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Small oscillations of a chiral Gross-Neveu system
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We study the small oscillations regin{eandom-phase approximatijpnf the time-dependent mean-field
equations, obtained in a previous work, which describe the time evolution of one-body dynamical variables of
a uniform chiral Gross-Neveu system. In this approximation we obtain an analytical solution for the time
evolution of the one-body dynamical variables. The two-fermion physics can be explored through this solution.
The condition for the existence of bound states is examif®&0556-282(197)02906-9

PACS numbg(s): 03.65.Ge, 03.65.Nk, 11.10.Kk, 11.30.Rd

[. INTRODUCTION the one-fermion densities in this regime. Studyng the two-
fermion physics in Sec. VI, we find the condition for the
existence of bound states. Finally, Sec. VIl is devoted to a
final discussion and conclusions.

In a previous work{1] we obtained in Gaussian mean-
field approximation the effective dynamics of one-fermion
and pairing densities of an off-equilibrium spatially uniform
(1+1)-dimensional self-interacting fermion system described
by the chiral Gross-Neveu modéCGNM) [2]. These dy-
namical equations acquire the structure(@sllisionless ki-
netic equations. They determine the time evolution of all the
one-fermion densities of this system for a given initial con-
dition. Spatial uniformity(translation and reflection invari-
ance is assumed in our derivation.

Studying the static solutions of these equations in order t
renormalize the theorjl], we found an effective potential
similar to that obtained by Gross and Neveu using th¢ 1/
expansiori2]. We also showed that other static results which
have been discussed in the literatl2e 4] such as dynamical
mass generation due to chiral symmetry breaking and a ph
nomenon analogous to dimensional transmutation can be r
trieved from this formulation. Finally, in1], we obtained
numerical solutions for the time evolution of the one-body
dynamical variables initially displaced from equilibrium. The
time evolution of the symmetrical and broken chiral phase
of our system are discussed.

In this work we explore a particular application of the
renormalized nonlinear mean-field equations obtaindd jn
We follow the recent work of Kerman and LiB] in order to
study the near equilibrium dynamics around the stationary
solution as a tool to investigate the two-fermion dynamics. In N g2 N 2
particular, the resulting equations can be solvgd analytically HCGNMZE (¢ —iy101] lﬂ'}——[ {2 " lﬂ'}
to reveal a twaoquasjfermion bound state solution. i=1 2\ |3

This paper is organized as follows. In Secs. Il and Ill we N 5
linearize the mean-field dynamical equations which describe B 2 i 1)
the time evolution of an off-equilibrium spatially uniform 3 = Vs '

(1+1)-dimensional self-interacting fermion system described

by the chiral Gross-Neveu mod@CGNM). A self-consistent

renormalization scheme is necessfhyf]. In Secs. IV and where¢ is a constant which indicates whether the model is

V, making use of an analogy with scattering thefry, we invariant under discretes transformation £=0) or under

obtain a closed analytical solution for the time evolution ofthe Abelian chiral W1) group (¢=1). In the form considered
here, this is a massless fermion theory i 11 dimensions
with quartic interaction. The model contaiié species of

*Present address: Departamento d&dg, Universidade Estadual fermions coupled symmetrically. In the Heisenberg picture,
de Londrina, ParanaBrazil. the o' are complex Dirac spinors

1. MEAN-FIELD KINETIC EQUATIONS

We begin this section by reviewing our approach which
describes a formal treatment of the kinetics of a self-
interacting quantum field. This approach was developed ear-
jer for the nonrelativistic nuclear many-body dynamics by
emes and de Toledo Pig&] and was more recently applied
in the quantum-field theoretical context to the self-interacting
A ¢* theory in 1+1 dimensiong9]. The general idea is to
focus on the time evolution of the one-fermion and pairing
densities. These observables are kept under direct control
g\{hen one works variationally using a Gaussian functional
ansatzand will therefore be referred to as Gaussian observ-
ables.

