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We study the small oscillations regime~random-phase approximation! of the time-dependent mean-field
equations, obtained in a previous work, which describe the time evolution of one-body dynamical variables of
a uniform chiral Gross-Neveu system. In this approximation we obtain an analytical solution for the time
evolution of the one-body dynamical variables. The two-fermion physics can be explored through this solution.
The condition for the existence of bound states is examined.@S0556-2821~97!02906-8#
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I. INTRODUCTION

In a previous work@1# we obtained in Gaussian mean-
field approximation the effective dynamics of one-fermion
and pairing densities of an off-equilibrium spatially uniform
~111!-dimensional self-interacting fermion system described
by the chiral Gross-Neveu model~CGNM! @2#. These dy-
namical equations acquire the structure of~collisionless! ki-
netic equations. They determine the time evolution of all the
one-fermion densities of this system for a given initial con-
dition. Spatial uniformity~translation and reflection invari-
ance! is assumed in our derivation.

Studying the static solutions of these equations in order to
renormalize the theory@1#, we found an effective potential
similar to that obtained by Gross and Neveu using the 1/N
expansion@2#. We also showed that other static results which
have been discussed in the literature@2–4# such as dynamical
mass generation due to chiral symmetry breaking and a phe-
nomenon analogous to dimensional transmutation can be re-
trieved from this formulation. Finally, in@1#, we obtained
numerical solutions for the time evolution of the one-body
dynamical variables initially displaced from equilibrium. The
time evolution of the symmetrical and broken chiral phases
of our system are discussed.

In this work we explore a particular application of the
renormalized nonlinear mean-field equations obtained in@1#.
We follow the recent work of Kerman and Lin@5# in order to
study the near equilibrium dynamics around the stationary
solution as a tool to investigate the two-fermion dynamics. In
particular, the resulting equations can be solved analytically
to reveal a two-~quasi!fermion bound state solution.

This paper is organized as follows. In Secs. II and III we
linearize the mean-field dynamical equations which describe
the time evolution of an off-equilibrium spatially uniform
~111!-dimensional self-interacting fermion system described
by the chiral Gross-Neveu model~CGNM!. A self-consistent
renormalization scheme is necessary@1,6#. In Secs. IV and
V, making use of an analogy with scattering theory@7#, we
obtain a closed analytical solution for the time evolution of

the one-fermion densities in this regime. Studyng the two-
fermion physics in Sec. VI, we find the condition for the
existence of bound states. Finally, Sec. VII is devoted to a
final discussion and conclusions.

II. MEAN-FIELD KINETIC EQUATIONS

We begin this section by reviewing our approach which
describes a formal treatment of the kinetics of a self-
interacting quantum field. This approach was developed ear-
lier for the nonrelativistic nuclear many-body dynamics by
Nemes and de Toledo Piza@8# and was more recently applied
in the quantum-field theoretical context to the self-interacting
lf4 theory in 111 dimensions@9#. The general idea is to
focus on the time evolution of the one-fermion and pairing
densities. These observables are kept under direct control
when one works variationally using a Gaussian functional
ansatzand will therefore be referred to as Gaussian observ-
ables.

We consider an off-equilibrium, spatially uniform,~111!-
dimensional system of relativistic, self-interacting fermions
described by the chiral Gross-Neveu model~CGNM! @2#.
The Hamiltonian density is given by

HCGNM5(
i51

N

$c̄ i@2 ig1]1#c
i%2

g2

2 H F(
i51

N

c̄ ic i G2
2jF(

i51

N

c̄ ig5c
i G2J , ~1!

wherej is a constant which indicates whether the model is
invariant under discreteg5 transformation (j50) or under
the Abelian chiral U~1! group (j51). In the form considered
here, this is a massless fermion theory in 111 dimensions
with quartic interaction. The model containsN species of
fermions coupled symmetrically. In the Heisenberg picture,
thec i are complex Dirac spinors
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wherebk,1

† andbk,1 @bk,2
† andbk,2# are fermion creation and

annihilation operators associated to positive@negative#-
energy solutionu1(k) @u2(k)# of Dirac’s equation.

