1n
22~m1n!~dx21dy2!. ~3.5!

The null infinities of Taub’s geometry are now expressed by

J1:m→`,
~3.6!

J2:n→`

and analogously for Kasner’s geometry. The diagrams of
Fig. 3 make explicit the relation between the (u,v) and
(m,n) coordinates.

Although we have introduced coordinate systems~see
Table I! where the asymptotic boundaries of Taub’s geom-

etry are characterized and explicitly exhibited~the two flat
null infinities J1 and J2, and the spatial infinityi 0), the
metric in these coordinate systems is not well defined in the
boundaries. In order to give a regular expression for Taub’s
metric in a neighborhood of the boundariesJ1 andJ2, we
therefore introduce two new sets of asymptotic coordinates
~see Table I!.

We rewrite Eq.~3.4! as

dsT
252

2A2djdn

A11
4n

j2

2
1

2
j2S 114

n

j2D ~dx21dy2!. ~3.7!

NearJ1 we have 4n/j2→0, and we may expand the above
line element as

dsT
2'dsM

2 1h, ~3.8!

where

dsM
2 522A2djdn2 1

2 j2~dx21dy2! ~3.9!

and

h5
4A2n

j2
djdn22n~dx21dy2!. ~3.10!

We note that the line elementdsM
2 is the Minkowski one in

coordinatesxa5(j,n,x,y). Indeed, let us realize a further
coordinate transformation~see Table I!, which castsdsM

2 into
the form

TABLE I. Coordinate systems used for Taub metric in this paper. Homonymous coordinates may differ
by a constant and unspecified ranges are (2`,1`). An * in the fourth column means the singularity. The
last two coordinate systems are meaningful only in the asymptotic region. For the Kasner metric, we inter-
changeu and v in the table; the point (u501 ,v50) for the Kasner domain now represents the future
timelike infinity i1, instead ofi 0. Replicas of these spacetimes~K andT! in the (u,v) plane can be obtained
by changing (u,v)→(2u,2v).

coord. definition range geometrical loci

tzxy 0<z,1` * : z50

trxy r5(3z/2)2/3 0<r,1` * : r50

uvxy u5e2r2/4sinh(t/2) 0<v,1` * : v22u251

v5e2r2/4cosh(t/2) 0<v22u2<1 J1 : v51uÞ0

J2 : v52uÞ0
i 0 : u50, v501

mnxy m52 ln(v2u) 0<(m1n),1` * : m1n50
n52 ln(v1u) J1 : m→1`, n finite

J2 : n→1`, m finite
i 0 : m→1`, n→1`

jnxy j5A4m, m.0 0,j,1`

jNXY X5jx, Y5jy
N5n2j(x21y2)

TZXY Z5(N1j)/2
T5(N2j)/2
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dsM
2 52djdN2~dX21dY2! ~3.11!

and all components ofh in this new coordinate system are at
leastO(1/j2), as well as its first and second derivatives.
Therefore, in the coordinate system (j,N,X,Y) the metric
nearJ1 is regular, as well as its first and second order de-
rivatives, and differ from the Minkowski metric by a small
perturbationh which tends to zero asj→`.

An analogous expansion may be realized in a neighbor-
hood ofJ2 : n→`. This may be obtained from the expres-
sions of the above paragraph by the obvious substitution
n
m.

We can now discuss the weak field limit for Taub’s ge-
ometry. Equation~3.11! suggests the introduction of a Car-
tesian coordinate system at infinity, namely (T,Z,X,Y), de-
fined in Table I. Thus, whenz→` for finite T, we have
j→` andN→`, with N/j2→0. Therefore, the region de-
scribed byZ→` for finite T is a neighborhood of the spatial
infinity i 0 of Fig. 1. The asymptotic expression of Taub’s
metric ~for X andY finite! is then

dsT
25dT22dX22dY22dZ2

1
4N

j2 S 12 ~dZ22dT2!2dX22dY2D , ~3.12!

and, in a neighborhood of the spatial infinityi 0, Eq. ~3.12!
reduces to

dsT
25~122/Z!~dT22dZ2!2~114/Z!~dX21dY2!.

~3.13!

A Newtonian-like potential ati 0 is then given by

FN521/Z. ~3.14!

If we choose a planeZ5Z0 in a neighborhood ofi
0, we can

expand Eq.~3.14! aboutZ0 as

FN521/~Z01l !'2~1/Z0!~12l /Z0!. ~3.15!

