
Non-Gaussian spectra in cosmic microwave background temperature anisotropies

Pedro G. Ferreira
Center for Particle Astrophysics, University of California, Berkeley, California 94720-7304

João Magueijo
The Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BZ, United Kingdom

~Received 16 October 1996!

Gaussian cosmic microwave background skies are fully specified by the power spectrum. The conventional
method of characterizing non-Gaussian skies is to evaluate higher order moments, then-point functions, and
their Fourier transforms. We argue that this method is inefficient, due to the redundancy of information existing
in the complete set of moments. In this paper we propose a set of new statistics or non-Gaussian spectra to be
extracted out of the angular distribution of the Fourier transform of the temperature anisotropies in the small
field limit. These statistics complement the power spectrum and act as localization, shape, and connectedness
statistics. They quantify the generic non-Gaussian structure, and may be used in more general image-
processing tasks. We concentrate on a subset of these statistics and argue that while they carry no information
in Gaussian theories, they may be the best arena for making predictions in some non-Gaussian theories. As
examples of applications we consider superposed Gaussian and non-Gaussian signals, such as point sources in
Gaussian theories or the realistic Kaiser-Stebbins effect. We show that in these theories non-Gaussianity is
only present in a ring in Fourier space, which is best isolated in our formalism. Subtle but strongly non-
Gaussian theories are also written down for which only non-Gaussian spectra may reveal non-Gaussianity.
@S0556-2821~97!04306-3#

PACS number~s!: 98.80.Cq, 98.70.Vc, 98.80.Hw

I. INTRODUCTION

Gaussianity plays a central role in current theories of
structure formation@1#. Inflationary theories are normally in-
voked to justify Gaussianity@2# but, historically, simplicity
was perhaps what first motivated this assumption. As data
have started to flood cosmology, however, the problem of
testing Gaussianity has reappeared both in cosmic micro-
wave background~CMB! analysis @3#, and galaxy survey
analysis@4#. A trend in data analysis has been established
which relies on Gaussianity and a lingering feeling exists
that the whole thing might fall through should the data prove
to be non-Gaussian in the first place. Furthermore, structure
formation theories exist which in one way or another predict
non-Gaussian primordial fluctuations. Cosmic strings and
textures@5# provide two such examples. Pinning down what
precise non-Gaussian predictions such theories can make is a
task crying for a comprehensive formalism for quantifying
general non-Gaussianity. Finally, even if the ‘‘signal’’ is
Gaussian, it may happen that a non-Gaussian noise compo-
nent is present, e.g., unresolved point sources@6#. A precise
prediction of their observational properties could then assist
in their subtraction from data before the final theoretical
analysis is performed.

One is, therefore, left with the problem of how to test
Gaussianity, and how to quantitatively specify the most gen-
eral non-Gaussian theory. Several tests for non-Gaussianity
have been proposed in the past. Peaks’ statistics@7,8#, topo-
logical tests @9,10#, the three-point correlation function
@3,11#, skewness and kurtosis@12,13#, and temperature and
temperature gradient histograms@14# are the most topical
examples. In some cases these tests were only shown to be
applicable for rather artificial non-Gaussian distributions@9#.

In other cases the tests were applied only to extremely non-
Gaussian signals, or the eroding effects of Gaussian noise
were not explored@15#.

These tests, however, are by no means exhaustive. One
can always devise a non-Gaussian theory which evades de-
tection by everyone of these tests, even when the hard reali-
ties of experiment do not fully erase signal non-Gaussianity.
The only way to fully ascertain Gaussianity is to apply to
data a comprehensive formalism for encoding non-
Gaussianity in its broadest generality. Then-point correla-
tion function provides such a framework, and it has long
been used in cosmology@16# and other branches of physics
@17#. Computing then-point function for largen is, however,
a practical impossibility. Taking the Cosmic Background Ex-
plorer ~COBE! data as an example@3#, only the three-point
function has been computed, and even in that case attention
was restricted to the pseudocollapsed and equilateral slices.

In Sec. II we start off by showing how then-point corre-
lation functions forn up to anyN.3 contain redundant
information. For Gaussian fields all theN.2 correlators can
be determined from the two-point correlator. We show that
even for the most general non-Gaussian theory information
encoded in theN.3 correlator is dependent on information
in lower order correlators. Furthermore, we show that one
can never be sure that by truncating the infinite correlator
series at someN one has all the information about the most
general non-Gaussian theory. Strongly non-Gaussian theo-
ries may be written down which have Gaussian moments up
to any given orderN. The n-point function formalism then
appears to have two drawbacks: redundancy and impractical
complexity. We shall argue that these two drawbacks are due
to each other, and that they may be eliminated altogether.

In Sec. III, we propose an alternative formalism for com-
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prehensively encoding non-Gaussianity. In the guise to be
used in this paper the formalism lives naturally in Fourier
space, and we have chosen to highlight non-Gaussianity
other than that in the phases. The idea of looking for non-
Gaussianity in Fourier space has been disfavored in the past.
It is argued that localized non-Gaussianity in real space~such
as what is produced in cosmic string or texture scenarios!
will be obscured in Fourier space due to the central limit
theorem. It is also often assumed that a Gaussian field can be
accurately modeled as the Fourier transform of a field whose
randomness is solely in the phases. However, as we argue in
Sec. II, looking in Fourier space allows us to probe the non-
Gaussian nature of the field at specific scales, a fact which is
particularly useful when one can model the field as combi-
nation of a Gaussian field which dominates on certain scales
and a non-Gaussian field which dominates on others. An-
other very strong reason for considering Fourier space statis-
tics seriously is the fact that the highest resolution measure-
ments of CMB anisotropies will be performed by
interferometric devices, which naturally measure quantities
in Fourier space~the ‘‘uv plane’’!.

Therefore, ignoring prejudice, in Sec. III we define a set
of ‘‘non-Gaussian spectra’’ in terms of the Fourier transform
of the temperature anisotropies. Our definitions follow up the
proposals in@18#, but they are substantially more practical.
We then characterize the probability distribution function of
these spectra in Gaussian theories and in Appendix B give a
physical interpretation of the qualities which they measure.
We set these quantities up so that while they contain all the
information degrees of freedom, they do away with any re-
dundancy. As a result, we come up with a formalism which
shares with then-point correlators the property of being
comprehensive, but with the advantage that it is computable
and nonredundant. Within the large set of statistics consid-
ered in this paper we concentrate on a set of statistics which
only use the information in the absolute value of the Fourier
modes. These are grouped in two types of spectra: the ring
spectrum and the inter-ring spectrum. For the sake of maxi-
mal originality we leave to a future publication the investi-
gation of the role played by the more prosaic phase informa-
tion.