This model is essentially equivalent to the Nambu–Jona-
Lasinio model@10#, except for the fact that in 111 dimen-
sions it is renormalizable. Moreover, it is one of the very few
known field theories which are asymptotically free. To lead-
ing order in 1/N expansion@2#, the CGNM exhibits a number
of interesting phenomena, like spontaneous symmetry break

ing, dynamical fermion mass generation, and dimensional
transmutation.

The state of this system~assumed spatially uniform! is
given in terms of a many-body density operatorF of unit
trace. Our implementation of the Gaussian mean-field ap-
proximation consists of approximating this object by a trun-
cated many-body density operatorF0(t), also of unit trace,
written as the most general Hermitian Gaussian functional of
the field operators consistent with the assumed uniformity of
the system@11#. It will thus be written as the exponential of
a general quadratic form in the field operators, which can be
reduced to diagonal form by suitable canonical transforma-
tion. The most general transformation would in general break
both the chiral and charge symmetries of the CGNM. In the
following development we restrict ourselves for simplicity to
a special class of transformations~to be called Nambu trans-
formations! which break the chiral symmetry only. They can
be parametrized in a form that incorporates the unitarity con-
straints as

F bk,1

bk,2

b2k,1
†

b2k,2
†

G5F coswk 0 0 2e2 igksinwk

0 coswk e2 igksinwk 0

0 2eigksinwk coswk 0

eigksinwk 0 0 coswk

GF bk,1

bk,2

b2k,1
†

b2k,2
†

G ~3!

where reflection symmetry of the uniform system is imple-
mented by making the parameterswk andgk dependent only
on the magnitude ofk.

The Gaussian truncated density operatorF0(t) acquires a
particularly simple form when expressed in terms of the
Nambu quasifermion operators which diagonalize the asso-
ciated quadratic form, namely

F0~ t !5)
k,l

@nk,lbk,l
† ~ t !bk,l~ t !1~12nk,l!bk,l~ t !bk,l

† ~ t !#,

~4!

wherenk,l for l51,2 are the Nambu~quasifermion! occu-
pation numbers.

With the help of Eq.~3! it is an easy task to express
c̄(x) andc(x), Eq. ~2!, in terms ofbk,l

† (t) andbk,l(t) for
l51,2. In doing so, one finds that the plane waves of
c̄(x) and c(x) are modified by a complex, moment-
dependent redefinition ofm involving the Nambu parameters
wk(t) andgk(t). The complex character of these parameters
is actually crucial in dynamical situations, where the imagi-
nary parts will allow for the description of time-odd~veloci-
tylike! properties. Finally, the mean values of the Gaussian
observables are parametrized in terms of thewk(t) and
gk(t) and of the occupation numbersnk,l(t)
5Tr@bk,l

† (t)bk,l(t)F(t)# for l51,2.
The next step is to obtain the mean-field time evolution

for the mean values of the Gaussian observables in the con-
text of the initial-value problem. In other words, we want the

Gaussian mean-field equations of motion for the Nambu pa-
rameterswk(t) , gk(t) and for the quasi-particle occupation
numbersnk,l(t). In Ref. @1# we obtained

ṅk,150 and ṅk,250; ~5!

@ i ẇk1ġksinwkcoswk#e
2 igk5

Tr~@b2k,1bk,2 ,HCGNM#F0!
~12nk,12nk,2!

.

~6!

Equation ~5! shows that the occupation numbers of the
Nambu quasiparticles are constant. This is the general isoen-
tropic character of the mean-field approximation@12,13#.
The complex equation of motion~6! describes the time evo-
lution of the Nambu parameters. From the right-hand side of
Eq. ~6!, we see that to obtain the time evolution of the
Nambu parameters, we have to express the CGNM Hamil-
tonian in the Nambu basis.