Then, near the planeZ5Z0, we have a homogeneous field
orthogonal toZ0 with strength 1/Z0

2, for all (X,Y) finite.
This configuration of the gravitational field~in a neigh-

borhood ofi 0) is the nearest to a homogeneous gravitational
field we may achieve in the static plane-symmetric Taub ge-
ometry. In the past literature, this problem of the nonrelativ-
istic limit to a static plane-symmetric metric was considered
in @7# ~Sec. IV!. The treatment there is, however, incomplete:
a coordinate system is introduced where Taub’s metric is put
in the formdsT

25dsM
2 1h, whereh is a small~in a specific

region! deviation of the Minkowski metric,dsM
2 . Neverthe-

less, the connection and curvature tensor components are not
small ~of the order ofh) in that region, unless he specifies
thatg→0, thus fixing the asymptotic region (z→1`) as the
region of true nonrelativistic limit; in this case, the above
coordinate system is well defined only in the asymptotic re-
gion „see @7#, Eq. ~12!…. Furthermore, since Taub’s metric
has no essential free parameter in it, there simply does not
exist a quantity which would play the role of the mass den-
sity of the source.

IV. MATCHING AND SHELL

We now implement amirror-symmetricjunction of two
Taub domains by means of anegativemass shell, in order to
show that Taub’s original spacetime~2.1! may be naturally
viewed as the limit of this matched one as the surface energy
density of the shell approaches2`. To this end, we shall

FIG. 1. The Taub spacetime,~3.2!, with two coordinates (x,y)
suppressed. Each point of the diagram corresponds to a two-
dimensional spacelike plane. The spacetime manifold is the quasi-
compact region of the (u,v) plane bounded by the timelike singu-
larity v22u251, the null boundariesJ1 and J2, and the spatial
infinity i 0 (u50, v501). The null geodesics~with puu50) are
forty-five degrees straight lines. With respect to the metric~3.2! u
andv are timelike and spacelike coordinates, respectively.

FIG. 2. The Kasner spacetime,~3.3!, with coordinates (x,y)
suppressed. The future flat null infinitiesJ1 correspond to
u22v250. The (u,v) coordinates are now related to the (t,r ) co-
ordinates of Eq. ~3.1! with 2`,r<0 by u5 f (r )cosh(t/2),
v5 f (r )sinh(t/2), in order that (u,v) have timelike and spacelike
character, respectively. The future timelike infinityi1 is the point
(u501 ,v50).
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take advantage of Israel’s shell formalism@16#, following all
his conventions inclusively; in particular, the signature of the
metric, in this section, is12.

The four-dimensional manifoldsV1 andV2 will be taken
as Taub domains; specifically,V1:5$(x1

a ):z1.A.0% and
V2:5$(x2

a ):z2,2A,0%, that isV1 is ‘‘on the right side’’
of the original Taub singularity andV2 is ‘‘on its left side.’’
We are assuming that thet,z5const surfaces have the topol-
ogy of a plane~R 2) and we can thus assign to the symmetry
z→2z a natural meaningful interpretation as a mirror or
specular symmetry. This interpretation seems to be unwar-
ranted for other choices of topology of thet,z5const sur-
faces~see Sec. V!.

The timelike hypersurfaces of junctionS1 and S2 are
characterized by the equationsF1(x1

a ):5z12A50 and

F2(x2
a ):5z21A50, withA.0. The induced three-metrics

on S1 andS2 are @cf. ~2.1!# identical:

ds6
2 uS152A22/3dt6

2 1A4/3~dx6
2 1dy6

2 !, ~4.1!

thus automatically satisfying the first junction condition.
The verification of the second junction condition requires

the calculation of the extrinsic curvatures ofS1 and S2.
The unit normal vector toS ~directed fromV2 to V1) will
have componentsn1

a andn2
a , relative to the chartsx1

a and
x2

a , given by

n6
a 51d3

a . ~4.2!

For an intrinsic basis of tangent vectors toS, we will
choose three orthonormal vectorsei ( i50,1,2) of compo-
nentsei1

a andei2
a , relative to the chartsx1

a andx2
a , given

by

e06
a 5uAu1/3d0

a , e16
a 5uAu22/3d1

a , e26
a 5uAu22/3d2

a .
~4.3!

