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Non-Gaussian spectra in cosmic microwave background temperature anisotropies
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Gaussian cosmic microwave background skies are fully specified by the power spectrum. The conventional
method of characterizing non-Gaussian skies is to evaluate higher order momemigdimé functions, and
their Fourier transforms. We argue that this method is inefficient, due to the redundancy of information existing
in the complete set of moments. In this paper we propose a set of new statistics or non-Gaussian spectra to be
extracted out of the angular distribution of the Fourier transform of the temperature anisotropies in the small
field limit. These statistics complement the power spectrum and act as localization, shape, and connectedness
statistics. They quantify the generic non-Gaussian structure, and may be used in more general image-
processing tasks. We concentrate on a subset of these statistics and argue that while they carry no information
in Gaussian theories, they may be the best arena for making predictions in some non-Gaussian theories. As
examples of applications we consider superposed Gaussian and non-Gaussian signals, such as point sources in
Gaussian theories or the realistic Kaiser-Stebbins effect. We show that in these theories non-Gaussianity is
only present in a ring in Fourier space, which is best isolated in our formalism. Subtle but strongly non-
Gaussian theories are also written down for which only non-Gaussian spectra may reveal non-Gaussianity.
[S0556-282(197)04306-3

PACS numbds): 98.80.Cq, 98.70.Vc, 98.80.Hw

I. INTRODUCTION In other cases the tests were applied only to extremely non-
Gaussian signals, or the eroding effects of Gaussian noise
Gaussianity plays a central role in current theories ofwere not explored15].
structure formation1]. Inflationary theories are normally in- These tests, however, are by no means exhaustive. One
voked to justify Gaussianity2] but, historically, simplicity can always devise a non-Gaussian theory which evades de-
was perhaps what first motivated this assumption. As datéection by everyone of these tests, even when the hard reali-
have started to flood cosmology, however, the problem ofies of experiment do not fully erase signal non-Gaussianity.
testing Gaussianity has reappeared both in cosmic microfhe only way to fully ascertain Gaussianity is to apply to
wave backgroundCMB) analysis[3], and galaxy survey data a comprehensive formalism for encoding non-
analysis[4]. A trend in data analysis has been established>aussianity in its broadest generality. Thepoint correla-
which relies on Gaussianity and a lingering feeling existstion function provides such a framework, and it has long
that the whole thing might fall through should the data provebeen used in cosmolodyl6] and other branches of physics
to be non-Gaussian in the first place. Furthermore, structurl 7]. Computing then-point function for largen is, however,
formation theories exist which in one way or another predicta practical impossibility. Taking the Cosmic Background Ex-
non-Gaussian primordial fluctuations. Cosmic strings andplorer (COBE) data as an exampl(&], only the three-point
textures[5] provide two such examples. Pinning down whatfunction has been computed, and even in that case attention
precise non-Gaussian predictions such theories can make isn@s restricted to the pseudocollapsed and equilateral slices.
task crying for a comprehensive formalism for quantifying In Sec. Il we start off by showing how thepoint corre-
general non-Gaussianity. Finally, even if the “signal” is lation functions forn up to anyN>3 contain redundant
Gaussian, it may happen that a non-Gaussian noise compHormation. For Gaussian fields all tiNe>2 correlators can
nent is present, e.g., unresolved point soufégsA precise  be determined from the two-point correlator. We show that
prediction of their observational properties could then assisgeven for the most general non-Gaussian theory information
in their subtraction from data before the final theoreticalencoded in theN>3 correlator is dependent on information
analysis is performed. in lower order correlators. Furthermore, we show that one
One is, therefore, left with the problem of how to test can never be sure that by truncating the infinite correlator
Gaussianity, and how to quantitatively specify the most genseries at somé&l one has all the information about the most
eral non-Gaussian theory. Several tests for non-Gaussianiggeneral non-Gaussian theory. Strongly non-Gaussian theo-
have been proposed in the past. Peaks’ statifTi@, topo-  ries may be written down which have Gaussian moments up
logical tests[9,10], the three-point correlation function to any given ordeN. The n-point function formalism then
[3,11], skewness and kurtosj42,13, and temperature and appears to have two drawbacks: redundancy and impractical
temperature gradient histogrami$4] are the most topical complexity. We shall argue that these two drawbacks are due
examples. In some cases these tests were only shown to beeach other, and that they may be eliminated altogether.
applicable for rather artificial non-Gaussian distributi@®k In Sec. lll, we propose an alternative formalism for com-

0556-2821/97/5%)/335815)/$10.00 55 3358 © 1997 The American Physical Society



55 NON-GAUSSIAN SPECTRA IN COSMIC ... 3359

prehensively encoding non-Gaussianity. In the guise to bénodesa(k), and which are invariant under rotations and
used in this paper the formalism lives naturally in Fouriertranslations. We show how the Fourier transform of the
space, and we have chosen to highlight non-Gaussianiti-point correlation function is made up ofy-plane multi-
other than that in the phases. The idea of looking for nontinear invariants. One may then count the number of degrees
Gaussianity in Fourier space has been disfavored in the pasjf freedom in the Fourier modes for a given sky coverage.
It is argued that localized non-Gaussianity in real sgaceh By doing so we show that the-point correlators fon up to

as what is produced in cosmic string or texture scengriosy certainN contain information which can only be redun-
will be obscured in Fourier space due to the central limitgant. This will set the tone for the next section: trying to do

theorem. It is also often assumed that a Gaussian field can kgvay with the redundancy and complexity of thepoint
accurately modeled as the Fourier transform of a field whosegrrelation function.

randomness is solely in the phases. However, as we argue in
Sec. Il, looking in Fourier space allows us to probe the non-
Gaussian nature of the field at specific scales, a fact which is
particularly useful when one can model the field as combi- We consider CMB data in the small angle limit, when
nation of a Gaussian field which dominates on certain scalegrojecting onto a planar patch is suitable. Since data may
and a non-Gaussian field which dominates on others. Ancome in either real or Fourier space, we hope to address the
other very strong reason for considering Fourier space statigoblem of non-Gaussianity in terms of these two descrip-
tics seriously is the fact that the highest resolution measuretions. In this paper, however, we will concentrate on the
ments of CMB anisotropies will be performed by Fourier space description, and thus produce statistics better
interferometric devices, which naturally measure quantitiesuited to interferometers. We shall use the convention
in Fourier spacdthe “uv plane”).