We consider an off-equilibrium, spatially uniforrfl,+1)-
éiimensional system of relativistic, self-interacting fermions
described by the chiral Gross-Neveu mod€IGNM) [2].

The Hamiltonian density is given by
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ing, dynamical fermion mass generation, and dimensional
transmutation.
The state of this systertassumed spatially uniformis
given in terms of a many-body density operatbrof unit
(2)  trace. Our implementation of the Gaussian mean-field ap-
proximation consists of approximating this object by a trun-
_ m\ Y3 o - cated many-body density operat@g(t), also of unit trace,
P(x)= 2>, P bl () u(k)—=+DbyAt)uz(k)—=|,  written as the most general Hermitian Gaussian functional of
k 0 L L the field operators consistent with the assumed uniformity of
+ s ) . the systenj11]. It will thus be written as the exponential of
whereb, ; andby ; [by ; andb,] are fermion creation and 3 general quadratic form in the field operators, which can be
annihilation operators associated to positifeegativd-  reduced to diagonal form by suitable canonical transforma-
energy solutioruy (k) [ux(k)] of Dirac’s equation. tion. The most general transformation would in general break
This model is essentially equivalent to the Nambu—Jonaboth the chiral and charge symmetries of the CGNM. In the
Lasinio model[10], except for the fact that in#1 dimen-  following development we restrict ourselves for simplicity to
sions it is renormalizable. Moreover, it is one of the very fewa special class of transformatiofte be called Nambu trans-
known field theories which are asymptotically free. To lead-formationg which break the chiral symmetry only. They can
ing order in 1IN expansiorj2], the CGNM exhibits a number be parametrized in a form that incorporates the unitarity con-
of interesting phenomena, like spontaneous symmetry breatraints as

ik-x e—ik-x

m 1/2] .
w<x>=§ ke bk,1<t>u1<k>f+bk,2(t)u2<k)T

—ik-x ik-x

B bk,l 7 i COSpy 0 0 —e_iykSinQDk- i Bk,l 7
by 0 cosp, e singy 0 B2
v T o ; 3
by 0 —e'%sing,  cospy 0 B-k1
L by o] L esingy 0 0 cosor || Bysl

where reflection symmetry of the uniform system is imple-Gaussian mean-field equations of motion for the Nambu pa-
mented by making the parameterg and vy, dependent only rametersg,(t) , y«(t) and for the quasi-particle occupation
on the magnitude ok. numbersyy ,(t). In Ref.[1] we obtained

The Gaussian truncated density operafgft) acquires a
particularly simple form when expressed in terms of the
Nambu quasﬁgrmmn operators which diagonalize the asso- ;}M:O and ;}k,2:0; (5)
ciated quadratic form, namely

Fom =11 [Vk,)\ﬁl,)\(t)ﬁk,)\(t)—’—(l_Vk,}\)Bk,)\(t)ﬂl’A(t)]’ L B B Hemu] Fo
. [i o+ ySingpcosp]e™" k= L7k, .

(4) (I=w1— w2

(6)

wherey, , for A=1,2 are the Nambiquasifermion occu-
pation numbers.
___With the help of Eq.(3) it is an easy task to express  Equation(5) shows that the occupation numbers of the
P(x) and ¥(x), Eq.(2), in terms ofﬂlm(t) and By \(t) for Nambu quasiparticles are constant. This is the general isoen-
A=1,2. In doing so, one finds that the plane waves oftropic character of the mean-field approximatipt®,13.
¥(x) and (x) are modified by a complex, moment- The complex equation of motiof®) describes the time evo-
dependent redefinition @h involving the Nambu parameters lution of the Nambu parameters. From the right-hand side of
o(t) andy,(t). The complex character of these parameterEq. (6), we see that to obtain the time evolution of the
is actually crucial in dynamical situations, where the imagi-Nambu parameters, we have to express the CGNM Hamil-
nary parts will allow for the description of time-oddeloci-  tonian in the Nambu basis.
tylike) properties. Finally, the mean values of the Gaussian From the Hamiltonian densit§i) we can explicitly evalu-
observables are parametrized in terms of th€t) and ate the Hamiltonian of the system by integration over all
v(t) and of the occupation numbersy,,(t) one-dimensional space. This involves, in particular, choosing
=Tr[,8l’)\(t)ﬂk,>\(t)]-'(t)] for \=1,2. a representation for thg matrices. Here we have to be care-