In Sec. IV we consider three different applications. First,
we consider the case of a point source which is obscured by
Gaussian fluctuations. Second, we consider the realistic tem-
perature anisotropy induced by a cosmic string, including
both the post-recombination Kaiser-Stebbins effect and the
Gaussian fluctuations at the surface of last scattering. Fi-
nally, we construct a strongly non-Gaussian theory, a theory
which produces skies which have a zero probability of oc-
curring in a Gaussian theory. To all these examples we apply
a battery of conventional statistics and show that they evade
any detection of non-Gaussianity. We show, however, that
our statistics reveal the non-Gaussian nature of the skies.

In Sec. V we conclude by discussing the limitations of
these statistics and their possible extensions.

II. THE n-POINT CORRELATION FUNCTION

We start by reviewing then-point correlation function
formalism. We then introduce the concept ofuv-plane in-
variants, that is quantities which are made up of Fourier

modesa(k), and which are invariant under rotations and
translations. We show how the Fourier transform of the
n-point correlation function is made up ofuv-plane multi-
linear invariants. One may then count the number of degrees
of freedom in the Fourier modes for a given sky coverage.
By doing so we show that then-point correlators forn up to
a certainN contain information which can only be redun-
dant. This will set the tone for the next section: trying to do
away with the redundancy and complexity of then-point
correlation function.

A. The n-point correlation function and its transform

We consider CMB data in the small angle limit, when
projecting onto a planar patch is suitable. Since data may
come in either real or Fourier space, we hope to address the
problem of non-Gaussianity in terms of these two descrip-
tions. In this paper, however, we will concentrate on the
Fourier space description, and thus produce statistics better
suited to interferometers. We shall use the convention

DT~x!

T
5E dk

2p
a~k!eik•x. ~1!

Then-point correlation function is defined as the expectation
value of the product of anyn temperatures. Translational and
rotational invariance make redundant the position of one of
the points and the direction of another. Hence, then-point
function may be written as a function of (x2 ,x3 , . . . ,xn) in
the form

Cn~x2 ,x3 , . . . ,xn!5 K DT~x1!

T
. . .

DT~xn!

T L . ~2!

The two-point correlation function and its Fourier transform,
the angular power spectrumC(k) are well known. They fully
specify Gaussian fluctuations. For Gaussian fluctuations non-
vanishing higher order correlation functions exist, but they
are redundant as they can be obtained from the two-point
correlation function. This is not the case in non-Gaussian
theories, for which then-point correlators act not only as a
non-Gaussianity indicator, but are also an indispensable fluc-
tuation qualifier, as much as the power spectrum.

The angular power spectrum may be generalized for
n.2 by Fourier analyzing then-point function

Cn~x2 ,x3 , . . . ,xn!

5E dk2
~2p!1/2

•••

dkn
2p

Cn~k2 , . . . ,kn!e
ik2x2

•••eikn•xn.

~3!

In general,C(k) is more predictive thanC(x), as it tells us
how much power exists on a given scale. In the same way
one may expect the transformCn(k2 , . . . ,kn) to be more
predictive than its configuration space counterpart, as it tells
us how much non-Gaussianity exists on each scale. We shall
call Cn(k2 , . . . ,kn) a non-Gaussian spectrum. One may also
define Gaussian spectra as correlators of thea(k) modes:

^a~k1!•••a~kn!&5d~k11•••kn!C
n~k2 , . . . ,kn!, ~4!
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where thed function and functional form ofCn result from
the requirements of translational and rotational invariance
@see Eq.~5! below#. Using Eq.~1!, one may easily check that
the two definitions~3! and ~4! of Cn(k2 , . . . ,kn) agree.

Non-Gaussian spectra are more complicated than power
spectra, since they are functions of many variables. Asn
increases, one is left with the problem of how to pack so
much information. We will, however, show that most of the
information encoded inCn(k2 , . . . ,kn) is largely redundant,
even for the most general non-Gaussian fluctuation.

B. uv-plane multilinear invariants as components
of the n-point correlation function

Here, we show an equivalent route to non-Gaussian spec-
tra. This route draws on work in@18#, where the spherical
harmonic coefficientsam

l are used to define quantities other
than theCl spectrum which are invariant under the three-
dimensional~3D! rotation group.m spectra and inter-l cor-
relators appear as supplementary information. These spectra
are multilinear combinations of theam

l which can be gener-
ally written as sums of products of Clebsch-Gordan coeffi-
cients. It can be shown that they act as a decomposition of
then-point function on the sphere in a suitable base made up
of Legendre polynomials and spherical harmonics. These
spectra are trivial to implement on a computer, but are for-
mally quite complicated for largel . An explicit expression
for the quadrupolem shape was given in@18# with a sug-
gested application to texture scenarios. Fortunately, at very
high l one may simply reformulate the problem in terms of
the Fourier representation of small patches.m spectra and
inter-l correlators then become very simple. They reappear
as uv-plane invariants, that is quantities made up of the
a(k) modes, and which are invariant under 2D rotations and
translations~the projected 3D rotation group!.

The non-Gaussian spectraCn(k2 , . . . ,kn) are invariant
under rotations and translations. This requirement may also
be imposed on any set of qualifiers of a random field which
statistically satisfies these invariances. Under a rotationRu
and a translation along a vectort the Fourier components
transform as in

Ru„a~k!…5a„Ru~k!…, Tta~k!5eik•ta~k!. ~5!

A systematic way to generate invariants out of thea(k) is to
consider multilinear combinations, that is sums of products
of n modesa(k… ~monomials!. For these to be invariant un-
der translations it is necessary that the vectorsk i used in each
monomial add up to zero. To achieve invariance under rota-
tions one must then, for each monomial, average over all
possible rotations of thek i configuration used. One may for-
mally write the most general multilinear invariant of order
n as

I ~n!5
1

Nu
(

u
)
i51

n

a~k i ! ~6!

in which the vectorsk i considered in each product must add
up to zero and always take the same configuration, andNu is
the total number of possible rotations of the configuration,
should Fourier space be discretized. Forn52 the only in-

variant for eachk is the angular power spectrum. Given a
vectork, the requirement that the second vector in the bino-
mial adds to zero fully determines the second vector. Aver-
aging over all rotations makes the direction of the first vector
irrelevant. The invariant~6! then reduces to

I ~2!~k!5
1

N (
uku5k

ua~k!u2. ~7!