Therefore, ignoring prejudice, in Sec. Il we define a set AT(X) — f %a(k)eik-x 1)
of “non-Gaussian spectra” in terms of the Fourier transform T 2w '
of the temperature anisotropies. Our definitions follow up the
proposals inf18], but they are substantially more practical. Then-point correlation function is defined as the expectation
We then characterize the probability distribution function ofvalue of the product of any temperatures. Translational and
these spectra in Gaussian theories and in Appendix B give #@tational invariance make redundant the position of one of
physical interpretation of the qualities which they measurethe points and the direction of another. Hence, thgoint
We set these quantities up so that while they contain all théunction may be written as a function ok{,xs, ... X,) in
information degrees of freedom, they do away with any rethe form
dundancy. As a result, we come up with a formalism which
shares with then-point correlators the property of being C (%, X )= AT(x1)  AT(Xy)
comprehensive, but with the advantage that it is computable 278 e T 77T '
and nonredundant. Within the large set of statistics consid-
ered in this paper we concentrate on a set of statistics whichhe two-point correlation function and its Fourier transform,
only use the information in the absolute value of the Fourietthe angular power spectru@(k) are well known. They fully
modes. These are grouped in two types of spectra: the ringpecify Gaussian fluctuations. For Gaussian fluctuations non-
spectrum and the inter-ring spectrum. For the sake of maxivanishing higher order correlation functions exist, but they
mal originality we leave to a future publication the investi- are redundant as they can be obtained from the two-point
gation of the role played by the more prosaic phase informaeorrelation function. This is not the case in non-Gaussian
tion. theories, for which thea-point correlators act not only as a

In Sec. IV we consider three different applications. First,non-Gaussianity indicator, but are also an indispensable fluc-
we consider the case of a point source which is obscured byation qualifier, as much as the power spectrum.
Gaussian fluctuations. Second, we consider the realistic tem- The angular power spectrum may be generalized for
perature anisotropy induced by a cosmic string, includingn>2 by Fourier analyzing tha-point function
both the post-recombination Kaiser-Stebbins effect and the

A. The n-point correlation function and its transform

2

Gaussian fluctuations at the surface of last scattering. FIE"(X5,X3, ... X,)
nally, we construct a strongly non-Gaussian theory, a theory
which produces skies which have a zero probability of oc-  _ dko % n ik X iKn-
- ' " =| —p - C(k21 ,kn)e 2X2. . . @'Kn"*n,
curring in a Gaussian theory. To all these examples we apply (27r) 2
a battery of conventional statistics and show that they evade &)

any detection of non-Gaussianity. We show, however, that
our statistics reveal the non-Gaussian nature of the skies. In general,C(k) is more predictive tha©(x), as it tells us

In Sec. V we conclude by discussing the limitations of o\ much power exists on a given scale. In the same way
these statistics and their possible extensions. one may expect the transfor@(k,, . .. k,) to be more
predictive than its configuration space counterpart, as it tells
us how much non-Gaussianity exists on each scale. We shall
callC"(k,, ... k,) anon-Gaussian spectrum. One may also

We start by reviewing then-point correlation function define Gaussian spectra as correlators ofatle modes:
formalism. We then introduce the concept wf-plane in-
variants, that is quantities which are made up of Fourier (a(ky)---a(kp))y=8(ky+ - -ky)C"(ky, ... kn), (4

IIl. THE n-POINT CORRELATION FUNCTION
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where thes function and functional form o€" result from
the requirements of translational and rotational invariance
[see Eq(5) below]. Using Eq.(1), one may easily check that
the two definitions3) and (4) of C"(k,, ... k,) agree.
Non-Gaussian spectra are more complicated than power
spectra, since they are functions of many variables.nAs
increases, one is left with the problem of how to pack so
much information. We will, however, show that most of the
information encoded i€"(k,, . .. k,) is largely redundant, n=2 n=3
even for the most general non-Gaussian fluctuation.

FIG. 1. The most general second order invariéaftt) is the
angular power spectrum, obtained by multiplying the mkdeam-
plitude with the modek,= —k; amplitude, and averaging over di-
rections. The result can only dependlarOn the right we show one

Here, we show an equivalent route to non-Gaussian spegossible configuration giving a third order invariant, the one where
tra. This route draws on work ifil8], where the spherical all three vectors have the same moduli. Then, for daei three
harmonic Coefl‘icientﬁl,’f1 are used to define quantities other vectors are determined from the requirement that they must add up
than theC, spectrum which are invariant under the three-to zero. Averaging over directions produces an invariant.
dimensional3D) rotation groupm spectra and inter- cor-
relators appear as supplementary information. These spectvariant for eachk is the angular power spectrum. Given a
are multilinear combinations of th&, which can be gener- Vvectork, the requirement that the second vector in the bino-
ally written as sums of products of Clebsch-Gordan coeffinial adds to zero fully determines the second vector. Aver-
cients. It can be shown that they act as a decomposition ¢iging over all rotations makes the direction of the first vector
then-point function on the sphere in a suitable base made ufirelevant. The invariant6) then reduces to
of Legendre polynomials and spherical harmonics. These
spectra are trivial to implement on a computer, but are for- 12(k)= 1 ; la(k)|2. @)
mally quite complicated for large’. An explicit expression NIK=k
for the quadrupolen shape was given if18] with a sug- . . . . ) )
gested application to texture scenarios. Fortunately, at ver?or the third order invariants one now has an invariant which
high / one may simply reformulate the problem in terms ofdepends on a vector and a scalar. Independent invariants are
the Fourier representation of small patchesspectra and parametrized by the thlro_l vector an_d the relative _dlrectlon of
inter-~ correlators then become very simple. They reappea‘he s_econd vector. The first vector is fully determined by the
as up-plane invariants, that is quantities made up of thefequirement that the three vectors add to zero. The actual

a(k) modes, and which are invariant under 2D rotations andlirections of the second and third vectors are made redun-
translations(the projected 3D rotation grop de}nt by tak.lng the circular average. A. particularly interesting

The non-Gaussian spect@(ks, . .. k,) are invariant third order invariant may be obtained if one dgmands that the
under rotations and translations. This requirement may alsfré€ vectors used all have the same moduli. Then, for each
be imposed on any set of qualifiers of a random field which¢ Only one invariant exists, the one obtained with the con-
statistically satisfies these invariances. Under a rotailgn figuration plotted in Fig. 1.

and a translation along a vectorthe Fourier components  Diagrammatically, one may then write down the most
transform as in general invariant for any order, rapidly bumping into un-

wanted proliferation. The procedure, however, is very
Ry(a(k))=a(Ry(k)), T.ak)=e*"'a(k). (5)  simple, and reduces to E() and the various independent
diagrams it allows. The most general multinomial invariant
A systematic way to generate invariants out of #fk) isto  of degreen is a function of k;,ks, ... k,). Hence, the
consider multilinear combinations, that is sums of productsion-Gaussian spectra defined in the decomposition of the
of n modesa(k) (monomial3. For these to be invariant un- n-point correlation function correspond to the most general
der translations it is necessary that the veckpssed in each multinomial invariant one may construct out of th¢k).
monomial add up to zero. To achieve invariance under rota-
tions one must then, for each monomial, average over all  C. Exposing the redundancy of then-point function
possible rotations of thk; configuration used. One may for-
mally write the most general multilinear invariant of order
n as

B. uv-plane multilinear invariants as components
of the n-point correlation function

The approach just devised has the advantage of allowing
us to expose the redundancy of thooint correlation func-
tion. Let us start by counting the number of degrees of free-

h dom present in the Fourier modes produced by a given mea-
|(n>:i2 IT ack) 6) surement. If we had full sky coverage then there would be

