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We study the nonlinear dynamics of an inflationary phase transition in a quartically self-coupled inflaton
model within the framework of a de Sitter background. LargeN and Hartree nonperturbative approximations
combined with nonequilibrium field theory methods are used to study the self-consistent time evolution in-
cluding back reaction effects. We find that when the system cools down from an initial temperatureTi.Tc to
belowTc with the initial value of the zero mode of the inflatonf(0)!ml21/4, the dynamics is determined by
the growth of long-wavelength quantum fluctuations. Forf(0)@ml21/4 the dynamics is determined by the
evolution of the classical zero mode. In the regime where spinodal quantum fluctuations give the most impor-
tant contribution to the nonequilibrium dynamics, we find that they modify the equation of state providing a
graceful exit from the inflationary stage. Inflation ends through this new mechanism at a time scale
ts>@H/m2# ln@l21# which for H>m and very weak coupling allows over one hundrede-folds during the de
Sitter phase. Spatially correlated domains grow to be of horizon size and quantum fluctuations ‘‘freeze-out’’
for times t.ts . @S0556-2821~97!03406-1#

PACS number~s!: 98.80.Cq

I. INTRODUCTION

For all of its observational success, the standard big bang
cosmology is not without its shortcomings. The inflationary
scenario was conceived@1# to overcome many of these short-
comings, chief amongst them the flatness and horizon prob-
lems. The original old inflationary scenario@1# required a
first-order phase transition with strong supercooling, during
which the scale factor grew exponentially, thus solving the
homogeneity and flatness problem. This model, however,
lacked any mechanism to provide a succesful exit from the
inflationary phase@2#. The new inflationary or ‘‘slow-
rollover’’ scenario@3,4# overcame these problems. In these
scenarios, a phase transition from an unbroken phase to a
symmetry-broken one takes place, and the scalar field, whose
expectation value serves as the order parameter, drives infla-
tion. This scalar field, the inflaton, drives a stage of exponen-
tial ~de Sitter! expansion while it slowly rolls down the po-
tential hill. Other versions, such as chaotic inflation@5#, in
which a phase transition is not necessary, have been advo-
cated~for reviews of inflationary cosmology, see@6–9#!.

Phase transitions play an important role in the early uni-
verse and, as mentioned above, are pivotal to many inflation-
ary models. They are also necessary in models in which to-
pological defects provide the seeds for density perturbations
@10#. It has been pointed out by many authors that using flat
space-time effective potentials and equilibrium concepts to
describe the dynamics of the inflationary phase transition can
be misleading. Both gravitational effects as well as those due
to quantum and thermal fluctuations have been studied and
found to be very important for the description of the dynam-
ics @11–16#.

Although there have been previous studies of the dynam-
ics of phase transitions@14–16#, most of the attempts were
hampered by the lack of a self-consistent nonperturbative

treatment of the nonlinearities and back reaction effects. It is
only recently that nonequilibrium methods have been devel-
oped to study real time phenomena during phase transitions
@17–20# and other strongly out of equilibrium situations@21#,
including nonperturbative treatments@22–24#. During the
last few years these methods have been adapted to study
strongly out of equilibrium phenomena in cosmology, allow-
ing an understanding of the dynamics of nonlinear field
theory in such situations@25,26#.

Studies of the dynamics of typical second order phase
transitions in Minkowski space-time have revealed a wealth
of new and interesting phenomena. In situations in which the
phase transition occurs on time scales which are faster than
the relaxation time of long-wavelength fluctuations, the dy-
namics is driven by the growth of long-wavelength, spinodal
instabilities. The back reaction of these quantum and thermal
fluctuations dramatically modifies the evolution of the zero
mode of the scalar field, eventually shutting off the instabili-
ties@27–29#. These instabilities are the hallmark of the phase
transition and are responsible for the formation and growth
of correlated domains@28,29#.

The nature of these instabilities and their intrinsic nonper-
turbative dynamics is rather simple to understand@27–29#.
As the system cools down from a quasiequilibrium disor-
dered high temperature phase to below the critical tempera-
ture the effective mass of the scalar field becomes negative.
If the expectation value of the field was zero in the equilib-
rium high temperature phase, it will remain zero below the
critical temperature in the absence of biasing fields. The fluc-
tuations of the field will grow in time and eventually become
large enough to sample the minima of the~effective! poten-
tial, which are nonperturbatively large in amplitude. This
growth of fluctuations translates into a growth of spatial cor-
relations of the field, resulting in domains@28#. In
Minkowski space-time there is no restriction to the final size
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of these domains, and generically in weakly coupled theories
these correlated regions reach sizes several times larger than
the zero temperature correlation length@28#. In a de Sitter
spacetime or in a general Friedmann-Robertson-Walker
~FRW! cosmology, for that matter, causality limits the physi-
cal distance within which the order parameter can be corre-
lated; in a de Sitter spacetime, this distance isdH5H21,
with H the Hubble constant.

The goal of this article is to study the full nonequilibrium
dynamics of an inflationary phase transition including the
back reaction effects in a simple model of a scalar field~the
inflaton! with a quartic self-interaction. We use the methods
of nonequilibrium field theory@17# combined with self-
consistent, nonperturbative Hartree and largeN approxima-
tions @21,22,25,26,29,30#.

The metric is taken to be a fixed cosmological back-
ground within which we study the effects of quantum and
thermal fluctuations on the evolution of the expectation value
of the inflaton and the energy momentum tensor, both ana-
lytically and numerically, so as to follow the equation of
state. When the temperature falls below the critical value,
long-wavelength fluctuations grow exponentially as a result
of the spinodal instabilities and their contribution to the
equations of motion eventually become of the same order as
the tree-level terms. We argue that in the very weakly
coupled case,l'10212, the change in temperature and the
effective mass occurs on time scales much shorter than the
time in which long-wavelength fluctuations can adjust to lo-
cal thermodynamic equilibrium, and they fall out of equilib-
rium just as in a ‘‘quench’’ from the high temperature phase.

When these fluctuations are incorporated self-consistently
as a back reaction in the evolution equations, we find, for
slow-roll initial conditions, that the effects of these fluctua-
tions dramatically change the dynamics. The unstable quan-
tum fluctuations modify the equation of state away from the
vacuum dominated state required for de Sitter expansion, and
for a reasonably wide range of parameters and initial condi-
tions, these fluctuations provide a new mechanism to grace-
fully exit the inflationary stage within an acceptable number
of e-folds. During this time, spatial correlations grow to
reach horizon size and freeze-out at larger times.

In the largeN approximation, we find that the late time
dynamics is summarized by a very useful sum rule relating
the infinite time limit of the order parameterf(`) and the
infinite time limit of the quantum fluctuationŝc2(`)& as

2um2u1f2~`!1^c2~`!&50.

This result implies that the excitations are massless and mini-
mally coupled. However, we find the new result that despite
the fact that the relevant degrees of freedom are massless and
minimally coupled asymptotically, their equal-time two-
point function saturates to a constant value rather than grow-
ing linearly in time.

In Sec. II we introduce the model, the approximations,
and analyze the subtle but important issues of renormaliza-
tion. Section III is devoted to presenting the renormalized
equations of motion and the correlation functions. Sections
IV and V provide an analytic and numerical study of differ-
ent cases, as well as an estimate of the back reaction of the

quantum fluctuations onto the scale factor. Section VI pre-
sents a discussion of the results and the final conclusions and
further avenues of study.

II. MODEL AND THE APPROXIMATIONS

The need for a nonperturbative treatment of nonequilib-
rium quantum field dynamics stems from the fact that when
the temperature falls below the critical point, the effective
mass term becomes negative. This results in an instability of
the long-wavelength modes which grow exponentially for
early times after the transition. The fluctuations of the scalar
order parameter will grow in time to sample the broken sym-
metry vacua, leading to large amplitude fluctuations that can
only be treated within a nonperturbative scheme.

