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Taub’s plane-symmetric vacuum spacetime reexamined
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The gravitational properties of thanly static plane-symmetric vacuum solution of Einstein’s field equations
without a cosmological ternfTaub’s solution, for brevity are presented: some already known properties
(geodesics, weak field limit, and pertainment to the Schwarzschild family of spacetmeseviewed in a
physically much more transparent way, as well as new results about its asymptotic structure, possible match-
ings, and the nature of the source are furnished. The main results point to the fact that the solution must be
interpreted as representing the exterior gravitational field due negativemass distribution, confirming
previous statements to that effect in the literature. Some analogies to Kasner’s spatially homogeneous cosmo-
logical model are also mentioneld50556-282197)02606-4

PACS numbdps): 04.20.Jb, 04.20.Cv

I. INTRODUCTION however, as we shall see, the general relativistic situation is
not so plain.

The main aim of this paper is to provide a detailed inter- The paper is organized as follows. In Sec. I, we expose
pretative investigation of the vacuum plane-symmetricthe properties of Taub’s plane-symmetric vacuum model:
spacetimes of general relativity. Some generic motivatingsometries, singularity, kinematics of the observers adapted
reasons may be adduced for that. to the symmetries, timelike and null geodesiascluding

First, the presence of so-called topological deféateno- geodesic deviation f(_)r t_imelike_ onesThese aspects have
poles, cosmic strings, domain walls, and textyresising already been dealt with in the Ilteratl[r@_—_g]; however_, not
from cosmological phase transitioisymmetry breaking only for the sake of completeness and fixing conventions, but

have become quite fashionable in the study of the very earl Isq fqr tfurtti:]er cllarlfécanolﬂ and gteréer?rl]lzatlon dot vt\(e dtelve
universe, particularly as concerns their deep consequenc ur?';s":/v%” a(esrrt]ﬁenNe\(/a\zbniérY\lI?msitulnySec? ?\?yvn\;g Orclncvz tr#;t
for large-scale structure formation and cosmic backgroun \ S L o P .

. : . : . aub’s global solution is the limit of the mirror-symmetric
radiation anisotropiegl—3]. All these objects have peculiar

itational fes: . I hetind also t matching of two Taub domains, to the “left” and “right” of
gravitational properties, generic walls or s asotex- 4 negative mass planar shell. In Sec. V, we discuss the main
tures, to that effeg¢t however, seem to have a slightly more

X S implications of our results and present a conclusion. We also
acceptablg(mathematical behavior in the sense that, con- provide an Appendix where the plane-symmetric vacuum so-
trary to one- or two-dimensional trapped regions, their spacgiions are shown, via Cartan’s invariant technique, to be
times can be described by curvature tensors well defined garametric limits of a generalized Schwarzschild family of
mathematical distributionfs#]. spacetimes. The signature of the metric, except for Sec. IV,
Secondly, the Casimir effect associated with the vacuunms —2: alsoc=87G=1.

bounded by two infinite parallel plates, when treated in a
fully consistent way, should take into account the proper
gravitational field of the platds]. In this setting, it turns out
to be an issue for quantum field theory in curved spacetime. A. Metrics

Thquly, when trying to .form.ahze, IN '@ MOore precise Way,  ginstein’svacuuntield equations, without a cosmological
the equivalence between inertial and gravitational effects, th?erm, for a plane-symmetric geometry, will be satisfied by
problem of what the general relativistic model of a spatially only two nontrivial distinctsingle solutions [10]: Taub’s
homogeneous gravitational field is has to be faced. Its resQsatic metric and Kasner's spatially homogeneous one. Both
lution, from a naive Newtonian point of view, Suggests againese solutions, which we shall henceforth refer to simply as

the paying attention to the vacuum plane-symmetric solutaypy's and Kasner's solutions, are particular cases of Kas-
tions of Einstein’s field equations. Of course, the determinas o generalized solutiorfd1] (see Appendix

tion of the Newtonian gravitational field outside a static, in-  15.p’s geometryT):
finite, uniformly dense planar slab is a trivial exercise;

Il. PLANE-SYMMETRIC VACUUM MODELS

1
dstr)= opdt?-z*(dX+dy’)-dZ, (2.1
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with coordinate ranges | ro
AS(Ol-Oz)Z\/goo(rl)U V= 033(r)/gog(r)dr
—oo<t,X,y<+®, 0<r<-+o and 1

1
24,

As explicitly displayed, this radar distancerist symmetric,
1 a feature which already happens to Rindler's observers in
ds(zK)=dt2—t4’3(dx2+dy2)— —=dZ, (2.4) Minkowgki spacetime and i_s due to the re_lativ_ity of the si-

t multaneity for the different instantaneous inertial frames at-
tached to each observer. We also notice that, as the radial

