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The first law of black hole mechanics~in the form derived by Wald! is expressed in terms of integrals over
surfaces, at the horizon and spatial infinity, of a stationary, axisymmetric black hole, in a diffeomorphism-
invariant Lagrangian theory of gravity. The original statement of the first law given by Bardeen, Carter, and
Hawking for an Einstein-perfect fluid system contained, in addition,volumeintegrals of the fluid fields, over a
spacelike slice stretching between these two surfaces. One would expect that Wald’s methods, applied to a
Lagrangian Einstein-perfect fluid formulation, would convert these terms to surface integrals. However, be-
cause the fields appearing in the Lagrangian of a gravitating perfect fluid are typically nonstationary~even in
a stationary black-hole–perfect-fluid spacetime! a direct application of these methods generally yields re-
stricted results. We therefore first approach the problem of incorporating general nonstationary matter fields
into Wald’s analysis, and derive a first-law-like relation for an arbitrary Lagrangian metric theory of gravity
coupled toarbitrary Lagrangian matter fields, requiring only that themetric field be stationary. This relation
includes a volume integral of matter fields over a spacelike slice between the black hole horizon and spatial
infinity, and reduces to the first law originally derived by Bardeen, Carter, and Hawking when the theory is
general relativity coupled to a perfect fluid. We then turn to consider a specific Lagrangian formulation for an
isentropic perfect fluid given by Carter, and directly apply Wald’s analysis, assuming that both the metric and
fluid fields are stationary and axisymmetric in the black hole spacetime. The first law we derive contains only
surface integrals at the black hole horizon and spatial infinity, but the assumptions of stationarity and axisym-
metry of the fluid fields make this relation much more restrictive in its allowed fluid configurations and
perturbations than that given by Bardeen, Carter, and Hawking. In the Appendix, we use the symplectic
structure of the Einstein-perfect fluid system to derive a conserved current for perturbations of this system: this
current reduces to one derivedab initio for this system by Chandrasekhar and Ferrari.
@S0556-2821~97!05806-2#

PACS number~s!: 04.20.Fy, 04.40.Dg, 04.70.Bw

I. INTRODUCTION

The first law of black hole mechanics as stated by
Bardeen, Carter, and Hawking@1# relates small changes in
the mass of a stationary, axisymmetric black hole to small
changes in its horizon surface area, angular momentum, and
the properties of a stationary perfect fluid that might sur-
round it: one first fixes a stationary axisymmetric Einstein-
perfect fluid black hole solution with stationary killing field
ja ~with asymptotically unit norm! and axial killing field
wa ~with closed orbits!. One then definesd to be an infini-
tesimal perturbation to a nearby stationary axisymmetric so-
lution; then the first law in@1# is

dM5
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8p
dA1VHdJH2E

S
m8uvudNabc

1E
S
VdJabc1E

S
TuvudSabc , ~1!

where the spacetime is characterized by an Arnowitt-Deser-
Misner ~ADM ! mass,M , and the black hole by its horizon
surface areaA, surface gravityk, angular velocityVH , and
angular momentumJH ~measured at the horizon!. The fields
associated to the perfect fluid are its four-velocityUa @which
here is taken to be of the formUa5va/uvu, where
va5ja1Vwa, for some ~generally nonconstant! V#, the
chemical potentialm8, the temperatureT, stress energy

Tab, and number and entropy densitiesn andS. The three-
forms Nabc5nUdeabcd, Jabc5Tdew

eedabc, and Sabc
5SUdedabc represent the fluid number density, angular mo-
mentum density, and entropy density on a spacelike three-
surface,S, that has boundaries at the black hole horizon and
the two-sphere at spatial infinity. We have also seteabcd to
be the canonical volume element on spacetime.

Considerable effort has been spent on weakening the as-
sumptions made in Eq.~1! on the background fields and their
perturbations. For instance, consider an arbitrary diffeomor-
phism invariant Lagrangian theory with both metric and mat-
ter fields, and let the theory possess stationary, axisymmetric
black hole solutions, which are asymptotically flat, and have
a bifurcate killing horizon~for an explanation of these terms
see@2,3#!. Then it was shown@2,4#, providing the metric and
matter fields appearing in the Lagrangian were stationary and
axisymmetric in the black hole background, that there ex-
isted a first law of black hole mechanics in a form only
involving surface integralson the sphere at spatial infinity
and the bifurcation sphere of the black hole horizon. Namely,
given the Lagrangian for the theory, one could algorithmi-
cally define integralsE andJ over the sphere at spatial in-
finity, andS over the bifurcation sphere, satisfying the iden-
tity

dE5
k

2p
dS1VHdJ. ~2!
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~Here d denotes a perturbation from the background black
hole solution toany nearby solution.! The quantityE was
interpreted as the canonical energy of the black hole system,
J as the canonical angular momentum andS as the black
hole entropy.

We might therefore expect that the volume integrals in
Eq. ~1! involving the fluid can be converted to surface inte-
grals in the form~2!, by choosing a suitable variational form
for the Einstein-perfect fluid system and using the methods
of @4#. In fact, we are unable to reproduce the first law~1! in
a form only containing surface integrals, using these meth-
ods; the difficulty is that at least one of the fields appearing
in each of the Lagrangian formulations for a perfect fluid
~that we are aware of! is generally nonstationary, even when
the fluid four-velocity, number density, entropy, and func-
tions of these fields~which we refer to collectively as the
physicalfields!, are stationary. Since the methods of@4# re-
quire that all fields appearing in the Lagrangian~which we
refer to henceforth as thedynamical fields! are stationary and
axisymmetric in the black hole background, the allowed
background solutions for the perfect fluid in the resulting
first law are restricted.

This paper gives two results in response to this problem:
we first relax all explicit symmetry assumptions on matter
fields appearing in the Lagrangian, and find the consequence
for the first law given in@4#. We also attempt to generate a
first law of form ~2! by a careful choice of an existing La-
grangian formulation for gravity coupled to a perfect fluid,
directly using the methods of@4#.

In Sec. II we consider an arbitrary Lagrangian theory of
gravity coupled toarbitrary matter fields, assuming only that
the metric is stationary and axisymmetric in the black hole
background, but making no such assumptions about the mat-
ter dynamical fields. We then modify the methods of@4# to
generate a perturbative relation, but instead of attempting to
express the matter contribution to the first law~2! via surface
integrals, we leave it instead as a volume integral over a
hypersurface,S, joining the bifurcation sphere to the sphere
at spatial infinity. In restricted cases~which we explain later!
we can motivate an independent measurement of the
‘‘vacuum’’ black hole mass,Mg . In these cases we can also
define quantities which resemble the ‘‘vacuum’’ black hole
entropy,Sg , and angular momentum,JgH , and having done
so our perturbative relation takes the form

dMg5
k

2p
dSg1VHdJgH 1E

S

1

2
j•eTabdgab2d~e•T•j!,

~3!

whereTab is the stress energy of the matter fields. We will
see that this relation defines a black hole entropy,Sg , which
is in general not the black hole entropy defined in@4#: how-
ever, in special cases the interpretation ofSg as black hole
entropy can be appropriate@for instance, as we show in Sec.
IV, this relation reduces to Eq.~1! when the gravitational
theory is chosen to be general relativity, and the matter
source is chosen to be a perfect fluid#. Our result differs from
a similar relation presented by Schutz and Sorkin@7#, in that
they conjectured, but did not explicitly include, the black
hole entropy and angular momentum boundary terms, and so
did not explicitly generalize the full form of Eq.~1!. In ad-

dition, as we shall explain, the definition of our ‘‘Noether
current’’ ~involved in the intermediate calculations! is both
less ambiguous than that presented by Schutz and Sorkin@7#
and more general than the definition given by Sorkin@8#. The
range of theories in which our methods are well defined is
therefore larger than those addressed by their methods.

In Sec. III we define a gravitating perfect fluid and review
some variational principles for it: Schutz’s ‘‘velocity-
potential’’ formulation@9#, which uses the dynamical fields
(f,a,b,u,s) to define the product of the~physical! specific
inertial mass and four-velocity mUa[“aF1a“ab
1u“as, and Carter’s more recent ‘‘axionic vorticity’’ for-
mulation @10# for an isentropic perfect fluid, which uses a
dynamical fieldbab to define the number currentNabc @given
in Eq. ~1!# via Nabc[3“ [abbc] , and the dynamical fields
x6 to define the fluid vorticity via 2“ [amUb]
[2“ [ax

1
“b]x

2.
In Sec. IV we present two forms of the first law for the

Einstein-perfect fluid system. The first form is derived from
relation ~3! and is the same as Eq.~1!, with the exception
thatd is now allowed to be a perturbation from the~station-
ary axisymmetric! background to an arbitrary nearby solu-
tion. ~Note that this form of the first law contains volume
integrals.! It is also of interest to know if we can construct
any form of the first law with perfect fluids only involving
surface integrals; in fact, by directly applying the methods of
@4# for a metric theory of gravity coupled to a perfect fluid
described using Carter’s variational principle~with the po-
tentialbab for Nabc , andx6 for vab), we can derive a first
law of the form

dM1m`dE
S`

bqr2m`dE
H
bqr

5
k

8p
dA1VHdJH1E

H
Xqr2E

S`
Xqr , ~4!

whereM is the ADM mass,A is the black hole surface area,
JH is the black hole angular momentum appearing in Eq.~1!,
Xqr is the two-form 2jpbp[q@d(mUr ] )2“ r ]x

2dx1

1“ r ]x
1dx2], and we have writtenS` andH for the sphere

at spatial infinity and the bifurcation sphere, respectively.
We will see that this first law is more restrictive than Eq.~1!,
but it is the only nontrivial rule of type~2! involving a per-
fect fluid that we can currently construct.

