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The first law of black hole mechaniém the form derived by Waldis expressed in terms of integrals over
surfaces at the horizon and spatial infinity, of a stationary, axisymmetric black hole, in a diffeomorphism-
invariant Lagrangian theory of gravity. The original statement of the first law given by Bardeen, Carter, and
Hawking for an Einstein-perfect fluid system contained, in addit@mhimeintegrals of the fluid fields, over a
spacelike slice stretching between these two surfaces. One would expect that Wald’s methods, applied to a
Lagrangian Einstein-perfect fluid formulation, would convert these terms to surface integrals. However, be-
cause the fields appearing in the Lagrangian of a gravitating perfect fluid are typically nonstatéearyn
a stationary black-hole—perfect-fluid spacetineedirect application of these methods generally yields re-
stricted results. We therefore first approach the problem of incorporating general nonstationary matter fields
into Wald's analysis, and derive a first-law-like relation for an arbitrary Lagrangian metric theory of gravity
coupled toarbitrary Lagrangian matter fields, requiring only that timetric field be stationary. This relation
includes a volume integral of matter fields over a spacelike slice between the black hole horizon and spatial
infinity, and reduces to the first law originally derived by Bardeen, Carter, and Hawking when the theory is
general relativity coupled to a perfect fluid. We then turn to consider a specific Lagrangian formulation for an
isentropic perfect fluid given by Carter, and directly apply Wald's analysis, assuming that both the metric and
fluid fields are stationary and axisymmetric in the black hole spacetime. The first law we derive contains only
surface integrals at the black hole horizon and spatial infinity, but the assumptions of stationarity and axisym-
metry of the fluid fields make this relation much more restrictive in its allowed fluid configurations and
perturbations than that given by Bardeen, Carter, and Hawking. In the Appendix, we use the symplectic
structure of the Einstein-perfect fluid system to derive a conserved current for perturbations of this system: this
current reduces to one derivechb initio for this system by Chandrasekhar and Ferrari.
[S0556-282(97)05806-2

PACS numbsd(s): 04.20.Fy, 04.40.Dg, 04.70.Bw

I. INTRODUCTION T2 and number and entropy densitiesand S. The three-
forms Nabc:nudeabcda Jabc:Tde‘PeGdabCa and  S;pc
The first law of black hole mechanics as stated by=SWley,p. represent the fluid number density, angular mo-
Bardeen, Carter, and Hawkirid] relates small changes in mentum density, and entropy density on a spacelike three-
the mass of a stationary, axisymmetric black hole to smalburface 2, that has boundaries at the black hole horizon and
changes in its horizon surface area, angular momentum, antle two-sphere at spatial infinity. We have also &gj.4 to
the properties of a stationary perfect fluid that might sur-be the canonical volume element on spacetime.
round it: one first fixes a stationary axisymmetric Einstein- Considerable effort has been spent on weakening the as-
perfect fluid black hole solution with stationary killing field sumptions made in Eq1) on the background fields and their
£ (with asymptotically unit norm and axial killing field perturbations. For instance, consider an arbitrary diffeomor-
o2 (with closed orbits One then defines to be an infini-  phism invariant Lagrangian theory with both metric and mat-
tesimal perturbation to a nearby stationary axisymmetric soter fields, and let the theory possess stationary, axisymmetric
lution; then the first law if1] is black hole solutions, which are asymptotically flat, and have
a bifurcate killing horizonfor an explanation of these terms
seg[2,3]). Then it was showf2,4], providing the metric and
matter fields appearing in the Lagrangian were stationary and
axisymmetric in the black hole background, that there ex-
isted a first law of black hole mechanics in a form only
* Lﬂé‘labﬁ LTlUl&SﬁbC’ @ involving surface integralson the sphere at spatial infinity
and the bifurcation sphere of the black hole horizon. Namely,
where the spacetime is characterized by an Arnowitt-Desemgiven the Lagrangian for the theory, one could algorithmi-
Misner (ADM) mass,M, and the black hole by its horizon cally define integral€ and 7 over the sphere at spatial in-
surface ared\, surface gravityx, angular velocityQ)y;,, and  finity, and S over the bifurcation sphere, satisfying the iden-
angular momenturd,, (measured at the horizpriThe fields  tity
associated to the perfect fluid are its four-velocity [which
here is taken to be of the fornU®=v?/|v|, where
v3=£+0¢? for some (generally nonconstant(}], the _ K
chemical potentialu’, the temperaturel, stress energy o¢ 2 05+ QuoJ. @)

K
5M=—5A+QH5\JH—f ' |v|SNape
8 s
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(Here 6 denotes a perturbation from the background blaclkdition, as we shall explain, the definition of our “Noether
hole solution toany nearby solution). The guantity€ was  current” (involved in the intermediate calculations both
interpreted as the canonical energy of the black hole systentess ambiguous than that presented by Schutz and Satkin
J as the canonical angular momentum afichs the black and more general than the definition given by Sofh The
hole entropy. range of theories in which our methods are well defined is
We might therefore expect that the volume integrals intherefore larger than those addressed by their methods.
Eq. (1) involving the fluid can be converted to surface inte- In Sec. Il we define a gravitating perfect fluid and review
grals in the form(2), by choosing a suitable variational form some variational principles for it: Schutz's “velocity-
for the Einstein-perfect fluid system and using the methodgotential” formulation[9], which uses the dynamical fields
of [4]. In fact, we are unable to reproduce the first ldwin (¢,a,B,6,0) to define the product of thghysica) specific
a form only containing surface integrals, using these methinertial mass and four-velocity uU,=V ,®+aV B
ods; the difficulty is that at least one of the fields appearing+ 6V 4o, and Carter's more recent “axionic vorticity” for-
in each of the Lagrangian formulations for a perfect fluid mulation[10] for an isentropic perfect fluid, which uses a
(that we are aware bfs generally nonstationary, even when dynamical fieldb,;, to define the number curreht,,. [given
the fluid four-velocity, number density, entropy, and func-in Eq. (1)] via Nap=3V(,bpq, and the dynamical fields
tions of these fieldgwhich we refer to collectively as the y* to define the fluid vorticity via ¥ uUp
physicalfields), are stationary. Since the methods[4f re- EZV[aX*Vb]X*.
quire that all fields appearing in the Lagrangiavhich we In Sec. IV we present two forms of the first law for the
refer to henceforth as thidynamical fieldsare stationary and Einstein-perfect fluid system. The first form is derived from
axisymmetric in the black hole background, the allowedrelation (3) and is the same as E@L), with the exception
background solutions for the perfect fluid in the resultingthat & is now allowed to be a perturbation from tfetation-
first law are restricted. ary axisymmetrig background to an arbitrary nearby solu-
This paper gives two results in response to this problemtion. (Note that this form of the first law contains volume
we first relax all explicit symmetry assumptions on matterintegrals) It is also of interest to know if we can construct
fields appearing in the Lagrangian, and find the consequencgny form of the first law with perfect fluids only involving
for the first law given in[4]. We also attempt to generate a surface integrals; in fact, by directly applying the methods of
first law of form (2) by a careful choice of an existing La- [4] for a metric theory of gravity coupled to a perfect fluid
grangian formulation for gravity coupled to a perfect fluid, described using Carter's variational princigleith the po-
directly using the methods ¢#]. tential by, for Nape, andx™ for w,p), we can derive a first
In Sec. Il we consider an arbitrary Lagrangian theory oflaw of the form
gravity coupled tarbitrary matter fields, assuming only that

the metric is stationary and axisymmetric in the black hole

background, but making no such assumptions about the mat- oM +M°°5L%bqr_ﬂw5JHbqr

ter dynamical fields. We then modify the methodd 4f to

generate a perturbative relation, but instead of attempting to K

express the matter contribution to the first I8y via surface “8n OA+ QL 6dy+ fHer_ waqr )

integrals, we leave it instead as a volume integral over a
hypersurfacey., joining the bifurcation sphere to the sphere
at spatial |nf|n!ty. In restr!cted caséshich we explain later Jy is the black hole angular momentum appearing in @y,
we can motivate an independent measurement of th

is the two-form P o[ S(uU ) — Vx~ Sx ™
“vacuum” black hole massMg. In these cases we can also +qe x*8x~1, and we have %:vritt%qé” (efrﬁd?ri)for tHgspr)fere
define quantities which resemble the “vacuum” black hole rl y