[r3—rf|#As(0,,0,). (2.9

0<z<+ow, or —»<z<O0; (2.3 =

Kasner's geometryK):

s o , 1., coordinate distanceAr(0,,0,):=|r,—r,| increases, so
=tdt"—t5(dx*+dy?) — —dr, (2.9 does the radar distance.
The isometries of Taub’s model imply the existence of
with coordinate ranges three constants of motion for the geodesics,
1.
—o<X,y,z,r<+o and <t<+o, or —o<t<O. —t=:E=const>0, (2.10
(2.6 r
The only nonvanishing Carminati-McLenaghan algebraic F25<=pr=C0nSt, (2.19
invariants[12] for Taub’s and Kasner’s solutions are _
r?y=:py=const, (2.12
64 256
him=572 lam=" 5735 (2.7 where a dot denotes a derivative with respect to an affine

parameterr (the proper time, for timelike geodesjcd-ur-
thermore, the invariance of the character of the geodesic
(gan”‘xB=e:=0 or+1, for null or timelike geodesics, re-

64 256 spectively implies now
(2.8

and

o= 1207 2430

r2=E2-V(r), (2.13
wherel;: =R*"°R, ;. s andl,:=R,z*'R,, R, ,*~.
As concerns Taub’s solution, we call attention to the fol-
lowing properties(i) it is not only plane-symmetric, but also 1, )
static, (i) it has a timelike singularity a=0 (r =0); (iii) its V(r):=5(pjj+er9)=0 (2.14
algebraic invariants vanish whemr — + oo (suggesting it is
asymptotically flat at spatial infinity in the direction; see and
Sec. ll). Kasner's solution presents “dual” propertigs} it
is not only plane-symmetric, but alspatially homogeneous p = \/p§+ pf,. (2.195
(beware, it inot stationary; (ii) it has a spacelike singularity
att=0; (iii) its algebraic invariants vanish whega> + . The motion in the coordinate is thus reduced to a usual

one-dimensional problem with theffective potential(2.14)

B. Kinematics of adapted observers and geodesics andr coordinateacceleration

The motion of the observers adapted to those coordinate
systems (%= 64/\/goo) is covariantly characterized as: for
Taub’s solution, Eq(2.1), they constitute aigid nonrotating
accelerated framewhereas for Kasner’s solution, E@.4),  From either Eqs(2.13—(2.15 or Egs.(2.195,(2.16, we see
they constitute aleforming nonrotating geodesic framiEhe  that we have two qualitatively distinct cases, according to the
results for Taub’s observers are obvious since they are manimass and/or the initial conditions of the test partiala)
festly static, so that they remain at rest with respect to ongnassless particles in purely “perpendicular’ motion
another and with respect to the singularity too. This is a(e=p;=0); (b) massive particlesg=1) or massless par-
consequence of the physically more intuitive fact that theticles in “transverse” motion é=0+ p)|). Case(a) implies
proper time, as measured by a static observer, for a photon ¥(r)=0, F=0. These null geodesiaio attain the singular-
travel to and back from a second static observer is indeperity. Case(b) impliesV(r)— +o, r— 4« whenr—0, and
dent of the emission event. Half this proper time defines th&/(r)—0,, r—0, when r—+w. These geodesics can
so-calledradar distancebetween the two observers, which is never attainthe singularity.

a coordinate-independent concept. Specifically, for Taub’s In fact, all massive geodesic particles or even generic
spacetime, this radar distance between two static observefp;#0) massless geodesic particles aepelled from the
0, and O, with respective spatial coordinates,y,r;) and  singularity as described by the static observetsconst.
(x,y,r,), as measured b§, is given by This is clear from the following. As shown at the beginning

v 1 2 2
r=ﬁ(3p“+er )=0. (2.1
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of this section, the static observers are at rest with respect ®ented Schwarzschild’s metric in three different coordinate
each other and with respect to the singularity. Sincerthe systems, such that, as the mass tends-to, the limiting
coordinate for a geodesic particle eventually increases withresult is either singular, Minkowski’'s metric or Kasnher's
out bound, it will cross the static observers receding furthefspatially homogeneousnetric. Because of the resemblance
and further away from the singularity. Furthermore, a geodebetween Kasner’'s and Taub’s metrics, one naturally wonders
sic particle initially at rest will be displaced to increasing whether the latter is also a limit of the Schwarzschild family
values ofr, as can be derived from E(R.16. This implies  of metrics as the mass tends-toe; the answer, however, is
that, relative to the static observers, a geodesic particle isegative, since the only Petrov tyd® such limits are
accelerated away from the singularity. This description isMinkowski's and Kasner'qspatially homogeneouspace-
consistent with the negative mass interpretation for thdimes[14]. Still, coordinate systems exist, for this Schwarzs-
sources of Taub’s spacetime, as discussed at the end of thikild family of metrics, such that, now in the limit
subsection, in the Appendix and in Sec. IV. m— —, one ends up with Taub’s metrfi8,15]. In the Ap-
Equations(2.13 and (2.14 may be trivially integrated, pendix, we analyze a generalized Schwarzschild family of
whereupon one can easily see that null geodesics in purelyetrics, which is closed in the sense of GerfitB], using an
“perpendicular” motion [case (a) abovdg ‘“reach” the invariant approach and extending the above results.
boundaryr =+ (to be defined in Sec. llonly after an It is expedient to mention here some other families to
infinite interval of affine parameter. which Taub’s metric belongs. We have two subfamilies of
To further interpret the model, let us now calculate, fromWeyl's static vacuum metric§9]: the Levi-Civita metrics
the geodesic deviation equation, the relative acceleration bend the Parnovski-Papadopoulos metrics, then the Kerr-
tween two geodesics at instantaneous rest with respect to ti8zhild solutiong10] and, as already mentioned, the general-