There are two approximation schemes that have been used
to study the nonequilibrium dynamics during phase transi-
tions, each with its own advantages and disadvantages. The
Hartree factorization@14,23,26,28# has the advantage that it
can treat the dynamics of a scalar order parameter with dis-
crete symmetry, while its disadvantage is that it is difficult to
implement consistently beyond the lowest~mean field! level.
The advantage of the largeN approximation
@21,22,25,26,30# is that it allows a consistent expansion in a
small parameter (1/N) and correctly treats continuous sym-
metries in the sense that it implements Goldstone’s theorem.
Moreover, the largeN expansion becomes al/N expansion
for small values ofl. Therefore, it may be a reliable approxi-
mation for the typical values ofl used for inflation even
whenN51. It should be noted that when spontaneous sym-
metry breaking is present, the largeN limit always produces
massless Goldstone bosons.

Both methods implement a resummation of a select set of
diagrams to all orders and lead to a system of equations that
is energy conserving in Minkowski space-time and, as will
be shown below, satisfies covariant conservation of the en-
ergy momentum tensor in FRW cosmologies. Furthermore,
both methods are renormalizable and numerically imple-
mentable. Given that both methods have advantages and dis-
advantages and that choosing a particular scheme will un-
doubtedly lead to criticism and questions about their
reliability, we will study both, comparing the results to ob-
tain some universal features of the dynamics.

We restrict our study to a spatially flat Friedmann-
Robertson-Walker universe with a scale factora(t) and met-
ric

ds25dt22a2~ t !dxW2, ~2.1!

and focus in particular on the case of a de Sitter space-time
with a scale factor

a~ t !5eHt. ~2.2!

The action and Lagrangian density are given by

S5E d4xL, ~2.3!

L5a3~ t !F1
2

FẆ 2~x!2
1

2

@¹W FW ~x!#2

a2~ t !
2V„FW ~x!…G , ~2.4!
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V~FW !5
l

8N S FW 21
2NM2

l D 2, M252m21jR,
~2.5!

R56S ä~ t !

a~ t !
1
ȧ2~ t !

a2~ t !
D , ~2.6!

where we have included the coupling ofF(x) to the scalar
curvatureR(t) since it will arise as a consequence of renor-
malization. In the de Sitter universe~2.2!, R512H2. The
canonical momentum conjugate toF(x) is

PW ~x!5a3~ t !FẆ ~x!, ~2.7!

and thetime-dependentHamiltonian is given by

H~ t !5E d3xH PW 2~x!

2a3~ t !
1
a~ t !

2
~¹FW ~x!!21a3~ t !V~FW !J .

~2.8!

A. Hartree approximation

To implement the Hartree approximation, we setN51
and write

F~xW ,t !5f~ t !1c~xW ,t !, ~2.9!

with

f~ t !5^F~xW ,t !&, ^c~xW ,t !&50, ~2.10!

where the expectation value is defined by the nonequilibrium
density matrix specified below, and we have assumed spatial
translational invariance, compatible with a spatially flat met-
ric. The Hartree approximation is obtained after the factor-
ization

c3~xW ,t !→3^c2~xW ,t !&c~xW ,t !, ~2.11!

c4~xW ,t !→6^c2~xW ,t !&c2~xW ,t !23^c2~xW ,t !&2, ~2.12!

where, by translational invariance, the expectation values
only depend on time. In this approximation, the Hamiltonian
becomes quadratic at the expense of a self-consistent condi-
tion.

At this stage we must specify the nonequilibrium state in
which we compute the expectation values above. In nonequi-
librium field theory, the important ingredient is the time evo-
lution of the density matrixr(t) ~see @17# and references
therein!. This density matrix obeys the quantum Liouville
equation whose solution only requires an initial condition
r(t i) @17,19,20,25,26#. The choice of initial conditions for
this density matrix is an issue that pervades any calculation
in cosmology. Since we want to study the dynamics of the
phase transition, it is natural to consider initial conditions
that describe theinstantaneousmodes of the time-dependent
Hamiltonian as being initially in local thermodynamic equi-
librium at some temperatureTi.Tc . Given this initial den-
sity matrix, we then evolve it in time using the time-

dependent Hamiltonian as in@25# or alternatively using the
complex time path integral method as described in@17,19–
21,26#.

Following the steps of Refs.@26–28# we find the equation
of motion for the expectation value of the inflaton field to be,

f̈~ t !13Hḟ~ t !1M2f~ t !1
l

2
f3~ t !1

3l

2
f~ t !^c2~ t !&50.

~2.13!

The equal time correlation function is obtained from the co-
incidence limit of the nonequilibrium Green’s functions,
which are obtained from the mode functions obeying

F d2dt2 13H
d

dt
1vk

2~ t !G f k~ t !50, ~2.14!

with the effective frequencies

vk
2~ t !5

k2

a2~ t !
1M2~ t !, ~2.15!

where

M2~ t !5M21
3l

2
f2~ t !1

3l

2
^c2~ t !&. ~2.16!

At this stage we must provide the initial conditions on the
mode functionsf k(t). As mentioned above our choice of
initial conditions on the density matrix is that of local ther-
modynamic equilibrium for the instantaneous modes of the
time-dependent Hamiltonian at the initial time. Therefore we
choose the initial conditions on the mode functions to repre-
sent positive energy particle states of the instantaneous
Hamiltonian at t50, which we chose as the initial time.
Therefore our choice of boundary conditions att50 is

f k~0!5
1

AWk

, ḟ k~0!52 iAWk, Wk5Ak21M0
2,

~2.17!

where the massM0 determines the frequenciesvk(0) and
will be obtained explicitly later. With these boundary condi-
tions, the mode functionsf k(0) correspond to positive fre-
quency modes~particles! of the instantaneous quadratic
Hamiltonian for oscillators of massM0.

The equal time correlation function is given in terms of
the mode functions as@21,25,27–29#

^c2~ t !&5E d3k

~2p!3
u f k~ t !u2

2
cothFWk

2Ti
G . ~2.18!

The energy and pressure density are given by@26#

«5
1

2
ḟ2~ t !1

l

8 S f2~ t !1
2M2

l D 211

2E d3k

2~2p!3
cothFWk

2Ti
G

3@ u ḟ k~ t !u21vk
2~ t !u f k~ t !u2#2

3l

8
^c2~ t !&2, ~2.19!
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p1«5ḟ2~ t !1E d3k

2~2p!3
cothFWk

2Ti
GF u ḟ k~ t !u2

1
k2

3a2~ t !
u f k~ t !u2G . ~2.20!

It is straightforward to show using the equations of mo-
tion ~2.13! and ~2.14! that the bare energy is covariantly
conserved:

«̇13H~p1«!50. ~2.21!

B. Large N approximation

To obtain the proper largeN limit, the vector field is
written as

FW ~xW ,t !5„s~xW ,t !,pW ~xW ,t !…,

with pW an (N21)-plet, and we write

s~xW ,t !5ANf~ t !1x~xW ,t !, ^s~xW ,t !&5ANf~ t !,

^x~xW ,t !&50. ~2.22!

To implement the largeN limit in a consistent manner, one
may introduce an auxiliary field as in@22,30#. However, the
leading order contribution can be obtained equivalently by
invoking the factorization

x4→6^x2&x21const, ~2.23!

x3→3^x2&x, ~2.24!

~pW •pW !2→2^pW 2&pW 22^pW 2&21O~1/N!, ~2.25!

pW 2x2→^pW 2&x21pW 2^x2&, ~2.26!

pW 2x→^pW 2&x. ~2.27!

To obtain a largeN limit, we define

where the largeN limit is implemented by the requirement
that

^c2&5O~1!, ^x2&5O~1!, f5O~1!. ~2.29!