. at spatial infinity and the bifurcation sphere, respectively.
entropy, Sy, and angular momentundgy, and having done v \yj|| see that this first law is more restrictive than Eg),
So our perturbative relation takes the form but it is the only nontrivial rule of typ€2) involving a per-
« 1 fect fluid that we can currently construct.
SM g=2—6Sy+ 0y 8Jgn +f Z¢. eTab5gab_ 5eT-8), _ In the Appendlx_we evaluate _the symplgctl_c form of the
21 32 Einstein-perfect fluid system, using the variational formula-
(3) tion given by Schut#9] for the perfect fluid. The symplectic
form is dual to a generally conserved current, quadratic in
where T2 is the stress energy of the matter fields. We will the field perturbationgL1]. We find (in parallel with Burnett
see that this relation defines a black hole entrégy, which  and Wald's calculation for the Einstein-Maxwell system
is in general not the black hole entropy defined4h how-  [12]) that this conserved current reduces to a current previ-
ever, in special cases the interpretationSgfas black hole ously derivedab initio by Chandrasekhar and FerrgtB] for
entropy can be appropriaffor instance, as we show in Sec. the polar perturbations of a static axisymmetric black hole.
IV, this relation reduces to Eq1) when the gravitational
theory is chosen to be general relativity, and the matter
source is chosen to be a perfect flui@ur result differs from
a similar relation presented by Schutz and Sofkih in that
they conjectured, but did not explicitly include, the black
hole entropy and angular momentum boundary terms, and so In this section we give a perturbative relation that re-
did not explicitly generalize the full form of Eql). In ad- sembles the first law of black hole mechanics, for an arbi-

whereM is the ADM massA is the black hole surface area,

Il. A PERTURBATIVE RELATION
FOR BLACK HOLE MECHANICS
WITH NONSTATIONARY MATTER FIELDS
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trary theory of gravity with a diffeomorphism invariant La- which we now use to further elucidate its structutal-
grangian. We assume the theory possesses black hdlleough they appear in a different context, the calculations
solutions in which the metric is stationary and axisymmetric,below have the same flavor as those in the Appendpdbf
but place no restrictions on the other fields appearing in the Lemma 1.Fix L to be the Lagrangian of a diffeomor-
Lagrangian(we refer to these fields collectively as thg-  phism invariant theory of gravity and matter fields, with
namicalfields). The motivation for this is, as we have indi- equation of motiorE=0 as given in Eq(6). Without loss of
cated, that variational formulations for gravitating Einstein-generality, label each dynamical fiedlby i, and give each
perfect fluid systems have fluid dynamical fields which arefield u; upper, andd; lower indices: also label the equations
nonstationary even when the fluigiysicalfields (the four-  of motion for each field similarly, so that the equation of
velocity, number density, and entropgre stationary and motion term in Eq{(6) becomes

axisymmetric. We first make some necessary definitions re-

lated to the the symplectic structure of a diffeomorphism ESp=€Eyp,..o, 0 26" Py oo (9
invariant Lagrangian theory. These are explained in detail in '

[4]; here we merely statéand, in one case, refinghe rel-  Then for any smooth fields® there exists a two-form,
evant definitions and results. In the following we often useQ[ ], called the Noether charge associatecttowhich is
boldface type to denote differential forms on spacetime, suptocal in the dynamical fields anéf), such that the Noether
pressing their indices when convenient. currentJ[ £], defined in Eq(7), can be written

A. Some preliminaries Jé]=—(e E-¢-£+dQ[£], (10)

All theories we consider arise from a Lagrangian, whichwhere we define the three-form
is taken to be a diffeomorphism invariant four-form on

spacetime, dependent on the metgg,, and some arbitrary (e E-¢-&anc
set of matter fieldsy. (We collectively refer to all the dy-
namical fields byg.) By this we mean that the Lagrangian = €onbc, Egb,...b o0 (= & Puig o
has the functional dependence i e voae
by b
L:L(gab:RabcmVRabcd, Ceey _¢ib1 ea1~~~adi5p'+¢ibl bu'p~~~adi521"'
(V)PRapca: 4, Vi, ... (V)I9) 5 + ¢ib1"'buia1_“p5§d)§p. (11

(here multiple derivatives appearing in the above expression proof. For clarity, we first consider the case where the

are assumed to be symmetrized—pépfor further discus-  metric is the only dynamical fieldp—g,,,. Then setting the
sion about this dependencen particular we require that metric field equation€2P= eE2°, Eq. (8) reads

every field appearing in the Lagrangian give rise to an equa-
tion of motion (there are no “"background” fields The  dJ[¢]= —2€E5"V &, = — 2€V ,(ES %) + 2V 4(E30) &, .
variation of the Lagrangian defines these equati@s, (12
along with the symplectic potenti®, by

Therefore setting € Eg- £) apc= €gandEy e, We have

SL=ES¢+dB($,54). © d(I[£]+ 26 Ey &)= 26V (ED) gy, (13

[Here @(¢,d¢) is a linear differential operator in the field which shows that the right side of E(L3) is both linear in
variationsd¢. Because the Lagrangian is only defined up to£?, and exact for alk?. The results of 6] now imply that the
the addition of an exact forml. —L +dpu, the symplectic right side must vanish identically, and 8E2°=0. This in
potential is only defined up to the following terms: turn implies that the left side of E¢13) must be an identi-
O(h,60)—0O(p,00) +dY(p,6¢)+ du(¢), whereY and  cally closed three-form, whictusing the results d6] again
p are covariant forms with the same type of functional de-implies the existence of a two-fornQ[ £], local in the dy-
pendence a® andL, respectively. These ambiguities were namical fields and?, such that
discussed if4].]

Now fix a smooth vector field?, on spacetime. Then the Jé]+2€e Ey- £=dQ[ £]. (14

Noether currend[ £] associated tg? is a three-form defined _ )
by We defineQ| £], the Noether charge associatedtfp as any

two-form which is local in the dynamical fields agd, and
satisfies this relation.

We can also perform this analysis forwith the general
dependencés). With the labels for each field and its equa-
where the centered dot denotes contraction of the vector intion of motion given in Eq(9), the first equation in Eq12)
the first index of the form. This Noether current can be seemhecomes
[4] to obey the identity

Jé1=0(9,Lep)— €L, (@)

=— ap- - -agj b1---by,
dI[£]=—EL, @ O €2 Eypyo, ™LA Mgy gy (19
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which, through a similar manipulation to E¢L2) leads to and, assuming that all dynamical fields are stationary and
the structure forJ[£] and the definition of the Noether axisymmetric, compute the surface terms arising from this
charge Q[ £], in Eq. (10). O Lagrangian.

The Noether charge was defined[#] only whenE=0,
via J[ £]=dQ[ £]. This left open the definition aD[ £] when B. The perturbative identity
E+#0. In the Appendix of(5], however, it was shown that
Q[ £] could be defined wheik#0, such that there existed
forms C, with J[ £]—dQ[ £]=C,&?, and where th&C, van-
ished whenE=0. At that time it was not known whether

Q[ £] was uniquely defined this way, nor was the explicit bl
o . . . . ack hole backgroundand a part,,, dependent on both
form of C, specified. We have given this explicit form in Eq. the metric and a set of matter fielgs(on which we place no

(11). Moreover, the above analysis uniquely defines the No'restrictionS'
ether charge via Eq.10), without imposing the field equa- '

Having stated these necessary definitions we turn to con-
struct our perturbative identity. We start by decomposing the
LagrangianL into a partLy, depending on the metrig,,
(which is assumed to be stationary and axisymmetric in the

tions, up to the following ambiguitie@vhich were discussed L =L 4(Jap,Rapeds VRapeds - - - (V)PR

in detail in[4]): The ambiguity in® described after Eq6) gt¥ab:abed abed avcd
means thatl[ £] is only defined up to the following terms: L@ Vi, o (V) 9ap,Rabcas
J&E]—=IE]+d[Y (¢, L) — - u], and so the ambiguity in

QL& is Q[£]— QL]+ Y(¢, L) — é- . These ambiguities VRapca: -+ (V) Rabed: (19

will not affect the results stated in the following sections.
We now define the symplectic currea( ¢, 51 ¢,5,¢) (a
three-form on spacetimédy

($,61$,6,$)=6,0(,614) ~ 6:0(,5,). (16)

Note thatw is a function of an unperturbed set of fields,
¢, and is bilinear and skew in pairs of variations
(8,9, 6,¢). It can be showrisee[11]) that this three-form is
closed wheng is a solution of the field equations amdi ¢
and 8, ¢ are solutions of the linearized equations of motion.
(In the Appendix we examine this closed form — it is dual to
a conserved vector field, which we evaluate for perturbations SL= E3b5gab+ E 00+ dO(d,5¢). (21)
of an Einstein-perfect fluid systejniMoreover, if we leté?

