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We study the nonlinear dynamics of an inflationary phase transition in a quartically self-coupled inflaton
model within the framework of a de Sitter background. Lakjand Hartree nonperturbative approximations
combined with nonequilibrium field theory methods are used to study the self-consistent time evolution in-
cluding back reaction effects. We find that when the system cools down from an initial tempé&ratirgto
below T, with the initial value of the zero mode of the inflatg#{0)<m\ ~ Y4 the dynamics is determined by
the growth of long-wavelength quantum fluctuations. Bg0)>m\~ 2 the dynamics is determined by the
evolution of the classical zero mode. In the regime where spinodal quantum fluctuations give the most impor-
tant contribution to the nonequilibrium dynamics, we find that they modify the equation of state providing a
graceful exit from the inflationary stage. Inflation ends through this new mechanism at a time scale
ts=[H/m?]In[\ "] which for H=m and very weak coupling allows over one hundeetblds during the de
Sitter phase. Spatially correlated domains grow to be of horizon size and quantum fluctuations “freeze-out”
for timest>t,. [S0556-282(97)03406-1

PACS numbd(s): 98.80.Cq

I. INTRODUCTION treatment of the nonlinearities and back reaction effects. It is
only recently that nonequilibrium methods have been devel-
For all of its observational success, the standard big bangped to study real time phenomena during phase transitions
cosmology is not without its shortcomings. The inflationary[17—2Q and other strongly out of equilibrium situatiofl],
scenario was conceived] to overcome many of these short- including nonperturbative treatmenf22-24. During the
comings, chief amongst them the flatness and horizon prolast few years these methods have been adapted to study
lems. The original old inflationary scenarfd] required a  strongly out of equilibrium phenomena in cosmology, allow-
first-order phase transition with strong supercooling, duringng an understanding of the dynamics of nonlinear field
which the scale factor grew exponentially, thus solving thetheory in such situationg25,26|.
homogeneity and flatness problem. This model, however, Studies of the dynamics of typical second order phase
lacked any mechanism to provide a succesful exit from theransitions in Minkowski space-time have revealed a wealth
inflationary phase[2]. The new inflationary or “slow- of new and interesting phenomena. In situations in which the
rollover” scenario[3,4] overcame these problems. In thesephase transition occurs on time scales which are faster than
scenarios, a phase transition from an unbroken phase tothe relaxation time of long-wavelength fluctuations, the dy-
symmetry-broken one takes place, and the scalar field, whosgmics is driven by the growth of long-wavelength, spinodal
expectation value serves as the order parameter, drives inflastabilities. The back reaction of these quantum and thermal
tion. This scalar field, the inflaton, drives a stage of exponenfluctuations dramatically modifies the evolution of the zero
tial (de Sittejy expansion while it slowly rolls down the po- mode of the scalar field, eventually shutting off the instabili-
tential hill. Other versions, such as chaotic inflati@], in  ties[27-29. These instabilities are the hallmark of the phase
which a phase transition is not necessary, have been advoransition and are responsible for the formation and growth
cated(for reviews of inflationary cosmology, s¢6—9]). of correlated domaing28,29.
Phase transitions play an important role in the early uni- The nature of these instabilities and their intrinsic nonper-
verse and, as mentioned above, are pivotal to many inflatiorturbative dynamics is rather simple to understafd—29.
ary models. They are also necessary in models in which toAs the system cools down from a quasiequilibrium disor-
pological defects provide the seeds for density perturbationdered high temperature phase to below the critical tempera-
[10]. It has been pointed out by many authors that using flature the effective mass of the scalar field becomes negative.
space-time effective potentials and equilibrium concepts tdf the expectation value of the field was zero in the equilib-
describe the dynamics of the inflationary phase transition carium high temperature phase, it will remain zero below the
be misleading. Both gravitational effects as well as those dueritical temperature in the absence of biasing fields. The fluc-
to quantum and thermal fluctuations have been studied anmiations of the field will grow in time and eventually become
found to be very important for the description of the dynam-large enough to sample the minima of tfedfective poten-
ics[11-1§. tial, which are nonperturbatively large in amplitude. This
Although there have been previous studies of the dynamgrowth of fluctuations translates into a growth of spatial cor-
ics of phase transitiongl4—16, most of the attempts were relations of the field, resulting in domain§28]. In
hampered by the lack of a self-consistent nonperturbativélinkowski space-time there is no restriction to the final size

0556-2821/97/5%)/337316)/$10.00 55 3373 © 1997 The American Physical Society



3374 BOYANOVSKY, CORMIER, de VEGA, AND HOLMAN 55

of these domains, and generically in weakly coupled theorieguantum fluctuations onto the scale factor. Section VI pre-
these correlated regions reach sizes several times larger thaents a discussion of the results and the final conclusions and
the zero temperature correlation lengf8]. In a de Sitter further avenues of study.

spacetime or in a general Friedmann-Robertson-Walker

(FRV\_/) Cosmolqu, for Fhat matter, causality limits the physi- Il. MODEL AND THE APPROXIMATIONS

cal distance within which the order parameter can be corre- _ N
lated; in a de Sitter spacetime, this distancedjs=H 1, The need for a nonperturbative treatment of nonequilib-
with H the Hubble constant. rium quantum field dynamics stems from the fact that when

The goal of this article is to study the full nonequilibrium the temperature falls below the critical point, the effective
dyna_mics of an inﬂationary phase transition inc]uding themass term becomes negative. This results in an |nStab|l|ty of
back reaction effects in a simple model of a scalar fighe  the long-wavelength modes which grow exponentially for
inflator) with a quartic self-interaction. We use the methodsearly times after the transition. The fluctuations of the scalar
of nonequilibrium field theory[17] combined with self- order parameter will grow in time to sample the broken sym-

consistent, nonperturbative Hartree and lakyapproxima- ~ Metry vacua, leading to large amplitude fluctuations that can
tions[21,22,25,26,29,30 only be treated within a nonperturbative scheme.

The metric is taken to be a fixed cosmological back- There are two approximation schemes that have been used

ground within which we study the effects of quantum andto study the nonequilibrium dynamics during phase transi-
thermal fluctuations on the evolution of the expectation valudions, each with its own advantages and disadvantages. The
of the inflaton and the energy momentum tensor, both andlartree factorizatiori14,23,26,28 has the advantage that it
lytically and numerically, so as to follow the equation of can treat the dynamics of a scalar order parameter with dis-
state. When the temperature falls below the critical valuecrete symmetry, while its disadvantage is that it is difficult to
long-wavelength fluctuations grow exponentially as a resulfmplement consistently beyond the lowéstean field level.
of the spinodal instabilities and their contribution to the The advantage of the largeN approximation
equations of motion eventually become of the same order d£1,22,25,26,3pis that it allows a consistent expansion in a
the tree-level terms. We argue that in the very weaklysmall parameter (N) and correctly treats continuous sym-
coupled casel ~10"'2 the change in temperature and the Metries in the sense that it implements Goldstone’s theorem.
effective mass occurs on time scales much shorter than tHdoreover, the largé\ expansion becomesN/N expansion
time in which long-wavelength fluctuations can adjust to lo-for small values oh. Therefore, it may be a reliable approxi-
cal thermodynamic equilibrium, and they fall out of equilib- mation for the typical values ok used for inflation even
rium just as in a “quench” from the high temperature phase whenN=1. It should be noted that when spontaneous sym-
When these fluctuations are incorporated self-consistentlfnetry breaking is present, the larbelimit always produces
as a back reaction in the evolution equations, we find, foimassless Goldstone bosons.
slow-roll initial conditions, that the effects of these fluctua-  Both methods implement a resummation of a select set of
tions dramatically change the dynamics. The unstable quarfliagrams to all orders and lead to a system of equations that
tum fluctuations modify the equation of state away from theiS energy conserving in Minkowski space-time and, as will
vacuum dominated state required for de Sitter expansion, arfee shown below, satisfies covariant conservation of the en-
for a reasonably wide range of parameters and initial condi€rgy momentum tensor in FRW cosmologies. Furthermore,
tions, these fluctuations provide a new mechanism to gracdoth methods are renormalizable and numerically imple-
fully exit the inflationary stage within an acceptable numbermentable. Given that both methods have advantages and dis-
of e-folds. During this time, spatial correlations grow to advantages and that choosing a particular scheme will un-
reach horizon size and freeze-out at larger times. doubtedly lead to criticism and questions about their
In the largeN approximation, we find that the late time reliability, we will study both comparing the results to ob-
dynamics is summarized by a very useful sum rule relatingain some universal features of the dynamics.