The leading contribution is obtained by neglecting the
O(1/N) terms in the formal limit. The resulting Lagrangian
density is quadratic, with a linear term inx. The equations of
motion in this case become

f̈~ t !13Hḟ~ t !1M2f~ t !1
l

2
f3~ t !1

l

2
f~ t !^c2~ t !&50,

~2.30!

^c2~ t !&5E d3k

~2p!3
u f k~ t !u2

2
cothFWk

2Ti
G , ~2.31!

with the mode functions

F d2dt2 13H
d

dt
1vk

2~ t !G f k~ t !50 ~2.32!

and the effective frequencies

vk
2~ t !5

k2

a2~ t !
1M2~ t !, ~2.33!

where

M2~ t !5M21
l

2
f2~ t !1

l

2
^c2~ t !&. ~2.34!

The initial conditions are chosen to reflect the same physi-
cal situation as in the Hartree case; that is, the instantaneous
particle states of the Hamiltonian att50 are in local ther-
modynamic equilibrium at some initial temperature higher
than the critical value. Thus, as in the Hartree case but with
modified frequencies, the initial conditions att50 are cho-
sen to describe the instantaneous positive energy states:

f k~0!5
1

AWk

, ḟ k~0!52 iAWk, Wk5Ak21M0
2.

~2.35!

We have maintained the same names for the mode functions
andM0 to avoid cluttering of notation; their meaning for
each case should be clear from the context. Notice that the
difference between the Hartree and largeN case is rather
minor. The most significant difference is that, in the equa-
tions for the zero modes, the Hartree case displays a factor of
3 difference between the tree-level nonlinear term and the
contribution from the fluctuation as compared to the corre-
sponding terms in the largeN case. The equations for the
mode functions are the same upon a trivial rescaling of the
coupling constant by a factor of 3.

The particular case withf(t)50 is of interest, since, by
symmetry, it is a fixed point of the dynamics of the zero
mode and corresponds to the case in which the phase transi-
tion occurs from the symmetric phase into the broken phase
in the absence of symmetry-breaking perturbations or initial
bias in the field. In this important case, the Hartree and large
N mode equations are identical after the coupling constant is
rescaled by a factor of 3, and our conclusions will beuni-
versal in the sense that both the largeN approximation and
the Hartree approximation describe the same nonperturbative
dynamics. In the largeN limit we find the energy density to
be given by

«

N
5
1

2
ḟ2~ t !1

l

8 S f2~ t !1
2M2

l D 211

2E d3k

2~2p!3
cothFWk

2Ti
G

3@ u ḟ k~ t !u21vk
2~ t !u f k~ t !u2#2

l

8
^c2~ t !&2, ~2.36!

and (p1«)/N has the same form as for the Hartree case
above@Eq. ~2.20!#, but in terms of the mode functions obey-
ing the largeN equations. Again, it is straightforward to
show that the bare energy is covariantly conserved by using
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the equations of motion for the zero mode and the mode
functions. Note that Eq.~2.21! also holds in the largeN
limit.

A relation analogous to Eq.~2.21! holds for the integrands
of « and«1p in Eqs.~2.19! and ~2.20!, namely,

«̇k~ t !13Hsk~ t !5
d

dt
@M2~ t !#u f k~ t !u2. ~2.37!

Here,

«k~ t !5u ḟ k~ t !u21vk
2~ t !u f k~ t !u2,

sk~ t !52F u ḟ k~ t !u21 k2

3a2~ t !
u f k~ t !u2G . ~2.38!

Equation~2.37! will be used below to prove that the renor-
malized energy is conserved.

III. RENORMALIZED EQUATIONS OF MOTION

Renormalization is a very subtle but important issue in
gravitational backgrounds@13,31–33#. The fluctuation con-
tribution ^c2(xW ,t)&, the energy, and the pressure all need to
be renormalized. The renormalization aspects in curved
space times have been discussed at length in the literature
@13,31–33# and have been extended to the Hartree and large
N self-consistent approximations for the nonequilibrium
back reaction problem in@25,30#.

In terms of the effective mass term for the largeN limit
given by Eq.~2.34! and the Hartree case, Eq.~2.16!, and
defining the quantity

B~ t ![a2~ t !@M2~ t !2R/6#, ~3.1!

we find the following largek behavior for the case of an
arbitrary scale factora(t) @with a(0)51#:

u f k~ t !u25
1

ka2~ t !
1

1

2k3a2~ t !
@H2~0!2B~ t !#1

1

8a~ t !2k5 HB~ t !@3B~ t !22H2~0!#1a~ t !
d

dt
@a~ t !Ḃ~ t !#1D0J 1O~1/k7!,

u ḟ k~ t !u25
k

a4~ t !
1

1

ka2~ t ! FH2~ t !1
H2~0!

2a2~ t !
1
1

2
@M2~ t !2R/6#G1

1

8a~ t !4k3
$2B~ t !22a~ t !2B̈~ t !13a~ t !ȧ~ t !Ḃ~ t !24ȧ2~ t !B~ t !

12H2~0!@2ȧ2~ t !1B~ t !#1D0%1O~1/k5!. ~3.2!

The constantD0 depends on the initial conditions and is
unimportant for our analysis.

Although the divergences can be dealt with by dimen-
sional regularization, this procedure is not well suited to nu-
merical analysis. We will make our subtractions using an
ultraviolet cutoff constant inphysical coordinates. This guar-
antees that the counterterms will be time independent. The
renormalization then proceeds much in the same manner as
in Ref. @25#; the quadratic divergences renormalize the mass
and the logarithmic terms renormalize coupling constant and
the coupling to the Ricci scalar. The logarithmic subtractions
can be neglected because of the couplingl'10212. Using
the Planck scale as the cutoff and the inflaton massmR as a
renormalization point, these terms are of order
l ln@MPl /mR#<10210, for m>109 GeV. An equivalent state-
ment is that for these values of the coupling and inflaton
masses, the Landau pole is beyond the physical cutoff
MPl . Our relative error in the numerical analysis is of order
1028; therefore, our numerical study is insensitive to the
logarithmic corrections. Though these corrections are funda-
mentally important, numerically they can be neglected.
Therefore, in what follows, we will neglect logarithmic
renormalization and subtract only quartic and quadratic di-
vergences in the energy and pressure, and quadratic diver-
gences in the fluctuation contribution.

Using the largek behavior of the mode functions, we find
the finite temperature factor to be@25#

E d3k
u f k~ t !u2

exp@Wk/Ti #21
5
1

24F Ti
2

a2~ t !G @11O~M0 /Ti !

1O„ln~M0 /Ti !…1•••#, ~3.3!

where we have usedTi.Tc@M0. The first term in Eq.~3.3!
arises from the 1/@ka2(t)# in the asymptotic limit~3.2!. For
the largeN case, we find the renormalization condition

2mB
21

lB

2
f2~ t !1jBR1

lB

2
^c2~ t !&B

5mR
2~ t,Ti !1

lR

2
f2~ t !1jRR1

lR

2
^c2~ t !&R , ~3.4!

with the effective time-dependent mass term in de Sitter
space time, and subtracted the fluctuation contribution@25#

mR
2~ t,Ti !5mR

2FTi2Tc2e22Ht21G ,
^c2~ t !&R5

1

4p2E
0

`

k2dkcothFWk

2Ti
G H u f k~ t !u22

1

ka2~ t !

2
u~k2k!

2k3a2~ t !
$H2~0!2a2~ t !@M2~ t !2R/6#%J ,

~3.5!
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wherek is a renormalization point, which for convenience
will be chosen ask5umRu, i.e., the renormalized inflaton
mass. The Hartree case is similar but with a rescaling of the
coupling constant by a factor of 3. We will fix the renormal-
ized coupling to the Ricci scalar to bejR50, thus ensuring
minimal coupling in the renormalized theory.