The extrinsic curvature of a hypersurface with unit normal
na can be calculated as

Ki j5ei
aej

bna;b , ~4.4!

which furnishes

Ki j
656

1

3A
diag~1,2,2!. ~4.5!

Lanczos equation @16#, g i j2gi jgk
k52Si j , where

g i j :5Ki j
12Ki j

2 is the jump in the extrinsic curvature, then
determines the surface energy-momentum tensor of a shell:

Si j5
2

3A
diag~24,1,1!. ~4.6!

Thus, if we suppose the shell is a perfect fluid one, with
proper four-velocity

uauS5uAu1/3d0
a , ~4.7!

we are forced to recognize that it has anegativesurface
energy density. Furthermore, asA approaches 0, thus realiz-
ing the matching ever closer to the original Taub singularity,
we are naturally lead to interpreting it as an infinite uniform
planedistribution of negative diverging surface energy den-
sity. This interpretation is consistent with the repulsion of
geodesics found in Sec. II B and the limit for infinite nega-
tive mass.

V. DISCUSSION

In this paper, we carried out an extensive investigation of
the local and global properties of Taub’s~static! geometry,
and by extension, of Kasner’s~spatially homogeneous! ge-
ometry. First, we studied the geodesic motion, by using the

FIG. 3. The relation between the (u,v) and (m,n) coordinates.
The gray region of~b! corresponds to the grayT region in ~a!
bounded by the flat null infinitiesJ1 and J2, the null surfaces
n50 andm50 plus the singular pointm505n. Coordinate sys-
tems may be introduced such that on the null surfacesm50 and
n50 the metricsdsK

2 anddsT
2 have the form of Minkowski metric

in Cartesian coordinates, except at the singular pointm505n.
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method of the effective potential. We showed, in a mani-
festly coordinate-independent way, that massive (e51) free
particles eventually recede from the singular locus, no matter
what initial conditions are attributed to them. Only massless
(e50) particles can attain the singularity, even so provided
their motion is purely ‘‘perpendicular’’ (puu50). This en-
larges upon some results in the literature@7#. Second, we
showed that Taub’s metric is one of the limits of a family of
Schwarzschild’s spacetimes, which is closed in the sense of
Geroch@13#. This limit corresponds to the mass parameter
approaching infinitely negative values. This analysis is car-
ried out by means of Cartan scalars, which characterize in an
invariant way a given geometry. Third, we built a new plane-
symmetric model, by conveniently matching two Taub do-
mains. Fourth, we also uncovered the asymptotic structure
~null, timelike, and spacelike infinities! of Taub’s solution.
Fifth, we obtained the complete weak field limit in asymp-
totically flat regions, proving that, at spatial infinity, we may
have a nonrelativistic approximately homogeneous configu-
ration; however, this cannot be associated to a truly Newton-
ian limit due to the absence of any essential parameters
which could be related to the mass density of the source or,
in other words, Taub’s solution is a single one, not a family
of solutions~like Schwarzschild’s one, for instance!. We will
now take the opportunity to make some generic comments
on related current literature.

In a recent paper@9#, Bonnor discusses the difficulties
which arise in the interpretation of the solutions of Einstein’s
field equations, due to the coordinate freedom to describe the
metric. Although we agree with this general idea of his pa-
pers, we do not believe that his preferred~semi-infinite line
mass! interpretation of Taub’s vacuum static plane-
symmetric metric is theonly tenable one. Indeed, locally
isometric manifolds can be extended to global manifolds
with distinct topological properties; this extension cannot be
fixed by purely local~in a given coordinate system! consid-
erations~isometries, geodesics, etc.!, which are doomed to
inconclusiveness. For instance, thet,z5const flat maximally
symmetric surfaces of Eq.~2.1! can be conceived of as im-
mersed inR 3 either as topological planes or topological cyl-
inders, which are, of course, locally indistinguishable. What
really does seem promising, from the physical point of view,
to settle the issue of interpretation is the realization of ex-
periments which probe the large-scale structure of the space-
time. Another criterion, one of simplicity, we have advanced
is themirror-symmetricmatching of Sec. IV, which repro-
duces the global Taub solution in the limit of infinitely nega-
tive surface energy density of the plane shell. In short, it
seems to us that the nature of the source, from a purely
mathematical point of view, is a matter ofconsistent choice
of topology.