the infinite time limit of the order parametef(=) and the We restrict our study to a spatially flat Friedmann-
infinite time limit of the quantum fluctuationgy?()) as Robertson-WaIker universe with a scale faa¢r) and met-
ric
—[m?|+ ¢?(o0) +(y?())=0. ds?=dt2—a2(t)dx?, (2.1)

. . I ._and focus in particular on the case of a de Sitter space-time

This result implies that the excitations are massless and minj- .
. . with a scale factor

mally coupled. However, we find the new result that despite

the fact that the relevant degrees of freedom are massless and

minimally coupled asymptotically, their equal-time two-

point function saturates to a constant value rather than grow- tnq action and Lagrangian density are given by

ing linearly in time.

In Sec. Il we introduce the model, the approximations,

and analyze the subtle but important issues of renormaliza- S=J d*x.c, (2.3

tion. Section 1l is devoted to presenting the renormalized

equations of motion and the correlation functions. Sections

IV and V provide an analytic and numerical study of differ- L=a(t)

ent cases, as well as an estimate of the back reaction of the

a(t)=eMt. 2.2

1[Vd(x)]?

1. i
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R N[ .. 2NM?3\2 dependent Hamiltonian as [25] or alternatively using the
V(®)= 8_N< 2 ) . M2=—m?+¢R, complex time path integral method as described1if,19—
21,26
@9 Following the steps of Ref§26—2g we find the equation
22 of motion for the expectation value of the inflaton field to be,
. 6(a(t) (t)) 26
a(t) a*(t))’ '

. . A 3\
B(1) +3HG(1) +M?G(t) + 5 $3(t) + = $()(Y(1)) =0.

where we have included the coupling ®f(x) to the scalar

curvatureR(t) since it will arise as a consequence of renor- (2.13
o ; . DU
malization. In the de Sitter univers@.2), R=12H% The  The equal time correlation function is obtained from the co-
canonical momentum conjugate do(x) is incidence limit of the nonequilibrium Green’s functions,
i which are obtained from the mode functions obeying
I(x)=a%t)® (), 2.7
2
and thetime-dependeridamiltonian is given by g2 3G +wg(t) [fi (1) =0, (2.19

*2 . . .
H(t)=J & { ((X))+ﬂ(vrl>( ))2+a3(t)V(<I>)J with the effective frequencies

(2.9 k?
wi(t)= 2" M2(t), (2.15
A. Hartree approximation
. L where
To implement the Hartree approximation, we $é&t1
and write
. > M2 = M2+ S g0+ (J20). (216
D(x,t)= (1) + ¢p(x,1), (2.9 2 2 ’ '
with At this stage we must provide the initial conditions on the
mode functionsf,(t). As mentioned above our choice of
SO=(DX,), (P(X,1))=0, (2.10 initial conditions on the density matrix is that of local ther-

modynamic equilibrium for the instantaneous modes of the

where the expectation value is defined by the nonequilibrlunjiIme dependent Hamiltonian at the initial time. Therefore we
density matrix specified below, and we have assumed spaﬂg oose the initial conditions on the mode functions to repre-
translational invariance, compatible with a spatially flat met->SMt positive energy particle states of the instantaneous

ric. The Hartree approximation is obtained after the factorHam'Iton'an att=0, which we chose as the initial time.
Therefore our choice of boundary conditionst at0 is

|zanon
3y 2o "
P (X, 1) =3P (X, 1)) h(X,1), (2.1 F(0)= $V F(0)= —i\We, W= JK2+ M2,
N N N N V VVK
P — B(PA(X, D)) P2(X, 1) — 3(PP(X,1))2, (2.12) (2.17)

where, by translational invariance, the expectation value¥/n€ré the mas#l, determines the frequencie(0) and
only depend on time. In this approximation, the HamiltonianVi ill be obtained explicitly later. With these boundary condi-

becomes quadratic at the expense of a self-consistent condions. the mode function,(0) correspond to positive fre-

tion. guency modes(particles of the instantaneous quadratic
At this stage we must specify the nonequilibrium state inH@miltonian for oscillators of masly.

which we compute the expectation values above. In nonequi- The equal time correlation function is given in terms of

librium field theory, the important ingredient is the time evo- ("€ mode functions &21,25,27-29

lution of the density matrixp(t) (see[17] and references

therein. This density matrix obeys the quantum Liouville ) d3k |f(1)]? W,

equation whose solution only requires an initial condition (¥ (t)>:J o 2_-|-I :

p(t) [17,19,20,25,2p The choice of initial conditions for

this density matrix is an issue that pervades any calculatioifhe energy and pressure density are giverj28}

in cosmology. Since we want to study the dynamics of the

(2.18

phase transition, it is natural to consider initial conditions —¢2(t)+ ¢2(t)+ 2m? 2+} d’k _dK ot Wi
that describe thinstantaneousnodes of the time-dependent B 2(2m)3 2T;
Hamiltonian as being initially in local thermodynamic equi- a

librium at some temperaturg >T,.. Given this initial den- [} 24 2 292N 2002

sity matrix, we then evolve it in time using the time- IO+ @il fD]] 8 (wA0)% (219
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. d3k W, p
p+8:¢)2(t)+f—§2(277) COﬂ‘{z—-rk_H“k(t”Z

(2.20

2
+m|fk(t)|2}-

It is straightforward to show using the equations of mo-
tion (2.13 and (2.14 that the bare energy is covariantly

conserved:

e+3H(p+e)=0. (2.20)

B. Large N approximation

To obtain the proper larg&l limit, the vector field is
written as

B(x,)=(a(X,1),7(X,1)),

with 77 an (N—1)-plet, and we write

(o(x,0)=Ng(t),
(x(x,1))=0. (2.22

To implement the larg®&\ limit in a consistent manner, one
may introduce an auxiliary field as [22,30. However, the

o(x,t)=VN&(t) + x(x,1),

BOYANOVSKY, CORMIER, de VEGA, AND HOLMAN

55
with the mode functions
d2
dt2+3Hd +wi(t) |f(t)=0 (2.32
and the effective frequencies
2
2 _ 2
where
A A
MAO=M2+ SO +5(yAD). (234

The initial conditions are chosen to reflect the same physi-
cal situation as in the Hartree case; that is, the instantaneous
particle states of the Hamiltonian &0 are in local ther-
modynamic equilibrium at some initial temperature higher
than the critical value. Thus, as in the Hartree case but with
modified frequencies, the initial conditionstat 0 are cho-
sen to describe the instantaneous positive energy states:

f (0)= JLW fl(0)=—iVW,, We=/k?+M2.
k
(2.395

leading order contribution can be obtained equivalently bYyq have maintained the same names for the mode functions

invoking the factorization

x*—6(x?)x?+ const, (2.23
X*=3(x*)x, (2.24

(7-m)2= 27T — (722 +O(1IN),  (2.29
TP —(m?) X+ 7(x?), (2.26

T2 x—(m?)x. (2.27)

To obtain a largeN limit, we define
N-—-1
pr———

w0, L.,

m(x,t) =
where the largeN limit is implemented by the requirement
that
(x*)=0(1), (229

(*)=0(1), $=0(1).