For the third order invariants one now has an invariant which
depends on a vector and a scalar. Independent invariants are
parametrized by the third vector and the relative direction of
the second vector. The first vector is fully determined by the
requirement that the three vectors add to zero. The actual
directions of the second and third vectors are made redun-
dant by taking the circular average. A particularly interesting
third order invariant may be obtained if one demands that the
three vectors used all have the same moduli. Then, for each
k only one invariant exists, the one obtained with the con-
figuration plotted in Fig. 1.

Diagrammatically, one may then write down the most
general invariant for any order, rapidly bumping into un-
wanted proliferation. The procedure, however, is very
simple, and reduces to Eq.~6! and the various independent
diagrams it allows. The most general multinomial invariant
of degreen is a function of (k2 ,k3 , . . . ,kn). Hence, the
non-Gaussian spectra defined in the decomposition of the
n-point correlation function correspond to the most general
multinomial invariant one may construct out of thea(k).

C. Exposing the redundancy of then-point function

The approach just devised has the advantage of allowing
us to expose the redundancy of then-point correlation func-
tion. Let us start by counting the number of degrees of free-
dom present in the Fourier modes produced by a given mea-
surement. If we had full sky coverage then there would be
2k11 modes per unit ofk. Finite sky coverage has the effect
of correlating neighboring modes among these, thereby re-
ducing the number of independent modes per unit ofk to
2k fsky, if f sky is the fraction of sky covered. An alternative
Fourier space discretization is then required, so that the
modes in the new mesh are quasi-uncorrelated, while encod-

FIG. 1. The most general second order invariant~left! is the
angular power spectrum, obtained by multiplying the modek1 am-
plitude with the modek252k1 amplitude, and averaging over di-
rections. The result can only depend onk. On the right we show one
possible configuration giving a third order invariant, the one where
all three vectors have the same moduli. Then, for eachk all three
vectors are determined from the requirement that they must add up
to zero. Averaging over directions produces an invariant.
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ing all the statistical information in the original modes. This
may be done with a so-called uncorrelated mesh~see@19#!.
There is some arbitrariness in where the new mesh is laid.
This arbitrariness allows us to be sloppy with the invariances
imposed in the previous section, since any vectork may now
be placed anywhere in the uncorrelated mesh cell. Hence, the
angles required by configurations such as the ones in Fig. 1
should be seen as flexible, as far as the mesh resolution in
concerned.

Let us now consider a genericDk51 ring containing
Nring'2k fsky uncorrelated mesh points. Since there are three
degrees of freedom in rotations and translations one may not
build more thanNring23 independent invariants per unit of
k, plus three invariants relating adjacentDk51 rings. The
number of multilinear invariants making up then-point func-
tion transform is vastly larger. Even if we restrict ourselves
to invariants made up only of modes in each ring, the num-
ber of invariants is 1 forn52,3 ~see Fig. 1!, then, for
n.3, of orderO(Nring

n23), if Nring@1.
The situation gets worse if we consider inter-ring multi-

nomial invariants. Let us now consider a square in Fourier
space withNp3Np uncorrelated mesh points. Then, for large
Np the number of multilinear invariants of ordern in all
rings is of orderO(Np

n21). The number of independent mesh
points, on the contrary, is of orderO(Np

2).
Hence, there must be an algebraic dependence between all

the multilinear invariants. The information encoded in the
higher order correlators must, therefore, repeat itself in any
theory, Gaussian or not. We, therefore, argue that the
n-point function formalism, while comprehensive, is not sys-
tematic. This is not to say that some truncation of the corr-
elator series might not be useful as a non-Gaussianity test. In
particular, we feel that ring multinomial invariants, such as
the cubic one depicted in Fig. 1, may be useful non-
Gaussianity tests.

III. RING AND INTER-RING SPECTRA

We now propose an alternative packaging for the infor-
mation in Fourier space. Comparing it with then-point trans-
form, it is simpler, does away with redundancy, and has an
immediate physical interpretation. We divide theuv plane in
Dk51 rings whereNk52k fsky independent modes lie. Out
of these we may buildNk23 invariants. In whatever we do
we shall always make sure that the formalism proposed pro-
duces the power spectrumC(k) as the first of these quanti-
ties. The otherC(k,m), for m51, . . . ,Nk24, are the ring
spectra. We shall not consider multilinear invariants, but
shall search for alternative prescriptions. On top of these, for
each two adjacent rings there will be three invariants, the
inter-ring correlators. Given the arbitrariness of the Fourier
mode mesh exact positions we may also be justified in build-
ing simplyNk noninvariant quantities for each ring, as long
as we know how they transform. We found the latter attitude
more practical, but shall give in Appendix A the correct pre-
scription for building properly invariant quantities.

For a Gaussian theory the probability of a given map de-
pends only on the map power spectrum. Consider then a very
non-Gaussian map by which we mean something we visually
recognize as very structured. Consider also various other
maps with the same power spectrum, but which we visually

recognize as very Gaussian. All these maps, Gaussian look-
ing or not, have the same probability in Gaussian theories. In
non-Gaussian theories, on the contrary, the probability of a
given map depends on more than its power spectrum. Hence,
within the set of maps considered above, it may happen that
the non-Gaussian-looking map is now considerably more
probable than the other maps. The point we wish to make is
that non-Gaussianity arises not from structured maps being
less likely in Gaussian theories, but from structured maps
being more likely in non-Gaussian theories.

This seemingly innocent remark has two important impli-
cations. First, it implies that the natural variables for non-
Gaussianity spectra should be uniformly distributed in
Gaussian theories. In contrast, at least in some non-Gaussian
theories, the same variables should have peaked distribu-
tions. Hence, non-Gaussian spectra should carry no informa-
tion whatsoever in Gaussian theories, but they should be
highly predictive at least in some non-Gaussian theories.

A second implication is that disproving Gaussianity on its
own merits is a contradiction in terms. One can always dis-
prove a given non-Gaussian theory on its own merits by
measuring a non-Gaussian spectrum and finding it to be
away from the theoretically predicted ridge. However, any
non-Gaussian spectrum measurement is equally probable in
Gaussian theories, and so it can never be used as an evidence
against Gaussianity. Disproving Gaussianity is then a matter
dependent on the available competing non-Gaussian theories.
If one measures a non-Gaussian spectrum spot on the predic-
tion of a well motivated non-Gaussian theory then this is a
strong evidence in favor of that non-Gaussian theory. One
may simply argue that the non-Gaussian theory has predicted
the observation with much larger probability than the Gauss-
ian theory. Pedantically, the observation has not disproved
Gaussianity. However, it has discredited Gaussianity mas-
sively in the face of the more predictive competing non-
Gaussian theory.