Assuming thatTi /Tc'1, we see that the phase transition
occurs within the first fewe-folds of inflation. When the
temperature falls below the critical value, the effective mass
becomes negative. As will be seen explicitly below, when
this occurs, long-wavelength modes become unstable and
grow. Local thermodynamic equilibrium will set in again if
the contribution from the quantum fluctuations can grow and
adjust to compensate for the negative mass terms on the
same time scales as that in which the temperature drops.
However, as discussed below, for very weak coupling the
important time scales for the nonequilibrium fluctuations are
of the order of@H/mR

2 # ln@1/l#, which are much longer than
the time it takes for the temperature to drop well below the
critical value to practically zero. Thus, the nonequilibrium
dynamics will proceed as if the phase transition occurred via
a ‘‘quench,’’ that is, with an effective mass term:

meff
2 ~ t !5mi

2u~ t i2t !2mR
2u~ t2t i !, mi

25mR
2FTi2Tc2 21G.0.

~3.6!

Therefore we choose the initial conditions on the mode func-
tions att i50 to be given in terms of the effective mass:

M0
25mR

2FTi2Tc2 21G1
lR

2
f2~0!,

Ti
Tc

.1, ~3.7!

with lR→3lR for the Hartree case.
We introduce the following dimensionless quantities and

definitions:

t5mRt, h5
H

mR
, q5

k

mR
, ~3.8!

r5
Ti
Tc
, T5

Ti
mR

, vq5
Wk

mR
, g5

l

8p2 , ~3.9!

h2~t!5
l

2mR
2 f2~ t !, gS~t!5

l

2mR
2 ^c2~ t !&R ,

~3.10!

f q~t![AmRf k~ t !, K5
k

mR
. ~3.11!

With jR50 andK51 the equations of motion become
the following.

A. Large N case

ḧ13hḣ2h1h31gS~t!h50, ~3.12!

F d2dt2
13h

d

dt
1

q2

a2~t!
211h21gS~t!G f q~t!50,

~3.13!

f q~0!5
1

Avq

, ḟ q~0!52 iAvq,

vq5Aq21r 2211h2~0!. ~3.14!

B. Hartree case

ḧ13hḣ2h1h313gS~t!h50, ~3.15!

F d2dt2
13h

d

dt
1

q2

a2~t!
2113h213gS~t!G f q~t!50,

~3.16!

f q~0!5
1

Avq

, ḟ q~0!52 iAvq,

vq5Aq21r 22113h2~0!. ~3.17!

The overdots stand for derivatives with respect tot, and, in
both cases,

gS~t!5E
0

`

q2dqcothFvq

2TG H u f q~t!u22
u~q21!

2q3a2~ t !

3Fh2~0!2
a2~ t !

mR
2 @M2~ t !2R/6#G J . ~3.18!

Numerically, the most significant contribution tôc2&
arises from low wave vectorsq<10–20 in all of the cases
studied @see Figs. 1~e! and 1~f! below#. Since
Ti.Tc5A24mR

2/l, q!T, and M0!Ti for these low mo-
mentum modes, they are ‘‘classical’’ and we can approxi-
mate

cothFvq

2TG' 2T
vq

5
2r

vq
A24

l
. ~3.19!

In this approximation, the fluctuation contribution be-
comes

gS~t!5ḡE q2dq

vq
H u f q~t!u22

u~q21!

2q3a2~ t !

3Fh2~0!2
a2~ t !

mR
2 ~M2~ t !2R/6!G J ,

ḡ52rgA24

l
51.103rAg50.124rAl. ~3.20!

The renormalized energy density and pressure for the
largeN case are given by
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FIG. 1. ~a! gS(t) vs t for h(0)5ḣ(0)50, l510212, r52, h52. ~b! l@p(t)1«(t)#/2mr
4 vs t for the same values of parameters as

in ~a!. ~c! H(t)/H(0) vs t for the same parameters as in~a!. ~d! Ḣ(t)/H2(t) vs t for the same values as in~a!. ~e! gS(q,t) vs q for
t560. Same parameters as in~a!. ~f! S(r,t)/S(0,t) vs r for t>2. Same parameters as in~a!. ~g! j(t) vs t. Same parameters as in~a!. ~h!
ln@ufq(t)u2# vs t for q50,4,10. Same parameters as in~a!.
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«

N
5
2mR

4

l
H ḣ2

2
1
1

4
~h221!21

ḡ

2E q2dq

vq
F u ḟ q~t!u2

1vq
2~t!u f q~t!u22

2q

a~ t !4
2

a~ t !

q
2

u~q21!b~ t !

q3
G

2
g

4
S~t!J , ~3.21!

p1«

N
5
2mR

4

l H ḣ21ḡE q2dq

vq
F u ḟ q~t!u21

q2

3a2~t!
u f q~t!u2

2
4q

3a~ t !4
2

g~ t !

q
2

u~q21!

q3
d~ t !G J , ~3.22!

with

vq
2~t!5

q2

a2~t!
211h2~t!1gS~t!, ~3.23!

and B(t) is given by Eq. ~3.1!. The coefficientsa(t),
b(t), g(t), andd(t) are obtained from the asymptotic be-
havior of «k(t) andsk(t), Eqs.~2.38!–~3.2!. We find

a~ t !5
1

mR
2a~ t !4

@ ȧ2~ t !1a2~ t !M ~ t !21H~0!2#,

b~ t !5
1

4mR
4a~ t !4

$B2~ t !12a~ t !ȧ~ t !Ḃ~ t !

22@ ȧ2~ t !1a2~ t !M ~ t !2#@B~ t !2H~0!2#1D0%,

g~ t !5
1

3mR
2a~ t !4

@B~ t !13ȧ2~ t !12H~0!2, ~3.24!

d~ t !52
1

12mR
4a~ t !4

$a2~ t !B̈~ t !25a~ t !ȧ~ t !Ḃ~ t !16ȧ2~ t !

3@B~ t !2H~0!2#22H~0!2B~ t !22D0%.

For the Hartree case~settingN51) the only changes are
that we takegS/4→3gS/4 in the last term in the energy and
use the frequencies

vq
2~t!5

q2

a2~t!
2113h2~t!13gS~t!, ~3.25!

and that the initial conditions on the mode functions are
given by Eq.~3.17!.

In order to prove that the renormalized energy and pres-
sure fulfills the continuity equation~2.21!, we need to study
the properties of the subtracted terms in Eqs.~3.21! and
~3.22!. Inserting the asymptotic behavior of«k(t), sk(t),
and u f k(t)u2 for largek in Eq. ~2.37!, we find

ȧ~ t !16Hg~ t !5
1

a2~ t !

d

dt
@M2~ t !#,

ḃ~ t !16Hd~ t !5
1

2a2~ t !
@H~0!22B~ t !#

d

dt
@M2~ t !#.

~3.26!

Using these relations and Eq.~2.37!, it is straightforward to
show that the renormalized energy and pressure given by
Eqs.~3.21! and ~3.22! satisfy the continuity equation

«̇13H~p1«!50.

A noteworthy point is that when the cutoff is kept fixed in
physicalcoordinates, upon taking the time derivative in the
integrals, there is a contribution from the upper limit of the
integrals. However, the subtractions guarantee that in the for-
mal limit when the cutoff is taken to infinity this contribution
vanishes. While the existence of the Landau pole beyond the
Planck mass restricts taking the cutoff to infinity in this ef-
fective theory, we find that any contributions from the upper
limit are numerically small. In our numerical evolution, the
energy density is covariantly conserved to 1 part in 107.

From the evolution of the mode functions that determine
the quantum fluctuations, we can study the growth of corre-
lated domains with the equal time correlation function

S~xW ,t !5^c~xW ,t !c~0W ,t !&,

5E d3k

~2p!3
eik

W
•xW

u f k~ t !u2

2
cothS Wk

2Ti
D , ~3.27!

which can be written in terms of the power spectrum of
quantum fluctuations:

S~k,t !5
S~q,t!

mR
, S~q,t!5u f q~t!u2cothS vq

2TD .
~3.28!