The next step is to obtain the mean-field time evolutionful, since a bad choice of representation can spoil manifest
for the mean values of the Gaussian observables in the comeflection invariance(see Appendix A of Ref[1]). We
text of the initial-value problem. In other words, we want the choose the Pauli-Dirac representation: namely,
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Yo=03, y1=i0y, and ys=yoy;=071. (7) assuming that, in order to render the theory finite, the bare

coupling constang?> must approach zero for large values of
Substituting the CGNM Hamiltonian written in Nambu basisthe A as(see, e.g., Ref§2,4])

in the dynamical equatio(6), we obtain an explicit dynami-

cal equation which describes the time evolution of the , Am AR

Nambu parameters. The calculation of traces is lengthy but =& I ]| (12)
straightforward. Taking the casd=1 for simplicity and

splitting the resultant complex equation into real and imagi-where the form of the first factor is dictated by later conve-
nary parts we have nience. We next@ssumethat the integrald, and I, have
logarithmic divergences

1.1=0 and vy ,=0;

A2
' o g?m I,=a+Dbln W)
<Pk—3|n7kk_0 m=| 2. (E+D)(11+12) ],
A2
. 2sin2p, gZrnZ l,=c+ dln(W), (13
VSN2, = ke k2+( ol [CR SICPR A PY
K wherea, b, ¢, andd are finite constants. Substituting Eq.
1Kl (12) and theansatze(13) in static equationg10) and (11),
2€082p, COSYi ko we obtain
’m dsiny,deq=0
. m_(gTW (E+1)(11+15)], ®) SMideq=0
—(=1)"mlk[[1-(b+d)]
wherel,; andl, are the divergent integrals tan2py| eq= [(K2Tmibrd)] (14
dk’ . .
l,= f —0082pi (1= vy 1— Vi1 ), We now verify that the assumed divergent character of the
Ko integralsl, andl, is consistent with thensatze(13). Sub-

ak’ K| stituting the solution(14) into Eq. (9) we find thatl, and
_ LY I, indeed have the prescribed logarithmic divergefmee
2= f Ky SN2k Cosy (1= v 1= v 2). - (9) Appendix C of Ref[1]). Moreover, from this calculation, we
obtain the values of the constardasb, ¢, andd. We find

A renormalization procedure is now required to deal withb=1, while d remains arbitrary. The renormalized static so-
these divergences. In general, renormalization procedurdstion of our system in the mean-field approximation are then
consist in combining divergent terms with the bare mass andbtained by simply substituting these values in to Bd):
coupling constants of the theory to define new, finite

renormalizedl values of these quantities. In other words, the dsinyy|eq=0, (15
bare mass and coupling constants are chosen to be cutoff

dependent in a way that will cancel the divergences. In the (—=1)"m|k|d

present case, however, the divergent integi@lsnvolve the tan~29"l<|eq:m-

dynamical variables themselves in the integrand, so that even

their degree of divergence is not directly computable. In ory\e also show in Ref[1] that the connection between par-
der to handle this situation we will use a self-consistentjcle massm and quasiparticle mass is given by
renormalization procedure inspired in RES].