N7 =1 ' 2k+ 1 modes per unit k. Finite sky coverage has the effect
of correlating neighboring modes among these, thereby re-

in which the vectork; considered in each product must add ducing the number of independent modes per unik @b

up to zero and always take the same configuration Ny 2kfg,, if fg, is the fraction of sky covered. An alternative
the total number of possible rotations of the configurationFourier space discretization is then required, so that the
should Fourier space be discretized. Fer2 the only in-  modes in the new mesh are quasi-uncorrelated, while encod-
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ing all the statistical information in the original modes. This recognize as very Gaussian. All these maps, Gaussian look-
may be done with a so-called uncorrelated mesge[19]). ing or not, have the same probability in Gaussian theories. In
There is some arbitrariness in where the new mesh is laichon-Gaussian theories, on the contrary, the probability of a
This arbitrariness allows us to be sloppy with the invariancegiven map depends on more than its power spectrum. Hence,
imposed in the previous section, since any vektaray now  Within the set of maps considered above, it may happen that
be placed anywhere in the uncorrelated mesh cell. Hence, tiBe non-Gaussian-looking map is now considerably more
angles required by configurations such as the ones in Fig. Rrobable than the other maps. The point we wish to make is
should be seen as flexible, as far as the mesh resolution fRat non-Gaussianity arises not from structured maps being
concerned. less likely in Gaussian theories, but from structured maps
Let us now consider a generitk=1 ring containing Peing more likely in non-Gaussian theories. o
Nying™ 2k f i, Uincorrelated mesh points. Since there are three This seemingly innocent remark has two important impli-
degrees of freedom in rotations and translations one may n&@tions. First, it implies that the natural variables for non-

build more thanN,;,,— 3 independent invariants per unit of Gaussianity spectra should be uniformly distributed in

number of multilinear invariants making up thepoint func-  theories, the same variables should have peaked distribu-

tion transform is vastly larger. Even if we restrict ourselvestions. Hence, non-Gaussian spectra should carry no informa-
to invariants made up only of modes in each ring, the numilion whatsoever in Gaussian theories, but they should be
ber of invariants is 1 fom=2,3 (see Fig. 1, then, for highly predictive at least in some non-Gaussian theories.
n>3, of orderO(N"-3), if Nring> 1. A second implication is that disproving Gaussianity on its

ring . - . .
The situation gets worse if we consider inter-ring multi- own merits is a contradiction in terms. One can always dis-

nomial invariants. Let us now consider a square in FourieP™V€ @ given non-Gaussian theory on its own merits by

space withN, X N,, uncorrelated mesh points. Then, for large measuring a non-Gaussian spectrum and finding it to be
N, the number of multilinear invariants of order in all away from the theoretically predicted ridge. However, any

; ; n-1 ; non-Gaussian spectrum measurement is equally probable in
gg?nstsls (())rf] ?;ie::(c))gt\:gry) 'iggfgrl:jgz?\lrz(;f independent mesh Gau;sian theo_rieg, anq so it can never be ysed as an evidence
' ' . P against Gaussianity. Disproving Gaussianity is then a matter
Hence_,_ there_mus_t be an alge_bralc de_pendence betyveen & pendent on the available competing non-Gaussian theories.
the multilinear invariants. The information encoded in the; /- o~ c \res a non-Gaussian spectrum spot on the predic-
higher order correlators must, therefore, repeat itself in any. o of a well motivated non-Gaussian theory then this is a
theory, Gaussian or not. We, therefore, argue that th

. . . : I gtrong evidence in favor of that non-Gaussian theory. One
n-point func_t|o_n formalism, while comprehens_we, IS not SyS'may simply argue that the non-Gaussian theory has predicted
tematic. Th's IS not to say that some truncation .Of Fhe COMihe observation with much larger probability than the Gauss-
elator series might not be useful as a non-Gaussianity test. |
particular, we feel that ring multinomial invariants, such as
the cubic one depicted in Fig. 1, may be useful non-

Gaussianity tests.

ian theory. Pedantically, the observation has not disproved
Gaussianity. However, it has discredited Gaussianity mas-
sively in the face of the more predictive competing non-
Gaussian theory.
It is under the requirement that non-Gaussian spectra
IIl. RING AND INTER-RING SPECTRA ought to be uniformly distributed in Gaussian theories that
We now propose an alternative packaging for the infor-We Now proceed to define no.n-Gaussian spectra. Consider a
mation in Fourier space. Comparing it with thepoint trans- "9 of theuv plane whereN, independent complex modes
form, it is simpler, does away with redundancy, and has a(ki) =Rea(k))]+ilm[a(k;)] live. In Gaussian theories
immediate physical interpretation. We divide the plane in ~ these are distributed as
Ak=1 rings whereN, = 2kfg, independent modes lie. Out

of these we may buildN,— 3 invariants. In whatever we do F(Rea(ki)],Imla(ki)])

we shall always make sure that the formalism proposed pro- 1 1 M

duces the power spectru@(k) as the first of these quanti- = exp{ _(_E Rea(ki)]
ties. The otheiC(k,m), for m=1,... N,—4, are the ring (2ma?)Nei? 20554 { :

spectra. We shall not consider multilinear invariants, but
shall search for alternative prescriptions. On top of these, for +Im2[ack)]}
each two adjacent rings there will be three invariants, the !
inter-ring correlators. Given the arbitrariness of the Fourier
mode mesh exact positions we may also be justified in buildwherem,= N, /2. First, separate thi, complex modes into
ing simply N, noninvariant quantities for each ring, as long m, moduli p; andm, phases;:
as we know how they transform. We found the latter attitude
more practical, but shall give in Appendix A the correct pre- R a(k,)]=picosp;, Im[a(k;)]=p:sing, . (9)
scription for building properly invariant quantities.

For a Gaussian theory the probability of a given map derne jacobian of this transformation is
pends only on the map power spectrum. Consider then a very
non-Gaussian map by which we mean something we visually m
recognize as very structured. Consider also various other d(Refa(ki)],Imfa(ki)]) :l‘i pi (10)
maps with the same power spectrum, but which we visually d(pi i) E

: ®
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The {p;} may be seen as Cartesian coordinates which w&he factorization chosen shows that all new variables are
transform into polar _coordinates. These consist of a radiugi\dependent random variables for Gaussian theoriésis a

r plusm,—1 anglesé; given by Xﬁk distribution, the “shape” variables,; are uniformly dis-
i_1 tributed in (0,1), and the phases are uniformly distributed
= COSH: ing. in (0,2m).
P rcosﬂ,jﬂo sind; (1) The variabless, define a non-Gaussian shape spectrum,

_ _ thering spectrum They may be computed from ring moduli
with sinfy=cosi, =1. In terms of these variables the radius p; simply by
is related to the angular power spectrum by
C(k)=r?/(2m,). In general, the firstn,— 2 anglesd; vary
between 0 andr and the last angle varies between 0 and
2. However, because ali; are positive all angles are in

(0,7/2). The Jacobian of this transformation is They describe how shapeful the perturbations are. If the per-
turbations are stringy then the maximal moduli will be much
1 i larger than the minimal moduli. If the perturbations are cir-
=rk |=Hz sif™™'6; 1. (120 cylar, then all moduli will be roughly the same. This favors
some combinations of angles, which are otherwise uniformly
distributed. In general, any shapeful picture defines a line on
the ring spectrun®; . A non-Gaussian theory ought to define
a set of probable smooth ring spectra peaking along a ridge
of typical shapes.