singularity (j(|0:y|oz'r|0:o)_ We find ized Kasner metrics.
D?y°| . ASYMPTOTIC STRUCTURE
D2 =0, AND THE WEAK FIELD LIMIT
0
In this section, we introduce coordinate systems which
D2y” B A (A—12 21 render explicit the null boundary structure of the spacetime
D2 | 237> (A=12), (2.17 and also characterize a weak field limit to Taub’s geometry.
0 Let us consider the static plane-symmetric Taub metric in
23 the form
D<#n _ 1 773
o2, P .
dsZT=th2—rdr2—r2(dx2+dy2) (3.1

Note that the signs in the above equations are the opposite of
the corresponding ones in the Schwarzschild spacetime.
Thus, a set of two freely falling particles released from res{o<r <) and introduce in the manifold of Eq3.1) the
may behave in two characteristic wayg) if their initial  Kkryskal-type coordinate systenup,x,y) defined in Table
spatial positions have equal andy but differentr, their |

relative distance will instantaneously decrease, while being | this coordinate system, the metri8.1) assumes the
repelled from the singularity(b) if their initial spatial posi-  form

tions have equat but differentx and/ory, their relative

distance will instantaneously increase, while being repelled 5 5
from the singularity again. Contrary to the case of the cur- 2- 2\2(duw?—dv?) 2l — 1) (dxC+ dy?)
vature field being spatially homogeneo(iadependent of (v2—u?)=In(vZ—u?) v Y.
r), as occurs in the Newtonian theory for the gravitational (3.2
field g, the plane symmetry of the metric field does not imply
homogeneity(neither in the metric nor the curvature fields
analogous spacetime measuremestsch as those for the | 2. 120 A . di b
geodesic deviatignat events with different coordinates %‘:?Oﬁ;% ezsrosiih_?h;) 'Eq?%n;)ptogg:cg%)ersm?é%igfyone

furnish distinct reslts. v?—u?=0 (see Table)l The boundaries?—u?=0 are in

o fact two flat null surfaces at infinityr@= +o0), which we
C. Parametric limits shall denote by* andJ™~ (see Fig. 1, and correspond to the
Some intuition on the nature of the soufsingularity of ~ asymptotically flat regions of the spacetime.

Taub’s (global) spacetime might also be expected to arise If, in Eq. (3.1), we extend the domain of the coordinate
from a study of the families of metrics to which it belongs. r to —o<r <, the resulting manifold of the geomet($.1)
The problem with this argument is twofol@) a given met- is the union of a Kasner) spacetime to a Taubilj space-
ric may be a parametric limit of several disjoint families of time, with the singular locus=0 as a common boundary.
metrics, (i) a given family of metrics may have different The Kasner spacetime corresponds to the domain
limits, for the same limiting values of its parameters, when—o<r<O0, its singularityr=0 having now a spacelike
the limiting process is carried out in different coordinate sys<character. A typical planeu(v) of Kasner's spacetime is
tems. This was first pointed out by GeroftB], who pre- represented in Fig. 2. The metric K is given by

We note that the curvature tensor of E8.2) tends continu-
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TABLE |. Coordinate systems used for Taub metric in this paper. Homonymous coordinates may differ
by a constant and unspecified ranges areo(+=). An * in the fourth column means the singularity. The
last two coordinate systems are meaningful only in the asymptotic region. For the Kasner metric, we inter-
changeu andv in the table; the point =0, ,u=0) for the Kasner domain now represents the future
timelike infinity i *, instead ofi°. Replicas of these spacetim@gé andT) in the (u,v) plane can be obtained
by changing ¢,v)—(—u,—v).

coord. definition range geometrical loci
tzxy O=sz<+oo *:z=0
trxy r=(32/2)%3 O<r<+o * . r=0
uvxy u=e"""sinh/2) O<v<+o * 1 p2-u?=1
v=e""Ycosh(/2) O<v?-u?<1 Jt iv=+u#0
J” tv=—u#0
i%:u=0, v=0,
MVXY pn=—In(v—u) Os(put+v)<+wx *ut+v=0
v=—In(v+u) J* . u—+oo, v finite