It is convenient to define the dimensionless correlation func-
tion

S~r,t!5
S~ uxW u,t !
mR
2 5

1

4p2rE qdqsin@qr#S~q,t!,

r5mRuxW u. ~3.29!

We now have all the ingredients to study the particular
cases of interest.

IV. EVOLUTION FOR f„0…5ḟ„0…50

A. Analytical results

We begin by considering the situation in which the expec-
tation value of the inflaton field sits atop the potential hill
with zero initial velocity. This situation is expected to arise if
the system is initially in local thermodynamic equilibrium an
initial temperature larger than the critical temperature and
cools down through the critical temperature in the absence of
an external field or bias.

The order parameter and its time derivative vanish in the
local equilibrium high temperature phase, and this condition
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is a fixed point of the evolution equation for the zero mode
of the inflaton. There is no rolling of the inflaton zero mode
in this case, although the fluctuations will grow and will be
responsible for the dynamics.

We can understand the early stages of the dynamics ana-
lytically as follows. For very weak coupling and early time
we can neglect the back reaction in the mode equations,
which in both the largeN and Hartree cases become

F d2dt2
13h

d

dt
1

q2

a2~t!
21G f q~t!50, ~4.1!

f q~0!5
1

Avq

, ḟ q~t!52 iAvq, vq5Aq21r 221.

~4.2!

The solutions are of the form

f q~t!5exp@2 3
2ht#$a~q!Jn~z!1b~q!J2n~z!%,

z5
q

h
exp@2ht#, n5A 1

h2
1
9

4
, ~4.3!

where the coefficientsa(q) andb(q) are determined by the
initial conditions

b~q!52
pq

2hsinnp
F ivq2

3
2 h

q
JnS qhD 2Jn8S qhD G , ~4.4!

a~q!5
pq

2hsinnp
F ivq2

3
2 h

q
J2nS qhD 2J2n8 S q

h
D G . ~4.5!

For long timeseht>q/h, these mode functions grow ex-
ponentially:

f q~t!.b~q!J2n~z!.
b~q!

G~12n!S 2hq D n

e~n23/2!ht. ~4.6!

The Bessel functions appearing in the expression for the
modesf q(t) can be approximated by their series expansion:

f q~t!5
1

2 F11
1

n S 322
q2

4h2
2 i

vq

h D1OS 1n2D Ge~n23/2!ht.

~4.7!

This is an expansion in powers ofq2/(nh2) and we conclude
thatgS(t) is dominated by the modes withq<Ah.

The integral forgS(t) can be approximated by keeping
only the modesq< fAh, wheref is a number of order 1, and
by neglecting the subtraction term which will cancel the con-
tributions from high momenta. Numerically, even with the
back reaction taken into account, the integral is dominated
by modesq< f'10–20 in all of the cases that we studied
@see Fig. 1~e!#.

The contribution to the fluctuations from these unstable
modes is

gS~t!.Al

6

f 3h3/2rmR
2

4p2M0
2 S 11

M0
2

mR
2 D e~2n23!ht, ~4.8!

where, again, we have taken the high temperature limit
Ti;Tc@mR .

From this equation, we can estimate the value ofts , the
‘‘spinodal time,’’ at which the contribution of the quantum
fluctuations becomes comparable to the contribution from
the tree-level terms in the equations of motion. This time
scale is obtained from the conditiongS(ts);1:

ts.2
1

~2n23!h
lnFAl

6

f 3h3/2

4p2mRM0
2

Ti
Tc

S 11
M0

2

mR
2 D G ,

~4.9!

which is in good agreement with our numerical results, as
will become clear below@see Figs. 1~a!, 2~a!, and 3~b!#. For
values ofh>1, which, as argued below, lead to the most
interesting case, an estimate for the spinodal time is

ts.
3h

2
ln@1/Al#1O~1!, ~4.10!

which is consistent with our numerical results@see Fig. 1~a!#.
For t.ts , the effects of back reaction become very im-

portant, and the contribution from the quantum fluctuations
competes with the tree-level terms in the equations of mo-
tion, shutting off the instabilities. Beyondts , only a full
numerical analysis will capture the correct dynamics.

FIG. 2. ~a! gS(t) vs t for h(0)5ḣ(0)50, l510212, r52,
h50.1. ~b! j(t) vs t. Same parameters as in~a!.
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It is worth mentioning that had we chosen zero tempera-
ture initial conditions, then the couplingḡ→g @see Eq.
~3.20!# and the estimate for the spinodal time would have
been

ts.
3h

2
ln@1/l#1O~1!, ~4.11!

that is, roughly a factor of 2 larger than the estimate for
which the de Sitter stage began at a temperature above the
critical value. Therefore Eq.~4.10! represents anunderesti-
mateof the spinodal time scale at which fluctuations become
comparable to tree-level contributions.

The number ofe-folds occurring during the stage of
growth of spinodal fluctuations is, therefore,

Ne'
3h2

2
ln@1/Al# ~4.12!

or, in the zero temperature case,

Ne'
3h2

2
ln@1/l#, ~4.13!

which is a factor of 2 larger. Thus, it becomes clear that with
l'10212 and h>2, a required number ofe-folds,
Ne'100, can easily be accomodated before the fluctuations
become large, modifying the dynamics and the equation of
state.

The implications of these estimates are important. The
first conclusion drawn from these estimates is that a
‘‘quench’’ approximation is well justified@see Fig. 1~a!#.
While the temperature drops from an initial value of a few
times the critical temperature to below critical in just a few
e-folds, the contribution of the quantum fluctuations needs a
large number ofe-folds to grow to compensate for the tree-
level terms and overcome the instabilities. Only for a
strongly coupled theory is the time scale for the quantum
fluctuations to grow short enough to restore local thermody-
namic equilibrium during the transition.

The second conclusion is that most of the growth of spin-
odal fluctuations occurs during the inflationary stage, and
with l'10212 and H>mR , the quantum fluctuations be-
come of the order of the tree-level contributions to the equa-
tions of motion within the number ofe-folds necessary to
solve the horizon and flatness problems. Since the fluctua-
tions grow to become of the order of the tree-level contribu-
tions at times of the order of this time scale, for larger times
they will modify the equation of state substantially and will
be shown to provide a graceful exit from the inflationary
phase within an acceptable number ofe-folds.

For t,ts , when the contribution from the renormalized
quantum fluctuations can be ignored, the Hubble constant is
given by the classical contribution to the energy density. In
terms of the dimensionless quantities introduced above Eq.
~3.10!, we have

H5
16pmR

4

3lMPl
2 F ḣ2

2
1
1

4
~h221!2G . ~4.14!

In the situation we consider here, withḣ5h50, the condi-
tion that h>2 for l.10212 translates into
mR.1013 GeV , which is an acceptable bound on the infla-
ton mass.

To understand more clearly whether or not the effect of
quantum fluctuations and growth of unstable modes during
the inflationary phase transition can provide a graceful exit
scenario, we must study in detail the contribution to the en-
ergy and the equation of state of these quantum fluctuations.

Although we are working in a fixed de Sitter background,
the energy and pressure will evolve dynamically. A measure
of the back reaction effects of quantum fluctuations on the
dynamics of the scale factor is obtained from defining the
‘‘effective Hubble constant:’’

H2~t!5
8p

3MPl
2 «~t!. ~4.15!

Therefore, the quantities

H~t!

H~0!
5A«~t!

«~0!
~4.16!

and

Ḣ~t!

H2~t!
52

3

2 F11
p~t!

«~t!G ~4.17!

give dynamical information of the effects of the back reac-
tion of the quantum fluctuations on the dynamics of the scale
factor. Whenever p(t)1«(t)Þ0, H(t)/H(0)Þ1, or
Ḣ(t)/H2(t)Þ0, the back reaction from the quantum fluc-
tuations will dramatically change the dynamics of the scale
factor, and it will no longer be consistent to treat the scale
factor as fixed. WhenH(t)/H(0)!1, the de Sitter era will
end.