The renormalization prescription that we use is based on Meg=(1+d)m. (16
the consideration of the static solutions of the dynamical
equationg8), which satisfy From the redefinition of the mass scale given by @6), we

note that, unlike the situation found in connection with the

2 X .
. _ 1/N expansion, the use of the Gaussamsatz Eq. (4), pa-
smMe{l_ 4 (£+1)(11+15)]=0, (10 rametrized by the canonical transformation leading to the
quasifermion basis, allows for the direct dynamical determi-
—|KIm[1—(g%4m)(E+1)(1,+1,)] nation of the stable equilibrium situation of the systesae
tan2py/eq= [(K)2+ (g2mPlam) (é+ 1) (11 +15)] COSY|eq- Eq. (15)], including symmetry breakinfwhend+ —1, see

(11) also Ref[1]] and mass generatigsee Eq(16)]. Moreover,
the renormalization procedure effectively replaces the di-
We will show explicitly that controlling the divergences of mensionless coupling constagt by the free parameted
these equations will also control the divergences which apassociated to the mass scdee Eq(16)]. This is analogous
pear in the kinetic regime of the mean-field approximationto the phenomenon of dimensional transmutation found by
[see below, Eq917)]. Gross and Neve[2] in the case of a N expansion. Finally,
In order to obtain the renormalization prescription we in-aside from the overall mass scdtharacterized byl) there
troduce a regularizing momentum cutoff and begin by are no free adjustable parameters.
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Using Egs.(8), (12), and(13), we finally write the renor-

malized form of the dynamical equations that describe the
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m|k|d 2
Ko

Spx="— Yk

mean-field time evolution of the system. As mentioned be-

fore they are now also finite and read

;jk,j.: 0 and ;Jk,2: 0,

- k|
qok=(—1)mdk—osmyk,
. 2sin
YSin2e, = k2¢k[(k)2+ m?(1+d)]
0

k
—2m d|—|COSZ(kaOSyk .

Ky 17

Ill. SMALL OSCILLATIONS REGIME

In order to study the small oscillation regime of the ki-

(§+1)[k]

d 2
=4[k%+ (14 d)?m?] ¢, — 4 (4—

, k']
de" [(K)2+(

1+d)2m2]1/2 5<Pk’l (22)
where the renormalization procedu®) controls the loga-
rithmic divergence of the integral appearing in E2R2) [see
below Eqs(38) and(42)]. Substituting Eq(22) into Eq.(21)
we obtain finally

(E+D)K|

2
S+ 4[k2+(1+d)2m2]5¢k—4(f—w

k']

1+ d)2m2]1/2 Sy =0.

Xf K Tz @3

netic equations we next linearize the above kinetic equations

around the static solutiofl5) taking vy ;= v, ,=0. We be-
gin by introducing the displacement away from equilibrium
of the dynamical variableg, and y:

k= @kleqt Sk,
Y= 7k|eq+ Yk (18

where the static solutiomy|eq and y,|eq are obtained from
Eq. (15) [see also Refl1]]:

B m|k|d
9 K[k +(1+d)*m?]V=

Sin2¢k|

[K2+(1+d)m?]
COS2py|eq= ko[ K2+ (14 d) 2] 2

(19

Yleg=0 with d#0.

The quantitiesée, and 8y, ,will be treated agfirst-orde)

. . . : w
small displacements. Functions of the dynamical variables
are expanded also to first order around the equilibrium solu-
tion (19). Therefore, we must linearize the divergent inte-

grals(9) around equilibrium. Taking, ,=0 we have
L=19+11+0(8¢y)2= f —€0S201|eq
dk’
—Zf —5-SiN20y |egd @i
Ko

=15 +157+ O[(8¢1), (8710 (891871 ]
dk’ |K'| dk’ |k’|
j k' m5|n2€0k|eq f k’ mCOSZPk|eq5(Pk’
The linearized form of kinetic equations faf¢, and
Sy are then obtained as

(20

As usual in small oscillation treatments, this is a linear os-
cillator equation. Note that the last term couples different
momenta. The solution to this problem involves determining
the normal modes of small oscillation and their frequencies.
This is done by looking for solutions of Eq&1) and (22),
which are of the form