In the Appendix we evaluate the symplectic form of the
Einstein-perfect fluid system, using the variational formula-
tion given by Schutz@9# for the perfect fluid. The symplectic
form is dual to a generally conserved current, quadratic in
the field perturbations@11#. We find~in parallel with Burnett
and Wald’s calculation for the Einstein-Maxwell system
@12#! that this conserved current reduces to a current previ-
ously derivedab initio by Chandrasekhar and Ferrari@13# for
the polar perturbations of a static axisymmetric black hole.

II. A PERTURBATIVE RELATION
FOR BLACK HOLE MECHANICS

WITH NONSTATIONARY MATTER FIELDS

In this section we give a perturbative relation that re-
sembles the first law of black hole mechanics, for an arbi-
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trary theory of gravity with a diffeomorphism invariant La-
grangian. We assume the theory possesses black hole
solutions in which the metric is stationary and axisymmetric,
but place no restrictions on the other fields appearing in the
Lagrangian~we refer to these fields collectively as thedy-
namicalfields!. The motivation for this is, as we have indi-
cated, that variational formulations for gravitating Einstein-
perfect fluid systems have fluid dynamical fields which are
nonstationary even when the fluid’sphysicalfields ~the four-
velocity, number density, and entropy! are stationary and
axisymmetric. We first make some necessary definitions re-
lated to the the symplectic structure of a diffeomorphism
invariant Lagrangian theory. These are explained in detail in
@4#; here we merely state~and, in one case, refine! the rel-
evant definitions and results. In the following we often use
boldface type to denote differential forms on spacetime, sup-
pressing their indices when convenient.

A. Some preliminaries

All theories we consider arise from a Lagrangian, which
is taken to be a diffeomorphism invariant four-form on
spacetime, dependent on the metric,gab , and some arbitrary
set of matter fields,c. ~We collectively refer to all the dy-
namical fields byf.! By this we mean that the Lagrangian
has the functional dependence

L5L „gab ,Rabcd,“Rabcd, . . . ,

~“ !pRabcd,c,“c, . . . ,~“ !qc… ~5!

~here multiple derivatives appearing in the above expression
are assumed to be symmetrized—see@4# for further discus-
sion about this dependence!. In particular we require that
every field appearing in the Lagrangian give rise to an equa-
tion of motion ~there are no ‘‘background’’ fields!. The
variation of the Lagrangian defines these equations,E50,
along with the symplectic potentialQ, by

dL5Edf1dQ~f,df!. ~6!

@HereQ(f,df) is a linear differential operator in the field
variationsdf. Because the Lagrangian is only defined up to
the addition of an exact form,L→L1dm, the symplectic
potential is only defined up to the following terms:
Q(f,df)→Q(f,df)1dY(f,df)1dm(f), whereY and
m are covariant forms with the same type of functional de-
pendence asQ andL , respectively. These ambiguities were
discussed in@4#.#

Now fix a smooth vector field,ja, on spacetime. Then the
Noether currentJ@j# associated toja is a three-form defined
by

J@j#[Q~f,Ljf!2j•L , ~7!

where the centered dot denotes contraction of the vector into
the first index of the form. This Noether current can be seen
@4# to obey the identity

dJ@j#52ELjf, ~8!

which we now use to further elucidate its structure.~Al-
though they appear in a different context, the calculations
below have the same flavor as those in the Appendix of@4#.!

Lemma 1.Fix L to be the Lagrangian of a diffeomor-
phism invariant theory of gravity and matter fields, with
equation of motionE50 as given in Eq.~6!. Without loss of
generality, label each dynamical fieldf by i , and give each
field ui upper, anddi lower indices: also label the equations
of motion for each field similarly, so that the equation of
motion term in Eq.~6! becomes

Edf5eEf i b1•••bui
a1•••adidf i

b1•••buia1•••adi
. ~9!

Then for any smooth fieldja there exists a two-form,
Q@j#, called the Noether charge associated toja ~which is
local in the dynamical fields andja), such that the Noether
currentJ@j#, defined in Eq.~7!, can be written

J@j#52~e•E•f•j!1dQ@j#, ~10!

where we define the three-form

~e•E•f•j!abc

[eeabc(
i
Ef i b1•••bui

a1•••adi~2f i
e•••bui

a1•••adi
dp
b1 . . .

2f i
b1•••e

a1•••adi
d
p

bui1f i
b1•••bui

p•••adi
da1
e
•••

1f i
b1•••buia1•••p

dadi
e !jp. ~11!

Proof. For clarity, we first consider the case where the
metric is the only dynamical field:f→gab . Then setting the
metric field equationsEab5eEab, Eq. ~8! reads

dJ@j#522eEg
ab
“ajb522e“a~Eg

abjb!12e“a~Eg
ab!jb .

~12!

Therefore setting (e•Eg•j)abc[edabcEg
deje , we have

d~J@j#12e•Eg•j!52e“a~Eg
ab!jb , ~13!

which shows that the right side of Eq.~13! is both linear in
ja, and exact for allja. The results of@6# now imply that the
right side must vanish identically, and so“aE

ab50. This in
turn implies that the left side of Eq.~13! must be an identi-
cally closed three-form, which~using the results of@6# again!
implies the existence of a two-form,Q@j#, local in the dy-
namical fields andja, such that

J@j#12e•Eg•j5dQ@j#. ~14!

We defineQ@j#, the Noether charge associated toja, as any
two-form which is local in the dynamical fields andja, and
satisfies this relation.

We can also perform this analysis forL with the general
dependence~5!. With the labels for each field and its equa-
tion of motion given in Eq.~9!, the first equation in Eq.~12!
becomes

dJ@j#52e(
i
Ef i b1•••bui

a1•••adiLjf i
b1•••buia1•••adi

, ~15!
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which, through a similar manipulation to Eq.~12! leads to
the structure forJ@j# and the definition of the Noether
charge,Q@j#, in Eq. ~10!. h

The Noether charge was defined in@4# only whenE50,
via J@j#5dQ@j#. This left open the definition ofQ@j# when
EÞ0. In the Appendix of@5#, however, it was shown that
Q@j# could be defined whenEÞ0, such that there existed
formsCa with J@j#2dQ@j#5Caj

a, and where theCa van-
ished whenE50. At that time it was not known whether
Q@j# was uniquely defined this way, nor was the explicit
form ofCa specified. We have given this explicit form in Eq.
~11!. Moreover, the above analysis uniquely defines the No-
ether charge via Eq.~10!, without imposing the field equa-
tions, up to the following ambiguities~which were discussed
in detail in @4#!: The ambiguity inQ described after Eq.~6!
means thatJ@j# is only defined up to the following terms:
J@j#→J@j#1d@Y(f,Ljf)2j•m#, and so the ambiguity in
Q@j# is Q@j#→Q@j#1Y(f,Ljf)2j•m. These ambiguities
will not affect the results stated in the following sections.

We now define the symplectic currentv(f,d1f,d2f) ~a
three-form on spacetime! by

v~f,d1f,d2f![d2Q~f,d1f!2d1Q~f,d2f!. ~16!

Note thatv is a function of an unperturbed set of fields,
f, and is bilinear and skew in pairs of variations
(d1f,d2f). It can be shown~see@11#! that this three-form is
closed whenf is a solution of the field equations andd1f
andd2f are solutions of the linearized equations of motion.
~In the Appendix we examine this closed form — it is dual to
a conserved vector field, which we evaluate for perturbations
of an Einstein-perfect fluid system.! Moreover, if we letja

be a smooth vector field, setd1f5Ljf and letd2f5df be
a variation to a nearby solution~with dja50), then
v(f,Ljf,df) can be shown@4# to be exact:

v~f,Ljf,df!5d@dQ@j#2j•Q~f,df!#. ~17!

Now fix a black hole spacetime with a stationary and
axisymmetric metric, for the theory given by the Lagrangian
in Eq. ~5!; let the stationary killing field with unit norm at
spatial infinity beja and the axial killing field~with closed
orbits! be wa. Let the black hole have a bifurcate killing
horizon, with bifurcation sphereH, and let it be asymptoti-
cally flat, with the two-sphere at spatial infinityS`. LetS be
a three-surface with these two boundaries, and setdf to be
an arbitrary perturbation of the background which satisfies
the linearized equations. Then the first law of black hole
mechanics as stated in@4# is an interpretation of the identity

E
S

v~f,Ljf,df!5E
S`

dQ@j#2j•Q~f,df!