We can now construct an invariant for each adjacent pair
in  which r; is the radius of the shade Ofrings, solely out of the moduli. If we order the for each
(mk_i+1)_dimensiona| Sphere obtained by keeping fixedring, we can |dent|fy the maximum moduli. Each of these
all p; for j=1,...j—1: moduli will have a specific direction in Fourier space; let

Kmax and k' . be the directions where the maximal moduli

max
= \pi ot +pm. (14)  are achieved. The angle

mk*i

(19

-2, . 2
pit -+ pm

2 2
(Pi+l+"'+pmk

(9(.017 e 1Pmk) M1

T

Polar coordinates i, dimensions may be understood as
the iteration of the rules

pi=TiCOS;, i _1=r;sind;, (13

One may easily see that this is how 3D polars work, and also o1 ,
that the transforn(11) follows this rule. Hence, one may pk,k")= ;a”gkmax’kmax) (20)
invert the transform(11) with
will then produce an inter-ring correlator for the moduli, the
pi inter-ring spectra This is uniformly distributed in Gaussian
5\/ 2, 2 4 . 12 (19 theories in t1,1). It gives us information on how connected
PitPita Pm, the distribution of power is between the different scales.
fori=1 me—1 ‘We Ihth(aj, therefore, del;ined_ a;)lgar;sizr:;}atiﬁ? from the
L . original modes into a set of variabl¢s, 8, ¢,#}. The non-
The total ~Jacobian of the_ t_ransformauon from Gaussian spectra thus defined have a particularly simple dis-
{Refa(k)],Im[a(ki)]} to {r.6; i} is just the product of i ion for Gaussian theories. They also comply with the
Egs.(10) and(12). Hence, for a Gaussian theory one has the itormity requirement we have placed on non-Gaussian
distribution spectra in the discussion at the start of this section. We shall
2 call perturbations, for which the phases are not uniformly
rNk_leXF{ - <_2) distributed, localized perturbations. This is because if pertur-
20y bations are made up of lumps statistically distributed but
(2mwo?)Nk’2 with well-defined positions, then the phases will appear
highly correlated. We shall call perturbations, for which the
~ =N i ring spectra are not uniformly distributed, shapeful perturba-
X Iﬂl cogi(sing)™ " (18)  fions we will identify later the combinations of angles
which measure stringy or spherical shape of the perturba-
tions. This distinction is interesting as it is, in principle, pos-
gsible for fluctuations to be localized but shapeless, or more
surprisingly, to be shapeful but not localized. Finally, we
shall call perturbations, for which the inter-ring spectra are

6;=arcco

F(r:éi 1¢i):

mk—l

In order to define'éi variables which are uniformly distrib-
uted in Gaussian theories, one may finally perform the tran

formation on eacl¥, :

0':SinNk—2i("é') (17) not uniformly distributed, connected perturpations. This
' ' turns out to be one of the key features of stringy perturba-
so that for Gaussian theories one has tions. These three definitions allow us to consider structure
in various layers. White noise is the most structureless type
rNk—le—r2/<2a§) M of perturbation. Gaussian fluctuations allow for modulation,
F(r,0,¢1)= o3 Ny ><1><_H o (18  that is a nontrivial power spectru@(k), but their structure
2N (me—1)loy =17 stops there. Shape, localization, and connectedness constitute
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FIG. 3. Histograms of the temperature distributions for the non-
Gaussian maysolid line) and purely Gaussian map with the same
power spectrunfdashed ling

tics only involving thep’s and show that, in these cases, they
are good non-Gaussian indicators.

In all these examples we will consider maps with 460
pixels with no noise; it has been customary to apply the
various standard statistics to the raw non-Gaussian signal
superposed with small scale Gaussian noise, but no attempt
o ) . has been made at studying the effects of large scale Gaussian

FIG. 2. The non-Gaussian signiabp) and the full signal, with  f|ctuations. As we will argue there are physically motivated
the Gaussian superpositiotbottom) for a=3, k.=0.1, and  reas0ns for doing so. With the intent of keeping the different
kg=5. In the map on the top the skewness is 2.9 and the kurtosigtrecis separate we will analyze this latter case. The addition
i&}tts:g,t%eggnap on the bottom the skewness-i8.02 and the noise should be studied when considering specific obser-

e vation strategies.

. We will quote all values of the wave numb&r using
the three next levels of structure one might add on. Standargncorrelated mesh units, i.e., following the discussion of Sec.
visual structure is contained within these definitions, but they; \ve will start labeling the wave numbers in unit intervals

allow for more abstract levels of structure. We will Show in ,om the smallest up to the largest. The width of the rings
Appendix B what these concepts mean with reference to Viare, thereforeAk=1.
sual structure.
In the formulation above there is a minor flaw which we
found inconsequent, given the practical advantages gained. ~ A- Unresolved point source on a Gaussian signal
This flaw is spelled out and corrected in Appendix A, but we  As a first application of these statistics, let us consider a
have chosen not to do so in the main body of this paper. Itsaussian signal when non-Gaussian foregrounds are present.
Appendix A we also mention what can be done with thewe know that this is the case in real CMB measurements and
phasesp. This is, however, outside the scope of this paperihere exist a series of techniques which allow one to separate
where we have decided to investigate the practical applicahe two signals, using a combination of spectral and spatial
tions of the less investigated ring and inter-ring spectra.  information. A more difficult situation occurs when one con-
siders unresolved point sources. In this case, either one uses
I\V. APPLICATIONS addiFionaI information about the patch Qf the sky one is ob-
serving[6] or one has to make assumptions and the best one
Historically, much attention has been paid to the non-can achieve is to subtract them on a statistical basis.
Gaussianity in the phases. As mentioned above, it has Let us consider a simple case which illustrates the weak-
frequently been assumed that the prescription of randomess of current methods for checking non-Gaussianity but
phases in Fourier space leads to Gaussian perturbations. Etiighlights the strengths of our technique. Suppose that the
dence of peculiar behavior of the phases was shown in ndield is sufficiently small for only a small number of point
merical simulations of CMB anisotropies from cosmic sources to be present. Also, suppose that the signal is Gauss-
strings[24,23. Little attention has been given to tipés. In  ian and that it has reached the Silk damping tail. The probed
the following three applications we will focus on the statis- spectrum will then go to white noise at the scale of the field
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r FIG. 4. Histograms of the
I ] skewnesgleft pane) and kurtosis
(right pane) for the non-Gaussian
K 1 map(solid line) and purely Gauss-
1 ian map with the same power