The leading contribution is obtained by neglecting the
O(1/N) terms in the formal limit. The resulting Lagrangian

density is quadratic, with a linear term jn The equations of
motion in this case become

. . A A
¢(1)+3H (1) + M?G(t) + 5 (1) +5 S((Y*(1)) =0,

(2.30
Bk [f 2 (W,
f( | k(z)l o tr{#} (2.31)

and M, to avoid cluttering of notation; their meaning for
each case should be clear from the context. Notice that the
difference between the Hartree and lafgecase is rather
minor. The most significant difference is that, in the equa-
tions for the zero modes, the Hartree case displays a factor of
3 difference between the tree-level nonlinear term and the
contribution from the fluctuation as compared to the corre-
sponding terms in the largd case. The equations for the
mode functions are the same upon a trivial rescaling of the
coupling constant by a factor of 3.

The particular case witkp(t) =0 is of interest, since, by
symmetry, it is a fixed point of the dynamics of the zero
mode and corresponds to the case in which the phase transi-
tion occurs from the symmetric phase into the broken phase
in the absence of symmetry-breaking perturbations or initial
bias in the field. In this important case, the Hartree and large
N mode equations are identical after the coupling constant is
rescaled by a factor of 3, and our conclusions will ué-
versalin the sense that both the larjeapproximation and
the Hartree approximation describe the same nonperturbative
dynamics. In the larg®l limit we find the energy density to
be given by

8_1.2 A
N2

2M2)2 1

d3k W,
0+ 5] +3) 220 )§°°t'{2T}

. A
X[ P+ of OO -g (A0)%, (236

and (p+¢)/N has the same form as for the Hartree case
above[Eq. (2.20], but in terms of the mode functions obey-
ing the largeN equations. Again, it is straightforward to
show that the bare energy is covariantly conserved by using



55 OUT OF EQUILIBRIUM DYNAMICS OF AN ... 3377
the equations of motion for the zero mode and the mode Ill. RENORMALIZED EQUATIONS OF MOTION

lfil;:ict:tlons. Note that Eq(2.2]) also holds in the largd\ Renormalization is a very subtle but important issue in

A relation analogous to E@2.21) holds for the integrands g.raeratlonazl E)ackgroundELS,31—33. The fluctuation con-
of & ande+p in Egs.(2.19 and (2.20, namely, tribution (¢ (_x,t)), the energy, and the pressure all need to
be renormalized. The renormalization aspects in curved
. d space times have been discussed at length in the literature
e (t) +3Hao(t) = a[Mz(t)]|fk(t)|2- (2.39  [13,31-33 and have been extended to the Hartree and large
N self-consistent approximations for the nonequilibrium
Here, back reaction problem if25,30.
_ In terms of the effective mass term for the lafgeimit
e =F(D]2+ 02(D)|F(1)]?, given by Eq.(2.34 and the Hartree case, E(.16), and
, defining the quantity

o (t)=2 |fk(t)|2+m

| fi(t)]?

: (2.38 B(t)=a?(t)[M%(t)—R/6], (3.

Equation(2.37) will be used below to prove that the renor- we find the following largek behavior for the case of an
malized energy is conserved. arbitrary scale factom(t) [with a(0)=1]:

1 1 1 d .
11O~z * 3D [H%@—B(t)ﬂm[B(t)[ssm—2H2<0>]+a<t>m[a(t>s(t>]+Do +O(1K7),

If(D|2=— + = HZ(t)+m+3[M2(t)—me] +;{—B(t)z—a(t)zlé(t)+3a(t)é(t)B(t)—4é2(t)B(t)
RET %) T kad(t) 2a%(t) 2 8a(t)*k®
+2H2(0)[2a%(t) + B(t)]+ Do} + O(1/k®). (3.2
[
The constantD, depends on the initial conditions and is ()] 1[ 12
unimportant for our analysis. f a3 exp[Wk/Ti]—lzﬂ a2(0) [1+O(My/T))

Although the divergences can be dealt with by dimen-
sional regularization, this procedure is not well suited to nu- +O(n(My/T)+---1, (3.3
merical analysis. We will make our subtractions using an
ultraviolet cutoff constant iphysical coordinatesThis guar- ~ Where we have usef,>T>My. The first term in Eq(3.3)
antees that the counterterms will be time independent. Tharises from the Lka*(t)] in the asymptotic limit(3.2). For
renormalization then proceeds much in the same manner 48¢€ largeN case, we find the renormalization condition
in Ref.[25]; the quadratic divergences renormalize the mass N
and the I(_)ganthmlc terms renormalize cogpllng constant and- m2-+ 7B¢2(t)+ EgR+ 7B<¢2(t)>8
the coupling to the Ricci scalar. The logarithmic subtractions
can be neglected because of the couphirg10 2 Using Am A
the Planck scale as the cutoff and the inflaton mmassas a =ma(t,T)+ 7¢2(t)+§RR+ ?wz(t))R, (3.4
renormalization point, these terms are of order

710 .
NIn[Mp;/mg]<10"", for m=10° GeV. An equivalent state- with the effective time-dependent mass term in de Sitter

ment is that for these vaIue; of the coupling an.d inflator‘bpace time, and subtracted the fluctuation contrib )
masses, the Landau pole is beyond the physical cutoff
2

Mp,. Our relative error in the numerical analysis is of order :
10" 8: therefore, our numerical study is insensitive to the ma(t, T)=mg TTE_ZHt_l
logarithmic corrections. Though these corrections are funda- ¢
mentally important, numerically they can be neglected. 1 (= W.
Therefore, in what follows, we will neglect logarithmic <l/’2(t)>R:_2f kzdkcotf{—kHHk(t)F—
renormalization and subtract only quartic and quadratic di- 47 Jo 2T
vergences in the energy and pressure, and quadratic diver- O(k— )
gences in the fluctuation contribution. - 532 1H
Using the large&k behavior of the mode functions, we find 2k*a’(t)
the finite temperature factor to jhas] (3.5

ka2(1)

2(0)—a%(t)[M?(t) —R/GJ}) ,
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where « is a renormalization point, which for convenience

will be chosen asc=|mg|, i.e., the renormalized inflaton fq(0)=—, i‘q(O):—i wg,
mass. The Hartree case is similar but with a rescaling of the \/w—q
coupling constant by a factor of 3. We will fix the renormal-
ized coupling to the Ricci scalar to ig=0, thus ensuring wq=\o?+r?=1+ 7%0). (3.19
minimal coupling in the renormalized theory.
Assuming thafl; /T.~1, we see that the phase transition B. Hartree case

occurs within the first fewe-folds of inflation. When the

temperature falls below the critical value, the effective mass

becomes negative. As will be seen explicitly below, when n+3hy— 5+ n°+3g3(7) »=0, (3.19
this occurs, long-wavelength modes become unstable and

grow. Local thermodynamic equilibrium will set in again if

the contribution from the quantum fluctuations can grow and d? d q° 2

adjust to compensate for the negative mass terms on the W+3h5+§2m_1+377 +392(7) |fq(7)=0,
same time scales as that in which the temperature drops. (3.1
However, as discussed below, for very weak coupling the

important time scales for the nonequilibrium fluctuations are

of the order of[H/mé]In[l/)\], which are much longer than . _

the time it takes for the temperature to drop well below the fq(0)= \/_— fa(0)=—i Vog,

critical value to practically zero. Thus, the nonequilibrium “q

dynamics will proceed as if the phase transition occurred via

a “quench,” that is, with an effective mass term: 0= JZ+ 12— 1+3720). (3.17
2
m2g(1)=m26(t;—t) —m3e(t—t;), mi=m3 T_'2 - 1} >0. The overdots stand for derivatives with respectrt@nd, in
Te both cases,

Therefore we choose the initial conditions on the mode func- - wq 0(q—1)
tions att;=0 to be given in terms of the effective mass: g2 (7)= fo qquCO“‘{%[“q(Tﬂz

- 2¢%%(1)
2
M2=m2| =5 —1 +5¢2(0) l>1 (3.7 a’(t)
o TRTS 2 T X[ h?(0) = —~[M*t)-R/E] || (3.18
R

with A\g— 3\ for the Hartree case.