2E
H

dQ@j#2j•Q~f,df! ~18!

@which arises from integrating Eq.~17! over S#. When ja

Lie derivesall the dynamical fields in the background, the
left side of Eq.~18! vanishes, and one is left with a relation
between surface integrals on the boundaries ofS, which can
be shown to be of the form~2!. In Sec. IV we present an
explicit Lagrangian for the Einstein-perfect fluid system,

and, assuming that all dynamical fields are stationary and
axisymmetric, compute the surface terms arising from this
Lagrangian.

B. The perturbative identity

Having stated these necessary definitions we turn to con-
struct our perturbative identity. We start by decomposing the
LagrangianL into a partLg , depending on the metricgab
~which is assumed to be stationary and axisymmetric in the
black hole background!, and a partLm , dependent on both
the metric and a set of matter fieldsc ~on which we place no
restrictions!:

L5Lg„gab ,Rabcd,“Rabcd, . . . ,~“ !pRabcd…

1Lm„c,“c, . . . ,~“ !qc,gab ,Rabcd,

“Rabcd, . . . ,~“ !rRabcd…. ~19!

Since this breakup only requires thatLg be independent of
any matter fields, it is very nonunique, and in general we
have no method of controlling the ambiguity

Lg→Lg1l,

Lm→Lm2l, ~20!

wherel5l„gab ,Rabcd,“Rabcd, . . . ,(“)
sRabcd….

The variation of the Lagrangian yields equations of mo-
tion for the metricEg

ab50 and matter fieldsEm50 via

dL5Eg
abdgab1Emdc1dQ~f,df!. ~21!

For convenience we setEg
ab5eEg

ab andEm5eEm . As dis-
cussed above we can computeJ@j# @defined by Eq.~7!#, and
defineQ@j#, for the theory described by Eq.~19!: it must
have the form given in Eq.~10!:

J@j#522e•Eg•j2e•Em•c•j1dQ@j# ~22!

~the factor of 2 between the terms with equations of motion
here is purely a matter of convention!. We can also use the
individual LagrangiansLg andLm to define the stress-energy
tensor Tab, and symplectic potentialsQg(g,dg) and
Qm(f,df):

dLg5E8abdgab1dQg~g,dg!,

dLm5Emdc1e
1

2
Tabdgab1dQm~f,df!. ~23!

ClearlyEg
ab5Eg

8ab1e1
2T

ab, and up to the ambiguities present
in the symplectic potentials, we also haveQ5Qg1Qm .
Similarly, if we define the Noether currents for the individual
Lagrangians by

Jg@j#[Qg~g,Ljg!2j•Lg ,

Jm@j#[Qm~f,Ljf!2j•Lm , ~24!

then it follows that

J@j#5Jg@j#1Jm@j#. ~25!
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Now we impose the structure~10! on each ofJg andJm , in
the process definingQg and Qm , which are the Noether
charges in the theories arising from these Lagrangians:

Jg@j#522e•Eg8•j1dQg@j#,

Jm@j#52e•Em•c•j2e•T•j1dQm@j#. ~26!

Finally we substitute Eq.~26! into the right side of Eq.
~25! and Eq.~22! into the left side, obtaining

22e•Eg•j2e•Em•c•j1dQ@j#

522e•Eg8•j2e•T•j2e•Em•c•j1dQg@j#1dQm@j#.

~27!

All the terms involving equations of motion and stress-
energy tensors can be seen to cancel, and the resulting iden-
tity implies

Q@j#5Qg@j#1Qm@j#1dZ ~28!

~whereZ is some arbitrary covariant one-form!. We there-
fore have a relation~independent of any field equations! be-
tween the Noether chargeQ, of the full theory given byL ,
and that of the ‘‘pure gravity’’ theoryQg , arising from
Lg . We are now ready to state the identity.

Lemma 2.Fix L , Lg ~the ‘‘vacuum’’ Lagrangian!, and
Lm ~the ‘‘matter’’ Lagrangian! to be diffeomorphism invari-
ant Lagrangians related as given in Eq.~19! with the func-
tional dependence shown there. Fix a smooth vector field

ja, let Qg be defined by Eq.~23!, let Qg@j# be the Noether
charge defined by Eq.~26! for the theory described byLg ,
and letTab be the stress-energy tensor of the matter fields
defined by~23!. Now consider an asymptotically flat, station-
ary, axisymmetric black hole solution with bifurcate killing
horizon, in the theory described byL , with stationary killing
field ja ~with unit norm at the sphereS`, at spatial infinity!,
and axial killing fieldwa ~with closed orbits!, so thatja and
wa Lie derive the metric but not necessarily the matter fields.
Let the horizon killing field~which vanishes on the bifurca-
tion sphereH) be given byxa5ja1VHwa, whereVH is a
constant. Then ford a perturbation to an arbitrary nearby
solution, such thatdja50,

E
S`

dQg@j#2j•Qg5E
H

dQg@x#2VHE
H

dQg@w#

1E
S

1

2
j•eTabdgab2d~e•T•j!. ~29!

Proof.We evaluate expression~18! for the theory~19!,
where the background solution is a black hole with the sym-
metry and structure described above~29!, demanding that the
metric be stationary and axisymmetric in the background
spacetime, but placing no restrictions on the matter fields. In
this case the integrand on the left side of Eq.~18! is generally
nonvanishing. Assuming that the field equations hold in
background for the matter fields,Em50, and thatdc is a
solution to the linearized matter equations of motion off this
background (dEm50), we find the left side of Eq.~18! is

v~f,Ljf,df!5dQg~g,Ljg!2LjQg~g,dg!1dQm~f,Ljf!2LjQm~f,df!

5dQm~f,Ljf!2LjQm~f,df!5d~dQm@j#2e•T•j1j•Lm!2LjQm~f,df!

5d~dQm@j#2e•T•j1j•Lm!2j•dQm~f,df!2d„j•Qm~f,df!…

5d„dQm@j#2j•Qm~f,df!…2d~e•T•j!1
1

2
j•eTabdgab , ~30!

where we used the stationarity ofgab in the second line, the
expression~26! for Jm in the third, the Lie derivative identity
Ljl5j•dl1d(j•l) ~which holds for an arbitrary forml)
in the fourth line, and the definition~23! of Qm and the stress
energy Tab in the fifth line. Now also assuming
Eg5dEg50, and substituting Eq.~30! into the left side of
Eq. ~18! yields

E
S
d~dQm@j#2j•Qm!1

1

2
j•eTabdgab2d~e•T•j!

5E
S`

dQ@j#2j•Q~f,df!

2E
H

dQ@j#2j•Q~f,df!, ~31!

and so, cancelling the boundary termsdQm@j#2j•Qm from
both sides@and using Eq.~28!# we get

E
S

1

2
j•eTabdgab2d~e•T•j!

5E
S`

dQg@j#2j•Qg~g,dg!

2E
H

dQg@j#2j•Qg~g,dg!. ~32!

Now writing ja in terms ofxa and wa at the boundary
H ~and discarding terms which vanish as a result of the
vanishing ofxa atH, or which vanish becausewa is tangent
to H) we get
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E
S

1

2
j•eTabdgab2d~e•T•j!

5E
S`

dQg@j#2j•Qg~g,dg!

2E
H

dQg@x#1VHE
H

dQg@w#, ~33!

which is what we wished to show.h
The identity~29! has physical significance when we can

interpret the surface integrals appearing there as~variations
of! the energy, entropy, and angular momentum of the black
hole. When is this possible? If the theory had no matter fields
then we could chooseLm to vanish, and the terms involving
Tab in Eq. ~29! would vanish~we could also choose other
breakups ofL , and we will return to this shortly!. In this case
we would haveLg5L , Qg5Q, andQg5Q. If in addition
there existed a three-formB ~local in the dynamical fields,
the flat metrichab , and its associated derivative,], at spatial
infinity! such that at spatial infinity,j•Q(f,df)5j•dB,
then Eq.~29! can be written

dE5
k

2p
dS1VHdJH , ~34!

where the varied quantities in Eq.~34! are defined below,
and have well-known physical interpretations@4#. These are
~i! the canonical energy of the system, which we define as

E[E
S`

Q@j#2j•B, ~35!

~ii ! the entropyS of the black hole; by taking the functional
derivative of the Lagrangian with respect to the Riemann
tensor ~treated as an independent field! we know ~setting
eab to be the binormal to the bifurcation sphere! that

dE
H
Q@x#5

k

2p
dS, ~36!

where

S[22pE
H

dL

dRabcd
eabecd , ~37!

and k is the surface gravity of the background black hole
horizon;~iii ! the angular momentum of the system measured
at the black hole, defined by

JH[2E
H
Q@w#. ~38!