be a smooth vector field, sé{¢= L. and lets,¢= ¢ be  For convenience we s&i; = eE3° and Ey,= eE,. As dis-
a variation to a nearby solutiofwith 5§%=0), then cussed above we can compufe&] [defined by Eq(7)], and
o($,L:p,6¢) can be shownd] to be exact: define Q[ ], for the theory described by Eq19): it must

o b,Led,58)=d[ SQLE]— - O, 50)]. 17 have the form given in Eq10):

Now fix a black hole spacetime with a stationary and Jé]=-2e By £- e Bn g £4dQLE] (22

axisymmetric metric, for the theory given by the Lagrangian(the factor of 2 between the terms with equations of motion
in Eq. (5); let the stationary killing field with unit norm at here is purely a matter of conventjoiWe can also use the
spatial infinity be£? and the axial killing field(with closed  jndividual Lagrangiang  andL , to define the stress-energy

horizon, with bifurcation spher{, and let it be asymptoti- 0, (b,50): 9

cally flat, with the two-sphere at spatial infini§f. Let 3 be
a three-surface with these two boundaries, andbgeto be oLg= E'2%g,,+ d0y(g,469),
an arbitrary perturbation of the background which satisfies

Since this breakup only requires thag be independent of
any matter fields, it is very nonunique, and in general we
have no method of controlling the ambiguity

Lg—Lg+X,
Lm—Lm—A, (20

whereA= )\(gabyRabcd’VRabcd’ v i(V)SRabcd)-
The variation of the Lagrangian yields equations of mo-

tion for the metricE3°=0 and matter field&,=0 via

the linearized equations. Then the first law of black hole 1
mechanics as stated fd] is an interpretation of the identity OLm=Endy+ 6§Tab5gab+ dO(¢,6¢). 23
f w(d),ﬁgda,&(ﬁ):f SQ[&]—€-O(¢,6¢) Clearly Egbz Eéab+ €2T2" and up to the ambiguities present
3 S,

in the symplectic potentials, we also ha@=04+0,,.
Similarly, if we define the Noether currents for the individual
- fH5Q[§]—§~®(¢,5¢) (18)  Lagrangians by

[which arises from integrating Eq17) over X ]. When &2 JoL€1=04(9.£:9) = &Ly,

Lie derivesall the dynamical fields in the background, the J — —£L 24
left side of Eq.(18) vanishes, and one is left with a relation L E1=On( b L) =& L, 24
between surface integrals on the boundarieX ofvhich can  then it follows that

be shown to be of the forn®2). In Sec. IV we present an

explicit Lagrangian for the Einstein-perfect fluid system, J&]1=Jg[ €]+ Il €] (25
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Now we impose the structur@0) on each ofl; andJy,, in £, let @4 be defined by Eq(23), let Q4 £] be the Noether
the process definin®, and Qn, which are the Noether charge defined by Eq26) for the theory described by,
charges in the theories arising from these Lagrangians:  and letT2° be the stress-energy tensor of the matter fields
, defined by(23). Now consider an asymptotically flat, station-
Jol€]=—2e Eg- £+dQql £], ary, axisymmetric black hole solution with bifurcate killing
horizon, in the theory described hy with stationary killing
In[é]=—€En - &€ T-£+dQn[£]. 29 field £2 (with unit norm at the spher8”, at spatial infinity,

S a . a
Finally we substitute Eq(26) into the right side of Eq. and axial killing fielde? (with closed orbity, so thaté? and

: : - o2 Lie derive the metric but not necessarily the matter fields.
(25 and Eq.(22) into the left side, obtaining Let the horizon killing field(which vanishes on the bifurca-
—2€ Ey ¢~ € Ep ¢ +dQ[£] tion sphereH) be given byyx?= &2+ Qy¢?, whereQy is a

constant. Then fos a perturbation to an arbitrary nearby
=-2eEyé-eT {—€Ey ¢ E+dQy£]+dQu[£].  solution, such thabe?=0,

(27)
fmé\Qg[g]_g'@g: fH5Qg[X]_QHfH5Qg[@]

All the terms involving equations of motion and stress-/s
energy tensors can be seen to cancel, and the resulting iden-

tity implies + [ &0, seT o). @9

Q[£]=Qq[ ]+ Qn[£]+dZ (28) ,
Proof. We evaluate expressiofi8) for the theory(19),

(whereZ is some arbitrary covariant one-foyme there-  where the background solution is a black hole with the sym-
fore have a relatioindependent of any field equationise-  metry and structure described abd28), demanding that the
tween the Noether charde, of the full theory given by, metric be stationary and axisymmetric in the background
and that of the “pure gravity” theoryQq, arising from  spacetime, but placing no restrictions on the matter fields. In
Ly. We are now ready to state the identity. this case the integrand on the left side of E) is generally

Lemma 2.Fix L, Ly (the “vacuum” Lagrangiai and  nonvanishing. Assuming that the field equations hold in
L, (the “matter” Lagrangian to be diffeomorphism invari- background for the matter field§,,,=0, and thatéy is a
ant Lagrangians related as given in Efj9) with the func-  solution to the linearized matter equations of motion off this
tional dependence shown there. Fix a smooth vector fielthackground 6E,=0), we find the left side of Eq.18) is

|

(), Lep,6¢)=060¢(9,L,9) — LOg(9,69) + 6On(h,Leh) — LOm( ¢, 6¢)
=60n(,L:h) — LOm(h,6¢)=06(dQn[ €]~ € T-&+&-Lim) = LOn( . 66)
=0(dQn[£]—€ T-£+&-Liy)—&-dOy(h,5¢) —d(£- Om( b, 56))

1
=d(6Qul €]~ £ On(h,0¢))~ o€ T &)+ 5 & €T%6gq, (30)

where we used the stationarity 0f, in the second line, the and so, cancelling the boundary terd#®,,[ £]— ¢- O, from
expression(26) for J, in the third, the Lie derivative identity both sidedand using Eq(28)] we get
LA=¢&-dN+d(&-N) (which holds for an arbitrary form.)
in the fourth line, and the definitio{23) of ®,,, and the stress
ab o : 1
energy T in the fifth line. Now also assuming j — £ €T8g,,— 8(e-T-¢)
Ey=0Ey=0, and substituting Eq(30) into the left side of 32
Eq. (18) yields

:J 5Qg[§]_§'®g(gyég)
S,
1
Ld(éQm[ﬂ—?@mHif-eT ®5gan—S(€ T-£) —fHan[g]—gﬂg(g,&g). (32

:f 0Q[£]-&-0(9,59)
s,

Now writing £ in terms of 2 and ¢? at the boundary
‘H (and discarding terms which vanish as a result of the

B _£.0(h.5b), 31 vanishing ofy? at H, or which vanish becausg? is tangent
fH QLé]—¢-O(¢,69) (32) o H) we get
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f Eé' T25gap— O(€ T+ &) f Ql ]=J Qle] (39
s 2 € Jab € s ¢ N Pl
:f 5Q [ €]~ &-O4(g,59) In addition, by considering the identity
S

SoLod)= | SQle]l-0-®, (40
_fHan[XHQHJHéQg[QD], 33) sz(¢ $Lod) Lz Qlel=¢

o ] we see that whep? Lie derives all the dynamical fields, the
which is what we wished to show left side of this equation vanishes. Sing@ is tangent to the

The identity (29) has physical significance when we can two-spheres{ and S, the pullback of the second term on
interpret the surface integrals appearing ther¢vasiations e right side vanishes. It follows that

of) the energy, entropy, and angular momentum of the black

hole. When is this possible? If the theory had no matter fields

then we could choosk,, to vanish, and the terms involving 5f Qlel= 5f Qlel. (41)
T2 in Eq. (29) would vanish(we could also choose other s H
breakups of_, and we will return to this short)y In this case
we would havel j=L, ©4=0, and Qy=Q. If in addition
there existed a three-fori® (local in the dynamical fields,
the flat metricy,,, and its associated derivativi, at spatial
infinity) such that at spatial infinity¢- @(¢,6¢)=§&- 6B,
then Eq.(29) can be written

Therefore, in spacetimes which have axisymmetric back-
ground configurations, the angular momentum measured at
the black hole is equivalent to the canonical angular momen-
tum J, measured at spatial infinity