; P - 2
We introduce the following dimensionless quantities and  Numerically, the most significant contribution ta/%)

arises from low wave vectorg<10-20 in all of the cases

definitions:
studied [see Figs. () and XIf) below]. Since
H k Ti>Tc:\/24m2R/)\, g<<7, and My<<T; for these low mo-
T=mgt, h= m—R, q= m—R, 3.9 mentum modes, they are “classical” and we can approxi-
mate
T; - T; W 3.9
r:_' :_’ [ :_1 = y .
Te m' Y mg 97 8a? wg] 2T 2r [24
coth —=|~—=—~\/—. (3.19
N N 2 wg g VN
2(1)==—=¢%(1), g3(7)==—=(*(1))gr,
7(7) 2m§¢ ®,  gx(7) 2m§<¢/( )R In this approximation, the fluctuation contribution be-

(3.10  comes

fol1)= Vmefit), K= (3.1 _{qdg . 6a-1)
g3(1)=g g [fq(7)] ~ 2%

With ¢ér=0 andK=1 the equations of motion become )
the following. a“(t

s oTonng n2(0)- 25 )(Mz(t)—R/6)H,
R

X

A. Large N case

n+3hn—n+ n3+g3(7) =0, 3.1 — 24
nt3hy—7n+7°+gx(n) 7y (3.12 g:2rg\g=1_103\/§=0.124\/i. (3.20

d? d q?

— —_— ———— 2 =

d72+3hd7-Jr a’(r) 147 +gE(7)}fq(7) 0, The renormalized energy density and pressure for the
(3.13 largeN case are given by
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FIG. 1. (@) g=(7) vs 7 for 7(0)=7(0)=0,A=10"12 r=2,h=2. (b) )\[p(r)Jr,s(r)]/Zmﬁ1 vs 7 for the same values of parameters as
in (a). (c) H(7)/H(0) vs 7 for the same parameters as(@. (d) H(7)/H?(7) vs 7 for the same values as i@). (€) gS(q,7) vs q for
7=60. Same parameters as(@. (f) S(p,7)/S(0,7) vs p for 7=2. Same parameters as(@. (g) £(7) vs 7. Same parameters as(i@. (h)
In[|f(7[?] vs = for q=0,4,10. Same parameters as(@\
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e 2mi| 5% 1 g_qqu[.
N_T(7+Z(772—1)2+§J g [fa(D)I?

29 a(t) 6(g—1)B(1)
+w§(r)|fq(f)|2—a(t)4— R }
—%E(T)J, (3.21)

+e  2my|. 2dqf .. 2
pNS:TR[n%ﬂqwqq[lfq<r>|2+3aq2—m|fq<f>|2
4q  y(1) 6(q—-1)
(i et )| N
with
q2
wé(7)=a2(7_)—1+772(T)+g§:(7'), (3.23

and B(t) is given by Egq.(3.1). The coefficientsa(t),
B(1), y(t), and &(t) are obtained from the asymptotic be-
havior of g, (t) and o (t), Egs.(2.38—(3.2). We find

1 .
a(t)= W[az(t)+a2(t)M(t)2+ H(0)?],
1 . .
B(t)= 4m4—a(t)4{82(t) +2a(t)a(t)B(t)
R

—2[a%(t)+a%(t)M(1)*][B(t) ~ H(0)?]+ D},

_ 1 -2 2
’y(t)— W[B(t)+3a (t)+2H(0) s (324)

8(t)= . (t)4{a2(t)é(t)—5a(t)é1(t)B(t)+6é12(t)

-~ 12mfa
X[B(t)—H(0)?]—2H(0)?B(t)—2D,}.

For the Hartree caseettingN=1) the only changes are
that we takeg>,/4— 3g2/4 in the last term in the energy and
use the frequencies

q2
wé(7)=az—

(T)—1+3772(T)+3gz(7), (3.25

BOYANOVSKY, CORMIER, de VEGA, AND HOLMAN

. 1 d_
a(t)+6H7(t)=ma[M 1,

d
B(t)+6H (1) = [H(O)Z—B(t)]a[l\ﬂz(t)]-

(3.2

Using these relations and E@.37), it is straightforward to
show that the renormalized energy and pressure given by
Egs.(3.21) and(3.22) satisfy the continuity equation

2a’(t)

e+3H(p+e)=0.

A noteworthy point is that when the cutoff is kept fixed in
physicalcoordinates, upon taking the time derivative in the
integrals, there is a contribution from the upper limit of the
integrals. However, the subtractions guarantee that in the for-
mal limit when the cutoff is taken to infinity this contribution
vanishes. While the existence of the Landau pole beyond the
Planck mass restricts taking the cutoff to infinity in this ef-
fective theory, we find that any contributions from the upper
limit are numerically small. In our numerical evolution, the
energy density is covariantly conserved to 1 part if.10

From the evolution of the mode functions that determine
the quantum fluctuations, we can study the growth of corre-
lated domains with the equal time correlation function

S(x,)=(g(x,)) (0, 1)),
[ &k f(t)]? W
= f cotI-( 2_T|) , (3.27

(2m)3 2
which can be written in terms of the power spectrum of
quantum fluctuations:

S(k,t)zs(:]—?,

iK-x

S(q,T)=|fq(T)|ZCOtI'<(20—;,>.
(3.28

It is convenient to define the dimensionless correlation func-
tion

S(|x],)

1
S(p,7)= —mzR—: EZFJ qdgsinqp]S(q,7),

p=mg/X|.

3.29
We now have all the ingredients to study the particular
cases of interest.
IV. EVOLUTION FOR ¢(0)=¢(0)=0
A. Analytical results

We begin by considering the situation in which the expec-
tation value of the inflaton field sits atop the potential hill

and that the initial conditions on the mode functions arewith zero initial velocity. This situation is expected to arise if

given by Eq.(3.17).

the system is initially in local thermodynamic equilibrium an

In order to prove that the renormalized energy and preshitial temperature larger than the critical temperature and

sure fulfills the continuity equatiof2.21), we need to study
the properties of the subtracted terms in E(&21) and
(3.22. Inserting the asymptotic behavior ef(t), o(t),
and|f(7)|? for largek in Eq. (2.3, we find

cools down through the critical temperature in the absence of
an external field or bias.