In fact, the angular momentum can be measured either at
the black hole horizon or at spatial infinity; since the metric
is axisymmetric with axial killing fieldwa, it can be seen
from Eq. ~7! thatJ@w# vanishes, when pulled back to a slice
to whichwa is tangent. This ensures~integrating the relation
J@w#5dQ@w# overS) that, for the background solution,

E
S`
Q@w#5E

H
Q@w#. ~39!

In addition, by considering the identity

E
S

v~f,df,Lwf!5E
]S

dQ@w#2w•Q, ~40!

we see that whenwa Lie derives all the dynamical fields, the
left side of this equation vanishes. Sincewa is tangent to the
two-spheresH andS`, the pullback of the second term on
the right side vanishes. It follows that

dE
S`
Q@w#5dE

H
Q@w#. ~41!

Therefore, in spacetimes which have axisymmetric back-
ground configurations, the angular momentum measured at
the black hole is equivalent to the canonical angular momen-
tum J, measured at spatial infinity

J[2E
S`
Q@w#, ~42!

both whenw is an axial killing field ~in the background
solution! and for arbitrary solutions which are perturbations,
df, of the axisymmetric solution. This calculation also
shows that the definition ofJH is gauge independent, for
arbitrary perturbations of an axisymmetric solution. This is
becausedJH50 when we choosedf to be pure gauge,
which we see by first settingd̂f[Lvf for some smooth

va, and then replacingd̂f with a gauge transformd̂8f

which coincides withd̂f in a neighborhood of the bifurca-
tion sphere, but vanishes in a neighborhood of spatial infin-
ity. Then we have, for everyd̂f @using Eq.~41!#,

d̂JH5 d̂E
H
Q@w#5 d̂8E

H
Q@w#5 d̂8E

S`
Q@w#50. ~43!

So we have that whenTab vanishes~along with Lm), the
interpretation of the terms in Eq.~29! is straightforward and
one obtains a formula~34! which ~bearing in mind the
equivalence ofJ andJH) is formula ~2!.

What if the set of fieldsc is nonempty? In general, the
ambiguity ~20! in breakingL into Lg andLm stops us from
meaningfully interpreting the surface terms in Eq.~29! as
perturbations of mass, entropy, and angular momentum: even
if the overall theory is fixed, every choice ofLg generates a
different relation, with different choices ofQg , etc. We
therefore seek more restrictive assumptions under which we
might successfully identify the surface terms in Eq.~29!.
One approach is tofix a particular choice ofLg and think of
it as specifying an independent theory. We assume there ex-
ists a form Bg such that at spatial infinity,d(j•Bg)
5j•Qg , and consider the functionalMg defined by

Mg[E
S`

Qg@j#2j•Bg . ~44!
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If we now require that the stress energy of the matter distri-
bution falls off sufficiently rapidly at spatial infinity, such
that ~near spatial infinity! the metric for any solution of the
L theory approaches a metric solution of theLg theory, and
Mg yields the same result on both metrics, then it makes
sense to define the mass of the system asMg. We note that if
we can also find a formB(f) for the full theory, such that at
spatial infinityd(j•B)5Q(f,df), then we can also define a
canonical energy,E, for the full theory given by Eq.~35!,
and in generalEÞMg.

Therefore, when the stress energy of the matter distribu-
tion falls off sufficiently rapidly, we can interpret the left
side of Eq.~29! as the variation of the mass of the system.
The surface terms on the right side of Eq.~29! are~variations
of! the functionals that would measure the entropy and an-
gular momentum of a stationary black hole in theLg theory.
We might therefore be tempted to interpret them as the black
hole entropy and angular momentum; indeed, sinceQg is the
Noether charge of theLg theory, we know from@4# that one
can define a quantitySg by

Sg[22pE
H

dLg

dRabcd
eabecd , ~45!

such that

dE
H
Qg@x#5

k

2p
dSg . ~46!

One might also define a quantity,JgH , by

JgH[2E
H
Qg@w#. ~47!

Although we made no assumptions about the axisymmetry of
the matter fields, we can show, providing the support of
Tab does not intersect some neighborhood,U, of the bifur-
cation sphere, thatJgH is also well defined~gauge indepen-
dent! for arbitrary perturbations of the axisymmetric solu-
tion. This follows by evaluating the left side of Eq.~40!,
using the fact that the calculation~30! also holds whenja is
replaced bywa. Takingwa to be tangent to the spatial slice,
Eq. ~40! then becomes

E
S`

dQg@w#1E
S
d~e•T•w!5E

H
dQg@w#. ~48!

Now, as before, let the perturbation in this equation be
gauge,df5 d̂f. Then we again can replace the perturbation
on the right side with an equivalent gauge change, which
vanishes outsideU, and so intersects neither the support of
Tab nor spatial infinity. Then we have the left side of Eq.
~48! vanishes, and so

d̂JgH52E
H

d̂Qg@w#50. ~49!

ThereforeJgH is defined for arbitrary perturbations of an
axisymmetric solution.

Now having definedMg , Sg , andJgH , we could write
out Eq.~29! in the form

dMg5
k

2p
dSg1VHdJgH1E

S

1

2
j•eTabdgab2d~e•T•j!,

~50!

where d is a perturbation to an arbitrary nearby solution.
However, we caution the reader that the identification of
black hole entropy withSg in general gives results in conflict
with those in @4#: consider a theory of gravitation with a
scalar field, for which the matter Lagrangian couples to the
spacetime curvature, and which displays stationary black
hole configurations in which the scalar field has sufficiently
rapid spatial falloff. We can therefore write out Eq.~50! and
interpret the black hole entropy asSg . From the results of@4#
we expect the entropy of the black hole toincludecontribu-
tions from the scalar field; Eq.~50!, however, defines a black
hole entropySg with only metric contributions, with the en-
tropy contribution of the scalar field somehow distributed in
the volume integral of its stress energy. These two points of
view are contradictory; therefore, while there are clearly spe-
cial cases~for instance, the Einstein-perfect fluid system! in
which we can identifySg as the black hole entropy, and
terms in the volume integral as~variations of! the matter
entropy, in general we regard the notion of the black hole
entropy defined bySg as inappropriate. Clarifying whenSg
can be correctly interpreted as black hole entropy is the sub-
ject of future research.

We note parenthetically that we can write out an alterna-
tive form of Eq.~50! by replacing the stationary killing field
ja in Eq. ~18! with the horizon killing fieldxa. @The analysis
up to Eq. ~32! is unchanged except for the substitution
ja→xa.# Then expandingxa5ja1VHwa at spatial infinity
and on the sliceS, ~but not atH) and using the definitions
discussed above gives the identity

dMg5
k

2p
dSg1VHdJg`

1E
S

1

2
j•eTabdgab2d~e•T•j!2VHE

S
d~e•T•w!,

~51!

whereJg`[2*S`Qg@w#, is the system angular momentum
measured at spatial infinity. Therefore the cost we have in-
curred for the transfer of the angular momentum integral to
spatial infinity is the appearance of an extra term in the vol-
ume integral.

A relation of the form~50!, was first given by Schutz and
Sorkin@7#, in the case whereLg was fixed to be the Lagrang-
ian for general relativity,Lm was any matter Lagrangian, and
there was no black hole boundaryH, for the hypersurface
S. The relation stated in@7# is correct, but we comment here
on the ambiguity of the ‘‘Noether operators’’ used by Schutz
and Sorkin to derive it: In its initial definition@7# the Noether
operator for a LagrangianL and a smooth vector fieldja was
defined to be any~not necessarily covariant! three form
JS@j# satisfying the relation

LjL5ELjf1d~JS@j#1j•L !, ~52!

for every smooth field vector fieldja. This definition leaves
JS@j# ambiguous by anarbitrary exact three-form which is a
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linear differential operator inja. Since we know from Eq.
~10! that JS5dQ@j# when the field equations hold, this am-
biguity would permit JS50 as a valid Noether operator
~which, following Schutz and Sorkin’s methods, would yield
a correct but trivial relation!. On the other hand, our defini-
tion of the Noether current admits a limited set of ambigu-
ities @stated after Eq.~15!#, which cannot be used to annihi-
late the Noether charge, and in particular do not change the
content of the first law.

Sorkin introduced an augmented definition of the Noether
operator in@8#, requiring that for a variation of the dynamical
fields given bydf5 fLjf, wheref is any function, the No-
ether operatorJS8 be defined by

dL5EfLjf1d~ fJS8@j#1 f j•L !. ~53!

Providing one can find aJS8 which satisfies this relation, it is
easy to see that one cannot add a term toJS8 which is both
exact and linear inf , for arbitrary f . For a theory with a
first-order Lagrangian, finding such aJS8 is always possible:
in @8# a first-order ~noncovariant! Lagrangian for the
Einstein-Maxwell theory was used to yield an unambiguous
Noether operator. It is not clear, however, that any general
Lagrangian theory has a first-orderLagrangianformulation,
so in general, Sorkin’s definition may not even yield a No-
ether operator. In contrast, all of our Noether currentsJ@j#
defined above can be computed for Lagrangian theories of
arbitrary derivative order, and are manifestly covariant, re-
quiring no additional background fields~apart from the sym-
metry fieldja) for their definition. For these reasons, we feel
that while our relation~50! and that in@7# coincide for an
Einstein-matter system without the black hole, Eq.~50! is
defined more generally.