J” i v—+o, u finite
i9: u—too, v+

Evxy E=\Au, n>0 0<é<+o
ENXY X=E&x, Y=¢y
N=v—¢(x2+y?)
TZXY Z=(N+§)/2
T=(N-§)/2
2\2(du?—dv?) etry are characterized and explicitly exhibitétie two flat
St = T +2In(u?—v?)(dx?+dy?). null infinites J* and J~, and the spatial infinityi®), the
(W2—v?)=In(u?=v?) metric in these coordinate systems is not well defined in the

3.3 boundaries. In order to give a regular expression for Taub’s
metric in a neighborhood of the boundarigs andJ™~, we
therefore introduce two new sets of asymptotic coordinates
(see Table)l

We rewrite Eq.(3.4) as

Expression(3.3) is obtained by interchanging andv in the
metric components of E(3.2). Note that in theK region
O=<u?—v2<1, and (,v) are still timelike and spacelike co-
ordinates, respectively.

A further coordinate system is now introducete Table

1), which wiII. be useful in exgmining the asymptotic form of dszT= _ zﬁdfd” _ Egz 1+412) (dx2+dy?). (3.7
Taub’s metric. In the coordinate system,,X,y), Taub’s 4, 2 3
geometry(3.2) assumes the form 1+ r
42— 2\2dudy C2(utr)(ddyd) (3.4 NearJ" we have 4/£2—0, and we may expand the above
[u+v K ' line element as
and Kasner's geometr§8.3) becomes ds2~ds +h, (3.9
2y2dud h
d§§=%—2(u+ N(de+dy?d). (35 e
pry 4, = —22dédv— L E2(dxe+dy?) 3.9
The null infinities of Taub’s geometry are now expressed by
and
J* i pu— oo,
(3.6) 4.2
J iv—o h=$d§dv—2v(dx2+dyz). (3.10

and analogously for Kasner's geometry. The diagrams of

Fig. 3 make explicit the relation between tha,f) and We note that the line elemedﬁ,l is the Minkowski one in

(m,v) coordinates. coordinatesx*=(&,v,Xx,y). Indeed, let us realize a further
Although we have introduced coordinate systeese coordinate transformatiofsee Table)l, which castsdsﬁ,I into

Table ) where the asymptotic boundaries of Taub’s geom-the form



u
u=v (r=o)
null
geodesics v-uP=1
(r=0 timelike singularity)
HY 2 2
i v? - u? = const \"
(r = const static observers)
J
U=-v (r=oo)

FIG. 1. The Taub spacetimé3.2), with two coordinatesx,y)
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u-vi=1
(r=0 spacelike singularity)

u? - v = const
(r=const spacelike
hyperbolae)

t=const lines

FIG. 2. The Kasner spacetimé€3.3), with coordinates X,y)

suppressed. Each point of the diagram corresponds to a tW@lzJpprSssed. The future flat null infinitie3” correspond to
dimensional spacelike plane. The spacetime manifold is the quasi”—v“=0. The {U,v) coordinates are now related to ther( co-

compact region of theu,v) plane bounded by the timelike singu-
larity v2—u?=1, the null boundaried® andJ~, and the spatial
infinity i° (u=0, v=0,). The null geodesicgwith p=0) are
forty-five degrees straight lines. With respect to the meBi) u
andv are timelike and spacelike coordinates, respectively.

dsy=—dédN—(dX?+dY?) (3.11)

and all components df in this new coordinate system are at

least O(1/&?), as well as its first and second derivatives.

Therefore, in the coordinate systerd,ll,X,Y) the metric

ordinates of Eqg.(3.1) with —o<r=<0 by u=f(r)cosh{/2),
v="f(r)sinh{/2), in order that ¢,v) have timelike and spacelike
character, respectively. The future timelike infinity is the point
(u=0, ,v=0).

-1/z.

Dy = (314
If we choose a plan&=Z, in a neighborhood oif’, we can
expand Eq(3.14 aboutZ, as

nearJ" is regular, as well as its first and second order de-Then, near the plan&=Z,, we have a homogeneous field

rivatives, and differ from the Minkowski metric by a small
perturbationh which tends to zero a§— .

orthogonal toZ, with strength JZ(Z), for all (X,Y) finite.
This configuration of the gravitational fieldn a neigh-

An analogous expansion may be realized in a neighbory,rhaad ofi%) is the nearest to a homogeneous gravitational

hood ofJ™ : v—. This may be obtained from the expres-

field we may achieve in the static plane-symmetric Taub ge-

sions of the above paragraph by the obvious substitutioBmetry. In the past literature, this problem of the nonrelativ-

v=p.

We can now discuss the weak field limit for Taub’s ge-

ometry. Equation(3.11) suggests the introduction of a Car-
tesian coordinate system at infinity, namely,Z,X,Y), de-
fined in Table I. Thus, whez—-oo for finite T, we have
é—o andN—oo, with N/¢2—0. Therefore, the region de-
scribed byZ— o« for finite T is a neighborhood of the spatial
infinity i of Fig. 1. The asymptotic expression of Taub’s
metric (for X andY finite) is then

ds?=dT?—dX?—dY?—dZz?