J=— meQm, 42

K

56’:277

88+ Q 6Ty, (34

both when¢ is an axial killing field (in the background
solution and for arbitrary solutions which are perturbations,
8¢, of the axisymmetric solution. This calculation also
shows that the definition off is gauge independent, for
arbitrary perturbations of an axisymmetric solution. This is

becaused7y=0 when we chooseS¢ to be pure gauge,
&= fs Ql¢]—-¢-B, (35  which we see by first setting¢=L,¢ for some smooth
- v?, and then replacingd$ with a gauge transform®d’ ¢
(i) the entropysS of the black hole; by taking the functional which coincides with3¢ in a neighborhood of the bifurca-
derivative of the Lagrangian with respect to the Riemanrtion sphere, but vanishes in a neighborhood of spatial infin-

tensor (treated as an independent fielle know (setting ity. Then we have, for everﬁqﬁ [using Eq.(41)],
€4, 10 be the binormal to the bifurcation sphethat

where the varied quantities in E¢34) are defined below,
and have well-known physical interpretatiddy. These are
(i) the canonical energy of the system, which we define as

sn=5 Qre1=5 | o= [_atei-o. 43

K
5| Q= 5ess (36
So we have that wheii@® vanishes(along with L), the
where interpretation of the terms in EqR9) is straightforward and
one obtains a formuld34) which (bearing in mind the
E_wa oL e 37) equivalence of7 and 7)) is formula(2).
#ORapeq 20 ¥’ What if the set of fieldsy is nonempty? In general, the

ambiguity (20) in breakingL into Ly andL, stops us from

and « is the surface gravity of the background black holemeaningfully interpreting the surface terms in Eg9) as

horizon; (iii ) the angular momentum of the system measurederturbations of mass, entropy, and angular momentum: even
at the black hole, defined by if the overall theory is fixed, every choice bf; generates a

different relation, with different choices o@,, etc. We

therefore seek more restrictive assumptions under which we
jHE_f Qle]. (38 might successfully identify the surface terms in ER9).
" One approach is tbix a particular choice ok 4 and think of

. i ifying an in ndent theory. W me there ex-
In fact, the angular momentum can be measured either & as specifying an independent theory. We assume there e

the black hole horizon or at spatial infinity; since the metric':t;é)l f(;rrr:j Egng:ég; tfgr;a;{ur?cfti(fr?aajltla:jéfriﬂggyff(g. Bg)
is axisymmetric with axial killing fielde?, it can be seen 9’ g y

from Eq. (7) thatJ[ ¢] vanishes, when pulled back to a slice

to which ¢? is tangent. This ensurémtegrating the re_Iation MQEJ’ Qq[&é]1—&-By. (44)
J ¢]=dQ[ ¢] over) that, for the background solution, S
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If we now require that the stress energy of the matter distri- K 1
bution falls off sufficiently rapidly at spatial infinity, such éM g=E5Sg+QH5~JgH+f §§-€Tab5gab— S(e-T-&),

that (near spatial infinity the metric for any solution of the * (50)
L theory approaches a metric solution of thgtheory, and

Mgy yields the same result on both metrics, then it makesyhere 5 is a perturbation to an arbitrary nearby solution.
sense to define the mass of the systeriigsWe note thatif However, we caution the reader that the identification of
we can also find a formB(¢) for the full theory, such that at  plack hole entropy witls, in general gives results in conflict
spatial infinity 5(¢- B) = ©( ¢, 6¢), then we can also define a with those in[4]: consider a theory of gravitation with a
canonical energy¢, for the full theory given by Eq(35),  scalar field, for which the matter Lagrangian couples to the
and in generaf+# M. spacetime curvature, and which displays stationary black
Therefore, when the stress energy of the matter distribunole configurations in which the scalar field has sufficiently
tion falls off sufficiently rapidly, we can interpret the left rapid spatial falloff. We can therefore write out H§0) and
side of Eq.(29) as the variation of the mass of the system.interpret the black hole entropy 8. From the results d#4]
The surface terms on the right side of E29) are(variations  we expect the entropy of the black holeitelude contribu-
of) the functionals that would measure the entropy and antions from the scalar field; E450), however, defines a black
gular momentum of a stationary black hole in thgtheory.  hole entropyS, with only metric contributions, with the en-
We might therefore be tempted to interpret them as the blackopy contribution of the scalar field somehow distributed in
hole entropy and angular momentum; indeed, si@gés the  the volume integral of its stress energy. These two points of
Noether charge of the, theory, we know fronf4] that one  view are contradictory; therefore, while there are clearly spe-
can define a quantit$, by cial casegqfor instance, the Einstein-perfect fluid syspeim
which we can identifyS,; as the black hole entropy, and
S E—wa oy e (45) terms in the volume integral awariations of the matter
9 #ORapeq 20 cd” entropy, in general we regard the notion of the black hole
entropy defined bysy as inappropriate. Clarifying wheg,
such that can be correctly interpreted as black hole entropy is the sub-
ject of future research.
_ K We note parenthetically that we can write out an alterna-
5IHQ9[X] 27 9S: (46) tive form of Eqg.(50) by replacing the stationary killing field
£2%in Eq. (18) with the harizon killing fieldy?®. [The analysis
One might also define a quantityy, by up to Eg. (32) is unchanged except for the substitution
£ x2.] Then expanding®= &2+ Q0? at spatial infinity
Jgu= _J Q4 el (47) a_nd on the slic&, (_but not gtH) _and using the definitions
H discussed above gives the identity

Although we made no assumptions about the axisymmetry of =~ «
the matter fields, we can show, providing the support of 'V'g_ﬁasg’LQHanac
T2 does not intersect some neighborhobld,of the bifur-

cation sphere, thaly is also well definedgauge indepen- 1 ab _ _

den for arbitrary perturbations of the axisymmetric solu- + s §§~eT 9Gap= S(€ T-£) =Ly 25(6'1-"’0)’
tion. This follows by evaluating the left side of E¢40),

using the fact that the calculati¢B0) also holds wher? is (51)

replaced byp?. Taking ¢? to be tangent to the spatial slice,

Eq. (40) then becomes whereJy..=— [s-Qq ¢], is the system angular momentum

measured at spatial infinity. Therefore the cost we have in-
curred for the transfer of the angular momentum integral to
f 5Qg[(p]+f S(eT- qD)=f QgL ¢]. (48) spatial infinity is the appearance of an extra term in the vol-
Se 2 H ume integral.
L . . A relation of the form(50), was first given by Schutz and
Now, as bejore, let the perturbatlon inthis equation _beSorkin[7], in the case wherke, was fixed to be the Lagrang-
gauge,5¢=5¢. Then we again can replace the perturbationay for general relativityl. ,, was any matter Lagrangian, and
on the right side with an equivalent gauge change, whichhere was no black hole boundaty, for the hypersurface
vaLushes outside, and so intersects neither the support of s The relation stated ifi7] is correct, but we comment here
T2 nor spatial infinity. Then we have the left side of Eq. o the ambiguity of the “Noether operators” used by Schutz

(48) vanishes, and so and Sorkin to derive it: In its initial definitiofi7] the Noether
operator for a Lagrangialn and a smooth vector fieléf was
SJgH: - f Qng[@]:o. (49) defined to be any(not necessarily covarianthree form

H J9 £] satisfying the relation

ThereforeJyy is defined for arbitrary perturbations of an LL=EL;p+ d(JJ €]+ ¢&-L), (52)
axisymmetric solution.

Now having definedMy, Sy, andJgyy, we could write  for every smooth field vector fielg?. This definition leaves
out Eq.(29) in the form J9[ £] ambiguous by aarbitrary exact three-form which is a
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linear differential operator 2. Since we know from Eq.
(10) that J5=dQ[ £] when the field equations hold, this am-
biguity would permitJS=0 as a valid Noether operator
(which, following Schutz and Sorkin’s methods, would yield
a correct but trivial relation On the other hand, our defini-

tion of the Noether current admits a limited set of ambigu-

ities [stated after Eg(15)], which cannot be used to annihi-

late the Noether charge, and in particular do not change the

content of the first law.