From this point onwards only a full treatment of the back
reaction,including the correct dynamics of the scale factor,
will describe the physics. The time scale on which the quan-
tum fluctuations will begin to influence the dynamics of the
scale factor is of the order of the spinodal time estimated
above, since the contribution of the quantum fluctuations be-
comes comparable to the tree-level terms and modifies the
equation of state.

Therefore, there is the possibility that the growth of quan-
tum fluctuations can provide a graceful exit from the infla-
tionary phase, even when the zero modedoes not roll. The
parameters should be chosen in such a way so that the req-
uisite 60 or moree-folds of expansion take place before the
spinodal time. From the estimates provided above, this is
relatively easy to accommodate with reasonable values of the
inflaton mass and for the weak coupling that is usually as-
sumed in inflationary models.

B. Numerical analysis

We now solve the largeN set of equations~3.13! numeri-
cally, with the initial conditions ~3.14!, taking ḣ(0)
5h~0!50.
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The numerical code is based on a fourth-order Runge-
Kutta algorithm for the differential equation and an 11-points
Newton-Cotes algorithm for the integral, with a typical rela-
tive errors 1029 in the differential equation and in the inte-
grals. We have tested for cutoff insensitivity with cutoffs
qmax'50,100,150 with no appreciable variation in the nu-
merical results. The reason for this cutoff insensitivity is due
to the fact that only long-wavelength modes grow in ampli-
tude to become nonperturbatively large, whereas the short-
wavelength modes always have perturbatively small ampli-
tudes. We have chosenr5Ti /Tc52 as a representative
value andl510212. The insensitivity on the value of the
cutoff confirms that the high temperature limit~3.19! is war-
ranted.

As argued previously, forl'10212, the cosmologically
interesting time scales for the spinodal instabilities to grow
during, say, the first 60–100e-folds of inflation occur for
h>1, leading toH>mR>1013 GeV, which is a phenomeno-
logically acceptable range for the Hubble constant during the
inflationary stage.

Figure 1~a! shows the contribution from the quantum fluc-
tuations, gS(t) vs t for l510212, Ti /Tc52, h52,
h(0)50, andḣ(0)50. The quantum fluctuations, as mea-
sured bygS(t), grow to be of order 1 in a time scale
t'40 which is the time scale predicted by the early time
estimate~4.10!. Figure 1~b! shows@p(t)1«(t)#l/(2mR

4) vs
t for the same values of Fig. 1~a!. Initially, p52« and the
quantityp1« is zero. At the spinodal time, there is a change
in the equation of state, causingp1« to grow. However, for
late times, the energy density and pressure are each red-
shifted away such that the sum again approaches zero. We
have checked numerically that the energy is covariantly con-
served, obeying the relation«̇13H(p1«)50 to our nu-
merical accuracy of 1 part in 107. Figures 1~c! and 1~d! show
H(t)/H(0) andḢ(t)/H2(t) vs t, respectively. These fig-
ures show clearly that when the spinodal quantum fluctua-
tions become comparable to the tree-level contribution to the
equations of motion, the back reaction on the scale factor
becomes fairly large. At this point, the approximation of
keeping a fixed background breaks down and the full self-
consistent dynamics will have to be studied. At this time, the
inflationary stage basically ends sinceH is no longer con-
stant. This occurs fort'40 giving about 80e-folds of infla-
tion during the time in whichH is approximately constant
and equal toH. Therefore, this new mechanism of spinodal
fluctuations, with the zero mode sitting atop the potential
hill, provides a graceful exit of the inflationary era without
any further assumptions on the evolution of the scalar field.

These fluctuations translate into an amplification of the
power spectrum at long wavelengths forq'h. To see this
clearly we plotgS(q,t) with S(q,t) given by Eq.~3.28! vs
q for t560 in Fig. 1~e!. This quantity is very small, because
of the coupling constant in front, but fort'ts it grows to be
of order 1 for long wavelengths@see also Fig. 1~h!# and
vanishes very fast forq.10. The integral ingS(t) is domi-
nated by these long wavelengths that become nonperturba-
tively large, whereas the contribution from the short wave-
lengths remains always perturbatively small. This is the
justification for the approximations performed early that in-
volved only the long-wavelength modes and cutoffs of order

Ah. The equal time spatial correlation function given by Eq.
~3.29! can now be computed explicitly. Figure 1~f! shows
S(r;t)/S(0;t) as a function ofr for t>2. We definethe
correlation lengthj(t) as the value ofr for which the ratio
is 1/e. Figure 1~g! showsj(t); notice that the correlation
length saturates to a valuej(`)'1/h and that the correlated
regions are of horizon size.

We have performed numerical analysis varyingh with the
same values ofl and for the same initial conditions, and
found that the only quantitative change is in the time scale
for gS(t) to be of order 1. We find that the spinodal time
scale grows almost linearly withh and its numerical value is
accurately described by the estimate~4.10!. The case in
which the Hubble constant ish50.1 is shown explicitly.
Figure 2~a! showsgS(t), which demonstrates the oscillatory
behavior similar to what is seen in Minkowski space@26#.
The correlation lengthj(t) is shown in Fig. 2~b!; its asymp-
totic value is again approximately given by 1/h.

C. Late time limit

For times t.ts'40 ~for the values of the parameters
used in Fig. 1! we see from Figs. 1~a! and 1~b! that the
dynamics freezes out. The fluctuationgS(t)51 and the
mode functions effectively describe free, minimally coupled
massless particles. The sum rule

211gS~`!50 ~4.18!

is obeyed exactly in the largeN limit as in the Minkowski
case@26#.

For the Hartree caseg→3g, but the physical phenomena
are the same, with the only difference that the sum rule now
becomesgS(`)51/3. We now show that this value is a
self-consistent solution of the equations of motion for the
mode functions, and theonly stationary solution for asymp-
totically long times.

In the late time limit, the effective time-dependent mass
term211h21gS in the equation for the mode functions,
Eq. ~3.13!, vanishes~in this case withh50). Therefore, the
mode equations~3.13! asymptotically become

F d2dt2
13h

d

dt
1

q2

a2~t!G f q~t!50. ~4.19!

The general solutions are given by

f q
asy~t!5expF2

3

2
htGFd~q!J3/2S qh e2htD

1c~q!N3/2S qh e2htD G , ~4.20!

whereJ3/2(z) andN3/2(z) are the Bessel and Neumann func-
tions, respectively. The coefficientsd(q) and c(q) can be
computed for largeq by matching f q

asy(t) with the WKB
approximation to the exact mode functionsf q(t) that obey
the initial conditions~3.14!. The WKB approximation to
f q(t) has been computed in Ref.@25#, and we find, for large
q,
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d~q!5Apq

2 hF12
i

q
~h1D!1O~q22!Ge2 iq/h

1Aph

8 qF11OS 1qD Geiq/h, ~4.21!

c~q!52 iApq

2 hF12
i

q
~h1D!1O~q22!Ge2 iq/h

1 iAph

8 qF11OS 1qD Geiq/h, ~4.22!

where

D[E
0

`

dtehtM2~t!. ~4.23!

In the t→` limit, we have, for fixedq,

f q
asy~t! 5

t→`

2A2
p ShqD 3/2c~q!, ~4.24!

which is independent of time asymptotically and explains
why the power spectrum of quantum fluctuations freezes at
times larger than the spinodal. This behavior is confirmed
numerically: Figure 1~h! shows ln@ufq(t)u2# vs t for
q50,4,10. Clearly at early times the mode functions grow
exponentially, and at times of the order ofts , when
gS(t)'1 the mode functions freeze out and become inde-
pendent of time. Notice that the largestq modes have grown
the least, explaining why the integral is dominated by
q<10–20.