N1
E(dzz—de)—dxz—de, (3.12

v

and, in a neighborhood of the spatial infinity, Eq. (3.12
reduces to

ds?=(1—2/2)(dT?—dZ?)— (1+4/Z)(dX?+dY?).
(3.13

A Newtonian-like potential at® is then given by

istic limit to a static plane-symmetric metric was considered
in [7] (Sec. IV). The treatment there is, however, incomplete:
a coordinate system is introduced where Taub’s metric is put
in the formdss=ds% +h, whereh is a small(in a specific
region deviation of the Minkowski metricds:f,I . Neverthe-
less, the connection and curvature tensor components are not
small (of the order ofh) in that region, unless he specifies
thatg— 0, thus fixing the asymptotic regioz-{ + ) as the
region of true nonrelativistic limit; in this case, the above
coordinate system is well defined only in the asymptotic re-
gion (see[7], Eq. (12)). Furthermore, since Taub’s metric
has no essential free parameter in it, there simply does not
exist a quantity which would play the role of the mass den-
sity of the source.

IV. MATCHING AND SHELL

We now implement anirror-symmetricjunction of two
Taub domains by means ofreegativemass shell, in order to
show that Taub’s original spacetini2.1l) may be naturally
viewed as the limit of this matched one as the surface energy
density of the shell approaches=. To this end, we shall
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singularity
viout=1

(a)

p+v=0
(singularity)

(b)

FIG. 3. The relation between the,@) and («,v) coordinates.
The gray region of(b) corresponds to the gray region in (a)
bounded by the flat null infinited* and J~, the null surfaces
v=0 andu=0 plus the singular point=0=v. Coordinate sys-
tems may be introduced such that on the null surfaces) and
v=0 the metricds andds? have the form of Minkowski metric
in Cartesian coordinates, except at the singular pent0=v.

take advantage of Israel’s shell formali§f6], following all

BEDRAN, CALVAO, PAIVA, AND SOARES

F_(x%):=z_+A=0, with A>0. The induced three-metrics
onX* andX~ are[cf. (2.1)] identical:

ds? |s+=—A"2Rd2 + AY3(dxE +dy?), (4.0

thus automatically satisfying the first junction condition.

The verification of the second junction condition requires
the calculation of the extrinsic curvatures Bf" and > ~.
The unit normal vector t& (directed fromvV~ to V') will
have components$ andn?, relative to the chartg{ and
x% , given by

For an intrinsic basis of tangent vectors X9 we will
choose three orthonormal vectoes (i=0,1,2) of compo-
nentse’, ande” , relative to the chartg? andx?, given
by

€0+ = |A|l/358[*

e =|AI" %57, eg.=|A|"2%;.

4.3

The extrinsic curvature of a hypersurface with unit normal
n“ can be calculated as

Kij=efeln,.z, (4.9

which furnishes

. 1
Kﬁziﬁ diag'1,2,2. (4.5
Lanczos equation [16], y;—0ij¥i=—S;, where
Yij :=K§—Ki} is the jump in the extrinsic curvature, then
determines the surface energy-momentum tensor of a shell:

Sij=% diag —4,1,1). (4.6

Thus, if we suppose the shell is a perfect fluid one, with
proper four-velocity

u®s=|A[*355, 4.7)

his conventions inclusively; in particular, the signature of thewe are forced to recognize that it hasnagative surface

metric, in this section, is-2.

The four-dimensional manifoldg* andV~ will be taken
as Taub domains; specifically,”: ={(x%):z,>A>0} and
V7i={(x%):z_<—A<0}, thatisV" is “on the right side”
of the original Taub singularity and™ is “on its left side.”
We are assuming that thez= const surfaces have the topol-
ogy of a plangR?) and we can thus assign to the symmetry
z— —2z a hatural meaningful interpretation as a mirror or

specular symmetry. This interpretation seems to be unwar-

ranted for other choices of topology of thez=const sur-
faces(see Sec. V.

The timelike hypersurfaces of junctian® and 3~ are
characterized by the equatiors, (x§):=z,—A=0 and

energy density. Furthermore, Asapproaches 0, thus realiz-
ing the matching ever closer to the original Taub singularity,
we are naturally lead to interpreting it as an infinite uniform
planedistribution of negative diverging surface energy den-
sity. This interpretation is consistent with the repulsion of
geodesics found in Sec. Il B and the limit for infinite nega-
tive mass.