We should not conclude without recalling an elegant heu-
ristic argument of Vilenkin@17#, which might explain the
unreasonableness of looking for a physically viable model
for an infinite plane of constant positive surface densitys.
Consider, in the alleged plane, a disk of radiusR, which
contains the total massM (R)5pR2s; thus, above a critical
radius given byRc51/(2ps), the disk will have more mass
than its corresponding Schwarzschild mass, and it should
collapse~incidentally, the same argument does not hold for a
line or string!. Of course, compelling as this argument

seems, its validity rests on at least two tacit assumptions:~i!
the intrinsic geometry of the plane is Euclidean, so that the
disk’s area ispR2, ~ii ! thehoop conjecture@18#, since we are
dealing with a nonspherically symmetric system. Vilenkin’s
argument might then explain why all the proposed models in
general relativity~GR! for an infinite homogeneous plane
end up with either a flat space solution with an appropriate
topology or a constant distribution ofnegativemass. In fact,
in the literature, there have appeared two distinct proposals
for the general relativistic problem of a static, infinite, uni-
formly dense plane. The first one@6# is locally isometric to
Taub’s plane-symmetric static vacuum spacetime, the second
one @19# is a Rindler domain, locally isometric to the
Minkowski spacetime. If we insist that a stationary plane
massive configuration may exist in GR, we must cope with
the possibility of negative mass configurations, with an ex-
terior solution given by Taub’s geometry. Another possibil-
ity is to relax the requirement of stationarity and consider
time-dependent metrics with plane symmetry, as in the exact
solution exhibited by Griffiths@20# ~Sec. III!. This solution
consists of a slab of dust, with mass density a function ofz
and t, bounded by two Kasner regions. The mass contained
within a sphere of radiusR is, however, time independent
and given byM (R)5pR2s, for a very thin slab with a
constant planar mass densitys. This solution fits exactly
Vilenkin’s argument. Further consequences of this point will
be presented in a forthcoming paper.

As a last remark, one might be tempted to consider the
models inspected in this paper as purely academic ones;
however, already in nonquantum gravitational theory, the is-
sue of negative mass has a longstanding history, of which a
relativistic landmark is afforded by Bondi’s classic paper
@21#. Also, from a quantum point of view, it was early rec-
ognized that the weak energy condition cannot hold every-
where @22#. Nowadays, this result has acquired a renewed
interest because, besides the already mentioned cosmological
interest of topological defects@1–3#, of its import to the pos-
sibility of construction of time machines@23# and avoidance
of singularities@24#. Thus, the best policy seems to be keep-
ing, cum grano salis, an open mind to these exotic models.
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APPENDIX: THE GENERALIZED
SCHWARZSCHILD FAMILY

We study a two-parameter family of metrics which in-
cludes Taub’s and Kasner’s ones and its limits when some
parameters are taken to be 0,1`, or 2`, extending the
results of Sec. II C. The formalism is that of the Cartan sca-
lars, which are the components of the Riemann tensor and its
covariant derivatives calculated in a constant frame and
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which provide a complete local characterization of space-
times@25–27#. Spinor components are used@28# and the rel-
evant objects here are the Weyl spinorCA and its first and
second symmetrized covariant derivatives¹CAB8 and
¹2CAB8. SHEEPandCLASSI @29,30# were used in the calcu-
lations.

We shall call ‘‘the generalized Schwarzschild family’’ the
vacuum metrics

ds25Adt22A21dr22r 2@du21K2~u!dw2#;

A5l2
2m

r
, ~A1!

with l and m constant. In the Lorentz tetrads@hAB
5diag(11,21,21,21)#

u05A1/2dt, u15A21/2dr, u25rdu, u35Krdw, A.0,

u05~2A!21/2dr, u15~2A!1/2dt, u25rdu, u35Krdw, A,0 ~A2!

the Einstein vacuum field equations areR225R33
52r22(l1K ,uu /K) 5 0. Using canonical null tetrads, the
Cartan scalars are

C252
m

r 3
,

¹C2085
3

A2
m

umu
C2

4/3A6~lm2~2/3!12C2
~1/3!!57¹C318,

¹2C2085
4

3

~¹C208!
2

C2
5¹2C428 ,

¹2C31857¹2C2082
3

2
C2

2 ~A3!

~the upper and lower signs corresponding toA.0 and
A,0, respectively!. From the Cartan scalars, one infers that
the metric is Petrov typeD, has a one-dimensional isotropy
group given by spatial rotations on thev2 – v3 plane~i.e.,
the u – w surface!, the orbit of the isometry group is three
dimensional~note that the coordinatest, u, andf do not
appear in the expressions of the Cartan scalars! and, there-
fore, the isometry group is four dimensional.