Sorkin introduced an augmented definition of the Noether

operator if 8], requiring that for a variation of the dynamical
fields given byé¢=1fL.4, wheref is any function, the No-

ether operatoﬁs' be defined by

SL=EfL,p+d(fISTE]+TE L), (53)

Providing one can find 8 which satisfies this relation, it is
easy to see that one cannot add a termSowhich is both

exact and linear irf, for arbitrary f. For a theory with a
first-order Lagrangian, finding suchld is always possible:
in [8] a first-order (noncovariant Lagrangian for the
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Ill. A REVIEW OF PERFECT FLUIDS
AND THREE VARIATIONAL FORMULATIONS

In this section we recall the definition, the relevant prop-
erties, and three variational principles for a self-gravitating
perfect fluid: one given by Schuf®] (which we use in the
Appendix to derive a conserved current for perturbations of
Einstein-perfect fluid systemsthe “axionic vorticity” for-
mulation given by Cartef10] for an isentropic perfect fluid
(which we use in the next section, to derive a firstlaand
a “convective” approach also described by Caiftéd]. Our

Einstein-Maxwell theory was used to yield an unambiguousaim is to gather the results we need for the calculations of the
Noether operator. It is not clear, however, that any generdollowing sections; detailed treatments of these variational

Lagrangian theory has a first-ordeagrangianformulation,

so in general, Sorkin's definition may not even yield a No-

ether operator. In contrast, all of our Noether currelfits]

principles can be found if9,10,14.
From the viewpoint of black hole mechanics, we would
like a stationary axisymmetric black hole configuration to be

defined above can be computed for Lagrangian theories atpresented by a Lagrangian theory in which all the fields
arbitrary derivative order, and are manifestly covariant, re-appearing in the Lagrangiaithe dynamicalfields) are also

quiring no additional background fieldapart from the sym-

stationary and axisymmetric. Having stated these formula-

metry field¢?) for their definition. For these reasons, we feeltions, however, we will see that they all have fluid configu-

that while our relation(50) and that in[7] coincide for an
Einstein-matter system without the black hole, E8Q) is
defined more generally.

rations in which thephysicalfields (the fluid four-velocity,
number density, entropy, and functions of these fielt®
stationary and axisymmetric, but in which the dynamical

We finally remark that we could have carried out the en-fields possibly share neither of these symmetries. The ques-

tire analysis leading up to EqR9) allowing the Lagrangian
L4 to depend on a&etof stationary axisymmetric fields; ,
including the metric, and the Lagrangian, to depend on
s; and a distinct set of fieldsy, which did not appear in
Ly, to obtain a relation very similar to EQ9). The result-
ing perturbative identity has the terr@g and®y in Eq. (29)

tion as to whether a variational principle exists that always
represents(physically) stationary axisymmetric configura-
tions with dynamical fields that also have these properties is
(as far as we are awarepen.

By a perfect fluid on a fixed spacetime background
[14,15 we mean a system described by five scalar fields,

replaced with the Noether charge and symplectic potential iin,s,p,p,T), on spacetime and on@nit, timelike) vector

the theory described bly, (which now depends on both the
metric and the other matter fields in the s}, and the
volume term is now given by

j 1§-€Ts_5si—<‘5(e-TS-S-f), (54)
s 2 i

field U2, such thatp=p(n,s) is a fixed function, and the
following equations hold on the fields: the first law of ther-
modynamics

where the first term in the volume integral is defined by theand the equations of motion

variation ofL ,:

1
OLm=Emdt+5 T 85 +dO($,5¢). (55)

Giving eachs; field u; upper, andd; lower indices, in the
manner

b

Si—Sj bu1~ . (56)

Yag-ag
1

the second term in the volume integral is defined by

pt+p
dp(n,S):Tdﬂ+anS (58
V. (nU»=0 andV,T3"=0, (59
whereT?® is defined by
Te=(p+p)UUP+pg®. (60)

The fieldsn,p,s,p,T, andU? have physical interpretations
as the number density, energy density, entropy per particle
(specific entropy, pressure, temperature, and four-velocity
of the fluid, respectively.
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We note that Eq(59) can be given a useful alternative Conversely, given any configuration of the physical fields
form, by first defining the specific inertial mags (n,p,s,p,T,U3) satisfying Egs.(58) and (59), it can be
shown(see[9]) that there exist functionsR,m) and(nonu-

_P*p 61 nique) dynamical fields @, «, 38,0, 0) related to the physical
K="y (6D fields by Eq.(69), which satisfy the equations of motion
arising from Lagrangiari68).
which along with Eq.(58) implies Next, Carter’s variational formulatiofl0] for anisentro-
pic perfect fluid (by which we mean that the fluid has an
dp=ndu—nTds (62 everywhere constant specific entrogly defines the dynami-

cal fields to be a two-form and two scalabg,, and y ™. The

By using these relations in the second equation of (B8 ;i | agrangian is given in terms of these fields by

we get(see[14]) an equivalent pair of equations of motion
1
V.(nU?=0 andnU%w,,=nTV,s, (63) L= —r(y)—zeabcdoabvc)ﬁvdx* €, (70

where the fluid vorticity two-form , is defined as , o .
y Pab where the functiorr (v) is fixed, and the function is de-

wab=2Va(uUp)). (64)  fined in term of the potentials,;, by the relation

If desired, one can define the entropy per unit voluthe
(entropy density; by S=ns. Substituting this definition of
S into Eq. (58) and defining the chemical potential,’, by

3
vP= E(V[abbc])(v[abbc])- (71

As shown in[10], if one defines the physical fields as

u = FH”T_TS , (65) r—p,
then gives the relation v—n,
dp(n,S)=u'dn+TdS (66) v(arldv)—r—p,
We now specify three variational formulations for this per- 3V cbay— Nabe. (72)

fect fluid, over a fixed spacetime backgroufupling the

theories to gravitation amounts to adding the appropriatevhere the number-density three-fofdy, is given by
metric Lagrangian, which we do lajerFirst, we state the

“velocity-potential” representation of Schut®]: here the Nabe=N€apcd), (73

dynamical fields of the fluid are given by scal@s«, 8, 6, , .
and o. One now defines a functiom which depends on then we recover E(58), and the field equations fdr,, and
these fields via the relation X~ vield the second equation in Ed63) in the case

V.s=0, as well as the relation
m?=—(V,®+ aV,B+ 0V o) (V3D +aV3B+ 0V30),

(67) Waph= 2V[aX+Vb]X7- (74)
and the fluid Lagrangian is given by Given relation(72) betweerb,, andN,,., one sees that the
first equation in Eq(63) is satisfied vacuously, since it can
Li=eP(m,o), (68)  be rewritten as
whereP(m, o) is some fixed function. One can verif9,14] ViaNpeq =0, (79

that we recover Eq58), and also that the equations of mo-
tion for the fields®, «, B, 6, o arising from this Lagrangian
reduce to Eq(63), provided one defines the physical fields in
terms of the dynamical fields in these equations by

but the definition oN,,. showsdN=ddb=0 automatically.

A third type of variational formulation given by Carter
[10], and treated in more detail by Brovjh4], (which is the
equivalent diffeomorphism invariant version of the formal-

P—p, isms specified by TaufL6] or Hawking and Ellig17]), has
dynamical fieldsx* for A=1,2,3. In this formalism one must
m— pu, specify two functions (v,o), ando(X), wherew is defined
in terms of thex” by
=S, VZEG[NABc(X)VaXAVbXBVCXC]
(9P/gm) ;—n, X[Npep(X)VEXPVPXEVEXF], (76)
(oPl3a)m— —nT, andNpg(X) is a fixed three-form on the three-dimensional

manifold which has<”* as coordinate fields. The Lagrangian
V. ®+aV,B+60V 0—uU,. (69 s then given by
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Li=—er(v,0). (77 configurations a fluid can adopt. We make no attempt here to
enumerate the set of physically stationary and axisymmetric
The equations resulting from this Lagrangian for the fieldsconfigurations which also have these symmetries in the dy-
XA are seen to reduce to the second equation if@y.after  namical fields(or indeed, in the case of black hole space-
one has set times, to investigate whether this set is nonem@Rather, in
the following section we will assume the potentials are sta-
r=p, tionary and axisymmetric, and write out the resulting first
law involving only surface terms, looking for any nontrivial
modifications arising from the fluid fields.

We are unaware of a variational formulation for a perfect
fluid which represents all stationary axisymmetric fluid con-
figurations with stationary axisymmetric dynamical fields. If
it exists, then the following argument by Schutz and Sorkin
[7] shows that certain compactly supported perturbations of
the physical fields must correspond to noncompactly sup-

A B c orted perturbations of the dynamical fields. Since the calcu-
Nagc(X)VaX TV pXEV X" Nape, (78) Fation gl?ven in Eq.(30) does n)(/)t depend on the fulfillment of

whereN,,. is defined from Eq(73). (This relation between t_he field equations fogab,_ it is_still valid if we consi(_jer the
the physicalN,,. and the dynamical fields also ensures thatfi€lds ¢ to be the dynamical fields for a perfect fluid over a
N, is automatically conservedThe X” are interpreted as fixed spacetime background, and we et be a perturbation
coordinates on a “base manifold,” obtained by treating thel® @ nearby solution of the perfect fluid equations, with
spacetime as a bundle with fibers given by the integraP3a»=0. Now consider a formulation for a perfect fluid
curves of the four-velocity. We will not use this formulation Where, for a general configuration in which all the physical
for two reasons: first, the assignment of the entrepgs a  fields (and the metric of the spacetime backgrouat sta-
fixed function of theX” only allows us to perturb it by dif- t|ona_ry, all the dynam|c_al fields are also st_aﬂonary._ Then_ the
feomorphisms of the base manifoltbr this reason we use left side of Eq.(so) vanishes, and _mtegratmg the right side
Schutz’s formalism for the calculation in the Appendix OVer a spatial slic&, we are left with

Second, it is unclear that there amy solutions in which the

).(A are globally well-defined axisymmetric fields on space- f 5(6'T'§)=f Q. [E]-& O (b,5%). (79
time [for this reason, in Sec. IV, we use the formulation due 5 a3

to Carter with Lagrangia70)].