The order parameter and its time derivative vanish in the
local equilibrium high temperature phase, and this condition
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is a fixed point of the evolution equation for the zero mode

of the inflaton. There is no rolling of the inflaton zero mode 1.5

in this case, although the fluctuations will grow and will be g(1)

responsible for the dynamics. t-23f
We can understand the early stages of the dynamics ana-

lytically as follows. For very weak coupling and early time

we can neglect the back reaction in the mode equations, ,.

which in both the largéN and Hartree cases become

d2 q2 0.2
P+3ha+m—l fq(T):O, (41) 0.25F

o N

1 ) 0 10 20 30 40 50 60

fq(0)=\/T, fo(n)=—iVoq we=Vg>+r?-1. @) -
! (4.2) °

The solutions are of the form 5 &
fq(m)=exd —3hrl{a(q)J,(2)+b(q)I_(2)}, 4

q 1 9 1
Z=Hexp[—hr], v=\pzt g 4.3

where the coefficienta(q) andb(q) are determined by the
initial conditions

i 3 h 10 20 30 40 50 60
__ ™ (199”2 al_ .9 (b) .
b=~ Shsivm| g JV( h) JV(h) (49 _
FIG. 2. (8 g3(7) vs 7 for 7(0)=75(0)=0, A\=10"12 r=2,
g g~ 3 hJ 9 L 9 ws h=0.1. (b) ¢((7) vs 7. Same parameters as (@).
A= Shgim| g *\h) IR/ @

where, again, we have taken the high temperature limit
Ti""TC>mR.
From this equation, we can estimate the valuergfthe
“spinodal time,” at which the contribution of the quantum
v fluctuations becomes comparable to the contribution from
) e»=3/2h7 (4.6  the tree-level terms in the equations of motion. This time
scale is obtained from the conditig® (75)~1:

For long timese""=q/h, these mode functions grow ex-
ponentially:

b(q) (2h

fq(’T)zb(q)J,V(Z)z m F

The Bessel functions appearing in the expression for the
modesf(7) can be approximated by their series expansion: 1 { \ﬁ f3h%2 T, ( MZ)

0

L =" 23" Vezrmmz T\ 1T 2

_2) e(v=3/2h7 (4.9

14

which is in good agreement with our numerical results, as
This is an expansion in powers gf/(vh?) and we conclude  will become clear belosee Figs. (), 2(a), and 3b)]. For
thatg3.(7) is dominated by the modes with< h. values ofh=1, which, as argued below, lead to the most
The integral forgX(7) can be approximated by keeping interesting case, an estimate for the spinodal time is

only the modes=<f \h, wheref is a number of order 1, and
by neglecting the subtraction term which will cancel the con-
tributions from high momenta. Numerically, even with the
back reaction taken into account, the integral is dominated
by modesq=f~10-20 in all of the cases that we studied

1

14

2
3 q__ﬂ +0

Holz 7

1
fq(T): E

T~ %|n[1/¢f]+0(1), (4.10

[see Fig. 1e)]. L . . . .
The contribution to the fluctuations from these uns,tableWhICh Is consistent with our numerical TeSL['we Fig. 1a)]._
modes is For 7> 75, the effects of back reaction become very im-

portant, and the contribution from the quantum fluctuations
N £3h32rm2 M2 competes with the tree-level terms in the equations of mo-
g3 (7)= \[ETZR( °>e(2v3>hf (4.8  tion, shutting off the instabilities. Beyonds, only a full
4m°Mg ’

Riliewyy
m numerical analysis will capture the correct dynamics.

R
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It is worth mentioning that had we chosen zero temperain the situation we consider here, witj= 7=0, the condi-
ture initial conditions, then the coupling—g [see EQ. tion that h=2 for A=10"' translates into
(3.20] and the estimate for the spinodal time would havem.~10'3 GeV , which is an acceptable bound on the infla-
been ton mass.

To understand more clearly whether or not the effect of
quantum fluctuations and growth of unstable modes during
the inflationary phase transition can provide a graceful exit
scenario, we must study in detail the contribution to the en-
that is, roughly a factor of 2 larger than the estimate forerdy and the equation of state of these quantum fluctuations.
which the de Sitter stage began at a temperature above the Although we are working in a fixed de Sitter background,
critical value. Therefore Eq4.10) represents amnderesti- the energy and pressure will evolve dynamically. A measure
mateof the spinodal time scale at which fluctuations become?f the back reaction effects of quantum fluctuations on the
comparable to tree-level contributions. dynamllcs of the scale factor is obtained from defining the

The number ofe-folds occurring during the stage of €ffective Hubble constant:”
growth of spinodal fluctuations is, therefore,

3h
Tg= 7In[1/)\]+0(1), (4.11

2 ()= oy o(7) (415
3h T)= 7 &(7T). .
N~ 5= In[ 1] (4.1 SMp,
Therefore, the quantities
or, in the zero temperature case,
H(T (Tt
- M) [fe(0) w16
A@~—54M1AL (4.13 H(0) (0)
and
which is a factor of 2 larger. Thus, it becomes clear that with
A~10"%? and h=2, a required number ofe-folds, :
Ng=~100, can easily be accomodated before the fluctuations H(7) - § p(7) (4.17)
become large, modifying the dynamics and the equation of H(7) 2 e(7)

state.

The implications of these estimates are important. Th&ive dynamical information of the effects of the back reac-
first conclusion drawn from these estimates is that dion of the quantum fluctuations on the dynamics of the scale
“quench” approximation is well justifiedsee Fig. 1a)].  factor. Whenever p(7)+e(7)#0, H(7)/H(0)#1, or
While the temperature drops from an initial value of a fewH(7)/H?(7)#0, the back reaction from the quantum fluc-
times the critical temperature to below critical in just a few tuations will dramatically change the dynamics of the scale
e-folds, the contribution of the quantum fluctuations needs dactor, and it will no longer be consistent to treat the scale
large number og-folds to grow to compensate for the tree- factor as fixed. WherH(7)/H(0)<1, the de Sitter era will
level terms and overcome the instabilities. Only for aend.
strongly coupled theory is the time scale for the quantum From this point onwards only a full treatment of the back
fluctuations to grow short enough to restore local thermody¥eaction,including the correct dynamics of the scale factor,
namic equilibrium during the transition. will describe the physics. The time scale on which the quan-

The second conclusion is that most of the growth of spintum fluctuations will begin to influence the dynamics of the
odal fluctuations occurs during the inflationary stage, andcale factor is of the order of the spinodal time estimated
with A\~10"'2 and H=mg, the quantum fluctuations be- above, since the contribution of the quantum fluctuations be-
come of the order of the tree-level contributions to the equacomes comparable to the tree-level terms and modifies the
tions of motion within the number oé-folds necessary to equation of state.
solve the horizon and flatness problems. Since the fluctua- Therefore, there is the possibility that the growth of quan-
tions grow to become of the order of the tree-level contribu-tum fluctuations can provide a graceful exit from the infla-
tions at times of the order of this time scale, for larger timegtionary phase, even when the zero matiees not roll The
they will modify the equation of state substantially and will parameters should be chosen in such a way so that the reg-
be shown to provide a graceful exit from the inflationary uisite 60 or moree-folds of expansion take place before the
phase within an acceptable numberesfolds. spinodal time. From the estimates provided above, this is

For r< 4, when the contribution from the renormalized relatively easy to accommodate with reasonable values of the
quantum fluctuations can be ignored, the Hubble constant igflaton mass and for the weak coupling that is usually as-
given by the classical contribution to the energy density. Insumed in inflationary models.
terms of the dimensionless quantities introduced above Eg.