From the Hamiltonian density~1! we can explicitly evalu-
ate the Hamiltonian of the system by integration over all
one-dimensional space. This involves, in particular, choosing
a representation for theg matrices. Here we have to be care-
ful, since a bad choice of representation can spoil manifest
reflection invariance~see Appendix A of Ref.@1#!. We
choose the Pauli-Dirac representation: namely,
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g05s3 , g15 is2 , and g55g0g15s1 . ~7!

Substituting the CGNM Hamiltonian written in Nambu basis
in the dynamical equation~6!, we obtain an explicit dynami-
cal equation which describes the time evolution of the
Nambu parameters. The calculation of traces is lengthy but
straightforward. Taking the caseN51 for simplicity and
splitting the resultant complex equation into real and imagi-
nary parts we have

ṅk,150 and ṅk,250;

ẇk5singk

uku
k0

Fm2S g2m4p D ~j11!~ I 11I 2!G ,
ġksin2wk5

2sin2wk

k0
Fk21S g2m2

4p D ~j11!~ I 11I 2!G
12cos2wkcosgk

uku
k0

3Fm2S g2m4p D ~j11!~ I 11I 2!G , ~8!

whereI 1 and I 2 are the divergent integrals

I 15E dk8

k08
cos2wk8~12nk8,12nk8,2!,

I 25E dk8

k08

uk8u
m

sin2wk8cosgk8~12nk8,12nk8,2!. ~9!

A renormalization procedure is now required to deal with
these divergences. In general, renormalization procedures
consist in combining divergent terms with the bare mass and
coupling constants of the theory to define new, finite~or
renormalized! values of these quantities. In other words, the
bare mass and coupling constants are chosen to be cutoff
dependent in a way that will cancel the divergences. In the
present case, however, the divergent integrals~9! involve the
dynamical variables themselves in the integrand, so that even
their degree of divergence is not directly computable. In or-
der to handle this situation we will use a self-consistent
renormalization procedure inspired in Ref.@6#.

The renormalization prescription that we use is based on
the consideration of the static solutions of the dynamical
equations~8!, which satisfy

singkueqF12S g24p D ~j11!~ I 11I 2!G50, ~10!

tan2wkueq5
2ukum@12~g2/4p!~j11!~ I 11I 2!#

@~k!21~g2m2/4p!~j11!~ I 11I 2!#
cosgkueq.

~11!

We will show explicitly that controlling the divergences of
these equations will also control the divergences which ap-
pear in the kinetic regime of the mean-field approximation
@see below, Eqs.~17!#.

In order to obtain the renormalization prescription we in-
troduce a regularizing momentum cutoffL and begin by

assuming that, in order to render the theory finite, the bare
coupling constantg2 must approach zero for large values of
theL as ~see, e.g., Refs.@2,4#!

g25
4p

~j11! F lnS L2

m2D G21

, ~12!

where the form of the first factor is dictated by later conve-
nience. We nextassumethat the integralsI 1 and I 2 have
logarithmic divergences

I 15a1blnS L2

m2D ,
I 25c1dlnS L2

m2D , ~13!

wherea, b, c, and d are finite constants. Substituting Eq.
~12! and theansatze~13! in static equations~10! and ~11!,
we obtain

dsingkueq50,

tan2wkueq5
2~21!nmuku@12~b1d!#

@~k!21m2~b1d!#
. ~14!

We now verify that the assumed divergent character of the
integralsI 1 and I 2 is consistent with theansatze~13!. Sub-
stituting the solution~14! into Eq. ~9! we find that I 1 and
I 2 indeed have the prescribed logarithmic divergence~see
Appendix C of Ref.@1#!. Moreover, from this calculation, we
obtain the values of the constantsa, b, c, andd. We find
b51, whiled remains arbitrary. The renormalized static so-
lution of our system in the mean-field approximation are then
obtained by simply substituting these values in to Eq.~14!:

dsingkueq50, ~15!

tan2wkueq5
~21!nmukud

@k21~11d!m2#
.

We also show in Ref.@1# that the connection between par-
ticle massm and quasiparticle massmeff is given by

meff5~11d!m. ~16!