In order to write the first law in forng2), only involving ~ This implies that for perturbations of the physical fields for
surface integrals, we must assume that all the dynamicavhich the corresponding perturbations of the dynamical
fields are stationary and axisymmetric in the background sofields arecompact we must have
lution. Now even if a fluid configuration has stationary and
axisymmetricphysicalfields (the fluid number density, en- f S(eT £)=0
tropy, and functions of these fieldshedynamicalfields (the s '
fields appearing in the Lagrangianorresponding to these
physical fields may not possess these symmetries. Thereforghich, for a perfect fluid, is clearly false for a general sta-
the requirement of stationarity and axisymmetry on the dytionary background. This implies that if a variational formu-
namical fields may restrict the choice of background coniation is to have dynamical fields which are always stationary
figurations. In fact, for Schutz’s formulation, we see from thewhen the physical fields are stationary, then perturbations of
definition of the four-velocity(69) that physical fluid con- the physical fields which yield a nonzero result on the left
figurations with an everywhere causal four-velodityclud-  side of(79) must correspond to spatially noncompact pertur-
ing those which are stationary and axisymmetriwust in-  bations of the dynamical fields. This requirement rules out
clude at least one nonstationary dynamical field. There arehe existence of a variational principle in which the physical
therefore no physically interesting fluid configurations in fieldsare the dynamical field§7]. However, the existence of
which all the dynamical fields in this formulation are station- a variational principle for a perfect fluid in which all con-
ary. figurations with stationary and axisymmetric physical fields

On the other hand, for Carter’s formulation, it is evidentare represented by dynamical fields with these symmetries is
that there must beomephysically stationary fluid configu- still an open question.
rations with stationary dynamical fieldfor instance, a static
spherically symmetric fluid distribution could have the field
bap given byb~f(r)%e andx™ =0, where?2e is the volume
element on the spheres of symmetfowever, we will see
in the next sectiorjin the discussion above E¢(P5)] that a We now present two forms of the first law of black hole
stationary, axisymmetric, circular flogin a spacetime which mechanics which incorporate perfect fluids. The first form is
also has these symmetriesiust be vortex-free, ify™ are  a special case of the perturbative identi0), whereL is
restricted to be stationary and axisymmetric. That is, the aghe usual Hilbert Lagrangian for general relativity, dngis
sumption of stationarity and axisymmetry on the vorticity any Lagrangian for a perfect fluid. This form of the first law
potentialsy™ restricts the allowed stationary axisymmetric allows nonstationary dynamical fields, at the cost of having

r—n,
o—S,
v(drlov),—r—p,

(orldo)m—nT,

(80)

IV. FIRST LAWS OF BLACK HOLE MECHANICS
WITH PERFECT FLUIDS
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volume integrals in the interior of the spacetime. We thenaxisymmetric with a stationary killing fielg® and axial kill-
compute a second form of the first law only involving sur-ing field ¢. We also assume the existence of a bifurcate
face integrals for both metric and fluid fields, using Carter’skilling horizon, with horizon killing field x®= £+ Qy¢?,
variational formulation presented above, and the methods ofhere(} is the angular velocity of the horizon.
[4]. In this case(see[4]) the termM, in Eg. (50) can be
shown to be the ADM mass5, to be 1/Ay, andJy, the
A. The first law with volume integrals expressiony for black hole angular momentum given in Eq.
) . . . (1). The terms involving the stress-energy tensor have been
We now write out the perturbative relatiqB0), setting  shown by Bardeen, Carter, and Hawkirig to reduce to the
Ly=1/16mR, and L, to be any perfect fluid Lagrangian fluid terms in Eq.(1), but for completenesgnd to fix the
which allows all possible perturbations of the physical fieldssigns for our choice of orientationsve briefly demonstrate
of the perfect fluid off an arbitrary backgrounidzrom the this fact: in[1] the four-velocity of the fluid with angular
comments below Eq69) it is evident that Schutz's varia- velocity ) (which need not be constanivas set to be
tional formulation, with Lagrangian68) satisfies this crite- U2=0v%/(—v-v)¥? where v®=£2+Q¢?. Now using Egs.
rion.] As stated in lemma 2, we assume the metric of thg60), (65), and(66) (assuming, as usual, that we identify the
background spacetime is asymptotically flat, stationary, angerturbed spacetime such th#§*= §¢*=0), one obtains

5(Tab§b€apqr) = UbSTabeapqr_ Q‘s(-l—ab(Pbeapqr) = Uaﬁ[(ﬂ«, N+TSva(—v- U)illzubfbpqr"' peapqr] - Q‘S(-I—ab(»ubfapqr)
1
=(p+p)vlva(—v- U)illz]ubfbpqr"' 2 ngd(sgcdgaEapqr_ m'(—v- 0)1/25(n Ubebpqr)
—T(—v-v)"25(SWeppqr) — (NS’ +S6T) E€apqrt V2 €apqrdP — L 8(T?,¢ €apqr)

1
= gafapqrETCd(Sgcd—i_ u'(=v-v )1/25(n Ubepqrb) —T(—-v- U)llzé(subfbpqr) - Qa(TabQDbeapqr)- (81)

When all these substitutions are inserted into Exf)), it tion (70). We do so below, finding a first law for an arbitrary

reduces to metric theory of gravity coupled to an isentropic perfect
fluid, in which the background configuration for the perfect
K , fluid as well as the allowed perturbations of the physical
M=—-—056A+Q - N . . o S
0 8775 HOIn L’u |0 ONape fields are restrictedNote that the gravitational contributions

to such a first law have been considered in detajlih We
+f 063, +f T|v|6S., (82) are interested in the fluid contributionaVe finally verify
s 0 )y aber that this first law reduces to Eql) when the assumptions

made in the two derivations overlap. Our first law is the
which is identical to Eq(1), except tha® now represents an  following result.

arbitrary perturbatiorinot necessarily stationary or axisym- | emma 3Let L, given by
metric of the background. In this sense, E§2) is a gener-
alization of Eq.(1). 1 ... N _

L=Lg—€ r(v)+5€ YapViex Vx|, (83
B. A (restricted) first law with surface integrals

In the previous section we observed that the variational . ) . .
formulations we presented were constrained in the stationaly® the Lagrangian for an isentropic perfect fluid coupled
axisymmetric fluid configurations they could represent, giverf0 an arbitrary metric theory of gravity, wheré
the requirement that their dynamical fields obeyed thesé& €Lgl9ab:Rabcd: VRabcds - - -+ (VP)Rapcal, @nd the perfect
symmetries. One might therefore suspect that any form ofluid formulation, with dynamical fieldskp,x ™), is sum-
the first law involving only surface integrals could not in- marized below Eq(70). Fix an asymptotically flat black hole
clude nontrivial fluid contributions. Indeed, if we add solution with a bifurcate killing horizon, with the spacetime
Schutz’s Lagrangiarn68) to the Lagrangian of an arbitrary structure and the killing fields described in lemii2a, with
metric theory of gravity, and construct a first law using thethe additional assumptions thalfl the dynamical field¢not
analysis of{4] then we findno additional contributions to just the metri¢ in this theory are stationary and axisymmet-
this first law from the fluid fields, providing the fluid’s num- ric, and that all the dynamical fields are globally defined. Let
ber density decays sufficiently rapidly at spatial infinity, andd¢ be a perturbation of the dynamical fields, from such a
does not intersect the black hole horizon. It is possible, howsolution to an arbitrary nearby solution, wih?=0. With
ever, to convertsomeof the volume integrals inl) into  these assumptions the following identity is the first law of
surface integrals, by choosing Carter’s variational formula-black hole mechanics for this system:
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K Sy 1_,
5Mg:E58+QH5jH+ H,L,Lwabqr, oL=¢€ E‘l‘ ET 5gab
_ _ +1 Napc€PYVax " ox —Vax ox*
Hear | Xa— | Xor- (84) g€Nabe aX Ox —Vax 6x")
H