(3.10, we have B. Numerical analysis
- We now solve the larghl set of equation$3.13 numeri-
N

A 1(,72_1)2, (4.14  cally, with the initial conditions (3.14), taking 7(0)
2 4 =7(0)=0.

y 16mmg
~ 3AMp
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The numerical code is based on a fourth-order Runges/h. The equal time spatial correlation function given by Eq.
Kutta algorithm for the differential equation and an 11-points(3.29 can now be computed explicitly. Figurgfll shows
Newton-Cotes algorithm for the integral, with a typical rela- S(p; 7)/S(0;7) as a function ofp for 7=2. We definethe
tive errors 10° in the differential equation and in the inte- correlation lengthé(7) as the value op for which the ratio
grals. We have tested for cutoff insensitivity with cutoffs is 1/e. Figure 1g) shows&(7); notice that the correlation
Omax~ 50,100,150 with no appreciable variation in the nu-length saturates to a valdg¢~)~1/h and that the correlated
merical results. The reason for this cutoff insensitivity is duerégions are of horizon size.
to the fact that only long-wavelength modes grow in ampli- We have performed numerical analysis varyingith the
tude to become nonperturbatively large, whereas the shorfame values ok and for the same initial conditions, and
wavelength modes always have perturbatively small amplifound that the only quantitative change is in the time scale
tudes. We have chosen=T,/T,;=2 as a representative for 92(7) to be of order 1. We find that the spinodal time
value and\=10"'2 The insensitivity on the value of the Scale grows almost linearly with and its numerical value is

cutoff confirms that the high temperature lin@ 19 is war- ~ accurately described by the estima#®10. The case in
ranted. which the Hubble constant iB=0.1 is shown explicitly.
As argued previously, fok~10"12 the cosmologically Figure_ 2a) §hpwsg2(7), w_hich demons_trates th_e oscillatory
interesting time scales for the spinodal instabilities to growPehavior similar to what is seen in Minkowski spg@s].
during, say, the first 60—108-folds of inflation occur for ~ The correlation lengti§() is shown in Fig. 2b); its asymp-
h=1, leading toH=mg=10"3 GeV, which is a phenomeno- totic value is again approximately given byhl/
logically acceptable range for the Hubble constant during the
inflationary stage. C. Late time limit
Eigure 1@ shows the contributio_nlgrom the quantum fluc-  £o¢ times > 7~40 (for the values of the parameters
tuations, g%(7) vs 7 for A=10""% Ti/Tc=2, h=2, a4 in Fig. 1 we see from Figs. (& and 1b) that the
7(0)=0, and7(0)=0. The quantum fluctuations, as mea- dynamics freezes out. The fluctuatig® (7)=1 and the
sured byg(7), grow to be of order 1 in a time scale mode functions effectively describe free, minimally coupled
7~40 which is the time scale predicted by the early timemassless particles. The sum rule
estimatg(4.10. Figure 1b) shows| p(7) +&(7) ]\/(2mp) vs
7 for the same values of Fig(d. Initially, p=—¢ and the —14g3(*)=0 (4.18
guantityp+ ¢ is zero. At the spinodal time, there is a change
in the equation of state, causipg- & to grow. However, for  is obeyed exactly in the largl limit as in the Minkowski
late times, the energy density and pressure are each regase[26].
shifted away such that the sum again approaches zero. We For the Hartree casg— 3g, but the physical phenomena
have checked numerically that the energy is covariantly conare the same, with the only difference that the sum rule now
served, obeying the relation+3H(p+&)=0 to our nu- becomesg3 (»)=1/3. We now show that this value is a
merical accuracy of 1 part in 10Figures 1c) and 1d) show self-consistent solution of the equations of motion for the

H(7)IH(0) andH(r)/Hz(r) vs 7, respectively. These fig- que functions, and thenly stationary solution for asymp-

ures show clearly that when the spinodal quantum fluctuatotically long times. o

tions become comparable to the tree-level contribution to the N the |at‘25 time limit, the effective time-dependent mass

equations of motion, the back reaction on the scale factolerm —1+7°+gZX in the equation for the mode functions,

becomes fairly large. At this point, the approximation of Ed-(3.13, vanished(in this case withy=0). Therefore, the

keeping a fixed background breaks down and the full selfmode equation$3.13 asymptotically become

consistent dynamics will have to be studied. At this time, the

inflationary stage basically ends singéis no longer con-

stant. This occurs for~40 giving about 8@&-folds of infla-

tion during the time in whicHH is approximately constant

and equal taH. Therefore, th|S new meChanism Of Spinodal The genera' solutions are given by

fluctuations, with the zero mode sitting atop the potential

hill, provides a graceful exit of the inflationary era without

any further assumptions on the evolution of the scalar field. fasy T)ZEX[{ _ Ehr
These fluctuations translate into an amplification of the g 2

power spectrum at long wavelengths fpe=h. To see this

clearly we plotgS(q, ) with S(q, ) given by Eq.(3.28 vs +c(q)N (ﬂem)

g for 7=60 in Fig. Xe). This quantity is very small, because %2 h

of the coupling constant in front, but fer= 74 it grows to be

of order 1 for long wavelengthfsee also Fig. (h)] and  whereJs;(z) andN3(2) are the Bessel and Neumann func-

vanishes very fast fog>10. The integral irg>(7) is domi-  tions, respectively. The coefficient{q) and c(q) can be

nated by these long wavelengths that become nonperturbgomputed for largeg by matchingfg™(7) with the WKB

tively large, whereas the contribution from the short wave-approximation to the exact mode functiofi{ 7) that obey

lengths remains always perturbatively small. This is thethe initial conditions(3.14. The WKB approximation to

justification for the approximations performed early that in-f,(7) has been computed in R¢25], and we find, for large

volved only the long-wavelength modes and cutoffs of ordem,

d2 2
P+3hd_r+

T
a*(7)

fo(7)=0. (4.19

d(q)Jsp

a -hr
R

, (4.20
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7q i s

d(@)= V35, 1—a(h+A)+O(q )
[arh (1)
+ ﬁ 1+0 a
(@)= \/%[1—'a<h+m+0<q2)

the coefficientsd(q) and c(q) from describing the Bunch-
Davies vacuum. These coefficients are completely deter-
mined by the initial conditions and the dynamics. This is the
_ reason why the fluctuation freezes at long times unlike in the
e'a/h (4.2)  free case in which they grow linear[jt2—14.
It is easy to see from EQq$3.21), (3.22), and (4.24) that

the energy and presure vanish for oo.
e—ia/h Analogously, the two-point correlation function can be

computed in the late time regime using the asymptotic results

obtained above. Inserting E¢4.20 for the mode functions

e-ialh

+i ;T_h 1+0 1) gla/h. (4.22  in Eq.(3.29 yields the asymptotic behavior
q q
S 1 foc das r(a);') 2h3 X
where (p,7) = 477, |, adasinap coth 77 ﬂ__qa|C(CI)| :
o 4.27
Asf dre""M?(7). (4.23
0 The asymptotic behavior in time of the equal time correlation

function is thus solely a function aof. The larger behavior

In the 7= fimit, we have, for fixedd, of S(r,+) is determined by the singularities ff(k)|? in

asy 7 2/h\3r2 the complexk plane. We find an exponential decrease
p—o0 e_Plg
which is independent of time asymptotically and explains S(p,t) ~ C p (4.28

why the power spectrum of quantum fluctuations freezes at . ) i

times larger than the spinodal. This behavior is confirmed'N€rep=i/¢ is the pole nearest to the real axis adds
numerically: Figure th) shows ||'ﬁ|fq(7')|2] vs r for SOme constant. Thus we see that the freeze—ou_t of the mode
q=0,4,10. Clearly at early times the mode functions growfunctions leads to the freeze-out of the correlation lergth
exponentially, and at times of the order of, when The result (_)f the nl_Jmerlca_LI analys!s is shown N Figg) 1

g2 (7)~1 the mode functions freeze out and become indef’lnd Zb,) which confirms this behawor_and proyldes the as-
pendent of time. Notice that the largestmodes have grown ymptotic value for§§ 1h . Frc_Jm these figures it IS als_o clear
the least, explaining why the integral is dominated bythat the freeze-out time is given by the expansion time scale

q<10-20 1/h. More precisely, the numerical values f§rcan be accu-
For asy.mptotically large timegZ is given by rately reproduced by the following formula obtained by a
numerical fit:

QIC(Q)IZ—q}, hé=1.02+0.2Irh+0.06h+ - - -.
a

_ ot da Yq
g3 ()=gh fo a cott‘(zj,)
(4.25 This situation must be contrasted with that in Minkowski
) ) ) ) space-time[28] where the correlation length grows as
Where_ 0r_1|y one term in the U\_/ §ubstract|0n survived in theg(T)%\/; during the stage of spinodal growth. Eventually,
=0 limit. For consistency, this integral must converge andiyis correlation length saturates to a fairly large value that is
be equal to 1 as given by the sum rule. For this to be the casgpically several times larger than the zero temperature cor-

and to avoid the potential infrared divergence in B829,  rg|ation length[28]. We see that in the de Sitter case the
the coefficientsc(q) must vanish ag=0. The mode func-  4omains are always horizon sized.

tions are finite in theg— 0 limit provided

gq—0 V. INFLATON ROLLING DOWN

c(q) = g3, (4.26
We now study the situation in which the inflaton zero
where( is a constant. mode rolls down the potential hill and consider initial con-

The numerical analysis and Figi€l clearly show that the ditions such that;(0)#0, 7(0)=0. In this case there will
mode functions remain finite ap—0, and the coefficienf  be two competing effects. One will be the growth of spinodal
can be read off from these figures. This is a remarkable refluctuations analyzed in the previous section, while the other
sult. It is well known that forfree massless minimally will be the rolling of the zero mode. Which effect will domi-
coupled fields in de Sitter space-time with Bunch-Daviesnate the dynamics is a matter of time scales. Before embark-
boundary conditions, the fluctuation contributi()cz&z()?,t» ing on a numerical analysis of these cases, it is illuminating
grows linearly in time as a consequence of the logarithmido try to understand under what conditions the dynamics will
divergence in the integralsl2—14. However, in our case, be driven by either the zero mode or the spinodal fluctua-
although the asymptotic mode functions are free, the coeffitions. We will analyze first the case of the lafyeequations
cients that multiply the Bessel functions of order 3/2 have alland compare later to the Hartree case.
the information of the interaction and initial conditions and The largeN equations are summarized by E¢3.12—
must lead to the consistency of the sum rule. Clearly the surf3.14). The important part of the mode equations that deter-
rule and the initial conditions for the mode functions preventmine the spinodal growth of long-wavelength modes is the
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term 7°+g>. We can obtain an approximate estimate forcorresponding initial condition.17) on the mode functions
the time scales on which the contribution of the zero moddor the Hartree case. The numerical code is the same as in the
becomes significant as follows. Let us consider the situatioprevious section with the same relative errors.

in which 7(0)<1 and neglect the nonlinear and back reac-

tion terms(the last two termsin the equation of motion for 1. Large N case

the zero mode, E3.12. At long times, but smaller thanthe  gigyures 3a) and 3b) show 5(7) andgS(7) vs 7 for the
time at which either the quantum fluctuation pbecome of values A=10"12 T./T.=2, 7(0)= 105, and ;7(0):0.

order 1, we find Clearly the dynamics is dominated by the fluctuations; the

()~ 7(0)er~32h7, (5.1  Z€ero mode grows but is always negligibly small compared to
g2 (7). The time scale at which3(7) grows to be of order

with v given in Eq.(4.3). The estimate for the time scale for 1 is about the same as in the cag€d)=0, and all the

the zero mode to be;~1, is approximately given by behavior for the mode functions, correlation length, energy

density, pressure, etc., is similar to the case analyzed in the

previous section.

Asymptotically, we find that the sum rule

2
Tz~ (2,=3)h

Nt
7(0)

Comparing this time_: scale to the spinoqlal time scale given —1+ p%()+g3()=0 (5.5
by Eq.(4.10), for which quantum fluctuations grow to be of
order 1, we see that when is satisfied to our numerical accuracy. This is the same as the
0)<A ¥4 5.3 situation in Minkowski space-time[25,26, and when

7 ' ' n# 0, this sum rule is nothing but the Ward identity associ-
the quantum fluctuations will grow to be of order 1 much ated with Goldstone’s theorem. The fluctuations are Gold-
earlier than the zero mode foF,> T, [for T;=0 the bound stone bosons, mlnlmally coupled, and the symmetry is spon-
becomesy(0)<\Y2]. In this case the dynamics will be taneously broken with a very small expectation value for the
driven completely by the quantum fluctuations, as the zer@"der pﬁra:jneter as fcan be readl Offl fI’OfT(]j Fhlga).S For d
mode will be rolling down the potential hill very slowly and 7> 75, the ynamics Ireezes comp etely an the zero mo €
will not grow enough to compete with the quantum fluctua-and the fluctuations achieve their asymptotic values much in
tions before the fluctuations grow to overcome the tree-level® same way as in the ca;;.tO studied in the [previous
terms in the equations of motion. In this case, as argueﬁec_t'on' Agaln, the coryelaﬂpn length bgcomes independent
previously, the largeN and Hartree approximations will be ©f ime with ﬁgw)”fllh Ljn a time scale gl\;]en by b g
completely equivalent during the time scales of interest. Because there is a damping term in the zero mode equa-

In

. (5.2

On the other hand, if tion, it is rgasongble to assume that asymptotically there will
be a solution with a constant value gf Then the Ward-
7(0)>\Y4, (5.4  identity 5()[—1+ 5?*()+g3()]=0 must be fulfilled.

In the largeN case, theonly stationary solutions aréi)
then the zero mode will roll and become of ordebdfore =0, gS()=1 or (i) 7(*)#0, —1+ p?(*)+g3 (=)
the fluctuations have enough time to grow to order 1=0. To have a consistent solution of the mode functions, it
[ 7(0)>\*2 for T;=0]. In this case, the dynamics will be must be that the effective mass terfn—1+ 5?()
dominated by the rolling of the zero mode and is mostly+ g3 ()] vanishes asymptotically, leading to the mode
classical The quantum fluctuations remain perturbatively equations for massless, minimally coupled modes which are
small throughout the inflationary stage which will end whenasymptotically independent of time as shown in the previous
the velocity of the zero mode modifies the equation of statgection[see Eq.(4.24]. Furthermore, from Fig. ®) it is
to terminate de Sitter expansion. clear thatg (7) remains constant at long times, again unlike
For 7(0)~\* [or (0)~\Y2for T;=0], both the roll-  the case of free massless fields with Bunch-Davies boundary

ing of the zero modandthe quantum fluctuations will give conditions in which case the fluctuation grows linearly in
contributions of the same order to the dynamics. In this cas&ime [12—-14.

the quantum fluctuations will be large for the long-
wavelength modes and the classical approximation to the 2. Hartree case

inflationary dynamics will not be accurate. Figure 3a) also shows the evolution of the zero mode in
Since the scenario in which(0)>\"* in which the dy- ; o
h(0) y the largeN and Hartree case. Although there is a quantitative

namics is basically driven by the classical evolution of the” . ; ; X ;
zero mode, has received a great deal of attention in the jdifference in the amplitude of the zero mode, in both cases it

erature, we willnot focus on this case, but instead analyzeIS extre_mely small and gives a negligible contrib_ution to the
numerically the cases in whichy(0)#0 but such that dynamics. In the Hartree c.ase, howevgr, there is no equiva-
7(0)=\V4 lent of_thezlargeN sum rule; theonly statlonary_solutlon for
7#0 is p°()=1, g2()=0. Such a solution leads to

mode equations with positive mass term and mode func-
tions that vanish exponentially fast far—« for all mo-

We have evolved the set of equations of motion given bymenta. However, whether the asymptotic behavior of the
Egs. (3.12 and (3.13 numerically with initial conditions Hartree solution is achieved within the interesting time
(3.14) for the largeN case, and3.15 and(3.16), with the  scales is a matter of initial conditions. For example in Fig.