20 _ spectrum(dashed ling

size, but converge to the raw spectrum otherwis®8. A  Gaussian field, the density of peaks over a threshaoid
fitting formula for the power spectrum of the Gaussian signalhere o= ([ 5T/T|?), is approximately given by
is

6

1/2
;) Y2 pexp( — u?l2)

—K2 1 {
= N =———max 1,
Pgy(K) aexy{ ?kg) . (21 peaké 4) 477\/59,%
On top of this, one must either firmly believe that the
signal is Gaussian, or that the signal is non-Gaussian, but of
a distinctively different shape. Now, let a single unresolved

source be present in the field. Let the source be perfectiyhere  and 6, are dimensionless ratios of the first three

M
o oty 2

circular, and have a Fourier space falloff of the form

1
Pro(k) = T3 (k) ®

(22

moments of the random field. We can apply this statistic to
our maps, and in Fig. 5 we compare the peak density of the
non-Gaussian maps with that of the pure Gaussian theory
(with the same power spectrumAlthough there is a slight
difference for low(negative thresholdsthe two peak densi-

The phases are all correlated and arranged so as to center thes are essentially indistinguishable.

configuration and the anglescorrespond to a perfectly cir- We can now apply the approach we have devised. The
cular configuration. All moduli are exactly equal the squarenon-Gaussianity will only become evident on small scales,
root of the power spectrum. This is a shapeful, localized, anqi_e_, for largek’s in the Fourier plane. In fact, we can find an

connected perturbation, visually recognizable as highly nonanaytical expression for the ring spectrum of a perfectly

Gaussian(see Fig. 2 Although we are using it as a toy
model for an unresolved source, this is inspired by a spot

produced by a texture undergoing perfect, spherically sym- 0.0t ' '
metric collapse. -

In Fig. 2 we show the point source, and the signal mixed -
with the point source for the case=3, k,=0.1, and 0.008

ky=5. What has started as visually very non-Gaussian dis-
appears completely with the addition of a Gaussian signal. A
real space subtraction of the source is bound to fail. From
inspecting the histogram of temperatures at each realization
one finds that, comparing with a purely Gaussian map with
the same overall power spectrum, they look the sdsee
Fig. 3. A more thorough analysis would lead us to calculate
the skewness; and kurtosise, of the maps:
a3=C%0,0/[C*0)]*,  a,={C*0,0,0/[C*(0)]*}-3,
(23

or better yet, estimate the distribution®f and«,. In Fig. 4

we superpose histograms of of skewng@sf pane) and kur-
tosis (right pane) for the non-Gaussian theory and for the
purely Gaussian theory; clearly, the Gaussian behavior on

0.006

n

i)
o
@
A

0.004

0.002

§ ‘ 1
0.002
ST/T

0.004

large scales is dominating the effect of the point source. FIG. 5. The density of peaks above a thresh6lT for the
One useful statistic to apply is the accumulated density ohon-Gaussian theor{solid line) and the purely Gaussian theory
peaks above a given threshold. It was showfiifthat, fora  (dashed ling The curves are averaged over 20 runs.



55 NON-GAUSSIAN SPECTRA IN COSMIC ... 3365

T T T T 1 T T T
1+ _
F ] 08l 7
0.8 - |
06l ] 0.6 B
< 1 < 1 FIG. 6. The ring spectra for
0.4 - 04l J, two ringsk=20 andk=50.
oz 1 ozl ]
of 4 i
1 | | L 0 I PR N WS S B
0 20 40 60 0 50 100 150
i i
circular configuration: all moduli are equal to the same value B. A cosmic string with a Gaussian background

pi=1. Then, the ring spectrum is

. me—i |\ ™
circ_
o ( m—i+1 (25

For large values ofn, this ring spectrum is approximately
1/e for all i, until i approachesn,—1, where the spectrum

One of the best motivated theories of non-Gaussian struc-
ture formation is that of cosmic strings. Following a primor-
dial phase transition, linelike concentrations of energy could
form in certain grand unified theori¢8]. This network of
strings would then evolve into a self-similar scaling regime,
perturbing matter and radiation during its evolution. The
nonlinear evolution of the strings should lead to a non-
Gaussian distribution of fluctuations; more specifically, the
effect of strings on radiation after recombination should lead

rises to 1/2. As shown in Fig. @eft pane), the ring spec-
trum at a lowk is indeed consistent with a uniform distribu-
tion (the 6;’s are uniformly distributed between 0 anyl As

k increases the angles start accumulating around the cir-
cular ridge. Soon, the point source dominates the signal, a
fact evidenced by a perfectly circular ring spectrum. Well
into the non-Gaussian region of Fourier spduodere the
Gaussian signal is strongly suppressede find a clean sig-

nal as shown in Fig. €right pane).

This example illustrates the main idea and the main weak-
ness behind our technique. The main idea consists of trying
to identify the particular scale on which non-Gaussianity is
evident and, clearly, this is best done in Fourier space. In this
case(with no experimental small scale nojs@ne simply
needs to look alt’s on sufficiently small scales; the inclusion
of Gaussian noise would introduce an outer limit in Fourier
space, reducing the region of non-Gaussianity to a finite ring.

As for the main weakness we point out that the shape
spectrume; is sensitive only to the global shape of the map.
While one point source leads to a very clean distribution of
power around rings in Fourier space, if one has more than a
few point sources then this will become less clear. Although
for a set ofN sources one will have a very distinct sigral
smooth line as opposed to a random distributionggf it
becomes more difficult to distinguish the sources on a firm
basis from a purely Gaussian signal. This leads us to estab-
lish the best operational strategy for this method to work:
choose small fields and analyze them separately. In doing
this one will be probing the scales on which non-Gaussianity
becomes dominant with less objects to pick out. The fact that
interferometric measurements of the CMB are constrained to
small fields leads us to believe this to be a sensible prescrip-
tion for uv-plane data analysis. Recent experience with such
measurements] seems to indicate that indeed in each field

FIG. 7. The Kaiser-Stebbins effe¢top) and the full signal,

there are only a few problematic sour¢esaybe one or twp  with the Gaussian superpositighottom for a=5, andk,= 26.
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FIG. 8. Histograms of skew-
ness[(a) left] and kurtosis[(b)
right] of the gradient of tempera-
ture anisotropies from 400 realiza-
tions of string maps with Gaussian
background (solid lines and
Gaussian realizations with the
same power spectrumdashed
lines).

to very distinct linelike discontinuities in the CMR1,24, corresponds to a single point on thm— 1)-dimensional

the Kaiser-Stebbins effect. [[24] the authors solved Ein- sphere and that, therefore, has probability zero in a Gaussian
stein’s equations sourced by a high-resolution simulation ofheory. For display purposes one may then also fix the re-
an evolving string network. They argued that the non-maining angles at some particular but arbitrary value. We
Gaussianity was due to nonrandom phases and illustrategbfine 0/G=0.