It is under the requirement that non-Gaussian spectra
ought to be uniformly distributed in Gaussian theories that
we now proceed to define non-Gaussian spectra. Consider a
ring of theuv plane whereNk independent complex modes
a(k i)5Re@a(k i)#1 i Im@a(k i)# live. In Gaussian theories
these are distributed as

F~Re@a~k i !#,Im@a~k i !# !

5
1

~2ps2!Nk/2
expF2S 1

2sk
2(
i51

mk

$Re2@a~k i !#

1Im2@a~k i !#% D G , ~8!

wheremk5Nk/2. First, separate theNk complex modes into
mk moduli r i andmk phasesf i :

Re@a~k i !#5r icosf i , Im@a~k i !#5r isinf i . ~9!

The Jacobian of this transformation is

U ]~Re@a~k i !#,Im@a~k i !# !

]~r i ,f i !
U5)

i51

mk

r i . ~10!
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The $r i% may be seen as Cartesian coordinates which we
transform into polar coordinates. These consist of a radius
r plusmk21 anglesũ i given by

r i5rcosũ i)
j50

i21

sinũ j , ~11!

with sinũ05cosũmk51. In terms of these variables the radius
is related to the angular power spectrum by
C(k)5r 2/(2mk). In general, the firstmk22 anglesũ i vary
between 0 andp and the last angle varies between 0 and
2p. However, because allr i are positive all angles are in
(0,p/2). The Jacobian of this transformation is

U ]~r1 , . . . ,rmk
!

]~r ,ũ1 , . . . ,ũmk21
U5rmk21 )

i52

mk21

sinmk2 i ũ i21 . ~12!

Polar coordinates inmk dimensions may be understood as
the iteration of the rules

r i5r icosũ i , r i215r isinũ i , ~13!

in which r i is the radius of the shade
(mk2 i11)-dimensional sphere obtained by keeping fixed
all r j for j51, . . . ,i21:

r i5Ar i
21r i11

2 1•••1rmk

2 . ~14!

One may easily see that this is how 3D polars work, and also
that the transform~11! follows this rule. Hence, one may
invert the transform~11! with

ũ i5arccos
r i

Ar i
21r i11

2 1•••1rmk

2
~15!

for i51, . . . ,mk21.
The total Jacobian of the transformation from

$Re@a(k i)#,Im@a(k i)#% to $r ,ũ i ,f i% is just the product of
Eqs.~10! and~12!. Hence, for a Gaussian theory one has the
distribution

F~r ,ũ i ,f i !5

r Nk21expF2S r 2

2sk
2D G

~2ps2!Nk /2

3 )
i51

mk21

cosũ i~sinũ i !
Nk22i21. ~16!

In order to defineũ i variables which are uniformly distrib-
uted in Gaussian theories, one may finally perform the trans-
formation on eachũ i :

u i5sinNk22i~ ũ i ! ~17!

so that for Gaussian theories one has

F~r ,u i ,f i !5
r Nk21e2r2/~2sk

2
!

2mk21~mk21!!sk
Nk

313)
i51

mk 1

2p
. ~18!

The factorization chosen shows that all new variables are
independent random variables for Gaussian theories.r has a
xNk
2 distribution, the ‘‘shape’’ variablesu i are uniformly dis-

tributed in (0,1), and the phasesf i are uniformly distributed
in (0,2p).

The variablesu i define a non-Gaussian shape spectrum,
the ring spectrum. They may be computed from ring moduli
r i simply by

u i5S r i11
2 1•••1rmk

2

r i
21•••1rmk

2 D mk2 i

. ~19!

They describe how shapeful the perturbations are. If the per-
turbations are stringy then the maximal moduli will be much
larger than the minimal moduli. If the perturbations are cir-
cular, then all moduli will be roughly the same. This favors
some combinations of angles, which are otherwise uniformly
distributed. In general, any shapeful picture defines a line on
the ring spectrumu i . A non-Gaussian theory ought to define
a set of probable smooth ring spectra peaking along a ridge
of typical shapes.

We can now construct an invariant for each adjacent pair
of rings, solely out of the moduli. If we order ther i for each
ring, we can identify the maximum moduli. Each of these
moduli will have a specific direction in Fourier space; let
kmax and kmax8 be the directions where the maximal moduli
are achieved. The angle

c~k,k8!5
1

p
ang~kmax,kmax8 ! ~20!

will then produce an inter-ring correlator for the moduli, the
inter-ring spectra. This is uniformly distributed in Gaussian
theories in (21,1). It gives us information on how connected
the distribution of power is between the different scales.

We have, therefore, defined a transformation from the
original modes into a set of variables$r ,u,f,c%. The non-
Gaussian spectra thus defined have a particularly simple dis-
tribution for Gaussian theories. They also comply with the
uniformity requirement we have placed on non-Gaussian
spectra in the discussion at the start of this section. We shall
call perturbations, for which the phases are not uniformly
distributed, localized perturbations. This is because if pertur-
bations are made up of lumps statistically distributed but
with well-defined positions, then the phases will appear
highly correlated. We shall call perturbations, for which the
ring spectra are not uniformly distributed, shapeful perturba-
tions. We will identify later the combinations of angles
which measure stringy or spherical shape of the perturba-
tions. This distinction is interesting as it is, in principle, pos-
sible for fluctuations to be localized but shapeless, or more
surprisingly, to be shapeful but not localized. Finally, we
shall call perturbations, for which the inter-ring spectra are
not uniformly distributed, connected perturbations. This
turns out to be one of the key features of stringy perturba-
tions. These three definitions allow us to consider structure
in various layers. White noise is the most structureless type
of perturbation. Gaussian fluctuations allow for modulation,
that is a nontrivial power spectrumC(k), but their structure
stops there. Shape, localization, and connectedness constitute
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the three next levels of structure one might add on. Standard
visual structure is contained within these definitions, but they
allow for more abstract levels of structure. We will show in
Appendix B what these concepts mean with reference to vi-
sual structure.

In the formulation above there is a minor flaw which we
found inconsequent, given the practical advantages gained.
This flaw is spelled out and corrected in Appendix A, but we
have chosen not to do so in the main body of this paper. In
Appendix A we also mention what can be done with the
phasesf. This is, however, outside the scope of this paper,
where we have decided to investigate the practical applica-
tions of the less investigated ring and inter-ring spectra.