5(Pk:qfkeiwt

Sn=Te“, (24)
whereWV, andI'y are time-independent amplitudes. Substi-
tuting the solution(24) into Egs.(21) and (22), we obtain
equations for these amplitudes, namely

m[k|d
Ia)‘I’k+ Fk—O, (25)
Ko
m|k|d ) - g?
—A[k*+ (1+d) m? W +4| — | (E+1)|K|
Ko 4
Xf dk’ Kl v =0 (26)
[(k/)2+(1+d)2m2]1/2 k

IV. TWO-BODY DYNAMICS
FROM THE LINEARIZED MEAN-FIELD EQUATIONS

In this section we implement and discuss a reinterpreta-
tion of the small oscillations problem along the line proposed
by Kerman and Lin in Ref.5]. We begin rewriting Eqs.25)
and(26) as

= md[k] T (27)
(kgﬁ)Z gZ 2
_ | — \ ’
Tgﬁ_\lfk (477 (€+1) (keﬁ fdk (< ),\Ifk, 4keﬁ‘1’k,

(28
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where (G)° =[K*+ (1-+ d)*m?) =[K*+ meg]. 0) =i, 0,8y, 501
The crucial point is to realize that E(28) has the form of SRR LS 1

a Lippmann-Schwinger equation with separable potential t

- roph
X5|n¢k1|eqbk1,>\lbklv)\l

! ! gz !
(kIVIK")=v(k)v*(k")= P (é+1)h(k)h(k’), x |1 [cosp,+ (— 1) sing,
29 (kM) # (kg A q)
o t
where xe kab;xb[ﬂm- (34
K This result just illustrates the well-known theorem by Thou-
h(k):|_e1L- less[14] whenT'y =0 (as is appropriate in a static contgxt
Ko in which case it says that the linear variation corresponds to

two-paired quasi fermion addition to the Gaussian vacuum.

Re:tn[g]r?r?rreﬁgﬂ'r?teéprne;r;?é; Sscn‘j’:gﬁ rzilrr]r? I?[Lootljelecri?stvgretiggiog\; Kerman and Lin have used this fact, in the context of the
' g dy b # theory, to associate the scattering problé28) to the

the Gaussian vacuum to two-quasifermion states. The Gauss- ; . 2
Wo-boson dynamics. A similar association can thus also be

ian vacuum|0) can be written explicitly in terms of the made here. Moreover, the last term of E84) indicates the
fermion operatorsh, , and the Nambu parameters in the presence of dynamical symmetry breaking effects, since this

well-known Bardeen-Cooper-SchrifféBCS) form term, proportional to the variation of the phage, vanishes
unless the chiral symmetry is broken in the static vacuum
. et ot (¢4#0). o
|O>—k (H _[cosp+ (1) sinpye kak,xbk,ﬂm), The small oscilation regime can thus be seen as a nonper-
>0NF# N

(30) turbative way of approaching the dynamics of paired two-
quasi fermion excitations of the vacuum, including dynami-
whereey = ¢y|eq @nd yx= yi|eqand|0) is the vacuum of the  cal symmetry-breaking effects.

b operators. It is also well known thé{ﬁ) is the quasifer-
mion vacuum, namely V. ANALYTICAL SOLUTION OF THE LINEARIZED
EQUATIONS

Brl0)=0 (31) We will now show how Eqs(27) and(28) can be solved
i ) i analytically. A general solution to two-fermion wave func-
and that one- and two-quasifermion states can be written agy, , will have two terms. The first one is the free solution
(g=0 vanishing potentialand represents an incident wave.
~ The second term is the nontrivial pawhen g+0) which
'BEMJ0>:bl1m1(k])\)£[kml) [cospi+ (= 1) couples different momenta, and is associated with the scat-
tered wave. Thus

X singe ™ 7*b] \ b/~1|0) (32)
I3 1 g
Bl Bi 5 ]0)=[(~ 1) ssingy €7 gt V(o d ) =m0 ez 2 (E>
+cospy bl , by 1] X (E+ 1)£2ﬁJ dk'ﬁf!—qf(k' q; o)
ks ) tign e

x T [cospet(~1* (39
(k,N)#(kq,Nqp) L. i
where q is interpreted as the relative momentum for two