For asymptotically large times,gS is given by

gS~`!5gh2E
0

1` dq

q
cothS vq

2TD F2hp uc~q!u22qG ,
~4.25!

where only one term in the UV substraction survived in the
t5` limit. For consistency, this integral must converge and
be equal to 1 as given by the sum rule. For this to be the case
and to avoid the potential infrared divergence in Eq.~4.25!,
the coefficientsc(q) must vanish atq50. The mode func-
tions are finite in theq→0 limit provided

c~q! 5
q→0
Cq3/2, ~4.26!

whereC is a constant.
The numerical analysis and Fig. 1~e! clearly show that the

mode functions remain finite asq→0, and the coefficientC
can be read off from these figures. This is a remarkable re-
sult. It is well known that for free massless minimally
coupled fields in de Sitter space-time with Bunch-Davies
boundary conditions, the fluctuation contribution^c2(xW ,t)&
grows linearly in time as a consequence of the logarithmic
divergence in the integrals@12–14#. However, in our case,
although the asymptotic mode functions are free, the coeffi-
cients that multiply the Bessel functions of order 3/2 have all
the information of the interaction and initial conditions and
must lead to the consistency of the sum rule. Clearly the sum
rule and the initial conditions for the mode functions prevent

the coefficientsd(q) and c(q) from describing the Bunch-
Davies vacuum. These coefficients are completely deter-
mined by the initial conditions and the dynamics. This is the
reason why the fluctuation freezes at long times unlike in the
free case in which they grow linearly@12–14#.

It is easy to see from Eqs.~3.21!, ~3.22!, and ~4.24! that
the energy and presure vanish fort→`.

Analogously, the two-point correlation function can be
computed in the late time regime using the asymptotic results
obtained above. Inserting Eq.~4.20! for the mode functions
in Eq. ~3.29! yields the asymptotic behavior

S~r,t! 5
t→` 1

4p2rE0
`

qdqsinqr cothS vq

2TD 2h
3

pq3
uc~q!u2.

~4.27!

The asymptotic behavior in time of the equal time correlation
function is thus solely a function ofr . The larger behavior
of S(rW,1`) is determined by the singularities ofuc(k)u2 in
the complexk plane. We find an exponential decrease

S~r,1`! ;
r→`

C
e2r/j

r , ~4.28!

wherer5 i /j is the pole nearest to the real axis andC is
some constant. Thus we see that the freeze-out of the mode
functions leads to the freeze-out of the correlation lengthj.
The result of the numerical analysis is shown in Figs. 1~g!
and 2~b! which confirms this behavior and provides the as-
ymptotic value forj'1/h. From these figures it is also clear
that the freeze-out time is given by the expansion time scale
1/h. More precisely, the numerical values forj can be accu-
rately reproduced by the following formula obtained by a
numerical fit:

hj.1.0210.2lnh10.06h1•••.

This situation must be contrasted with that in Minkowski
space-time @28# where the correlation length grows as
j(t)'At during the stage of spinodal growth. Eventually,
this correlation length saturates to a fairly large value that is
typically several times larger than the zero temperature cor-
relation length@28#. We see that in the de Sitter case the
domains are always horizon sized.

V. INFLATON ROLLING DOWN

We now study the situation in which the inflaton zero
mode rolls down the potential hill and consider initial con-
ditions such thath(0)Þ0, ḣ(0)50. In this case there will
be two competing effects. One will be the growth of spinodal
fluctuations analyzed in the previous section, while the other
will be the rolling of the zero mode. Which effect will domi-
nate the dynamics is a matter of time scales. Before embark-
ing on a numerical analysis of these cases, it is illuminating
to try to understand under what conditions the dynamics will
be driven by either the zero mode or the spinodal fluctua-
tions. We will analyze first the case of the largeN equations
and compare later to the Hartree case.

The largeN equations are summarized by Eqs.~3.12!–
~3.14!. The important part of the mode equations that deter-
mine the spinodal growth of long-wavelength modes is the
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term h21gS. We can obtain an approximate estimate for
the time scales on which the contribution of the zero mode
becomes significant as follows. Let us consider the situation
in which h(0)!1 and neglect the nonlinear and back reac-
tion terms~the last two terms! in the equation of motion for
the zero mode, Eq.~3.12!. At long times, but smaller than the
time at which either the quantum fluctuation orh become of
order 1, we find

h~t!'h~0!e~n23/2!ht, ~5.1!

with n given in Eq.~4.3!. The estimate for the time scale for
the zero mode to beh f'1, is approximately given by

tzm'
2

~2n23!h
lnF h f

h~0!G . ~5.2!

Comparing this time scale to the spinodal time scale given
by Eq. ~4.10!, for which quantum fluctuations grow to be of
order 1, we see that when

h~0!!l1/4, ~5.3!

the quantum fluctuations will grow to be of order 1 much
earlier than the zero mode forTi.Tc @for Ti50 the bound
becomesh(0)!l1/2#. In this case the dynamics will be
driven completely by the quantum fluctuations, as the zero
mode will be rolling down the potential hill very slowly and
will not grow enough to compete with the quantum fluctua-
tions before the fluctuations grow to overcome the tree-level
terms in the equations of motion. In this case, as argued
previously, the largeN and Hartree approximations will be
completely equivalent during the time scales of interest.

On the other hand, if

h~0!@l1/4, ~5.4!

then the zero mode will roll and become of order 1before
the fluctuations have enough time to grow to order 1
@h(0)@l1/2 for Ti50#. In this case, the dynamics will be
dominated by the rolling of the zero mode and is mostly
classical. The quantum fluctuations remain perturbatively
small throughout the inflationary stage which will end when
the velocity of the zero mode modifies the equation of state
to terminate de Sitter expansion.

For h(0)'l1/4 @or h(0)'l1/2 for Ti50#, both the roll-
ing of the zero modeand the quantum fluctuations will give
contributions of the same order to the dynamics. In this case,
the quantum fluctuations will be large for the long-
wavelength modes and the classical approximation to the
inflationary dynamics will not be accurate.

Since the scenario in whichh(0)@l1/4, in which the dy-
namics is basically driven by the classical evolution of the
zero mode, has received a great deal of attention in the lit-
erature, we willnot focus on this case, but instead analyze
numerically the cases in whichh(0)Þ0 but such that
h(0)<l1/4.

A. Numerical analysis

We have evolved the set of equations of motion given by
Eqs. ~3.12! and ~3.13! numerically with initial conditions
~3.14! for the largeN case, and~3.15! and ~3.16!, with the

corresponding initial conditions~3.17! on the mode functions
for the Hartree case. The numerical code is the same as in the
previous section with the same relative errors.

1. Large N case

Figures 3~a! and 3~b! showh(t) andgS(t) vs t for the
values l510212, Ti /Tc52, h(0)51025, and ḣ(0)50.
Clearly the dynamics is dominated by the fluctuations; the
zero mode grows but is always negligibly small compared to
gS(t). The time scale at whichgS(t) grows to be of order
1 is about the same as in the caseh(0)50, and all the
behavior for the mode functions, correlation length, energy
density, pressure, etc., is similar to the case analyzed in the
previous section.

Asymptotically, we find that the sum rule

211h2~`!1gS~`!50 ~5.5!

is satisfied to our numerical accuracy. This is the same as the
situation in Minkowski space-time@25,26#, and when
hÞ0, this sum rule is nothing but the Ward identity associ-
ated with Goldstone’s theorem. The fluctuations are Gold-
stone bosons, minimally coupled, and the symmetry is spon-
taneously broken with a very small expectation value for the
order parameter as can be read off from Fig. 3~a!. For
t.ts , the dynamics freezes completely and the zero mode
and the fluctuations achieve their asymptotic values much in
the same way as in the caseh50 studied in the previous
section. Again, the correlation length becomes independent
of time with j(`)'1/h in a time scale given by 1/h.