From the redefinition of the mass scale given by Eq.~16!, we
note that, unlike the situation found in connection with the
1/N expansion, the use of the Gaussianansatz, Eq. ~4!, pa-
rametrized by the canonical transformation leading to the
quasifermion basis, allows for the direct dynamical determi-
nation of the stable equilibrium situation of the system@see
Eq. ~15!#, including symmetry breaking@whendÞ21, see
also Ref.@1## and mass generation@see Eq.~16!#. Moreover,
the renormalization procedure effectively replaces the di-
mensionless coupling constantg2 by the free parameterd
associated to the mass scale@see Eq.~16!#. This is analogous
to the phenomenon of dimensional transmutation found by
Gross and Neveu@2# in the case of a 1/N expansion. Finally,
aside from the overall mass scale~characterized byd) there
are no free adjustable parameters.
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Using Eqs.~8!, ~12!, and~13!, we finally write the renor-
malized form of the dynamical equations that describe the
mean-field time evolution of the system. As mentioned be-
fore they are now also finite and read

ṅk,150 and ṅk,250,

ẇk5~21!md
uku
k0
singk ,

ġksin2wk5
2sin2wk

k0
@~k!21m2~11d!#

22md
uku
k0
cos2wkcosgk . ~17!

III. SMALL OSCILLATIONS REGIME

In order to study the small oscillation regime of the ki-
netic equations we next linearize the above kinetic equations
around the static solution~15! taking nk,15nk,250. We be-
gin by introducing the displacement away from equilibrium
of the dynamical variableswk andgk :

wk5wkueq1dwk ,

gk5gkueq1dgk , ~18!

where the static solutionwkueq and gkueq are obtained from
Eq. ~15! @see also Ref.@1##:

sin2wkueq5
mukud

k0@k
21~11d!2m2#1/2

,

cos2wkueq5
@k21~11d!m2#

k0@k
21~11d!2m2#1/2

, ~19!

gkueq50 with dÞ0 .

The quantitiesdwk and dgk ,will be treated as~first-order!
small displacements. Functions of the dynamical variables
are expanded also to first order around the equilibrium solu-
tion ~19!. Therefore, we must linearize the divergent inte-
grals ~9! around equilibrium. Takingnk,l50 we have

I 15I 1
~0!1I 1

~1!1O~dwk!
25E dk8

k08
cos2wk8ueq

22E dk8

k08
sin2wk8ueqdwk8

I 25I 2
~0!1I 2

~1!1O@~dwk!
2,~dgk!

2,~dwkdgk!#

5E dk8

k08

uk8u
m

sin2wkueq12E dk8

k08

uk8u
m

cos2wkueqdwk8.

~20!

The linearized form of kinetic equations fordwk and
dgk are then obtained as

dẇk52
mukud
k0

dgk , ~21!

dġk

mukud
k0

54@k21~11d!2m2#dwk24S g24p D ~j11!uku

3E dk8
uk8u

@~k8!21~11d!2m2#1/2
dwk8, ~22!

where the renormalization procedure~12! controls the loga-
rithmic divergence of the integral appearing in Eq.~22! @see
below Eqs.~38! and~42!#. Substituting Eq.~22! into Eq.~21!
we obtain finally

dẅk14@k21~11d!2m2#dwk24S g24p D ~j11!uku

3E dk8
uk8u

@~k8!21~11d!2m2#1/2
dwk850. ~23!

As usual in small oscillation treatments, this is a linear os-
cillator equation. Note that the last term couples different
momenta. The solution to this problem involves determining
the normal modes of small oscillation and their frequencies.
This is done by looking for solutions of Eqs.~21! and ~22!,
which are of the form

dwk5Cke
ivt

dgk5Gke
ivt, ~24!

whereCk andGk are time-independent amplitudes. Substi-
tuting the solution~24! into Eqs. ~21! and ~22!, we obtain
equations for these amplitudes, namely

ivCk1
mukud
k0

Gk50, ~25!

iv
mukud
k0

Gk24@k21~11d!2m2#Ck14S g24p D ~j11!uku

3E dk8
uk8u

@~k8!21~11d!2m2#1/2
Ck850 . ~26!