XSianke_iyka,)\bl_‘)ﬂ|o>' (33  incident quasifermions and is an overall phase factor. We
' choose the outgoing wave conditiott (€) as solution of Eq.
On the other hand, making the variations E24) in Eq.  (28), but we could have chosen, e.g., the incoming wave
(30) leads to a first order variation of the Gaussian vacuuncondition (—ie) or Van Kampen wave conditiofl5] or
which, apart from the exponential time dependence, is giveanother condition.

by Integrating Eq.(35) with respect tdk,
fdk X Y(k,q;w)= 2 (36)
(k& T T (q%am) (6 1) TTdK TS TR ) IT{(KE 12— w2la+i €]}
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and substituting this result back into Eg5) yields a general 1.0
solution forW¥(k,q; ),
Lip 5(a—k ako. “ _
CoN— K+
@ ( rquw) o (q ) [(kgﬁ)Z_w2/4+|€] sl |
A - g
k) A7 (w) | kg % oal ]
whereA ™" (w) is given by ozl |
At _(477 1 f dk k2
@D ) i [Tt 00y . 20
(39 11+l
The oscillation amplitud®'(k,q; w) is obtained from Eqgs. FIG. 1. The curve represents the mass of the two-
(27) and(37) and reads quasifermion bound state in small oscillation regime for our system

) off as a function of the renormalized coupling constant
C K. o) = iwakg [ Ky 5 ‘

(k,g;w)= md | kZ (@=k) keep it under control, we use the renormalization procedure
of the coupling constant given by E(L2). Substituting Eq.

N kg" |k|) 1 ( K| )] (12) into Eq. (38) we get
eff\2__ 2 : Leff | A+ et/ (-
[(kg)?— w?l4+ie]\ kg /AT (w) | kg X A2 A dk
(39) A (w)_|n<W)_fA [k2+m§ﬁ]1/2

Finally, substituting Eq(37) into Eq. (28) we obtain the

k2
oscillation frequencies

X
[k2+mi— w?/4+ie]’

(42

©=2qg"=2[q*+mg]"? (40
where we introduce the regularizing momentum cutbff
whereq is the relative momentum for two incident quasifer-  In the interval G< w=<2me the integral ofA " () is well
mion with massesn.z=(1+d)m. defined and we can set=0. A straightforward calculation
We observe that we can understand the factor 2 in thgields

frequencies of oscillatiom [see Eq.(40)], as related to the . ]
treatment of harmonic oscillators in terms of the sympletic A7 (w)=2[f(w)=j(d)], (43
groups given by Goshen and Lipkji6]. It can be inter-

preted classically by noticing that, since for harmonic oscil- where

lators the frequency does not depend on the amplitude of the a2 112 a2 —1/2
motion, if a set of independent particles in a harmonic field is f(w)= 29“ -1 arctar{ ;“ - 1} ]
symmetrically stretched out of equilibrium, it will subse- w w
qguently pulsate with frequencys? wherew is the frequency )
of oscillation of the independent particles. o
j(d)=In ird|| (44

VI. BOUND STATES . .
FROM THE SMALL OSCILLATIONS REGIME Figure 1 shows the zero of the"(w) as a function of
d. In this calculationg=0, thereforew is the mass of the
In this section we will examine the condition for existence hound state. Obviously, when 1d)=0 or my=0 (free
of bound states in the small oscillation regime around theystem,see Refl]) there is no bound state. We see from
stationary solutior{vacuum of our fermionic system. From Fig. 1 that a bound state of quasifermions occurs when
Egs. (28) and (29) we verify that the potential term, which 0.74<(1+d)<2, and that the mass of this bound state will
describes the time evolution of our system in this regime isary in the interval 6 w<2mg,. Gross and Neveu obtain
separable. Again, in analogy with scattering theory, we cam =2M¢ [2] for the mass of ther particle in leading-M
evaluate the correspondingmatrix [7]. We find aproximation, wheréM ¢ is equivalent toms;. They argue
that in higher order they might find that