IV. APPLICATIONS

Historically, much attention has been paid to the non-
Gaussianity in the phasesf. As mentioned above, it has
frequently been assumed that the prescription of random
phases in Fourier space leads to Gaussian perturbations. Evi-
dence of peculiar behavior of the phases was shown in nu-
merical simulations of CMB anisotropies from cosmic
strings@24,23#. Little attention has been given to ther ’s. In
the following three applications we will focus on the statis-

tics only involving ther ’s and show that, in these cases, they
are good non-Gaussian indicators.

In all these examples we will consider maps with 1602

pixels with no noise; it has been customary to apply the
various standard statistics to the raw non-Gaussian signal
superposed with small scale Gaussian noise, but no attempt
has been made at studying the effects of large scale Gaussian
fluctuations. As we will argue there are physically motivated
reasons for doing so. With the intent of keeping the different
effects separate we will analyze this latter case. The addition
of noise should be studied when considering specific obser-
vation strategies.

We will quote all values of the wave numberk, using
uncorrelated mesh units, i.e., following the discussion of Sec.
II, we will start labeling the wave numbers in unit intervals,
from the smallest up to the largest. The width of the rings
are, therefore,Dk51.

A. Unresolved point source on a Gaussian signal

As a first application of these statistics, let us consider a
Gaussian signal when non-Gaussian foregrounds are present.
We know that this is the case in real CMB measurements and
there exist a series of techniques which allow one to separate
the two signals, using a combination of spectral and spatial
information. A more difficult situation occurs when one con-
siders unresolved point sources. In this case, either one uses
additional information about the patch of the sky one is ob-
serving@6# or one has to make assumptions and the best one
can achieve is to subtract them on a statistical basis.

Let us consider a simple case which illustrates the weak-
ness of current methods for checking non-Gaussianity but
highlights the strengths of our technique. Suppose that the
field is sufficiently small for only a small number of point
sources to be present. Also, suppose that the signal is Gauss-
ian and that it has reached the Silk damping tail. The probed
spectrum will then go to white noise at the scale of the field

FIG. 2. The non-Gaussian signal~top! and the full signal, with
the Gaussian superposition~bottom! for a53, kc50.1, and
kg55. In the map on the top the skewness is 2.9 and the kurtosis
11.4. In the map on the bottom the skewness is20.02 and the
kurtosis20.38.

FIG. 3. Histograms of the temperature distributions for the non-
Gaussian map~solid line! and purely Gaussian map with the same
power spectrum~dashed line!.
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size, but converge to the raw spectrum otherwise@19#. A
fitting formula for the power spectrum of the Gaussian signal
is

Pg~k!5aexpS 2k2

2kg
2 D . ~21!

On top of this, one must either firmly believe that the
signal is Gaussian, or that the signal is non-Gaussian, but of
a distinctively different shape. Now, let a single unresolved
source be present in the field. Let the source be perfectly
circular, and have a Fourier space falloff of the form

Png~k!5
1

11~k/kc!
4 . ~22!

The phases are all correlated and arranged so as to center the
configuration and the anglesu correspond to a perfectly cir-
cular configuration. All moduli are exactly equal the square
root of the power spectrum. This is a shapeful, localized, and
connected perturbation, visually recognizable as highly non-
Gaussian~see Fig. 2!. Although we are using it as a toy
model for an unresolved source, this is inspired by a spot
produced by a texture undergoing perfect, spherically sym-
metric collapse.

In Fig. 2 we show the point source, and the signal mixed
with the point source for the casea53, kc50.1, and
kg55. What has started as visually very non-Gaussian dis-
appears completely with the addition of a Gaussian signal. A
real space subtraction of the source is bound to fail. From
inspecting the histogram of temperatures at each realization
one finds that, comparing with a purely Gaussian map with
the same overall power spectrum, they look the same~see
Fig. 3!. A more thorough analysis would lead us to calculate
the skewnessa3 and kurtosisa4 of the maps:

a35C3~0,0!/@C2~0!#3/2, a45$C4~0,0,0!/@C2~0!#2%23,
~23!

or better yet, estimate the distribution ofa3 anda4. In Fig. 4
we superpose histograms of of skewness~left panel! and kur-
tosis ~right panel! for the non-Gaussian theory and for the
purely Gaussian theory; clearly, the Gaussian behavior on
large scales is dominating the effect of the point source.

One useful statistic to apply is the accumulated density of
peaks above a given threshold. It was shown in@7# that, for a

Gaussian field, the density of peaks over a thresholdms,
wheres5A^udT/Tu2&, is approximately given by

Npeaks~m!5
1

4pA3u
*
2
maxF1,S 6p D 1/2g2mexp~2m2/2!

1erfcH m

@2~122g2/3!#1/2J G , ~24!

whereg and u* are dimensionless ratios of the first three
moments of the random field. We can apply this statistic to
our maps, and in Fig. 5 we compare the peak density of the
non-Gaussian maps with that of the pure Gaussian theory
~with the same power spectrum!. Although there is a slight
difference for low~negative thresholds!, the two peak densi-
ties are essentially indistinguishable.

We can now apply the approach we have devised. The
non-Gaussianity will only become evident on small scales,
i.e., for largek’s in the Fourier plane. In fact, we can find an
analytical expression for the ring spectrum of a perfectly

FIG. 4. Histograms of the
skewness~left panel! and kurtosis
~right panel! for the non-Gaussian
map~solid line! and purely Gauss-
ian map with the same power
spectrum~dashed line!.

FIG. 5. The density of peaks above a thresholddT/T for the
non-Gaussian theory~solid line! and the purely Gaussian theory
~dashed line!. The curves are averaged over 20 runs.
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circular configuration: all moduli are equal to the same value
r i5I . Then, the ring spectrum is

u i
circ5S mk2 i

mk2 i11D
mk2 i

. ~25!

For large values ofmk this ring spectrum is approximately
1/e for all i , until i approachesmk21, where the spectrum
rises to 1/2. As shown in Fig. 6~left panel!, the ring spec-
trum at a lowk is indeed consistent with a uniform distribu-
tion ~theu i ’s are uniformly distributed between 0 and 1!. As
k increases the anglesu i start accumulating around the cir-
cular ridge. Soon, the point source dominates the signal, a
fact evidenced by a perfectly circular ring spectrum. Well
into the non-Gaussian region of Fourier space~where the
Gaussian signal is strongly suppressed!, we find a clean sig-
nal as shown in Fig. 6~right panel!.