IV. TWO-BODY DYNAMICS
FROM THE LINEARIZED MEAN-FIELD EQUATIONS

In this section we implement and discuss a reinterpreta-
tion of the small oscillations problem along the line proposed
by Kerman and Lin in Ref.@5#. We begin rewriting Eqs.~25!
and ~26! as

Gk52
iv

md

k0
uku

Ck ~27!

~k0
eff!2

k0
eff Ck2S g24p D ~j11!

uku
~k0

eff!
E dk8

uk8u
~k0

eff!8
Ck85

v2

4k0
effCk ,

~28!
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where (k0
eff)25@k21(11d)2m2#5@k21meff

2 #.
The crucial point is to realize that Eq.~28! has the form of

a Lippmann-Schwinger equation with separable potential

^kuVuk8&5v~k!v* ~k8!5S g24p D ~j11!h~k!h~k8!,

~29!

where

h~k!5
uku
k0
eff .

In order to interpret this scattering problem we follow
Ref. @5# in relating dynamical small amplitude distortions of
the Gaussian vacuum to two-quasifermion states. The Gauss-
ian vacuumu 0̃& can be written explicitly in terms of the
fermion operatorsbk,l

† and the Nambu parameters in the
well-known Bardeen-Cooper-Schriffer~BCS! form

u 0̃ &5 )
k.0,lÞl̄

@coswk1~21!lsinwke
2 igkbk,l

† b
k̄, l̄
†

#u0&,

~30!

wherewk5wkueq andgk5gkueq andu0& is the vacuum of the
b operators. It is also well known thatu 0̃ & is the quasifer-
mion vacuum, namely

bk,lu 0̃&50 ~31!

and that one- and two-quasifermion states can be written as

bk1 ,l1
† u 0̃ &5bk1 ,l1

† )
~k,l!Þ~k1 ,l1!

@coswk1~21!l

3sinwke
2 igkbk,l

† b
k̄, l̄
†

#u0& ~32!

bk1 ,l1
† b

k̄1 , l̄1

† u 0̃ &5@~21!l̄1sinwk1
eigk1

1coswk1
bk1 ,l1
† b

k̄1 , l̄1

†
#

3 )
~k,l!Þ~k1 ,l1!

@coswk1~21!l

3sinwke
2 igkbk,l

† b
k̄, l̄
†

#u0&. ~33!

On the other hand, making the variations Eq.~24! in Eq.
~30! leads to a first order variation of the Gaussian vacuum
which, apart from the exponential time dependence, is given
by

du 0̃ &5Ck1
bk1 ,l1
† b

k̄1 , l̄1

† u 0̃ &2i~21!l̄1Gk1

3sinwk1
ueqbk1 ,l1

† b
k̄1 , l̄1

†

3 )
~k,l!Þ~k1 ,l1!

@coswk1~21!lsinwk

3e2 igkbk,l
† b

k̄, l̄
†

#u0&. ~34!

This result just illustrates the well-known theorem by Thou-
less@14# whenGk1

50 ~as is appropriate in a static context!,
in which case it says that the linear variation corresponds to
two-paired quasi fermion addition to the Gaussian vacuum.
Kerman and Lin have used this fact, in the context of the
f4 theory, to associate the scattering problem~28! to the
two-boson dynamics. A similar association can thus also be
made here. Moreover, the last term of Eq.~34! indicates the
presence of dynamical symmetry breaking effects, since this
term, proportional to the variation of the phasegk , vanishes
unless the chiral symmetry is broken in the static vacuum
(wkÞ0).

The small oscilation regime can thus be seen as a nonper-
turbative way of approaching the dynamics of paired two-
quasi fermion excitations of the vacuum, including dynami-
cal symmetry-breaking effects.