this by generating maps with the same amplitudes but ran- por g perfectly straight string non-Gaussianity is so ex-
domized phases and comparing the two. A battery of testgeme that it is visually evident even with a very large
has been used to quantify these non-Gaussian features, ipnount of background Gaussian noise. The situation changes

some cases with the inclusion of instrument noise and ﬁnit%iramatically however. for the more realistic case when the
resolution: in[10] the authors looked at gradient hIStogr"’lmsstring is rough or structured. This is the picture that emerges

and the stz_itlstlcs of the genus of excursion set318) an from high-resolution numerical simulatiofi28]. The inter-
analytical fit to the kurtosis of a string map was proposed,

) . ; : . tommutation of strings will build up kinks and cusps along a
and in[23] a multifractal analysis of one-dimensional scans_, . . . . o L
was proposed. string which will only stabilize once gravitational radiation

More recent studies of the evolution of string perturba—becomes important. Again, most of the power will be con-

tions in the CMB indicate that the Kaiser-Stebbins effect iscer!trated along one or a few mpdgs, leading 'to a well-
obscured on subdegree scales by fluctuations generated Kigfined spectrum up to some maximuntor largeri’s the
fore recombinatior{25], and that these perturbations look SPectrum will be close to zero or ill defined in the same way
very Gaussiaf26]. None of the previous statistical tests hasas for the straight string case.

taken this into account. A careful analysis of the behavior of Having played with a string code, we have chosen to
these two contributions, however, indicates that the nonmodel the string as a directed Brownian walk along the patch
Gaussian features may become dominant again on very sma¥e are considering. We then modeled the effect of the
scales: perturbations seeded before recombination will be exsaussian background on these scales in the same way as that
ponentially suppressed by Silk dampifgy] on small scales, in the previous example. We superimpose a background
while the Kaiser-Stebbins effect will lead toka? behavior.  Gaussian signal with the power spectrum giverf20]. In
This is an ideal situation for using our statistic. We canFig. 7(a) we show an example of a (168pixel map (20
evaluate the non-Gaussian spectrum on scales where the naftcmir?) of the non-Gaussian signal and in Fighbywe su-
Gaussign signal is expegted to dominate, and see if it ShQV\ﬁerimpose a Gaussian background witkya 26 and with 5
any evidence for deviation from the background Gaussiafimes the overall amplitude of the non-Gaussian signal.
distribution. Clearly, the beautiful Kaiser-Stebbins effect is now beyond

If we consider the case of a very small field, we expect (oot we can recognize visually. One must, therefore, resort
have at most one segment of string crossing the patch. ThﬁJ more abstract tests

would be the case for a field of a fraction of a degree. It is
instructive to consider the case of a smooth, straight strin%a
Here, the signal is maximally noncircular and all of the
power in the ring is concentrated on one of the modes
ps=myl, with p;=0 for i#s. For such a configuration, the
ring spectrum is

We first applied to our maps some of the standard tests. It
s been argued that the skewness and kurtosis of the gradi-
ent of the temperature anisotropy field should be a good
indicator of string non-Gaussianity. Skewness should be very
sharply peaked at zeiphe patterns caused by the string are
very symmetrical in terms of amplitugjeand kurtosis should
be larger than that for the Gaussigr8]. In Fig. 8 we show
=1 fori<s, 6=0 fori=s, 6=5 fori>s. histograms of skewness and kurtosis made from an ensemble
(26)  of 400 realizations. Clearly, the string with a Gaussian back-
ground is indistinguishable from the purely Gaussian sky.
The last angles are undefined in the same way that the angle A more elegant statistic involves working out the Euler
¢ in the normal 3D polar coordinates is undefined for pointscharacteristic of the maps, given a threshold. The procedure
along thez axis. The point remains that the configurationis straightforward: given a thresholdo one evaluates the
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FIG. 9. The mean Euler characterislicas a function of thresh- FIG. 10. The ring spectrum fok=70 and for «=5, and

old for a string map with Gaussian noigolid line) and for a pure  ky=26. The shaded region represents a probability larger tran 1/
Gaussian map with the same power spectfthe shaded region is for the values ofg; to occur.
the 1o region around the Gaussian mean, estimated from 100

realizations. gued above, most of the power is concentrated along one
direction of each ring. What we see here is that this direction

difference between the number of isolated hot regions an¢k strongly correlated between rings. This quality we labeled

cold regions with regard to. For a Gaussian field, the mean as connectedness. We see that strings’ connectedness is a

genus Is robust non-Gaussian feature, even when all else seems to

, fail.
[ocpe™ #72, (27

It was argued irff10] that this would be a good indicator of C. Evasive non-Gaussian theories

non-Gaussianity for strings. In Fig. 9 we show the Euler We finally present a strongly non-Gaussian theory on all

characteristic averaged over 100 runs for the string with $cales which evades detection by several traditional non-

Gaussian background and for a purely Gaussian map witfpaussianity tests. Consider a theory with a power spectrum

the same power spectrum. Again, we find no significant dif-2s in[20], say withky= 10, in uncorrelated mesh units. Let

ference between the two.

Finally, we have applied to these maps our technique. We
first looked for the distribution of thé,’s in rings where the
non-Gaussianity is evident. Due to the random nature of the
structure on the string, the signal in the ring spectrum would
not be as cleanly defined as that for the straight string case.
We, therefore, looked at a large number of maps in order to 0.5
plot #,'s with cosmic or sample invariance error bars. For
plotting purposes we shall give error bars as regions of prob-
ability larger than 1¢. This corresponds to a &-error bar if
the distribution is Gaussian, but generalizes the concept of a
1-0 error bar to more general distributions. In particular, the
concept may be applied to a uniform distribution, which does
not even have a peak. In Fig. 10, the shaded region is where  -05
the 6;’s have more than &/probability of being; the ring has
k=70-75 [for a (160f-pixel mag and we clearly see a
ridge towards the left-hand side. For rings at lkwthis ridge
blurs into the standard Gaussian prediction.

A more striking statistic is the inter-ring spectrum. In Fig.
11, we have shaded the region whe¥s have more than K
1/e probability of being. It is clear that for low values &f
the Gaussian background dominates, and the various rings FIG. 11. The inter-ring spectrum with=5, andk,=26. The
are essentially uncorrelated. However, above a certaishaded region represents a probability larger tharfdi/the values
threshold, subsequent modes are tightly correlated. As anf ¢; to occur.

e e 1y
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other words, the cosmic confusion between the two theories
is zero, where cosmic confusion is defined as the percentage
of common skies generated by the two theofis3. If Q is

the set of all map variables, and F;(Q) and F,(Q) are
their distribution functions in the theoridg andT,, then the
cosmic confusion between the two theorie$18]

C(Tl,T2)=J dOmin(F,F»). (28

In terms of the variableQ ={C(k), 6(k), ¢, ¢}, we have
_ 2 i i __ pcirc
Fi=11 xR COII o 11 5711 80— 67, 29

1

1
Fo=I1 xdctnl]l 511 . (30

so thatC(T,,T,)=0.