We finally remark that we could have carried out the en-
tire analysis leading up to Eq.~29! allowing the Lagrangian
Lg to depend on asetof stationary axisymmetric fields,si ,
including the metric, and the LagrangianLm to depend on
si and a distinct set of fields,c, which did not appear in
Lg , to obtain a relation very similar to Eq.~29!. The result-
ing perturbative identity has the termsQg andQg in Eq. ~29!
replaced with the Noether charge and symplectic potential in
the theory described byLg ~which now depends on both the
metric and the other matter fields in the setsi), and the
volume term is now given by

E
S

1

2
j•eTsidsi2d~e•Ts•s•j!, ~54!

where the first term in the volume integral is defined by the
variation ofLm :

dLm5Emdc1
1

2
Tsidsi1dQm~f,df!. ~55!

Giving eachsi field ui upper, anddi lower indices, in the
manner

si→si
bu1

•••buia1•••adi
, ~56!

the second term in the volume integral is defined by

~e•Ts•s•j!abc

[eeabc(
i

@Tsib1•••bui
a1•••adi

3~2si
e•••bui

a1•••adi
dp
b1
•••2si

b1•••e
a1•••adi

d
p

bui

1si
b1•••bui

p•••adi
da1
e •••1si

b1•••buia1•••p
dadi
e !jp#.

~57!

III. A REVIEW OF PERFECT FLUIDS
AND THREE VARIATIONAL FORMULATIONS

In this section we recall the definition, the relevant prop-
erties, and three variational principles for a self-gravitating
perfect fluid: one given by Schutz@9# ~which we use in the
Appendix to derive a conserved current for perturbations of
Einstein-perfect fluid systems!, the ‘‘axionic vorticity’’ for-
mulation given by Carter@10# for an isentropic perfect fluid
~which we use in the next section, to derive a first law!, and
a ‘‘convective’’ approach also described by Carter@10#. Our
aim is to gather the results we need for the calculations of the
following sections; detailed treatments of these variational
principles can be found in@9,10,14#.

From the viewpoint of black hole mechanics, we would
like a stationary axisymmetric black hole configuration to be
represented by a Lagrangian theory in which all the fields
appearing in the Lagrangian~the dynamicalfields! are also
stationary and axisymmetric. Having stated these formula-
tions, however, we will see that they all have fluid configu-
rations in which thephysicalfields ~the fluid four-velocity,
number density, entropy, and functions of these fields! are
stationary and axisymmetric, but in which the dynamical
fields possibly share neither of these symmetries. The ques-
tion as to whether a variational principle exists that always
represents~physically! stationary axisymmetric configura-
tions with dynamical fields that also have these properties is
~as far as we are aware! open.

By a perfect fluid on a fixed spacetime background
@14,15# we mean a system described by five scalar fields,
(n,s,r,p,T), on spacetime and one~unit, timelike! vector
field Ua, such thatr5r(n,s) is a fixed function, and the
following equations hold on the fields: the first law of ther-
modynamics

dr~n,s!5
p1r

n
dn1nTds, ~58!

and the equations of motion

“a~nU
a!50 and“aT

ab50, ~59!

whereTab is defined by

Tab[~p1r!UaUb1pgab. ~60!

The fieldsn,r,s,p,T, andUa have physical interpretations
as the number density, energy density, entropy per particle
~specific entropy!, pressure, temperature, and four-velocity
of the fluid, respectively.
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We note that Eq.~59! can be given a useful alternative
form, by first defining the specific inertial massm:

m[
p1r

n
~61!

which along with Eq.~58! implies

dp5ndm2nTds. ~62!

By using these relations in the second equation of Eq.~59!,
we get~see@14#! an equivalent pair of equations of motion

“a~nU
a!50 and nUavab5nT“bs, ~63!

where the fluid vorticity two-form,vab , is defined as

vab[2“ [a~mUb] !. ~64!

If desired, one can define the entropy per unit volumeS
~entropy density!, by S5ns. Substituting this definition of
S into Eq. ~58! and defining the chemical potential,m8, by

m8[
p1r2TS

n
, ~65!

then gives the relation

dr~n,S!5m8dn1TdS. ~66!

We now specify three variational formulations for this per-
fect fluid, over a fixed spacetime background~coupling the
theories to gravitation amounts to adding the appropriate
metric Lagrangian, which we do later!. First, we state the
‘‘velocity-potential’’ representation of Schutz@9#: here the
dynamical fields of the fluid are given by scalarsF, a, b, u,
and s. One now defines a functionm which depends on
these fields via the relation

m252~“aF1a“ab1u“as!~“aF1a“ab1u“as!,

~67!

and the fluid Lagrangian is given by

L f[eP~m,s!, ~68!

whereP(m,s) is some fixed function. One can verify@9,14#
that we recover Eq.~58!, and also that the equations of mo-
tion for the fieldsF, a, b, u, s arising from this Lagrangian
reduce to Eq.~63!, provided one defines the physical fields in
terms of the dynamical fields in these equations by

P→p,

m→m,

s→s,

~]P/]m!s→n,

~]P/]s!m→2nT,

“aF1a“ab1u“as→mUa . ~69!

Conversely, given any configuration of the physical fields
(n,r,s,p,T,Ua) satisfying Eqs.~58! and ~59!, it can be
shown~see@9#! that there exist functions (P,m) and ~nonu-
nique! dynamical fields (F,a,b,u,s) related to the physical
fields by Eq. ~69!, which satisfy the equations of motion
arising from Lagrangian~68!.

Next, Carter’s variational formulation@10# for an isentro-
pic perfect fluid ~by which we mean that the fluid has an
everywhere constant specific entropys), defines the dynami-
cal fields to be a two-form and two scalars,bab andx6. The
fluid Lagrangian is given in terms of these fields by

L f5S 2r ~n!2
1

2
eabcdbab“cx

1
“dx

2D e, ~70!

where the functionr (n) is fixed, and the functionn is de-
fined in term of the potentialsbab by the relation

n2[
3

2
~“ [abbc] !~“

[abbc] !. ~71!

As shown in@10#, if one defines the physical fields as

r→r,

n→n,

n~]r /]n!2r→p,

3“ [cbab]→Nabc , ~72!

where the number-density three-formNabc is given by

Nabc5neabcdU
d, ~73!

then we recover Eq.~58!, and the field equations forbab and
x6 yield the second equation in Eq.~63! in the case
“as50, as well as the relation

vab52“ [ax
1
“b]x

2. ~74!

Given relation~72! betweenbab andNabc , one sees that the
first equation in Eq.~63! is satisfied vacuously, since it can
be rewritten as

“ [aNbcd]50, ~75!

but the definition ofNabc showsdN5ddb50 automatically.
A third type of variational formulation given by Carter

@10#, and treated in more detail by Brown@14#, ~which is the
equivalent diffeomorphism invariant version of the formal-
isms specified by Taub@16# or Hawking and Ellis@17#!, has
dynamical fieldsXA for A51,2,3. In this formalism one must
specify two functionsr (n,s), ands(X), wheren is defined
in terms of theXA by

n2[6@NABC~X!“aX
A
“bX

B
“cX

C#

3@NDEF~X!“aXD
“

bXE
“

cXF#, ~76!

andNABC(X) is a fixed three-form on the three-dimensional
manifold which hasXA as coordinate fields. The Lagrangian
is then given by
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L f52er ~n,s!. ~77!

The equations resulting from this Lagrangian for the fields
XA are seen to reduce to the second equation in Eq.~63! after
one has set

r→r,

n→n,

s→s,

n~]r /]n!s2r→p,

~]r /]s!m→nT,

NABC~X!“aX
A
“bX

B
“cX

C→Nabc , ~78!

whereNabc is defined from Eq.~73!. ~This relation between
the physicalNabc and the dynamical fields also ensures that
Nabc is automatically conserved.! TheXA are interpreted as
coordinates on a ‘‘base manifold,’’ obtained by treating the
spacetime as a bundle with fibers given by the integral
curves of the four-velocity. We will not use this formulation
for two reasons: first, the assignment of the entropys as a
fixed function of theXA only allows us to perturb it by dif-
feomorphisms of the base manifold~for this reason we use
Schutz’s formalism for the calculation in the Appendix!.
Second, it is unclear that there areanysolutions in which the
XA are globally well-defined axisymmetric fields on space-
time @for this reason, in Sec. IV, we use the formulation due
to Carter with Lagrangian~70!#.