This example illustrates the main idea and the main weak-
ness behind our technique. The main idea consists of trying
to identify the particular scale on which non-Gaussianity is
evident and, clearly, this is best done in Fourier space. In this
case~with no experimental small scale noise!, one simply
needs to look atk’s on sufficiently small scales; the inclusion
of Gaussian noise would introduce an outer limit in Fourier
space, reducing the region of non-Gaussianity to a finite ring.

As for the main weakness we point out that the shape
spectrumu i is sensitive only to the global shape of the map.
While one point source leads to a very clean distribution of
power around rings in Fourier space, if one has more than a
few point sources then this will become less clear. Although
for a set ofN sources one will have a very distinct signal~a
smooth line as opposed to a random distribution ofu i), it
becomes more difficult to distinguish the sources on a firm
basis from a purely Gaussian signal. This leads us to estab-
lish the best operational strategy for this method to work:
choose small fields and analyze them separately. In doing
this one will be probing the scales on which non-Gaussianity
becomes dominant with less objects to pick out. The fact that
interferometric measurements of the CMB are constrained to
small fields leads us to believe this to be a sensible prescrip-
tion for uv-plane data analysis. Recent experience with such
measurements@6# seems to indicate that indeed in each field
there are only a few problematic sources~maybe one or two!.

B. A cosmic string with a Gaussian background

One of the best motivated theories of non-Gaussian struc-
ture formation is that of cosmic strings. Following a primor-
dial phase transition, linelike concentrations of energy could
form in certain grand unified theories@5#. This network of
strings would then evolve into a self-similar scaling regime,
perturbing matter and radiation during its evolution. The
nonlinear evolution of the strings should lead to a non-
Gaussian distribution of fluctuations; more specifically, the
effect of strings on radiation after recombination should lead

FIG. 6. The ring spectra for
two ringsk520 andk550.

FIG. 7. The Kaiser-Stebbins effect~top! and the full signal,
with the Gaussian superposition~bottom! for a55, andkg526.
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to very distinct linelike discontinuities in the CMB@21,24#,
the Kaiser-Stebbins effect. In@24# the authors solved Ein-
stein’s equations sourced by a high-resolution simulation of
an evolving string network. They argued that the non-
Gaussianity was due to nonrandom phases and illustrated
this by generating maps with the same amplitudes but ran-
domized phases and comparing the two. A battery of tests
has been used to quantify these non-Gaussian features, in
some cases with the inclusion of instrument noise and finite
resolution: in@10# the authors looked at gradient histograms
and the statistics of the genus of excursion sets, in@13# an
analytical fit to the kurtosis of a string map was proposed,
and in @23# a multifractal analysis of one-dimensional scans
was proposed.

More recent studies of the evolution of string perturba-
tions in the CMB indicate that the Kaiser-Stebbins effect is
obscured on subdegree scales by fluctuations generated be-
fore recombination@25#, and that these perturbations look
very Gaussian@26#. None of the previous statistical tests has
taken this into account. A careful analysis of the behavior of
these two contributions, however, indicates that the non-
Gaussian features may become dominant again on very small
scales: perturbations seeded before recombination will be ex-
ponentially suppressed by Silk damping@27# on small scales,
while the Kaiser-Stebbins effect will lead to ak22 behavior.
This is an ideal situation for using our statistic. We can
evaluate the non-Gaussian spectrum on scales where the non-
Gaussian signal is expected to dominate, and see if it shows
any evidence for deviation from the background Gaussian
distribution.

If we consider the case of a very small field, we expect to
have at most one segment of string crossing the patch. This
would be the case for a field of a fraction of a degree. It is
instructive to consider the case of a smooth, straight string.
Here, the signal is maximally noncircular and all of the
power in the ring is concentrated on one of the modes,
rs5mkI , with r i50 for iÞs. For such a configuration, the
ring spectrum is

u i51 for i,s, u i50 for i5s, u i5
0

0
for i.s.

~26!

The last angles are undefined in the same way that the angle
f in the normal 3D polar coordinates is undefined for points
along thez axis. The point remains that the configuration

corresponds to a single point on the (mk21)-dimensional
sphere and that, therefore, has probability zero in a Gaussian
theory. For display purposes one may then also fix the re-
maining angles at some particular but arbitrary value. We
define 0/050.

For a perfectly straight string non-Gaussianity is so ex-
treme that it is visually evident even with a very large
amount of background Gaussian noise. The situation changes
dramatically, however, for the more realistic case when the
string is rough or structured. This is the picture that emerges
from high-resolution numerical simulations@28#. The inter-
commutation of strings will build up kinks and cusps along a
string which will only stabilize once gravitational radiation
becomes important. Again, most of the power will be con-
centrated along one or a few modes, leading to a well-
defined spectrum up to some maximumi . For largeri ’s the
spectrum will be close to zero or ill defined in the same way
as for the straight string case.

Having played with a string code, we have chosen to
model the string as a directed Brownian walk along the patch
we are considering. We then modeled the effect of the
Gaussian background on these scales in the same way as that
in the previous example. We superimpose a background
Gaussian signal with the power spectrum given in@20#. In
Fig. 7~a! we show an example of a (160)2-pixel map (20
arcmin2! of the non-Gaussian signal and in Fig. 7~b! we su-
perimpose a Gaussian background with akg526 and with 5
times the overall amplitude of the non-Gaussian signal.
Clearly, the beautiful Kaiser-Stebbins effect is now beyond
what we can recognize visually. One must, therefore, resort
to more abstract tests.

We first applied to our maps some of the standard tests. It
has been argued that the skewness and kurtosis of the gradi-
ent of the temperature anisotropy field should be a good
indicator of string non-Gaussianity. Skewness should be very
sharply peaked at zero~the patterns caused by the string are
very symmetrical in terms of amplitude!, and kurtosis should
be larger than that for the Gaussian@13#. In Fig. 8 we show
histograms of skewness and kurtosis made from an ensemble
of 400 realizations. Clearly, the string with a Gaussian back-
ground is indistinguishable from the purely Gaussian sky.

A more elegant statistic involves working out the Euler
characteristic of the maps, given a threshold. The procedure
is straightforward: given a thresholdms one evaluates the

FIG. 8. Histograms of skew-
ness @~a! left# and kurtosis @~b!
right# of the gradient of tempera-
ture anisotropies from 400 realiza-
tions of string maps with Gaussian
background ~solid lines! and
Gaussian realizations with the
same power spectrum~dashed
lines!.
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difference between the number of isolated hot regions and
cold regions with regard tot. For a Gaussian field, the mean
genus is

G}me2m2/2. ~27!