Although we have as yet no physical motivation for such
a theory, we believe it to be a good example where the tra-
ditional beliefs about non-Gaussianity do not hold; in spite of
its strong non-Gaussianity this theory evades all tests we
have applied to it. Visually, the maps produced by the theory
look very Gaussian. We can apply all the tests we have in-
troduced in the previous two sections with rather spectacular
failure. Plotting temperature histograms reveals a very
Gaussian distributiorisee Fig. 13 One may convert these
histograms into moments, with the same result. The sections
of the n-point function which may be computed in practice

FIG. 12. Realizations of theoryl; (top) and T, (bottomy.  are also very Gaussian. In Fig. 14 we have plotted the aver-
TheoryT, is a theory of disconnected, delocalized, perfect spheres2@€ and lo- error bars for the collapsed three-point correla-
with zero cosmic confusion with theof¥,, which had the same tion function forT, andT, as inferred from 100 realizations.
power spectrum, but is Gaussian. In Flg 15 we p|0t histograms of kurtosis for the two theories.

Clearly, they are not good discriminators between the two

the phaseg and inter-ring correlator angleg be uniformly  theories. We can estimate the number of peaks over a given
distributed. However, let the ring spectfgk) for all rings  threshold for the two theories. In Fig. 16 we plot the total
k be the circular ring spectrura®(k) [cf. Eq. (25)] with  number of peaks above a given threshold Terand T,. In
infinite probability density. Thus, we have theory of delocal-Fig. 17 we find the Euler characteristic for the two theories.
ized, disconnected spheres. In Fig. 12 we show a realizatio®nce again, they are indistinguishable.
of this theory(call it theoryT;) and also a Gaussian realiza-  Nevertheless, all rings of thev plane show a ring spec-
tion, that is, a realization of a theoftgall it T,) which differs  trum which is perfectly circular, without any variance. Any
only in that thed(k) are now uniformly distributed. sky, and anyk, produces a ring spectrum as the one in Fig.

TheoryT; is strongly non-Gaussian. The set of all of its 18, obtained from the same realization used above, for the
realizations has measure zero in any Gaussian theory. Ifing k=11.

000 T T T T T T T T T T T 5000 — Y T —r——

4000 - 4000 -

FIG. 13. Temperature histo-

E s000F E grams for the two maps shown
] above([that is non-Gaussiafieft)

] and Gaussiarfright)]. The skew-

E 2000 3 ness is, respectively, 0.043 and

] —0.068, and the kurtosis-0.042
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V. DISCUSSION many non-Gaussian featuré&sich as many-point sources or

In this paper we have proposed a transformation of varie o> segments of stripgthen both the ring spectrum and
nis pap Prop . the inter-ring spectrum will look more like Gaussian. This
ables in Fourier space which produces non-Gaussian spect]

with a particularly simple probability distribution function tn only be avoided by looking at small fields. But once

for a Gaussian random field. We have focused on a subset again this is the situation favored by interferometers. One is
. : . . Rhited to small fieldgalthough one can mosaic over reason-
these, the ring spectrd, and the inter-ring spectruny,

which contain information about the moduli of the Fourierably large patches of sky29]) and experience iif6] indi-

modes. We have presented a few examples where the ?ates that very few unresolved sources will be present. In an
C P o P Y f§ierferometric search for string segments, one would restrict
good qualifiers of non-Gaussianity.

oneself to fields of less tha@.5° and still have a 90%

“mﬁagg:;bg; ?ge(;(;njsrg?igiiscgriénbzrﬂﬁer\i/tl;{wh {ﬁgsaédsst;gsi?ce&robability of actually seeing a string, but not more than one.
' 9 ' We have not included the effect of small scale noise in the

are tailored for data in Fourier space. To actually apply thes%xamples we considered. In those cases the signal was al-

s_tatlstlcs. to real space Qata will involve nonlocal transfprma—ready sufficiently corrupted for it to be difficult to identify
tions which may complicate the procedure. However, in th

examples which we have worked out. the non-Gaussiani?[he non-Gaussian features. In fact, what one finds is that
P ' Y ge scale Gaussianity seems to be more devastéiing

becomes apparent on small scales. Therefore, one is forc Zf : .
S app . ) . . rms of erasing non-Gaussian featyrésan small scale,
to consider experiments with the best possible resolution

These are interferometric devices where the data are menpise—relatgd, Gaussianity. Clearly, one ha; 0 include the

. . ) . o effects if one wants to apply these techniques to data but
sured directly in Fourier space. Another possible shortcom: e details are dependent on each experiment. The statistics
ing of these statistics is that they are sensitive to the gIOb"it(!;efined are nonlinear statistics in the data WhiC.h means care
shape of the data set or map. This means that if one has

0.03 — T T
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FIG. 16. The density of peaks above a thresh®IdT for theory
FIG. 15. The histograms of kurtosis for thedFy (solid) and T, (solid line) and theoryT, (dashed ling The curves are averaged
theory T, (dashed taken from an ensemble of 1000 realizations. over 20 runs.
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— T T T T T[T T mation can be extracted from their behavior. In fact, a ge-
neric feature of physically motivated non-Gaussian models is
localization, which, as we have argued, is governed by the
phases. Although we have organized the information that can
be extracted from a finite data set in systematic way, it is
important to define a useful set of statistics in terms of the
phases. We will do so if22].
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K APPENDIX A: INVARIANT SHAPE AND PHASE SPECTRA

FIG. 17. The average Euler characteristic of the®ry(solid) The fact that the uncorrelated mesh points are somewhat
and T, (dashey, averaged over 100 realizations. undefined makes the search for invariant quantities a pedan-
tic matter. For this reason we decided to define shape vari-
must be taken when considering the effect of noise. A caseables# which, strictly speaking, are not invariant. The inter-
by-case analysis of the different observation strategies wilting spectrum, on the other hand, is already invariant.
have to be made. Again, the fact that the small scale noise in |t is, however, possible to define invariant shapes but they
interferometers increases as a power law with scale, as opre more complicated. Under a rotation, the mo¢ip} suf-
posed to exponentially as in the case of a single dish experfer a cyclic permutation. Hence, the 2D-rotation group has
ment, indicates that interferometric devices are the best ilfnow become discrete and so it will not discount a degree of
struments for testing for non-Gaussian features. Ongreedom. Nevertheless, the anglg} defined from them
immediate goal will be to design the ideal experiment forwill not be invariant under rotation@ranslations do not af-
detecting the Kaiser-Stebbins effect. This should include dect the{p;}). A way around this is to order thigp;} so that
careful analysis of theoretical uncertaintissich as the am- the lastp; is the largest. The angld®,;} produced from the
plitude of fluctuations at last scatterings well as the real- ordered{p;} will then be properly invariant. They will also
life complications mentioned above. always be defined. The joint distribution of the ordered
We have focused on statistics with the mogukind have {1 is proportional to the joint distribution of the unordered
not developed, in any detail, or applied to any example, stagnes. In fact the Jacobian of any variable interchange is one.
tistics with the phasesg. It is conceivable that much infor- QOne may at most pick a proportionality constant from adding
over all the branches of the transformation. Hence, the whole
1— — . . , . argument in Sec. Il still applies, and the new, ordered,
r ] {6,} will still have a joint distribution which is uniform.
However, the newp;} and{6;} are now dependent random
variables, not because their joint distribution does not factor-