In order to write the first law in form~2!, only involving
surface integrals, we must assume that all the dynamical
fields are stationary and axisymmetric in the background so-
lution. Now even if a fluid configuration has stationary and
axisymmetricphysicalfields ~the fluid number density, en-
tropy, and functions of these fields!, thedynamicalfields~the
fields appearing in the Lagrangian! corresponding to these
physical fields may not possess these symmetries. Therefore,
the requirement of stationarity and axisymmetry on the dy-
namical fields may restrict the choice of background con-
figurations. In fact, for Schutz’s formulation, we see from the
definition of the four-velocity~69! that physical fluid con-
figurations with an everywhere causal four-velocity~includ-
ing those which are stationary and axisymmetric! must in-
clude at least one nonstationary dynamical field. There are
therefore no physically interesting fluid configurations in
which all the dynamical fields in this formulation are station-
ary.

On the other hand, for Carter’s formulation, it is evident
that there must besomephysically stationary fluid configu-
rations with stationary dynamical fields~for instance, a static
spherically symmetric fluid distribution could have the field
bab given byb; f (r )2e andx650, where2e is the volume
element on the spheres of symmetry!. However, we will see
in the next section@in the discussion above Eq.~95!# that a
stationary, axisymmetric, circular flow~in a spacetime which
also has these symmetries! must be vortex-free, ifx6 are
restricted to be stationary and axisymmetric. That is, the as-
sumption of stationarity and axisymmetry on the vorticity
potentialsx6 restricts the allowed stationary axisymmetric

configurations a fluid can adopt. We make no attempt here to
enumerate the set of physically stationary and axisymmetric
configurations which also have these symmetries in the dy-
namical fields~or indeed, in the case of black hole space-
times, to investigate whether this set is nonempty!. Rather, in
the following section we will assume the potentials are sta-
tionary and axisymmetric, and write out the resulting first
law involving only surface terms, looking for any nontrivial
modifications arising from the fluid fields.

We are unaware of a variational formulation for a perfect
fluid which represents all stationary axisymmetric fluid con-
figurations with stationary axisymmetric dynamical fields. If
it exists, then the following argument by Schutz and Sorkin
@7# shows that certain compactly supported perturbations of
the physical fields must correspond to noncompactly sup-
ported perturbations of the dynamical fields. Since the calcu-
lation given in Eq.~30! does not depend on the fulfillment of
the field equations forgab , it is still valid if we consider the
fieldsc to be the dynamical fields for a perfect fluid over a
fixed spacetime background, and we letdc be a perturbation
to a nearby solution of the perfect fluid equations, with
dgab50. Now consider a formulation for a perfect fluid
where, for a general configuration in which all the physical
fields ~and the metric of the spacetime background! are sta-
tionary, all the dynamical fields are also stationary. Then the
left side of Eq.~30! vanishes, and integrating the right side
over a spatial sliceS, we are left with

E
S
d~e•T•j!5E

]S
dQm@j#2j•Qm~f,dc!. ~79!

This implies that for perturbations of the physical fields for
which the corresponding perturbations of the dynamical
fields arecompact, we must have

E
S
d~e•T•j!50, ~80!

which, for a perfect fluid, is clearly false for a general sta-
tionary background. This implies that if a variational formu-
lation is to have dynamical fields which are always stationary
when the physical fields are stationary, then perturbations of
the physical fields which yield a nonzero result on the left
side of~79! must correspond to spatially noncompact pertur-
bations of the dynamical fields. This requirement rules out
the existence of a variational principle in which the physical
fieldsare the dynamical fields@7#. However, the existence of
a variational principle for a perfect fluid in which all con-
figurations with stationary and axisymmetric physical fields
are represented by dynamical fields with these symmetries is
still an open question.

IV. FIRST LAWS OF BLACK HOLE MECHANICS
WITH PERFECT FLUIDS

We now present two forms of the first law of black hole
mechanics which incorporate perfect fluids. The first form is
a special case of the perturbative identity~50!, whereLg is
the usual Hilbert Lagrangian for general relativity, andLm is
any Lagrangian for a perfect fluid. This form of the first law
allows nonstationary dynamical fields, at the cost of having

3420 55VIVEK IYER



volume integrals in the interior of the spacetime. We then
compute a second form of the first law only involving sur-
face integrals for both metric and fluid fields, using Carter’s
variational formulation presented above, and the methods of
@4#.

A. The first law with volume integrals

We now write out the perturbative relation~50!, setting
Lg51/16pR, and Lm to be any perfect fluid Lagrangian
which allows all possible perturbations of the physical fields
of the perfect fluid off an arbitrary background.@From the
comments below Eq.~69! it is evident that Schutz’s varia-
tional formulation, with Lagrangian~68! satisfies this crite-
rion.# As stated in lemma 2, we assume the metric of the
background spacetime is asymptotically flat, stationary, and

axisymmetric with a stationary killing fieldja and axial kill-
ing field wa. We also assume the existence of a bifurcate
killing horizon, with horizon killing field xa5ja1VHwa,
whereVH is the angular velocity of the horizon.

In this case~see @4#! the termMg in Eq. ~50! can be
shown to be the ADM mass,Sg to be 1/4AH , andJgH the
expressionJH for black hole angular momentum given in Eq.
~1!. The terms involving the stress-energy tensor have been
shown by Bardeen, Carter, and Hawking@1# to reduce to the
fluid terms in Eq.~1!, but for completeness~and to fix the
signs for our choice of orientations! we briefly demonstrate
this fact: in @1# the four-velocity of the fluid with angular
velocity V ~which need not be constant! was set to be
Ua5va/(2v•v)1/2 where va5ja1Vwa. Now using Eqs.
~60!, ~65!, and~66! ~assuming, as usual, that we identify the
perturbed spacetime such thatdja5dfa50), one obtains

d~Tabj
beapqr!5vbdTabeapqr2Vd~Tabw

beapqr!5vad@~m8n1TS!va~2v•v !21/2Ubebpqr1peapqr#2Vd~Tabw
beapqr!

5~p1r!vad@va~2v•v !21/2#Ubebpqr1
1

2
pgcddgcdj

aeapqr2m8~2v•v !1/2d~nUbebpqr!

2T~2v•v !1/2d~SUbebpqr!2~ndm81SdT!jaeapqr1vaeapqrdp2Vd~Tabw
beapqr!

5jaeapqr
1

2
Tcddgcd1m8~2v•v !1/2d~nUbepqrb!2T~2v•v !1/2d~SUbebpqr!2Vd~Tabw

beapqr!. ~81!

When all these substitutions are inserted into Eq.~50!, it
reduces to

dM5
k

8p
dA1VHdJH2E

S
m8uvudNabc

1E
S
VdJabc1E

S
TuvudSabc , ~82!

which is identical to Eq.~1!, except thatd now represents an
arbitrary perturbation~not necessarily stationary or axisym-
metric! of the background. In this sense, Eq.~82! is a gener-
alization of Eq.~1!.

B. A „restricted… first law with surface integrals

In the previous section we observed that the variational
formulations we presented were constrained in the stationary
axisymmetric fluid configurations they could represent, given
the requirement that their dynamical fields obeyed these
symmetries. One might therefore suspect that any form of
the first law involving only surface integrals could not in-
clude nontrivial fluid contributions. Indeed, if we add
Schutz’s Lagrangian~68! to the Lagrangian of an arbitrary
metric theory of gravity, and construct a first law using the
analysis of@4# then we findno additional contributions to
this first law from the fluid fields, providing the fluid’s num-
ber density decays sufficiently rapidly at spatial infinity, and
does not intersect the black hole horizon. It is possible, how-
ever, to convertsomeof the volume integrals in~1! into
surface integrals, by choosing Carter’s variational formula-

tion ~70!. We do so below, finding a first law for an arbitrary
metric theory of gravity coupled to an isentropic perfect
fluid, in which the background configuration for the perfect
fluid as well as the allowed perturbations of the physical
fields are restricted.~Note that the gravitational contributions
to such a first law have been considered in detail in@4#. We
are interested in the fluid contributions.! We finally verify
that this first law reduces to Eq.~1! when the assumptions
made in the two derivations overlap. Our first law is the
following result.

Lemma 3.Let L , given by

L5Lg2eS r ~n!1
1

2
eabcdbab“ [cx

1
“d]x

2D , ~83!

be the Lagrangian for an isentropic perfect fluid coupled
to an arbitrary metric theory of gravity, whereLg

5eLg@gab ,Rabcd,“Rabcd, . . . ,(“
p)Rabcd#, and the perfect

fluid formulation, with dynamical fields (bab ,x
6), is sum-

marized below Eq.~70!. Fix an asymptotically flat black hole
solution with a bifurcate killing horizon, with the spacetime
structure and the killing fields described in lemma~2!, with
the additional assumptions thatall the dynamical fields~not
just the metric! in this theory are stationary and axisymmet-
ric, and that all the dynamical fields are globally defined. Let
df be a perturbation of the dynamical fields, from such a
solution to an arbitrary nearby solution, withdja50. With
these assumptions the following identity is the first law of
black hole mechanics for this system:
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dMg5
k

2p
dS1VHdJH1E

H
m`dbqr ,

2E
S`

m`dbqr ,1E
H
Xqr2E

S`
Xqr . ~84!