V. DISCUSSION

In this paper, we carried out an extensive investigation of
the local and global properties of Taul(statio geometry,
and by extension, of Kasner{spatially homogeneouge-
ometry. First, we studied the geodesic motion, by using the
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method of the effective potential. We showed, in a mani-seems, its validity rests on at least two tacit assumptions:
festly coordinate-independent way, that massize {) free  the intrinsic geometry of the plane is Euclidean, so that the
particles eventually recede from the singular locus, no mattedisk’s area istR?, (ii) thehoop conjectur¢18], since we are
what initial conditions are attributed to them. Only masslesglealing with a nonspherically symmetric system. Vilenkin's
(e=0) particles can attain the singularity, even so providec@rgument might then explain why all the proposed models in
their motion is purely “perpendicular” g, =0). This en- general r_elatl\(lty(GR) for an |nf|n|te.homc_)geneous plaqe
larges upon some results in the literaty@. Second, we end up with either a fIat'sp_ace_ solution y\nth an appropriate
showed that Taub’s metric is one of the limits of a family of t0P0I0gy or a constant distribution akgativemass. In fact,
Schwarzschild’s spacetimes, which is closed in the sense df the literature, there have appeared two distinct proposals
Geroch[13]. This limit corresponds to the mass parameterfor the general relativistic .problem .of a statlg, |nf|n|t_e, uni-
approaching infinitely negative values. This analysis is carforml}’ dense plane. The first orjé] is locally isometric to
ried out by means of Cartan scalars, which characterize in ah2uP’s plane-symmetric static vacuum spacetime, the second
invariant way a given geometry. Third, we built a new plane-On€ [19] is a Rindler domain, locally isometric to the
symmetric model, by conveniently matching two Taub do-Minkowski spacetime. If we insist that a stationary plane

mains. Fourth, we also uncovered the asymptotic structur@1@ssive configuration may exist in GR, we must cope with
(null, timelike, and spacelike infinitiéof Taub’s solution. e Possibility of negative mass configurations, with an ex-

Fifth, we obtained the complete weak field limit in asymp- (€rior solution given by Taub’s geometry. Another possibil-
totically flat regions, proving that, at spatial infinity, we may 'Y iS t0 relax the requirement of stationarity and consider
have a nonrelativistic approximately homogeneous configulime-dependent metrics with plane symmetry, as in the exact
ration; however, this cannot be associated to a truly Newtonselution exhibited by Griffithg 20] (Sec. Il). This solution

ian limit due to the absence of any essential parameter%onS'StS of a slab of dust, with mass density a functioa of

which could be related to the mass density of the source oNdt, bounded by two Kasner regions. The mass contained
in other words, Taub’s solution is a single one, not a familyWithin a sphere of radiuR is, however, time independent

e ; . \ i — _R2 - -
of solutions(like Schwarzschild’s one, for instanc&ve will ~and given byM(R)=mR"c, for a very thin slab with a
now take the opportunity to make some generic comment§onstant planar mass density. This solution fits exactly -
on related current literature. Vilenkin’s argument. Further consequences of this point will

In a recent papef9], Bonnor discusses the difficulties P€ presented in a forthcoming paper. _
which arise in the interpretation of the solutions of Einstein’s AS @ last remark, one might be tempted to consider the
field equations, due to the coordinate freedom to describe th&0dels inspected in this paper as purely academic ones;
metric. Although we agree with this general idea of his pa-however, already in nonquantum gravitational theory, the is-
pers, we do not believe that his preferf@@mi-infinite line  Sue of negative mass has a longstanding history, of which a
mas$ interpretation of Taub’s vacuum static plane- relativistic landmark is afforded by Bondi's classic paper
symmetric metric is theonly tenable one. Indeed, locally [21]- Also, from a quantum point of view, it was early rec-
isometric manifolds can be extended to global manifoldsP9nized that the weak energy condition cannot hold every-
with distinct topological properties; this extension cannot bevhere[22]. Nowadays, this result has acquired a renewed
fixed by purely localiin a given coordinate systénconsid- ~ interest because, beS|des the already m'entloned cosmological
erations(isometries, geodesics, etcwhich are doomed to interest of topological defecfd—3], of its import to the pos-
inconclusiveness. For instance, the= const flat maximally 5|b|I_|ty of c_o_nstrucnon of time machlng[QS] and avoidance
symmetric surfaces of E42.1) can be conceived of as im- Of singularities[24]. Thus, the best policy seems to be keep-
mersed inR 3 either as topological planes or topological cyl- iNg, cum grano salisan open mind to these exotic models.
inders, which are, of course, locally indistinguishable. What
really does seem promising, from the physical point of view,
to settle the issue of interpretation is the realization of ex- ACKNOWLEDGMENTS
periments which probe the large-scale structure of the space-
time. Another criterion, one of simplicity, we have advanced The authors would like to acknowledge W. Unruh for
is the mirror-symmetricmatching of Sec. IV, which repro- fruitful discussions on a preliminary version of this paper,
duces the global Taub solution in the limit of infinitely nega- and B. Mashhoon and G. Matsas for calling attention to
tive surface energy density of the plane shell. In short, itSOme relevant references. 1.D.S. and F.M.P. also thank J.
seems to us that the nature of the source, from a pure|§kea for enlightening comments. F.M.P., I.D.S., and M.O.C.
mathematical point of view, is a matter obnsistent choice ~acknowledge financial assistance from CNPq.
of topology.