Because there is a damping term in the zero mode equa-
tion, it is reasonable to assume that asymptotically there will
be a solution with a constant value ofh. Then the Ward-
identity h(`)@211h2(`)1gS(`)#50 must be fulfilled.
In the largeN case, theonly stationary solutions are~i!
h50, gS(`)51 or ~ii ! h(`)Þ0, 211h2(`)1gS(`)
50. To have a consistent solution of the mode functions, it
must be that the effective mass term@211h2(`)
1gS(`)] vanishes asymptotically, leading to the mode
equations for massless, minimally coupled modes which are
asymptotically independent of time as shown in the previous
section @see Eq.~4.24!#. Furthermore, from Fig. 3~b! it is
clear thatgS(t) remains constant at long times, again unlike
the case of free massless fields with Bunch-Davies boundary
conditions in which case the fluctuation grows linearly in
time @12–14#.

2. Hartree case

Figure 3~a! also shows the evolution of the zero mode in
the largeN and Hartree case. Although there is a quantitative
difference in the amplitude of the zero mode, in both cases it
is extremely small and gives a negligible contribution to the
dynamics. In the Hartree case, however, there is no equiva-
lent of the largeN sum rule; theonly stationary solution for
hÞ0 is h2(`)51, gS(`)50. Such a solution leads to
mode equations with apositivemass term and mode func-
tions that vanish exponentially fast fort→` for all mo-
menta. However, whether the asymptotic behavior of the
Hartree solution is achieved within the interesting time
scales is a matter of initial conditions. For example in Fig.
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3~a! the initial condition is such that the time scale for
growth of the quantum fluctuations is much shorter than the
time scale for which the amplitude of the zero mode grows
large and the nonlinearities become important. In the large
N case the sum rule is satisfied with a large value of the
quantum fluctuations. In the Hartree case the equivalent sum
rule 2113hH

2 13gSH50 is satisfied for a very smallhH

and agSH'1/3. The modes become effectively massless
and they stop growing.

The equation for the zero mode@see Eq.~3.15!# still has
an uncanceled piece of the nonlinearity,22h2; however, the
derivatives and the amplitude ofh are all extremely small,
and though the zero mode still evolves in time, it does so
extremely slowly. In fact the Hartree curve in Fig. 3~a! has
an extremely small positive slope asymptotically, and while
hH grows very slowly,gSH diminishes at the same rate. In
the case shown in Fig. 3~a!, we find numerically that
ḣH /hH'1027 at t5150. Before this time most of the inter-
esting dynamics that can be captured with a fixed de Sitter
background had already taken place, and the back reaction of
the fluctuations on the metric becomes substantial, requiring
an analysis that treats the scale factor dynamically.

The conclusion of our analysis is that in the region of
initial conditions for which the quantum fluctuations domi-
nate the dynamics, that is, forh(0)!l1/4, both largeN and
Hartree cases give the same answer on the relevant time
scales. The figures forH(t)/H(0) are numerically indistin-

guishable from the case of Fig. 1.
For comparison, we show in Fig. 4 both cases for the zero

mode, for the same values of the parameters as in Figs. 1 and
3 but with the initial conditionh(0)51023, ḣ(0)50. This
is a borderline case in which the time scales for the evolution
of the zero mode and quantum fluctuations are of the same
order and there is no clear separation of time scales between
these two competing terms in the evolution equations.

We see that in the largeN case the zero mode rolls to a
final amplitude which isO(1) and of the same order as
gS(`) and the sum rule is satisfied. However, the Hartree
case clearly shows the asymptotics analyzed above with
hH(`)51, gSH(`)50.

This particular borderline case is certainly not generic and
would imply some fine-tuning of initial conditions. Finally
the case in whichh(0)@l1/4 ~or l1/2 for Ti50) is basically
classical in that the dynamics is completely given by the
classical rolling of the zero mode and the fluctuations are
always perturbatively small.

VI. DISCUSSION AND CONCLUSIONS

We have identified analytically and numerically two dis-
tinct regimes for the dynamics determined by the initial con-
dition on the expectation value of the zero mode of the in-
flaton.

~1! Whenh(0)!l1/4 ~or l1/2 for Ti50), the dynamics is
driven by quantum~and thermal! fluctuations. Spinodal in-
stabilities grow and eventually compete with tree-level terms
at a time scalets>23hln@l#/2. The growth of spinodal fluc-
tuations translates into the growth of spatially correlated do-
mains which attain a maximum correlation length~domain
size! of the order of the horizon. For very weak coupling and
h>1 this time scale can easily accomodate enoughe-folds
for inflation to solve the flatness and horizon problems. The
quantum fluctuations modify the equation of state dramati-
cally and at this time scale can modify the dynamics of the
scale factor and provide a means for a graceful exit to the
inflationary stage without a slow roll.

This nonperturbative description of the nonequilibrium ef-
fects in this regime in which quantum~and thermal! fluctua-

FIG. 3. ~a! h(t) vs t for l510212, r52, h52, h(0)51025,

ḣ(0)50 for largeN ~solid curve! and Hartree~dashed curve! cases.
~b! gS(t) vs t for the same values of the parameters as in~a!, for
largeN ~solid curve! and Hartree~dashed curve! cases.

FIG. 4. Comparison of zero mode dynamics for largeN ~solid
curve! and Hartree ~dashed curve! cases for h(0)51023,

ḣ(0)50, and all other parameters as in Figs. 1 and 2.
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tions are most important is borne out by both the largeN and
Hartree approximations. Thus our analysis provides a reli-
able understanding of the relevant nonperturbative, nonequi-
librium effects of the fluctuations that has not been revealed
before in this setting.

These initial conditions are rather natural if the de Sitter
era arises during a phase transition from a radiation-
dominated high temperature phase in local thermodynamic
equilibrium, in which the order parameter and its time de-
rivative vanish.

~2! Whenh(0)@l1/4 ~or l1/2 for Ti50), the dynamics is
driven solely by the classical evolution of the inflaton zero
mode. The quantum and thermal fluctuations are always per-
turbatively small~after renormalization!, and their contribu-
tion to the dynamics is negligible for weak couplings. The de
Sitter era will end when the kinetic contribution to the en-
ergy becomes of the same order as the ‘‘vacuum’’ term. This
is the realm of the slow-roll analysis whose characteristics
and consequences have been analyzed in the literature at
length. These initial conditions, however, necessarily imply
some initial state either with a biasing field that favors a
nonzero initial expectation value or that in the radiation-
dominated stage, prior to the phase transition, the state was
strongly out of equilibrium with an expectation value of the
zero mode different from zero. Although such a state cannot
be ruled out and would naturally arise in chaotic scenarios,
the description of the phase transition in this case requires
further input on the nature of the state prior to the phase
transition.

We have learned from this work that nonequilibrium ef-
fects can alter scalar field dynamics in a dramatic way, under

well-specified and physically reasonable conditions. In par-
ticular, this result brings up the tantalizing possibility that
when the scale factor is coupled to the inflaton dynamically,
in a full back reaction treatment, some of the standard results
concerning the time evolution of the inflaton could be modi-
fied in unexpected ways. The fact that we found massless
fields whose fluctuations didnot grow linearly is an ex-
tremely interesting result, especially in light of how the
quantum fluctuations become density perturbations. We are
currently working on the formalism that allows us to couple
gravity dynamically in a nonequilibrium way. Furthermore,
it would be interesting to extend the program of reconstruc-
tion of the inflaton effective potential~see@34#! to include
the possibility of the dynamics being driven by spinodal fluc-
tuations and not by a ‘‘slow roll’’ of the inflaton zero mode.

The results presented here raise some further interesting
questions: How do these fluctuations contribute to the spec-
trum of primordial scalar density perturbations? How should
the approach to cosmological perturbations based on a slow
roll be modified to the case studied here in which spinodal
fluctuations,not a slow roll, drive the dynamics? We are
currently studying these issues within the consistent nonper-
turbative, nonequilibrium program presented in this article.
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