Here we define the mass of the systemMg as

Mg[E
S`

Qg@ja#2j•Bg ~85!

and the entropyS and angular momentumJH of the system
by

S[22pE
H

dLg

dRabcd
eabecd ,

JH[2E
H
Qg@w#, ~86!

wherek is the surface gravity of the black hole, the two-
formQg@j# was defined in Eq.~26!, and the three-formBg is
such that, at spatial infinity,d(j•Bg)5j•Qg , with Qg given
by Eq. ~23!. Finally, the two-formXqr is defined by

Xqr[2jpbp[q@d~mUr ] !2“ r ]x
2dx11“ r ]x

1dx2#. ~87!

Proof. The first law of black hole mechanics in@4# is
essentially given by the right side of Eq.~18!, when the left
side vanishes because of the assumed symmetries of the
background fields. We therefore compute the quantities ap-
pearing on the right side of Eq.~18!: Varying the dynamical
fields in L @and performing the substitutions~72! where ap-
plicable# yields the equations of motion and the symplectic
potentialQ:

dL5eS dLg
dgab

1
1

2
TabD dgab

1
1

6
eNabce

abcd~“dx
1dx22“dx

2dx1!

1eF“cS m

2n
NabcD2

1

4
eabcdvcdGdbab1dQ, ~88!

with the stress-energy tensor

Tab5
m

2n
Na

cdN
bcd2rgab, ~89!

and the symplectic potential

Qpqr~f,df!5Qgpqr~g,dg!2
m

2n
Nabcdbbceapqr

1
1

2
eapqrbcde

abcd~“bx
1dx22“bx

2dx1!.

~90!

It can be verified that the equations of motion for the fluid
fields reduce to Eq.~63! using definitions~72! and~73!. The
stress-energy tensor~89! is also seen to reduce to the usual
form ~60! by expanding its first term:

m

2n
Na

cdN
bcd5

m

2n
nUeeacdee

bcd fnUf5mn~gab1UaUb!.

The Noether current associated toja is

Jpqr@j#5Jgpqr@j#2S m

2n
NdbcNebcj

e2rjdD edpqr

2“bS m

n
NdbcjebecedpqrD . ~91!

Therefore, the integrand on the right side of Eq.~18! evalu-
ates to

~dQ@j#2j•Q!qr5dQgqr@j#2dS m

2n
Nabcbecj

eeabqrD
2jpS Qgpqr2

m

2n
Nabcdbbceapqr1eapqr

1

2
eabcdbcd~“bx

2dx12“bx
1dx2! D

5dQgqr@j#2jpQgpqr2jpUpmdbqr2
1

2
bqrj

p~“px
2dx12“px

1dx2!1Xqr , ~92!

where we define the two-formXqr by Eq. ~87!, and we used
the identificationNabc[eabcdnU

d to obtain the second line
of Eq. ~92!.

When the background solution is a black hole with the
structure and symmetries specified in the statement of the
lemma, the fourth term in the second equation of Eq.~92!
vanishes because the dynamical fields are stationary:
j•“x650. Now given the definition of vorticity~64! and

its relation to the potentials~74!, it is evident that~locally!
there exists some functionf such thatmUa can be rewritten

mUa5“af1x1
“ax

2. ~93!

Let t be a function such thatjadta51. Then the require-
ments that the four-velocity be causal, stationary, and axi-
symmetric, along with the assumed stationarity and axisym-

3422 55VIVEK IYER



metry of x6 force f to be a sum of terms, one of which is
strictly linear in t ~we define the constant of proportionality
to be 2m`). For the same reason thew dependence off
must also be linear, but this dependence can be ruled out
because the occurrence of such a term would forceUa to be
acausal near spatial infinity. We therefore have that the form
of f is

f52m`t1g, ~94!

wherej•“g5w•“g50. Therefore we see that the assump-
tion of stationarity and axisymmetry on the dynamical fields
~taking the four-velocity to be everywhere causal! has re-
stricted us to a very narrow range of allowed background
four-velocities; for instance, we must havewaUa50. More-
over, when the vacuum theory is general relativity, with the
flow assumed to becircular ~tangent to thej2w subspaces!,
there is only one possible solution: for this theory the sub-
spaces orthogonal toja andwa are integrable, and the result-
ing submanifolds can be endowed with coordinates (x1,x2),
such that the metric is ‘‘block diagonal’’ with no ‘‘cross
terms’’ between the subspace spanned byja,wa, and its or-
thogonal complement~see Chap. 7 of@3#!. Now the assump-
tion of circular flow forcesg50 andx1dx250, leaving us
with only

mUa52m`dta . ~95!

In any case, using just the form off in Eq. ~94!, we see

jamUa52jam`dta52m` , ~96!

and the boundary term~92! reduces to

dQqr@j#2jpQpqr5dQgqr@j#2jpQgpqr1m`dbqr1Xqr .

~97!

We now assume the existence of a formBg such that at
spatial infinityj•Qg5d(j•Bg), and write out the first law of
black hole mechanics by substituting Eq.~97! into the sur-
face integrals on the right side of Eq.~18!, observing that the
left side of Eq.~18! vanishes due to the symmetries assumed
on the dynamical fields. If we expandja5xa2VHwa at the
bifurcation sphere for the first two terms of Eq.~97!, then we
obtain Eq.~84! which is what we wished to show.h

The results of@4# predicted that the first law~84! would
only contain surface integrals, and we see this is indeed the
case. Note, however, that the assumptions made about the
symmetry of the dynamical fields restricted the allowed
background fluid configurations for the fluid fields. More-
over, by perturbing the local form ofmUa in Eq. ~93! we see
that the restriction to stationary and axisymmetricx6 in
background also prevents us from achieving all possible per-
turbations ofmUa , by perturbing only the dynamical fields
bab andx6. Finally both the background and the perturbed
configurations must be restricted such that the integral
*S`Xqr converges.~This, along with the following result re-
lating this term to the fluid angular momentum will guaran-
tee the convergence of the corresponding boundary term at
the bifurcation sphere.!

We finally show that Eq.~84! reduces to Eq.~1! when the
assumptions made in the two derivations overlap. From our
discussion in the last section we know thatMg , S, andJH

reduce to their values for general relativity given in Eq.~1!,
whenLg5(1/16p)R. We start by considering the fluid con-
tribution in our first law~84! from the integral

d È m`bqr2dE
H

m`bqr5dE
S
m`Npqr5E

S
muvudNpqr ,

~98!

where the last line follows because the fluid flow in@1# is
assumed to be tangent to the subspaces spanned byja and
wa: so taking the velocity to beUa5va/uvu where
va5ja1Vwa, we see from the discussion above Eq.~95!
that m52mU•U5m`v•dt/uvu5m` /uvu, and so muvu
5m` . Our first law now takes the form

dM5
k

8p
dA1VHdJH2E

S
muvudNabc1E

H
Xqr2E

S`
Xqr .

~99!

We now concentrate on the original form of the first law in
Eq. ~1! and show that it agrees with Eq.~99!. By repeating
the calculation~81! using relation~58! instead of Eq.~66!
along with the assumptionds50 ~as befits an isentropic
fluid!, we find the form of Eq.~1! for an isentropic fluid:

dM5
k

8p
dA1VHdJH2E

S
muvudNabc1E

S
VdJabc .

~100!

Next, we demonstrate that the pullback toS of the angular
momentum density given in Eq.~100! reduces to the exterior
derivative of the two formXqr defined in Eq.~87!, given the
assumption that the dynamical fields are stationary and axi-
symmetric, i.e.,

VdJpqr52~dX!pqr , ~101!

where both sides are assumed pulled back toS. To do this
we compute the exterior derivative of Eq.~87!, finding

~dX!pqr53jeNe[pq„d~mUr ] !2“ r ]x
2dx11“ r ]x

1dx2
…,

~102!

where we have assumedLjbab50. Pulling this form back to
S by contracting with 1/6espqrns ~wherens is the unit nor-
mal toS) yields

dX523e„2nned~mUr !U
[ej r ]

12j [eUr ]ne~“ rx
2dx12“ rx

1dx2!…, ~103!

where 3e is the volume form induced onS:
3ebcd[naeabcd. Now using the axisymmetry of thex6, and
writing Ua asUa5va/uvu with angular velocityV as given
above Eq.~99!, we have~usingdja5dfa50)

dX523e2nneVd~mUr !w
[ej r ] /uvu

53e~p1r!V~nej
e!d~Ur !w

r /uvu

523eV~p1r!d~Ur !w
r5Vd~3enaT

a
bw

b!