We should not conclude without recalling an elegant heu-
ristic argument of Vilenkin[17], which might explain the
unreasonableness of looking for a physically viable model
for an infinite plane of constant positive surface density
Consider, in the alleged plane, a disk of radiRs which We study a two-parameter family of metrics which in-
contains the total madd (R) = 7R?0; thus, above a critical cludes Taub’s and Kasner's ones and its limits when some
radius given byR.=1/(2w ), the disk will have more mass parameters are taken to be &, or —«, extending the
than its corresponding Schwarzschild mass, and it shouldcesults of Sec. Il C. The formalism is that of the Cartan sca-
collapse(incidentally, the same argument does not hold for aars, which are the components of the Riemann tensor and its
line or string. Of course, compelling as this argument covariant derivatives calculated in a constant frame and

APPENDIX: THE GENERALIZED
SCHWARZSCHILD FAMILY
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which provide a complete local characterization of space- ds®=Adt?— A" dr’—rd6?+K?(0)de?];
times[25-27. Spinor components are usgzB] and the rel-
evant objects here are the Weyl spinby, and its first and

second symmetrized covariant derivativéd¥ .5, and A=\— 2_m (A1)
V2W g/ SHEEPaNd CLASSI [29,30 were used in the calcu- r
lations.
We shall call “the generalized Schwarzschild family” the with X and m constant. In the Lorentz tetradsyag
vacuum metrics =diag(+1,—1,—-1,—-1)]
|
6°=AYt, ot=A"Ydr, #?=rdo, 6°=Krde, A>0,
O=(—A)"Ydr, ¢'=(—-A)Vdt, #°=rdg, 6=Krde, A<O (A2)
|
the Einstein vacuum field equations ar&,=Rj3; One can makeK=1 and|m|=1/2 (for m=0 the line
=—r1"?(A+K 4/K) = 0. Using canonical null tetrads, the element becomes singujairhe only parameter is the sign of
Cartan scalars are m.
[3(@] A=0 andm=1/2>0.
V,=— Ts Kasner's metrig 2.5 with
r ’
Vo= —(1U2%), VW,y=3¥32=vyw,,
3 m
VW, = 5 H\P;"Wt (Am~ @4 2y =2y, 0y
VAW = —1203=V2W sy, V2Wa=— V3.
4 (VW,y)2 Ad
V \Ifzor = § —\Pz :VZ\I,42r y ( )
[3(b)] A=0 andm= —1/2<0.
) ) 3, Taub’s metric(2.2) with
V \1,31,: IV lIlzol_ E’\Pz (A3)

W,=1/2r%, VW,o=-3¥3?=-V¥,,,

(the upper and lower signs corresponding A0-0 and

A<O0, respectively. From the Cartan scalars, one infers that

the metric is Petrov typ®, has a one-dimensional isotropy

group given by spatial rotations on the€ — w® plane(i.e.,

the # — ¢ surface, the orbit of the isometry group is three  The last two line elements are special cases of the Kasner-

dimensional(note that the coordinatels ¢, and ¢ do not type metric [11], ds?=et?1dt?®—et?®2dx?—t2%dy?

appear in the expressions of the Cartan scplangl, there- —t2%dz2 wherea,+az+a,=a;+1, (a,)?+ (a3)>+ (a,)?

fore, the isometry group is four dimensional. =(a;+1)? ande=*1. To recover Eq(A4) we may choose
SinceK(#) is not present in the Cartan scalars, for eacha, =3 a,=—3, a;=a,=1, ande=+1; and to recover Eq.

A, any solution forK(#) of the Einstein equations can be (A5) we may choosea;=3, a,=—3, azg=a,=1, ande

transformed into each other by a suitable coordinate transfor=—1 ,

mation. Thus, the line element is determined by the values of Therefore, the generalized Schwarzschild fami#d)

\ andm only. Moreover, sinceV, depends on the coor-  may be divided into two one-parameter families, namely the

dinate, by a suitable coordinate transformation, its depenSchwarzschild family and the anti-Schwarzschild family plus

dence orm can be eliminated. Thus, a member of this family the Kasner’s metri¢2.5) and the Taub’s metri€2.2). Taub’s

of metrics is characterized by the sign af, and by metric arises when=0 andm<0. Although|m| is arbi-

Am~ (3 Therefore, one can always make a coordinaterary, it can be absorbed away by a coordinate transforma-

transformation such thah becomes 1, 0, or—1 and tion, therefore Taub’s geometry is independent of param-

K=sing, 1, or sinty, respectively. Accordingly, the general- eters: it is asinglesolution, not a family. A consequence of

ized Schwarzschild family may be divided into the following this fact emerges in the weak field lin{®.14), which has no

27
VoW, =1203=VV¥ ,,, vzxpgl,:—?qu. (A5)

subfamilies. essential parameter.