T(k,k";w)och(k) h(k") 47

A*(w) M,=2Mg[1+O(1/N)].

with h(k) given by Eq.(29) andA *(w) given by Eq.(38). From Fig. 1 we verify thatw=2mg; corresponds to
The bound states are given by the poles of Thenatrix.  (1+d)=2. Observing thatj (1+d=2)=0, we may con-
Therefore, we search for the zerosdf (w). It is clear that  clude thatj (d) can be see as a contribution of higher order to
the integral inA " (w) contains a logarithmic divergence. To the Gross-Neveu result.
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We believe that in the IlimitN—o the function VIl. DISCUSSION AND CONCLUSIONS
j(d)—0. On the other hand, whe is finite[N=1 in our
calculation — see Eq@8)], the massw of the bound state In Ref.[1] we described a treatment of the initial-values

depends on the renormalized coupling consthmis shown  problem in a quantum field theory of self-interacting fermi-

in Fig. 1. This dependence cannot be obtained frold 1/ ons in the Gaussian approximation. Although the procedure

approximation. is quite general, we implemented it for the vacuum of an
Therefore, we can conclude that k—c the IN ap-  yniform (1+1)-dimensional relativistic many-fermion sys-

proximation and our mean-field approximation are equivatem described by the chiral Gross-Neveu mot@GNM).

lent. On the other hand, whe is finite our approximation  \ye obtained the renormalized kinetic equations which de-

permits to obtain the higher order contribution to the Grossycyipe the effective dynamics of the Gaussian observables in

Neveu resul{2]. _ the mean-field approximation for this system.
It is important to observe that the higher order term ob-" yhig \work, we have considered the linearized form of

tained in Eqs(43) and(44) in this approach does not contain o mean_field kinetic equations obtained in H&f. around

22:2”255?;(;35; ' ;T‘ ;Inns(i:gntri]r? ngan;frl:]je?grpic;mmatlon 'S the stationary (vacuum solution. The two-quasifermion
Y P p j physics can be analytically investigated in this approach. In

Surprisingly, we have obtained for the functiari (w) articular, we have solved these equations completely. From
structure which entirely reproduces that which has beef} ! . q P y. "
the solutions, we have reinterpreted the near equilibrium

found by Kerman and Lin5] in their study of thebosonic hvsi ¢ ‘ bl ¢ formi t
N ¢* theory in terms of a Gaussian time-dependent varigP"ySICS OT our sysiem as a probiem of quasitermion scatter-

tional approach. ing and have found the condition for the existence of a quasi-
Finally, when w>2m the integrand ofA*(w) has a fermion bound state.

singularity atk=tmf . From the theory of resi- We verify that forN finite (in this workN=1), the bound

dues we obtain € state mass obtained from our approach contains a term which

depends on the renormalized coupling constant as can be
seen in Fig. 1. In the case of aNlexpansior 2] this depen-
dence cannot be found, so in the liMlt-co this term goes
to zero. Therefore, to small, our approach permits to ob-
2 1z taining the higher order contribution to theNLexpansion.
—2In( m) —im 1- (45  Finally, it is important to observe that the higher order term
obtained in the bound state mass from our approach contains

Now A*(w) does not have any zeros. The interestingnOt necessarily all terms of l/order, since the mean-field

4m?

1/2 _ 2 2\1/2
A+(w)=(1_ ;ﬁ) n 1+(1—4mgy »?)
w

1—(1—-4mgy w?)*?

2
Amgy

(1)2

point here is to observe that approximation is not a IN expansion.
i A () —In| 25 46
fim A™(@)=In| Tz | =<, (46) ACKNOWLEDGMENTS
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