V. ANALYTICAL SOLUTION OF THE LINEARIZED
EQUATIONS

We will now show how Eqs.~27! and~28! can be solved
analytically. A general solution to two-fermion wave func-
tionCk will have two terms. The first one is the free solution
(g50 vanishing potential! and represents an incident wave.
The second term is the nontrivial part~when gÞ0) which
couples different momenta, and is associated with the scat-
tered wave. Thus

uku
k0
effC~k,q;v!5ad~q2k!1

1

@~k0
eff!22v2/41 i e#

S g24p D
3~j11!

k2

k0
effE dk8

uk8u
~k0

eff!8
C~k8,q;v!,

~35!

where q is interpreted as the relative momentum for two
incident quasifermions anda is an overall phase factor. We
choose the outgoing wave condition (1 i e) as solution of Eq.
~28!, but we could have chosen, e.g., the incoming wave
condition (2 i e) or Van Kampen wave condition@15# or
another condition.

Integrating Eq.~35! with respect tok,

E dk
uku

~k0
eff!

C~k,q;v!5
a

$12~g2/4p!~j11!*@dk8/~k0
eff!8#„~k8!2/@$~k0

eff!8%22v2/41 i e#…%
~36!
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and substituting this result back into Eq.~35! yields a general
solution forC(k,q;v),

uku
k0
effC~k,q;v!5ad~q2k!1

ak0
eff

@~k0
eff!22v2/41 i e#

3S uku
k0
effD 1

D1~v! S uku
k0
effD , ~37!

whereD1(v) is given by

D1~v!5S 4p

g2 D 1

~j11!
2E dk

~k0
eff!

k2

@~k0
eff!22v2/41 i e#

.

~38!

The oscillation amplitudeG(k,q;v) is obtained from Eqs.
~27! and ~37! and reads

G~k,q;v!52
ivak0
md S k0effk2 D H d~q2k!

1
k0
eff

@~k0
eff!22v2/41 i e#

S uku
k0
effD 1

D1~v! S uku
k0
effD J .

~39!

Finally, substituting Eq.~37! into Eq. ~28! we obtain the
oscillation frequencies

v52q0
eff52@q21meff

2 #1/2, ~40!

whereq is the relative momentum for two incident quasifer-
mion with massesmeff5(11d)m.

We observe that we can understand the factor 2 in the
frequencies of oscillationv @see Eq.~40!#, as related to the
treatment of harmonic oscillators in terms of the sympletic
groups given by Goshen and Lipkin@16#. It can be inter-
preted classically by noticing that, since for harmonic oscil-
lators the frequency does not depend on the amplitude of the
motion, if a set of independent particles in a harmonic field is
symmetrically stretched out of equilibrium, it will subse-
quently pulsate with frequency 2v, wherev is the frequency
of oscillation of the independent particles.

VI. BOUND STATES
FROM THE SMALL OSCILLATIONS REGIME

In this section we will examine the condition for existence
of bound states in the small oscillation regime around the
stationary solution~vacuum! of our fermionic system. From
Eqs. ~28! and ~29! we verify that the potential term, which
describes the time evolution of our system in this regime is
separable. Again, in analogy with scattering theory, we can
evaluate the correspondingT matrix @7#. We find

T~k,k8;v!}h~k!
1

D1~v!
h~k8! ~41!

with h(k) given by Eq.~29! andD1(v) given by Eq.~38!.
The bound states are given by the poles of theT matrix.
Therefore, we search for the zeros ofD1(v). It is clear that
the integral inD1(v) contains a logarithmic divergence. To

keep it under control, we use the renormalization procedure
of the coupling constant given by Eq.~12!. Substituting Eq.
~12! into Eq. ~38! we get

D1~v!5 lnS L2

m2D2E
2L

1L dk

@k21meff
2 #1/2

3
k2

@k21meff
2 2v2/41 i e#

, ~42!

where we introduce the regularizing momentum cutoffL.
In the interval 0<v<2meff the integral ofD

1(v) is well
defined and we can sete50. A straightforward calculation
yields

D1~v!52@ f ~v!2 j ~d!#, ~43!

where

f ~v!5F4meff
2

v2 21G1/2arctanH F4meff
2

v2 21G21/2J
j ~d!5 lnF 2

u11duG . ~44!