(1) A>0. From the Cartan scalaf83), we see that asi— *= o, the
One can make.=1 andK(64)=sind, corresponding to limits depend only on the sign @h and not on\, therefore
the Schwarzschild line element withoo<m<oo, the Schwarzschild and the anti-Schwarzschild families have

(2) A<O. the same limits. The limiting procedure we adopt is that of
One can make.=—1 andK(#)=sinhd. This we shall [14], where we choose limits foW, and find the limits of
call the anti-Schwarzschild line element witheo <m<co, the other Cartan scalars. The possible limits fo5 are (i)

(3) A=0. 0, (ii) a nonzero constant, ar(di) an arbitrary function of
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the coordinates(i) If ¥,—0, then all Cartan scalarf&\3) one form to the others. This analysis covers all Petrov type
tend to zero, therefore both families tend to MinkowskiD and O limits.

spacetiméwhich is Petrov type P (ii) As discussed bj14], Geroch[13] introduced the concept of a closed family of
Petrov typeD metrics cannot hava’, constant while the metrics, i.e., a family that contains all its limits. Considering
other components of the Weyl spinor are zefid) If ¥,  the family of metrics defined byAl), we can say that it is
tends to an arbitrary function of the coordinates, then aslosed under Petrov tyd@ and O limits asn tends to+ o or
m— + o both families tend to the Kasner metf.5 and as —o.

m— — oo both families tend to the Taul2.2) as can be easily As a matter of completeness, we mention that the limits of
seen comparing the the Cartan scalars obtained in the limihe generalized Schwarzschild family as-0 andm>0 or
with those of KasnefA4) and Taub(A5). As discussed in m<0 are exactly the same as the limitsmas> = . This can
[14], different functional forms of the limit o, do notlead  be easily seen from the Cartan scalgk8), noting specially

to different limits, since coordinate transformations can takeahe expression oVW ,q .

[1] P. J. E. Peeblegrinciples of Physical Cosmologfrinceton  [15] I. Damizo Soares, Ph.D. thesis, Centro Brasileiro de Pesquisas
University Press, Princeton, NJ, 1993 Fisicas, Rio de Janeiro, 1976.

[2] R. Brandenberger, irProceedings of the VIllith Brazilian [16] W. Israel, Nuovo Cimento B4, 1 (1966; 48, 463E) (1967).
School of Cosmology and Gravitatioadited by M. Novello  [17] A. Vilenkin, Phys. Rev. D23, 852(1981).

(Editions Frontiees, Paris, 1996 [18] K. S. Thorne, in Magic without Magic: John Archibald
[3] D. Coulson, Z. Lalak, and B. Ovrut, Phys. Rev.53, 4237 Wheeler edited by J. R. KlaudefFreeman, San Francisco,
(1996. 1972. _
[4] R. Geroch and J. Traschen, Phys. Reva® 1017(1987. [19] E. L. Schucking, Found. Phy4&5, 571(1984.

[20] J. B. Griffiths, Gen. Relativ. GraviR7, 905 (1995.
d [21] H. Bondi, Rev. Mod. Phys29, 423(1957%.
'[22] H. Epstein, V. Glaser, and A. Jaffe, Nuovo CimeB® 1016
(1965.

[6] A. H. Taub, Ann. Math53, 472 (195J). .
) [23] M. S. Morris, K. S. Thorne, and U. Yurtsever, Phys. Rev. Lett.
[7] P. C. Aichelburg, J. Math. PhygN.Y.) 11, 1330(1970. 61, 1446(1988.

5, orslomrd 3 NovomyCaee, ) ivs B2 15211980 1 Foman, rys. o o1 sscsmn
. ! T ) [25] E. Cartan,Leons sur la Gemérie des Espaces de Riemann
Nat.wiss. Reihe39, 25(1990. (Gauthier-Villars, Paris, 1951
[10] D. Kramer, H. Stephani, M. MacCallum, and E. He#fxact [26] A. Karlhede, Gen. Relativ. Gravil.2, 693 (1980.
Solutions of Einstein’s Field Equatioi€ambridge University  [27] F. M. Paiva, Ph.D. thesis, Centro Brasileiro de Pesquissis Fi

[5] N. D. Birrell and P. C. W. DaviesQuantum Fields in Curved
Spaces(Cambridge University Press, Cambridge, Englan
1982.

Press, Cambridge, England, 1980 cas, Rio de Janeiro, 1993.
[11] A. Harvey, Gen. Relativ. Gravi2, 1433(1990. [28] R. Penrose, Ann. Phy$N.Y.) 10, 171 (1960.
[12] J. Carminati and R. G. McLenaghan, J. Math. PlisY.) 32, [29] I. Frick, sHEEP Users Guide, University of Stockholm Report
3135(1991). No. 77-14, 197F{unpublisheg
[13] R. Geroch, Commun. Math. Phy%3, 180 (1969. [30] J. E. Aman, Manual forcLasskClassification Programs for
[14] F. M. Paiva, M. J. Rebaus, and M. A. H. MacCallum, Class. Geometries in General Relativitfhird Provisional Edition,

Quantum Grav10, 1165(1993. University of Stockholm report, 198{npublished