It was argued in@10# that this would be a good indicator of
non-Gaussianity for strings. In Fig. 9 we show the Euler
characteristic averaged over 100 runs for the string with a
Gaussian background and for a purely Gaussian map with
the same power spectrum. Again, we find no significant dif-
ference between the two.

Finally, we have applied to these maps our technique. We
first looked for the distribution of theu i ’s in rings where the
non-Gaussianity is evident. Due to the random nature of the
structure on the string, the signal in the ring spectrum would
not be as cleanly defined as that for the straight string case.
We, therefore, looked at a large number of maps in order to
plot u i ’s with cosmic or sample invariance error bars. For
plotting purposes we shall give error bars as regions of prob-
ability larger than 1/e. This corresponds to a 1-s error bar if
the distribution is Gaussian, but generalizes the concept of a
1-s error bar to more general distributions. In particular, the
concept may be applied to a uniform distribution, which does
not even have a peak. In Fig. 10, the shaded region is where
theu i ’s have more than 1/e probability of being; the ring has
k570275 @for a (160)2-pixel map# and we clearly see a
ridge towards the left-hand side. For rings at lowk this ridge
blurs into the standard Gaussian prediction.

A more striking statistic is the inter-ring spectrum. In Fig.
11, we have shaded the region wherec ’s have more than
1/e probability of being. It is clear that for low values ofk
the Gaussian background dominates, and the various rings
are essentially uncorrelated. However, above a certain
threshold, subsequent modes are tightly correlated. As ar-

gued above, most of the power is concentrated along one
direction of each ring. What we see here is that this direction
is strongly correlated between rings. This quality we labeled
as connectedness. We see that strings’ connectedness is a
robust non-Gaussian feature, even when all else seems to
fail.

C. Evasive non-Gaussian theories

We finally present a strongly non-Gaussian theory on all
scales which evades detection by several traditional non-
Gaussianity tests. Consider a theory with a power spectrum
as in @20#, say withkg510, in uncorrelated mesh units. Let

FIG. 9. The mean Euler characteristicG as a function of thresh-
old for a string map with Gaussian noise~solid line! and for a pure
Gaussian map with the same power spectrum~the shaded region is
the 1-s region around the Gaussian mean, estimated from 100
realizations!.

FIG. 10. The ring spectrum fork570 and for a55, and
kg526. The shaded region represents a probability larger than 1/e
for the values ofu i to occur.

FIG. 11. The inter-ring spectrum witha55, andkg526. The
shaded region represents a probability larger than 1/e for the values
of c i to occur.
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the phasesf and inter-ring correlator anglesc be uniformly
distributed. However, let the ring spectrau(k) for all rings
k be the circular ring spectrumucir(k) @cf. Eq. ~25!# with
infinite probability density. Thus, we have theory of delocal-
ized, disconnected spheres. In Fig. 12 we show a realization
of this theory~call it theoryT1) and also a Gaussian realiza-
tion, that is, a realization of a theory~call it T2) which differs
only in that theu(k) are now uniformly distributed.

TheoryT1 is strongly non-Gaussian. The set of all of its
realizations has measure zero in any Gaussian theory. In

other words, the cosmic confusion between the two theories
is zero, where cosmic confusion is defined as the percentage
of common skies generated by the two theories@18#. If Q is
the set of all map variables, and ifF1(Q) and F2(Q) are
their distribution functions in the theoriesT1 andT2, then the
cosmic confusion between the two theories is@18#

C~T1 ,T2!5E dQmin~F1 ,F2!. ~28!

In terms of the variablesQ5$C(k),u(k),f,c%, we have

F15)
k

xNk
2
„C~k!…)

f

1

2p)
c

1

2p)
u

d~u2ucirc!, ~29!

F25)
k

xNk
2
„C~k!…)

f

1

2p)
c

1

2p
, ~30!

so thatC(T1 ,T2)50.
Although we have as yet no physical motivation for such

a theory, we believe it to be a good example where the tra-
ditional beliefs about non-Gaussianity do not hold; in spite of
its strong non-Gaussianity this theory evades all tests we
have applied to it. Visually, the maps produced by the theory
look very Gaussian. We can apply all the tests we have in-
troduced in the previous two sections with rather spectacular
failure. Plotting temperature histograms reveals a very
Gaussian distribution~see Fig. 13!. One may convert these
histograms into moments, with the same result. The sections
of the n-point function which may be computed in practice
are also very Gaussian. In Fig. 14 we have plotted the aver-
age and 1-s error bars for the collapsed three-point correla-
tion function forT1 andT2 as inferred from 100 realizations.
In Fig. 15 we plot histograms of kurtosis for the two theories.
Clearly, they are not good discriminators between the two
theories. We can estimate the number of peaks over a given
threshold for the two theories. In Fig. 16 we plot the total
number of peaks above a given threshold forT1 andT2. In
Fig. 17 we find the Euler characteristic for the two theories.
Once again, they are indistinguishable.

Nevertheless, all rings of theuv plane show a ring spec-
trum which is perfectly circular, without any variance. Any
sky, and anyk, produces a ring spectrum as the one in Fig.
18, obtained from the same realization used above, for the
ring k511.

FIG. 12. Realizations of theoryT1 ~top! and T2 ~bottom!.
TheoryT1 is a theory of disconnected, delocalized, perfect spheres,
with zero cosmic confusion with theoryT2, which had the same
power spectrum, but is Gaussian.

FIG. 13. Temperature histo-
grams for the two maps shown
above@that is non-Gaussian~left!
and Gaussian~right!#. The skew-
ness is, respectively, 0.043 and
20.068, and the kurtosis20.042
and 0.229.
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V. DISCUSSION

In this paper we have proposed a transformation of vari-
ables in Fourier space which produces non-Gaussian spectra
with a particularly simple probability distribution function
for a Gaussian random field. We have focused on a subset of
these, the ring spectrau i and the inter-ring spectrumc,
which contain information about the moduli of the Fourier
modes. We have presented a few examples where they are
good qualifiers of non-Gaussianity.

A number of comments are in order with regards to the
limitations of these statistics. To begin with, these statistics
are tailored for data in Fourier space. To actually apply these
statistics to real space data will involve nonlocal transforma-
tions which may complicate the procedure. However, in the
examples which we have worked out, the non-Gaussianity
becomes apparent on small scales. Therefore, one is forced
to consider experiments with the best possible resolution.
These are interferometric devices where the data are mea-
sured directly in Fourier space. Another possible shortcom-
ing of these statistics is that they are sensitive to the global
shape of the data set or map. This means that if one has

many non-Gaussian features~such as many-point sources or
many segments of string!, then both the ring spectrum and
the inter-ring spectrum will look more like Gaussian. This
can only be avoided by looking at small fields. But once
again this is the situation favored by interferometers. One is
limited to small fields~although one can mosaic over reason-
ably large patches of sky,@29#! and experience in@6# indi-
cates that very few unresolved sources will be present. In an
interferometric search for string segments, one would restrict
oneself to fields of less than0.5°2 and still have a 90%
probability of actually seeing a string, but not more than one.