Here we define the mass of the systbty as
MgE foQg[ga]_g'Bg (85)

and the entropys and angular momenturffy, of the system

by
—_ 5 f oLy
T R
Tu=— fHQg[so], (86)

where « is the surface gravity of the black hole, the two-
form Qg[ £] was defined in Eq26), and the three-fornBy, is
such that, at spatial infinityg(¢- Bg) = £- @4, with @4 given
by Eq.(23). Finally, the two-formX,, is defined by
Xqr=2&Pby[ 8(uU) =V x x +Vx"ox~1. (87

Proof. The first law of black hole mechanics (@] is
essentially given by the right side of E@.8), when the left

side vanishes because of the assumed symmetries of the
background fields. We therefore compute the quantities ap-

pearing on the right side of E¢18): Varying the dynamical
fields inL [and performing the substitutior{2) where ap-

+ €

1
;_nNabc) _ ZEadewcd

vc( Sbap+dO, (89)

with the stress-energy tensor

Tab:;—nNachde—pgab, (89)
and the symplectic potential
— it abc
®pqr(¢a5¢)_®gpqr(gaég)_ EN 5bbc€apqr
1 bc + o, - oyt
+ zfapqrbcdea d(VbX ox —Vpx ox7).
(90)

It can be verified that the equations of motion for the fluid
fields reduce to Eq63) using definitiong72) and(73). The
stress-energy tens@89) is also seen to reduce to the usual
form (60) by expanding its first term:

NGNS T= - USE e U= (g2 + U2UP).

The Noether current associated&dis

Lad

2n Ndchebcge_pgd

€dpqr

Jpqr[f] :Jgpqr[g] - (

Mm
_Vb<ﬁNdbc§ebec€dpqr)- (99)

plicable] yields the equations of motion and the symplecticTherefore, the integrand on the right side of ELg) evalu-

potential @:

(6Q[&]-¢- ®)qr: 5ngr[§] - 5( Zlu_nNabcbecgeeabqr

Lad

_fp(Ggpqr_Zn

1
= 5ngr[§]_§p®gpqr_ fpupﬂ5bqr_ qurfp(VpX75X+_VpX+5X7)+era

where we define the two-fori{, by Eq.(87), and we used

ates to

1
Nabcgbbceapqr_" eapqrieadebcd(VbX7 5)(+ - Vb)(+ ox7)

(92)

its relation to the potential674), it is evident that(locally)

the identificationN, .= €,,.nUY to obtain the second line there exists some functiohsuch thatwU, can be rewritten

of Eq. (92).

When the background solution is a black hole with the

U=V f+x"Vax . (93

structure and symmetries specified in the statement of the

lemma, the fourth term in the second equation of E39)

Let t be a function such thag?dt,=1. Then the require-

vanishes because the dynamical fields are stationarynents that the four-velocity be causal, stationary, and axi-

£-Vx==0. Now given the definition of vorticity64) and

symmetric, along with the assumed stationarity and axisym-
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metry of y= force f to be a sum of terms, one of which is reduce to their values for general relativity given in Et),
strictly linear int (we define the constant of proportionality whenL ;= (1/167)R. We start by considering the fluid con-
to be —u..). For the same reason the dependence of tribution in our first law(84) from the integral

must also be linear, but this dependence can be ruled out

because the occurrence of such a term would faté¢o be 5[ b — 5f b ij N :f BEY
acausal near spatial infinity. We therefore have that the form ¢ J .= ar el gH=lpar™ | M v19%par>

of f is (98

f=—pu.t+g, (94)  where the last line follows because the fluid flow[ is

assumed to be tangent to the subspaces spannéd agd
where¢&-Vg=¢-Vg=0. Therefore we see that the assump- a. g taking the velocity to beU%=0%/|v| where

tion of stationarity and axisymmetry on the dynamical fieldsva': £+ 0% we see from the discussion above E5)
(taking the four-velocity to be everywhere cayshas re- c}hat ,LL=—,LL,U~U=,uxv~d'[/|v|=,uw/|v|, and so u|v|
fstncted u§.to.a very narrow range of aIIowe_d backgroun L ... Our first law now takes the form

our-velocities; for instance, we must hayéU,=0. More-

over, when the vacuum theory is general relativity, with the K

flow assumed to beircular (tangent to th&— ¢ subspaces 6M=8—5A+QH6JH—f ,u|v|5Nabc+J er—fqur.
there is only one possible solution: for this theory the sub- m * H S
spaces orthogonal ' and ¢? are integrable, and the result- (99
ing submanifolds can be endowed with coordinate’sx?),
such that the metric is “block diagonal” with no ‘“cross
terms” between the subspace spannedthyp?, and its or-
thogonal complemer(see Chap. 7 df3]). Now the assump-
tion of circular flow forcegg=0 andy"dy~ =0, leaving us

We now concentrate on the original form of the first law in
Eqg. (1) and show that it agrees with E(R9). By repeating
the calculation(81) using relation(58) instead of Eq.(66)
along with the assumptiods=0 (as befits an isentropic
fluid), we find the form of Eq(1) for an isentropic fluid:

with only
U=~ p.dt,. (95 5M=%5A+QH5JH—LM|U|5NabC+ LQ&JabC.
In any case, using just the form 6fin Eq. (94), we see (100
Epla=—Eu.dty=— po, (96)  Next, we demonstrate that the pullbackXoof the angular

momentum density given in EGL0O0) reduces to the exterior
derivative of the two fornX,, defined in Eq(87), given the

assumption that the dynamical fields are stationary and axi-
5qu[§]_§p®pqr: 5ngr[§]_§p®gpqr+,ux5bqr+xqr' symmeptric ie. y y
(97) 7 1

We now assume the existence of a foBy such that at Q63pqr=—(dX)pqr (10
spatial infinity¢- @4= (£ Bg), and write out the first law of
black hole mechanics by substituting E§7) into the sur- i o e
face integrals on the right side of EA.8), observing that the W& compute the exterior derivative of E@7), finding

left side of Eq.(18) vanishes due to the symmetries assumed aee _ R + o =

on the dynamical fields. If we exparid= x®— Q,¢? at the (AX)pqr=3¢"Negpa(d(uln) = Viyx ™ x™ +Vnx" ox7),
bifurcation sphere for the first two terms of H§7), then we (102
obtain Eq.(84) which is what we wished to show where we have assumettb,,=0. Pulling this form back to

The results of4] predicted that the first law84) would S, by contracting with 1/6°P9, (wheren, is the unit nor-
only contain surface integrals, and we see this is indeed thg, to3) yields

case. Note, however, that the assumptions made about the

and the boundary terr{®2) reduces to

where both sides are assumed pulled back tdo do this

symmetry of the dynamical fields restricted the allowed 5(=—3e(2nn S(pU,)uleg
background fluid configurations for the fluid fields. More- ¢ '
over, by perturbing the local form gfU, in Eq. (93) we see +2&eU TV, x dx =V, x"x7)), (103

that the restriction to stationary and axisymmetgc in

background also prevents us from achieving all possible pewhere 3¢ is the volume form induced onX:
turbations ofuU,, by perturbing only the dynamical fields 3€,ca=n€anca- NOW Using the axisymmetry of the*™, and
b., and y*. Finally both the background and the perturbedwriting U? asU?=v®|v| with angular velocity() as given
configurations must be restricted such that the integrafbove Eq(99), we have(using %= 6¢%=0)

Js-Xqr converges(This, along with the following result re-

lating this term to the fluid angular momentum will guaran- dX=—3e2nn 0 8(uU,) ol v
tee the convergence of the corresponding boundary term at
the bifurcation ipher)e. Poneng Y =2e(p+p)Q(net®) (U '/ |v]
We finally show that Eq(84) reduces to Eq(1) when the = —3eQ(p+p)8(U,) " =Q5(3en, T3, ¢")

assumptions made in the two derivations overlap. From our _
discussion in the last section we know that, S, and 7, =-04J, (104
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whereJ is the pullback ofl . to 3. Therefore Eq(99) now  This form is dual to a generally conserved current: it can be

matches Eq(100) and so the first law84) now agrees with  shown[11] that for w* defined above, we havéor pertur-

the first law given in Eq(1). bations ;¢ and §,¢ satisfying the linearized field equa-
tions)
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We now relate this conserved current to the current presented
in [13], by fixing a coordinate system with derivative opera-
tor d,, and writing the volume elemerd in terms of the
coordinate volume elemestof this system,