52Vd J̄, ~104!
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whereJ̄ is the pullback ofJabc to S. Therefore Eq.~99! now
matches Eq.~100! and so the first law~84! now agrees with
the first law given in Eq.~1!.
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APPENDIX: THE CHANDRASEKHAR-FERRARI
CONSERVED CURRENT

The symplectic formv(f,d1f,d2f) defined in Eq.~16!
is closed whend1,2f satisfy the linearized equations. Its dual
vd(f,d1f,d2f), defined byvabc5vdedabc, is therefore a
covariantly conserved current for the Einstein-perfect fluid
system. Chandrasekhar and Ferrari@13# have, from first prin-
ciples, also derived a conserved current,Ea(f,df), for the
Einstein-perfect fluid system. Their current is quadratic in
the ~complex! perturbationsdf, and is restricted to the case
wheref is a static axisymmetric solution, anddf is a ‘‘po-
lar’’ ~even parity! perturbation with harmonic time depen-
dence~we will define this below!. We now show the equiva-
lence of theva(f,df,df* ) andEa for the Einstein-perfect
fluid system. This calculation is the analogue for the
Einstein-perfect fluid system of the calculation by Burnett
and Wald@12# for the Einstein-Maxwell system.

We start by choosing the Lagrangian for the Einstein-
perfect fluid system to be

L pqrs5epqrsS 2
1

4
R1P~m,s! D , ~A1!

where we have set the constant in front of the Ricci scalar to
give the field equations in@13#, and used Schutz’s velocity-
potential representation, with Lagrangian~68!. The symplec-
tic potentialQ arising from this Lagrangian is@after substi-
tuting Eq.~69! where applicable#,

Qpqr52
1

4
eapqr~“

bga
b2“

ag!

2nUaeapqr~dF1adb1uds!, ~A2!

wheregab[dgab andg[gabgab . The resulting presymplec-
tic form is @from Eq. ~16!#

vpqr~f,d1f,d2f!52
1

8
eapqr@~g2

cd2gcdg2!“
ag1cd

2~2g2
cd2g2g

cd!“cg1d
a1g2

ad
“dg1#

2d2~eapqrnU
a!~d1F1ad1b1ud1s!

2eapqrnU
a~d2ad1b1d2ud1s!

2~1↔2!. ~A3!

This form is dual to a generally conserved current: it can be
shown@11# that forva defined above, we have~for pertur-
bationsd1f and d2f satisfying the linearized field equa-
tions!

“av
a50. ~A4!

We now relate this conserved current to the current presented
in @13#, by fixing a coordinate system with derivative opera-
tor ]a , and writing the volume elemente in terms of the
coordinate volume elemente of this system,

eabcd5A2geabcd, ~A5!

then the vector fieldwa defined byvpqr5waeapqr is con-
served in the sense]aw

a50. If we follow Chandrasekhar
and Ferrari@13# and specialize to the case where the back-
ground spacetime is static~with static Killing field ta) and
axisymmetric~with axial Killing field wa), and the perturba-
tions are time and angle dependent only ‘‘harmonically’’
~that is, there are constantss andv such that

Ltdh5 isdh,

Lwdh5 ivdh, ~A6!

for all the dynamical fieldsh) then~following @12#! it is easy
to see that for complex df, wt(f,df,df* ) and
ww(f,df,df* ) are independently conserved:] tw

t1]ww
w

50. We can therefore restrict our attention to the vector
components (w2,w3). Moreover, Eq.~A6! allows us to sub-
stitute the variations of the fluid potentialsd(F,b,s) for
variations of their time derivatives: we do this and@recalling
Eq. ~69!# find

wa5wgr
a 2d2~A2gnUa!

1

is
d1~mtbUb!

2A2g
1

is
nUa@d2~ t•“a!d1~ t•“b!

1d2~ t•“u!d1~ t•“s!#2~1↔2!, ~A7!

where we labeled the contribution from the first two lines of
Eq. ~A3! by wgr

a .
Our aim is now to show the equality of

@w2(f,df,df* ),w3(f,df,df* )# and (E2,E3). To do this
we first specialize the background and perturbations inwa to
those used by Chandrasekhar and Ferrari. In the coordinates
given in @13# the metric is written

gab52e2ndtadtb1e2cdwadwb

1e2m2dxa
2dxb

21e2m3dxa
3dxb

3 , ~A8!

and the nonvanishing~polar! metric perturbations are taken
to be
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g1tt522e2ndn,

g1ww52e2cdc,

g12252e2m2dm2 ,

g13352e2m3dm3 . ~A9!

We then setg2ab5g1ab* , where the perturbed functions,
dn, etc., are complex, but the unperturbed functions are real.

A direct substitution of these perturbations intowgr
a yields

the result already known from@12#,

wgr
2 52

1

2
en1c2m21m3@dn ,2d~c1m3!* dc ,2d~n1m3!*

1dm3,2d~n1c!*1n ,2d~c1m3!* d~n2m2!

1c ,2d~n1m3!* d~c2m2!

1m3,2d~m1c!* d~m32m2!#2c.c. ~A10!

We now turn to the fluid contributionswf
a to the conserved

current, defined bywf
a5wa2wg

a . We set the four-velocity of
the background to beUa5e2nta and~following @13#! denote
the perturbations of theorthonormal framecomponents of
Ua by isja: dUâ5 isja . We then find the ‘‘two’’-
component ofwf

a given by

wf
252dxa

2 1

is
@d2~e

n1c1m21m3nUa!d1~mtcUc!#2~1↔2!

5
1

is
e2n1c1m3nd2~U

2̂!~d1m1md1n2md1U 0̂!2~1↔2!

52e2n1c1m3~ndm1nmdn!j2*2c.c., ~A11!

where we have setd15d and d25d* , and used the result
~see@13#! that dU 0̂50. We can also putndm5dp1nTds,
and bearing in mind thatds must also have harmonic time
dependence, we can write

isnTds5nTt•“ds

5nTenU•“ds

5nTen@d~U•“s!2d~U !•“s#. ~A12!

Referring to Eq.~63! we see that the first term on the right
side of Eq.~A12! vanishes whenever the perturbation satis-
fies the linearized equations. Since the background is vortex-
free, we see that the second term also vanishes as a conse-
quence of Eq.~63!. Adding the resulting fluid contribution to
the gravitational terms, Eq.~A10! yields

w252
1

2
en1c2m21m3@dn ,2d~c1m3!* dc ,2d~n1m3!*

1dm3,2d~n1c!*1n ,2d~c1m3!* d~n2m2!

1c,2d~n1m3!*d~c2m2!1m3,2d~n*1dc* !d~m32m2!#

2e2n1c1m3@dp1~p1r!dn#j2*2c.c. ~A13!

Now using the appropriate linear combinations of the lin-
earized Einstein constraint,

d~c1m3! ,21c ,2d~c2m2!1m3,2d~m32m2!2n ,2d~c1m3!

52en1m2~r1p!j2, ~A14!

to replace the third, fourth, and fifth lines of Eq.~A13! we
get

w252
1

2
en1c1m32m2$dn ,2d~c1m3!*

1dm* ~dc1dm3! ,22@dc,dc* # ,22@dm3 ,dm3* # ,2

12en1m2@~r1p!d~c1m32m2!*2dp* #j2%2c.c.,

~A15!

where we define@A,A* # ,i[A,iA*2AA,i* . This is seen to
agree~up to an overall constant! with E2 of the conserved
current in@13#. A similar calculation forw3 yieldsE3 ~which
is obtained fromE2 by interchanging 2↔3), and so we find
(w2,w3)5(E2,E3), and our symplectic currentwa for the
Einstein-perfect fluid system agrees with the Chandrasekhar-
Ferrari current for this system.

We make two final comments. First, from the comment
following Eq. ~69!, we know that every configuration of the
physical fields of a perfect fluid has a corresponding equiva-
lence class of configurations of the dynamical fields, and as a
consequence, every perturbation of the physical fields has a
corresponding perturbation of the dynamical fields. Now,
two distinct perturbations of the physical fields off the same
background~physical field! configuration will each select a
corresponding perturbation of the dynamical fields. The
backgrounddynamicalfield configuration for each of these
perturbations will certainly lie within the equivalence class
corresponding to the given background physical field con-
figuration: however, in general, these background dynamical
field configurations will bedistinct elements of this equiva-
lence class. In using symplectic methods to deriveEa we
have implicitly restricted ourselves to those pairs of pertur-
bations of the physical fields where the corresponding pairs
of dynamical field perturbations (d1f,d2f) have identical
background configurations. In fact, as we have seen above,
the resulting conserved current agrees with the
Chandrasekhar-Ferrari current forall pairs of perturbations
of the physical fields, not just those restricted in this way.

Second, we notice from Eq.~A7! that as long as theUa of
the background solution lies in a plane tangent to the sub-
space spanned byta andwa, the last term in Eq.~A7! van-
ishes for the components of interest. This, in turn, yields a
conserved current (w2,w3) which only depends on perturba-
tions of thephysicalfields, without the explicit appearance
of the fluid potentials, for any stationary background con-
figuration in which the fluid velocity is tangent to thet2w
subspaces. Of course, we know thatva is a conserved cur-
rent off anybackground; this observation suggests only that
a current similar in style to that presented by Chandrasekhar
and Ferrari also exists for a background with a fluid in cir-
cular motion, as well as the static case considered in@13#.
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