Figure 1 shows the zero of theD1(v) as a function of
d. In this calculationq50, thereforev is the mass of the
bound state. Obviously, when (11d)50 or meff50 ~free
system,see Ref.@1#! there is no bound state. We see from
Fig. 1 that a bound state of quasifermions occurs when
0.74<(11d)<2, and that the mass of this bound state will
vary in the interval 0<v<2meff . Gross and Neveu obtain
Ms52MF @2# for the mass of thes particle in leading-1/N
aproximation, whereMF is equivalent tomeff . They argue
that in higher order they might find that

Ms52MF@11O~1/N!#.

From Fig. 1 we verify thatv52meff corresponds to
(11d)52. Observing thatj (11d52)50, we may con-
clude thatj (d) can be see as a contribution of higher order to
the Gross-Neveu result.

FIG. 1. The curve represents the massv of the two-
quasifermion bound state in small oscillation regime for our system
as a function of the renormalized coupling constantd.
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We believe that in the limitN→` the function
j (d)→0. On the other hand, whenN is finite @N51 in our
calculation — see Eq.~8!#, the massv of the bound state
depends on the renormalized coupling constantd as shown
in Fig. 1. This dependence cannot be obtained from 1/N
approximation.

Therefore, we can conclude that toN→` the 1/N ap-
proximation and our mean-field approximation are equiva-
lent. On the other hand, whenN is finite our approximation
permits to obtain the higher order contribution to the Gross-
Neveu result@2#.

It is important to observe that the higher order term ob-
tained in Eqs.~43! and~44! in this approach does not contain
all terms of order 1/N, since the mean-field approximation is
not a systematic expansion in the parameter 1/N.

Surprisingly, we have obtained for the functionD1(v) a
structure which entirely reproduces that which has been
found by Kerman and Lin@5# in their study of thebosonic
lf4 theory in terms of a Gaussian time-dependent varia-
tional approach.

Finally, whenv.2meff the integrand ofD1(v) has a
singularity atk56Av2/42meff

2 . From the theory of resi-
dues we obtain

D1~v!5S 12
4meff

2

v2 D 1/2lnF11~124meff
2 /v2!1/2

12~124meff
2 /v2!1/2G

22lnS 2

u11du D 2 ipF12
4meff

2

v2 G1/2. ~45!

Now D1(v) does not have any zeros. The interesting
point here is to observe that

lim
v→`

D1~v!→ lnS v2

meff
2 D→`, ~46!

so that in the large frequency limit (v→`) the T matrix
goes asymptotically to zero. We thus recover, in the present
approximation, the asymptotically free character of the
CGNM.

VII. DISCUSSION AND CONCLUSIONS

In Ref. @1# we described a treatment of the initial-values
problem in a quantum field theory of self-interacting fermi-
ons in the Gaussian approximation. Although the procedure
is quite general, we implemented it for the vacuum of an
uniform ~111!-dimensional relativistic many-fermion sys-
tem described by the chiral Gross-Neveu model~CGNM!.
We obtained the renormalized kinetic equations which de-
scribe the effective dynamics of the Gaussian observables in
the mean-field approximation for this system.

In this work, we have considered the linearized form of
the mean-field kinetic equations obtained in Ref.@1# around
the stationary ~vacuum! solution. The two-quasifermion
physics can be analytically investigated in this approach. In
particular, we have solved these equations completely. From
the solutions, we have reinterpreted the near equilibrium
physics of our system as a problem of quasifermion scatter-
ing and have found the condition for the existence of a quasi-
fermion bound state.

We verify that forN finite ~in this workN51), the bound
state mass obtained from our approach contains a term which
depends on the renormalized coupling constant as can be
seen in Fig. 1. In the case of a 1/N expansion@2# this depen-
dence cannot be found, so in the limitN→` this term goes
to zero. Therefore, to smallN, our approach permits to ob-
taining the higher order contribution to the 1/N expansion.
Finally, it is important to observe that the higher order term
obtained in the bound state mass from our approach contains
not necessarily all terms of 1/N order, since the mean-field
approximation is not a 1/N expansion.
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