A. Numerical analysis
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Large N FIG. 4. Comparison of zero mode dynamics for laigégsolid

curve and Hartree (dashed curve cases for 5(0)=103,
};(0):0, and all other parameters as in Figs. 1 and 2.

guishable from the case of Fig. 1.
For comparison, we show in Fig. 4 both cases for the zero
"""""""""""""""""" mode, for the same values of the parameters as in Figs. 1 and

3 but with the initial condition;(0)=10"3, 7(0)=0. This
is a borderline case in which the time scales for the evolution
] of the zero mode and quantum fluctuations are of the same
80 100 120 140 order and there is no clear separation of time scales between
(b) T these two competing terms in the evolution equations.
We see that in the largd case the zero mode rolls to a

~ FIG.3.(@ n(7) vs 7 for A =10"*% r=2,h=2, #(0)=10"°,  final amplitude which isO(1) and of the same order as
7(0)=0 for largeN (solid curve and Hartreddashed curvecases. g3,(e«) and the sum rule is satisfied. However, the Hartree
(b) g% (7) vs 7 for the same values of the parameters at@jnfor  case clearly shows the asymptotics analyzed above with
largeN (solid curvg and Hartregdashed curvecases. nu()=1, g2 () =0.

o o . This particular borderline case is certainly not generic and
3(a@ the initial condition is such that the time scale for would imply some fine-tuning of initial conditions. Finally
growth of the quantum fluctuations is much shorter than thgne case in whichy(0)>\Y4 (or A2 for T,=0) is basically
time scale for which the amplitude of the zero mode growsg|assical in that the dynamics is completely given by the

large and the nonlinearities become important. In the large|assical rolling of the zero mode and the fluctuations are
N case the sum rule is satisfied with a large value of theyways perturbatively small.

guantum fluctuations. In the Hartree case the equivalent sum
rule —1+377ﬁ|+392H=0 is satisfied for a very smaly,
and ag2,~1/3. The modes become effectively massless

and they stop growing. _ We have identified analytically and numerically two dis-
The equation for the zero modsee Eq.(3.19] still has  tinct regimes for the dynamics determined by the initial con-

an uncanceled piece of the nonlinearity2 % however, the  dition on the expectation value of the zero mode of the in-
derivatives and the amplitude of are all extremely small, flaton.

and though the zero mode still evolves in time, it does so (1) When 7(0)<\Y* (or \Y2for T;=0), the dynamics is
extremely slowly. In fact the Hartree curve in FigaBhas  driven by quantunfand thermal fluctuations. Spinodal in-
an extremely small positive slope asymptotically, and whilestapilities grow and eventually compete with tree-level terms
7n grows very slowly,gXy, diminishes at the same rate. In at a time scalex= — 3hIn[A]/2. The growth of spinodal fluc-
the case shown in Fig.(&, we find numerically that tyations translates into the growth of spatially correlated do-
7u ! ny~10"7 at 7=150. Before this time most of the inter- mains which attain a maximum correlation lengttomain
esting dynamics that can be captured with a fixed de Sittesize of the order of the horizon. For very weak coupling and
background had already taken place, and the back reaction bf=1 this time scale can easily accomodate enoegblds
the fluctuations on the metric becomes substantial, requirinfpr inflation to solve the flathess and horizon problems. The
an analysis that treats the scale factor dynamically. quantum fluctuations modify the equation of state dramati-
The conclusion of our analysis is that in the region ofcally and at this time scale can modify the dynamics of the
initial conditions for which the quantum fluctuations domi- scale factor and provide a means for a graceful exit to the
nate the dynamics, that is, faf(0)<A ' both largeN and inflationary stage without a slow roll.
Hartree cases give the same answer on the relevant time This nonperturbative description of the nonequilibrium ef-
scales. The figures fd¥((7)/H(0) are numerically indistin- fects in this regime in which quantutand thermalfluctua-

VI. DISCUSSION AND CONCLUSIONS
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tions are most important is borne out by both the laMgend  well-specified and physically reasonable conditions. In par-
Hartree approximations. Thus our analysis provides a reliticular, this result brings up the tantalizing possibility that
able understanding of the relevant nonperturbative, nonequwhen the scale factor is coupled to the inflaton dynamically,
librium effects of the fluctuations that has not been revealedn a full back reaction treatment, some of the standard results
before in this setting. concerning the time evolution of the inflaton could be modi-
These initial conditions are rather natural if the de Sitterfied in unexpected ways. The fact that we found massless
era arises during a phase transiton from a radiationfields whose fluctuations didiot grow linearly is an ex-

dominated high temperature phase in local thermodynamiffémely interesting result, especially in light of how the
equilibrium, in which the order parameter and its time de-guantum fluctgatlons become (;Iensny perturbations. We are
rivative vanish currently working on the formalism that allows us to couple

(2) When 5(0)>\" (or A2 for T,=0), the dynamics is gravity dynamically in a nonequilibrium way. Furthermore,

driven solely by the classical evolution of the inflaton zero't would be interesting to extend the program of reconstruc-

mode. The quantum and thermal fluctuations are always peP-()n of the_ _inflaton effectivg pote_ntie(lsge[34]) to _include
turbatively small(after renormalization and their contribu- the possibility of the dynamics being driven by spinodal fluc-

tion to the dynamics is negligible for weak couplings. The detu""_lt_'ﬁns andltnot by a tsljm;]v roll qf the mfla:contﬁerq rtnodet..
Sitter era will end when the kinetic contribution to the en- € results presented here raise some further interesting

ergy becomes of the same order as the “vacuum’ term. Thi uestions: How do these fluctuations contribute to the spec-
is the realm of the slow-roll analysis whose characteristicﬁum of primordial scalar d_en3|ty perturb_atlons? How should
and consequences have been analyzed in the literature %{f approac_h to cosmolagical perturbaﬂon_s bas_ed ona slow
length. These initial conditions, however, necessarily impIyrOI be modified to the case studied here in which spinodal

some initial state either with a biasing field that favors afluctuatlons,noF a slow rpll, dr|vel the dynamps. We are
nonzero initial expectation value or that in the radiation-cu”ently studying these issues within the consistent nonper-

dominated stage, prior to the phase transition, the state wdyrbative, nonequilibrium program presented in this article.

strongly out of equilibrium with an expectation value of the
zero mode different from zero. Although such a state cannot
be ruled out and would naturally arise in chaotic scenarios, D.B. would like to thank the NSF for partial support
the description of the phase transition in this case requirethrough the Grants Nos. PHY-9302534 and INT-9216755,
further input on the nature of the state prior to the phasehe Pittsburgh Supercomputer Center for Grant No.
transition. PHY950011P, and LPTHE for warm hospitality. R.H. and

We have learned from this work that nonequilibrium ef- D.C. were supported by U. S. DOE Grant No. DE-FG02-91-
fects can alter scalar field dynamics in a dramatic way, undeER40682.
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