SinceK(u) is not present in the Cartan scalars, for each
l, any solution forK(u) of the Einstein equations can be
transformed into each other by a suitable coordinate transfor-
mation. Thus, the line element is determined by the values of
l andm only. Moreover, sinceC2 depends on ther coor-
dinate, by a suitable coordinate transformation, its depen-
dence onm can be eliminated. Thus, a member of this family
of metrics is characterized by the sign ofm, and by
lm2(2/3). Therefore, one can always make a coordinate
transformation such thatl becomes 1, 0, or21 and
K5sinu, 1, or sinhu, respectively. Accordingly, the general-
ized Schwarzschild family may be divided into the following
subfamilies.

~1! l.0.
One can makel51 andK(u)5sinu, corresponding to

the Schwarzschild line element with2`,m,`.
~2! l,0.
One can makel521 andK(u)5sinhu. This we shall

call the anti-Schwarzschild line element with2`,m,`.
~3! l50.

One can makeK51 and umu51/2 ~for m50 the line
element becomes singular!. The only parameter is the sign of
m.

@3~a!# l50 andm51/2.0.
Kasner’s metric~2.5! with

C252~1/2r 3!, ¹C20853C2
~3/2!5¹C318,

¹2C2085212C2
25¹2C428, ¹2C31852

27

2
C2

2 .

~A4!

@3~b!# l50 andm521/2,0.
Taub’s metric~2.2! with

C251/2r 3, ¹C208523C2
3/252¹C318,

¹2C208512C2
25¹2C428, ¹2C31852

27

2
C2

2 . ~A5!

The last two line elements are special cases of the Kasner-
type metric @11#, ds25et2a1dt22et2a2dx22t2a3dy2

2t2a4dz2, wherea21a31a45a111, (a2)
21(a3)

21(a4)
2

5(a111)2 ande561. To recover Eq.~A4! we may choose
a15

1
2, a252 1

2, a35a451, ande511; and to recover Eq.
~A5! we may choosea15

1
2, a252 1

2, a35a451, and e
521.

Therefore, the generalized Schwarzschild family~A1!
may be divided into two one-parameter families, namely the
Schwarzschild family and the anti-Schwarzschild family plus
the Kasner’s metric~2.5! and the Taub’s metric~2.2!. Taub’s
metric arises whenl50 andm,0. Although umu is arbi-
trary, it can be absorbed away by a coordinate transforma-
tion, therefore Taub’s geometry is independent of param-
eters: it is asinglesolution, not a family. A consequence of
this fact emerges in the weak field limit~3.14!, which has no
essential parameter.

From the Cartan scalars~A3!, we see that asm→6`, the
limits depend only on the sign ofm and not onl, therefore
the Schwarzschild and the anti-Schwarzschild families have
the same limits. The limiting procedure we adopt is that of
@14#, where we choose limits forC2 and find the limits of
the other Cartan scalars. The possible limits forC2 are ~i!
0, ~ii ! a nonzero constant, and~iii ! an arbitrary function of
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the coordinates.~i! If C2→0, then all Cartan scalars~A3!
tend to zero, therefore both families tend to Minkowski
spacetime~which is Petrov type 0!. ~ii ! As discussed by@14#,
Petrov typeD metrics cannot haveC2 constant while the
other components of the Weyl spinor are zero.~iii ! If C2
tends to an arbitrary function of the coordinates, then as
m→1` both families tend to the Kasner metric~2.5! and as
m→2` both families tend to the Taub~2.2! as can be easily
seen comparing the the Cartan scalars obtained in the limit
with those of Kasner~A4! and Taub~A5!. As discussed in
@14#, different functional forms of the limit ofC2 do not lead
to different limits, since coordinate transformations can take

one form to the others. This analysis covers all Petrov type
D and 0 limits.

Geroch@13# introduced the concept of a closed family of
metrics, i.e., a family that contains all its limits. Considering
the family of metrics defined by~A1!, we can say that it is
closed under Petrov typeD and 0 limits asm tends to1` or
2`.

As a matter of completeness, we mention that the limits of
the generalized Schwarzschild family asl→0 andm.0 or
m,0 are exactly the same as the limits asm→6`. This can
be easily seen from the Cartan scalars~A3!, noting specially
the expression of¹C208.
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