0.8+ . ) . .
| i ize, but because the domain of some of the variables depends
- . on those of the others. This results frgm<p,,. This has
- . several unpleasant consequences. For instance, the marginal
0.6 —

distribution of any of thed’s is now not the factor appearing
- in the joint distribution function. Hence, the marginal distri-
L | bution of the properly invariané’s is not uniform, although
0.4 - their joint distribution is. All in all, we found th@’s we have
- . defined in the main body of this paper more practical to use,
as they are much better behaved in Gaussian theories.
The phasesgp defined in the main body of this paper are
also not invariant. Under a rotation they suffer a cyclic per-
L , mutation, whereas under a translation by a vedtdhey
- . transform as¢(k)— ¢(k) +k-t. The phasesp(k) may be
05 e seen as an antisymmetric real scalar field on the spate
; this language the field gets rotated undéreal-spacgrota-
tion, and acquires a dipole under(i@al-spacg translation.
FIG. 18. All rings of theoryT; for all realizations show a per- One can build invariants out of the phases, therefore, simply
fect circular ring spectrum. Here we show the rikg 11. by subtracting the dipolar component of the field, and aver-

02 —
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FIG. 19. A spherical hot spot which has been deconstructed at FIG. 20. The Kaiser-Stebbins effetop left) and its various
different levels. On the top left-hand panel we have the pure nonstages of deconstruction. The anggs have been redrawn uni-
Gaussian signal. The angl#ss have been redrawn uniformly on formly on the top right picture. On the bottom left, the phases
the top right picture. On the bottom left the phasks were re-  ¢;'s were redrawn unformly. On the bottom right we applied an
drawn unformly. On the bottom right, we applied an independentndependent uniformly distributed rotation on all rings in Fourier
unformly distributed rotation on all rings in Fourier space. From topspace. Respectively, we have strings, shapeless strings, unlocalized
to bottom and left to right, a plain regular sphere, a shapelesstrings, and disconnected strings.
sphere, a delocalized sphere, and a disconnected sphere.

Again, this is but one example of a possible invariant made
aging over angle. This can be done in many different waysput of phase gradients, to be explored better in our future
to be explored more thoroughly in a future publication. Here work.
we simply outline one possible strategy. Let us in each

Ak=1 ring apply an angular Fourier transform to the phases: APPENDIX B: VISUAL INTERPRETATION
OF NON-GAUSSIAN SPECTRA
— — Imﬁk:
¢(K)= bk, Bi) Em: ¢(k.mje %“ ¢e(k,m)cosmBy) The decomposition{C(k),6,¢,y} has an immediate
) physical interpretation. The anglés reflect the angular dis-
+ ¢s(k,m)sin(mBy). (A1) tribution of power and, therefore, reflect shape. The phases
) _ ¢ transform under translations and so contain the informa-
Then, under a translation, time=1 mode transforms as tion on position and localization of the structures in the field.
The angles)’s correlate different scales and, therefore, tell
be(K1)= be(k,1) +kicoss,, (A2) us how connected the structures are. For a Gaussian random
. field the variableq 6, ¢, ¢} are all uniformly distributed, re-
bs(k.1)— ds(k, 1) +ktsing,, (A3) flecting complete lack of structure besides the power spec-

trum. In terms of the various levels of structure considered,
n . We can then characterize Gaussian fluctuations as shapeless,
throw away them=1 mode, the other ones making up a : ; ; )

delocalized and disconnected. By comparison with a Gauss-

localization ring spectrum. The distribution of these Nian we may then define structure at different levels. We will

Gaussian theories is again not simple, and we shall look fogay that fluctuations, for whicl's are not uniformly distrib-

something better than this. This procedure, however, doeﬁted, are shapeful. If the's are not uniformly distributed

have the advantage of reacting to individual shapes an loca ) . X
ization properties rather than global ones. we shall say th_e fluctuations are I(_)callzed. If s are not

For any pair of adjacenkk=1 rings we have subtracted uhnlforhmly_ d|s|tr|buted theh ﬂuctuanong h{:\re hconnectfcleq.. Al-
two modes too many. These should be returned in the forr{hOug visua .structure as room within these definitions,
of two inter-ring phase invariants, such as ey are considerably more abstract and general. We may

consider highly nonvisual types of structure such as shapeful
$e(k+1D  de(kD)

whereas all other modes are invariant. One may then simpl

but delocalized fluctuations or disconnected, localized,

® (k)= 1 v (A4)  stringy fluctuations. In this sense we regard our formalism as

a robust definition of structure, which goes beyond what is

visually recognizable and so is tied down to our particular

® (k)= ¢s(k+1.D)  os(kD) (A5) and narrow path of natural selection. We may imagine an
s k+1 k alien civilization with Fourier space eyésay, interferomet-
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ric eyes[30]), and a brain trained to recognize Fourier spacesrtheless, our formalism will reveal the strong but not obvi-
structure at many different levels, structure that would seenous non-Gaussianity exhibited by a delocalized sphere.
totally nonobvious to our human eyes. In Fig. 20 we repeat the same exercise for a map display-
To illustrate the limitations of human vision we shall now ing the Kaiser-Stebbins effect from cosmic strings. Shapeless
destroy highly structured maps level by level, that is Gausstrings, delocalized strings, and disconnected strings are
sianize only one of the variable typd®,¢,y}. Initially,  shown. Considerable disarray is introduced in every case, but
there will be structure at every level, shape, position, anne may say that disconnected strings as well as delocalized
connectedness. We will remove structure gradually, a facrings are perhaps the most messy of them. This is consis-
not disasterous for the alien civilization referred above, butant with the strong signal iy we have found for the case of
which will illustrate the limitations of the human visual o reajistic Kaiser-Stebbins effect. On the other hand, the

method for recognizing non-Gaussianity. In Fig. 19 we play,

) . i . ’fact that linelike discontinuities are present even for shape-
this game with a sphere. We depict a spherical hot spot in P P

! Iesc? strings shows how much more structure there is in the
real space, then a shapeless sphere, a delocalized sphere, and 0o of the structure which we can recoanize. This is
a disconnected sphere. For the case of a sphere we find tha P P . . gnize.
what we recognize as shape is mostly localization. A shap fnpo”anF since the_ beautiful patchwork is very fraglle to the
less sphere keeps its recognizable features. On the oth grd realme_s of noise and superp_osed Gaussian s!gnql. In the
hand, a delocalized sphere loses it characteristic features. €& world, it turns out, the nonvisual feature, which is the
deed, the idea of a shapeful but nonlocalized object soundi®nnectedness of strings, happens to survive much better
somewhat surreal for all we can visually conceptualize. Nevihan the patchworkwhich reflects mostly localization
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