APPENDIX: THE CHANDRASEKHAR-FERRARI
€, =\ , A5
CONSERVED CURRENT abed Cabed (AS)

The symplectic formw(¢, 6,6, 5,¢) defined in Eq(16)  then the vector fieldv? defined bye,q,=w3e,pq, is con-
is C|05€d wherd; »¢ satisfy the Imeanzed equations. Its dual served in the sense,w?®=0. If we follow Chandrasekhar

0%($,816,5,¢), defined byw,p= w€yapc, is therefore a  and Ferrari13] and specialize to the case where the back-
covarlantly conserved current for the Einstein-perfect fluidground spacetime is statisvith static Killing field t*) and
system. Chandrasekhar and Ferfa#] have, from first prin-  axisymmetric(with axial Killing field ¢2), and the perturba-
ciples, also derived a conserved currefi,¢,5¢), for the  tions are time and angle dependent only “harmonically”
Einstein-perfect fluid system. Their current is quadratic in(that is, there are constantsand » such that
the (complex perturbationsé¢, and is restricted to the case
where ¢ is a static axisymmetric solution, aidp is a “po-
lar” (even parity perturbation with harmonic time depen-
dence(we will define this below. We now show the equiva-
lence of thew?(¢,5¢,54*) and 2 for the Einstein-perfect L,6n=iwdn, (AB6)
fluid system. This calculation is the analogue for the
Einstein-perfect fluid system of the calculation by Burnett
and Wald[12] for the Einstein-Maxwell system.

We start by choosing the Lagrangian for the Einstein-
perfect fluid system to be

Libn=iadn,

for all the dynamical fieldsy) then(following [12]) itis easy

to see that for complexd¢, W!(¢,d8¢,0¢4*) and
w?(¢,8¢,64*) are independently conserved(w‘+(9 w¢

=0. We can therefore restrict our attention to the vector

components\y?,w®). Moreover, Eq(A6) allows us to sub-

stitute the variations of the fluid potentia(®,B,s) for
Lpqrs= EWS( TRt P(m"’)) ’ (AL) " Variations of their time derivatives: 5ve do tfﬁ(s a[r'ngdczalling
Eq. (69)] find

where we have set the constant in front of the Ricci scalar to
give the field equations ifl3], and used Schutz’s velocity-

potential representation, with Lagrangiéé8). The symplec- W=wg, — 8p(1~ gnU%)—
tic potential® arising from this Lagrangian igafter substi-
tuting Eq.(69) where applicablg

51 ut®Up)

1
—V=g U8yt Va) 5y(t- V B)

1
®pqr:_Z€apqr(Vb7ab_Va7) +0,(t-VO)6:(1-Vs)]— (1< 2), (A7)

—nNU%e,pq( 6P+ 6B+ 065), (A2)  where we labeled the contribution from the first two lines of
Eq. (A3) by wg,

Our aim is now to show the equality of
[W2(,8¢,8¢%),W3(,5¢,84*)] and (€2,£%). To do this
we first specialize the background and perturbationsdno
those used by Chandrasekhar and Ferrari. In the coordinates

wherey,,= 69,, andy=g3"y,,. The resulting presymplec-
tic form is [from Eq. (16)]

@i b, 81, 82) = Eapqr[ LS4 gCy YAy, given in[13] the metric is written
—(29,°= 7,0°Y Ve y142+ 722V g71] Jab= —€*'diodty+e* dpdep
— 5y €apgMU?) (8,0 + a8, B+ 05,9) +e?r2dx3dx + e adx3dxg (A8)

- nU3(8,ad,8+ 6,05,S
€apaU™(90015+ 0,0015) and the nonvanishingpolan metric perturbations are taken
—(1<2). (A3) tobe
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Y= —2€%"6v, Now using the appropriate linear combinations of the lin-
earized Einstein constraint,
71‘P‘P: 262"/’51/1,

O+ pu3) o Y 26(h— po) + pug 20— po) = v 26( b+ ps)
=2e""#2(p+p) &, (A14)

Y120= 26*#28 .,

Y133= 26*38 3. (A9)

We then sety,as=7v1%,, Where the perturbed functions, to replace the third, fourth, and fifth lines of EGA13) we

Sv, etc., are complex, but the unperturbed functions are reaf®
A direct substitution of these perturbations im@r yields

1
the result already known frof2], W= — Ee“+‘”+”3‘“2{ 50 280U+ pg)*

1
w2 =— Ee”w*ﬂzﬂ*s[ay,za( P+ wa)* S 28(v+ pg)* + Ou* (8¢t Sug) o= [ 64, 6¢* ] ,— [ O3, Suz ]2

+2e" 1 (p+p) A4+ pua— pp)* — 8p* 165} —c.c.,

+ Oz 0(v+ )* + v 28(P+ pg)* S(v—pp) (AL5)

+ ¢ 20(v+ ug)* S(h— o)

+ w3 20( A+ )* S(u3— o) ]—c.C. (A10) where we defind A,A*];=A;A*—AA’ . This is seen to
' agree(up to an overall constanwith £ of the conserved
current in[13]. A similar calculation fow? yields £ (which
is obtained fromE? by interchanging 2+ 3), and so we find
(w2, w3)=(£2,£%), and our symplectic current® for the
Einstein-perfect fluid system agrees with the Chandrasekhar-
Ferrari current for this system.
We make two final comments. First, from the comment
following Eq. (69), we know that every configuration of the
1 physical fields of a perfect fluid has a corresponding equiva-
wZ=—dx2—[ 8,(e" ¥ r2tranUR) 5 (ut®U )] — (1 2) lence class of configurations of the dynamical fields, and as a
lo consequence, every perturbation of the physical fields has a
1 . corresponding perturbation of the dynamical fields. Now,
=Ge2”+*”+”3n52(uz)(51,u+,u51v—,u51U6)—(1<—>2) two distinct perturbations of the physical fields off the same
background(physical field configuration will each select a
=—e?" Vi (nSu+nudv)és —c.c., (A11)  corresponding perturbation of the dynamical fields. The
backgrounddynamicalfield configuration for each of these
perturbations will certainly lie within the equivalence class
corresponding to the given background physical field con-
figuration: however, in general, these background dynamical
field configurations will bedistinct elements of this equiva-
lence class. In using symplectic methods to deiewe
) have implicitly restricted ourselves to those pairs of pertur-
ionTés=nTt- Vs bations of the physical fields where the corresponding pairs
—nTeU.Vss of dynamical field perturbationsd{ ¢, 5,¢) haveidentical
background configurations. In fact, as we have seen above,
=nTe[6(U-Vs)—48(U)-Vs]. (A12) the resulting conserved current agrees with the
Chandrasekhar-Ferrari current fall pairs of perturbations
Referring to Eq.(63) we see that the first term on the right of the physical fields, not just those restricted in this way.
side of Eq.(A12) vanishes whenever the perturbation satis- Second, we notice from E¢A7) that as long as the/? of
fies the linearized equations. Since the background is vortexhe background solution lies in a plane tangent to the sub-
free, we see that the second term also vanishes as a consgace spanned by and ¢?, the last term in Eq(A7) van-
quence of Eq(63). Adding the resulting fluid contribution to  jshes for the components of interest. This, in turn, yields a

We now turn to the fluid contributions? to the conserved
current, defined by{=w?—wj . We set the four-velocity of
the background to be2=e ™ *t? and(following [13]) denote
the perturbations of therthonormal framecomponents of
U? by igé® dUz=icé,. We then find the “two”-

component ofv? given by

where we have sef;=§ and §,= §*, and used the result
(see[13)]) that SU3=0. We can also putdu= Sp+nT6s,
and bearing in mind thaés must also have harmonic time
dependence, we can write

the gravitational terms, E4A10) yields conserved current?,w®) which only depends on perturba-
1 tions of thephysicalfields, without the explicit appearance
w2=— Eev+ VBRI Sy oS(h+ ) S 8(v+ pa)* of the fluid potentials, for any stationary background con-

figuration in which the fluid velocity is tangent to the ¢

* * 80 subspaces. Of course, we know thsf is a conserved cur-

T Oua (vt )T v 6(Yt pna)” (v = pa) rent off any background; this observation suggests only that

20V pa)* Sh—pp) + pz 20(v* +SY* )X mua—pp)] @ current similar in style to that presented by Chandrasekhar
ot s . and Ferrari also exists for a background with a fluid in cir-

—eX "Vt Sp+(p+p)6v]é; —c.c. (A13)  cular motion, as well as the static case considered
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