We have not included the effect of small scale noise in the
examples we considered. In those cases the signal was al-
ready sufficiently corrupted for it to be difficult to identify
the non-Gaussian features. In fact, what one finds is that
large scale Gaussianity seems to be more devastating~in
terms of erasing non-Gaussian features! than small scale,
noise-related, Gaussianity. Clearly, one has to include the
two effects if one wants to apply these techniques to data but
the details are dependent on each experiment. The statistics
defined are nonlinear statistics in the data which means care

FIG. 14. The collapsed three-
point correlation function for theo-
ries T1 andT2. The averages and
error bars were inferred from 100
realizations in both cases.

FIG. 15. The histograms of kurtosis for theoryT1 ~solid! and
theoryT2 ~dashed! taken from an ensemble of 1000 realizations.

FIG. 16. The density of peaks above a thresholddT/T for theory
T1 ~solid line! and theoryT2 ~dashed line!. The curves are averaged
over 20 runs.
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must be taken when considering the effect of noise. A case-
by-case analysis of the different observation strategies will
have to be made. Again, the fact that the small scale noise in
interferometers increases as a power law with scale, as op-
posed to exponentially as in the case of a single dish experi-
ment, indicates that interferometric devices are the best in-
struments for testing for non-Gaussian features. One
immediate goal will be to design the ideal experiment for
detecting the Kaiser-Stebbins effect. This should include a
careful analysis of theoretical uncertainties~such as the am-
plitude of fluctuations at last scattering! as well as the real-
life complications mentioned above.

We have focused on statistics with the modulir and have
not developed, in any detail, or applied to any example, sta-
tistics with the phasesf. It is conceivable that much infor-

mation can be extracted from their behavior. In fact, a ge-
neric feature of physically motivated non-Gaussian models is
localization, which, as we have argued, is governed by the
phases. Although we have organized the information that can
be extracted from a finite data set in systematic way, it is
important to define a useful set of statistics in terms of the
phases. We will do so in@22#.
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APPENDIX A: INVARIANT SHAPE AND PHASE SPECTRA

The fact that the uncorrelated mesh points are somewhat
undefined makes the search for invariant quantities a pedan-
tic matter. For this reason we decided to define shape vari-
ablesu which, strictly speaking, are not invariant. The inter-
ring spectrum, on the other hand, is already invariant.

It is, however, possible to define invariant shapes but they
are more complicated. Under a rotation, the moduli$r i% suf-
fer a cyclic permutation. Hence, the 2D-rotation group has
now become discrete and so it will not discount a degree of
freedom. Nevertheless, the angles$u i% defined from them
will not be invariant under rotations~translations do not af-
fect the$r i%). A way around this is to order the$r i% so that
the lastr i is the largest. The angles$u i% produced from the
ordered$r i% will then be properly invariant. They will also
always be defined. The joint distribution of the ordered
$r i% is proportional to the joint distribution of the unordered
ones. In fact the Jacobian of any variable interchange is one.
One may at most pick a proportionality constant from adding
over all the branches of the transformation. Hence, the whole
argument in Sec. III still applies, and the new, ordered,
$u i% will still have a joint distribution which is uniform.
However, the new$r i% and$u i% are now dependent random
variables, not because their joint distribution does not factor-
ize, but because the domain of some of the variables depends
on those of the others. This results fromr i<rm . This has
several unpleasant consequences. For instance, the marginal
distribution of any of theu ’s is now not the factor appearing
in the joint distribution function. Hence, the marginal distri-
bution of the properly invariantu ’s is not uniform, although
their joint distribution is. All in all, we found theu ’s we have
defined in the main body of this paper more practical to use,
as they are much better behaved in Gaussian theories.

The phasesf defined in the main body of this paper are
also not invariant. Under a rotation they suffer a cyclic per-
mutation, whereas under a translation by a vectort they
transform asf(k)→f(k)1k•t. The phasesf(k) may be
seen as an antisymmetric real scalar field on the spacek. In
this language the field gets rotated under a~real-space! rota-
tion, and acquires a dipole under a~real-space! translation.
One can build invariants out of the phases, therefore, simply
by subtracting the dipolar component of the field, and aver-

FIG. 17. The average Euler characteristic of theoryT1 ~solid!
andT2 ~dashed!, averaged over 100 realizations.

FIG. 18. All rings of theoryT1 for all realizations show a per-
fect circular ring spectrum. Here we show the ringk511.
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aging over angle. This can be done in many different ways,
to be explored more thoroughly in a future publication. Here,
we simply outline one possible strategy. Let us in each
Dk51 ring apply an angular Fourier transform to the phases:

f~k!5f~k,bk!5(
m

f~k,m!eimbk5(
m

fc~k,m!cos~mbk!

1fs~k,m!sin~mbk!. ~A1!

Then, under a translation, them51 mode transforms as

fc~k,1!→fc~k,1!1ktcosb t , ~A2!

fs~k,1!→fs~k,1!1ktsinb t , ~A3!

whereas all other modes are invariant. One may then simply
throw away them51 mode, the other ones making up a
localization ring spectrum. The distribution of these in
Gaussian theories is again not simple, and we shall look for
something better than this. This procedure, however, does
have the advantage of reacting to individual shapes an local-
ization properties rather than global ones.

For any pair of adjacentDk51 rings we have subtracted
two modes too many. These should be returned in the form
of two inter-ring phase invariants, such as

Fc~k!5
fc~k11,1!

k11
2

fc~k,1!

k
, ~A4!

Fs~k!5
fs~k11,1!

k11
2

fs~k,1!

k
. ~A5!

Again, this is but one example of a possible invariant made
out of phase gradients, to be explored better in our future
work.

APPENDIX B: VISUAL INTERPRETATION
OF NON-GAUSSIAN SPECTRA

The decomposition$C(k),u,f,c% has an immediate
physical interpretation. The anglesu ’s reflect the angular dis-
tribution of power and, therefore, reflect shape. The phases
f transform under translations and so contain the informa-
tion on position and localization of the structures in the field.
The anglesc ’s correlate different scales and, therefore, tell
us how connected the structures are. For a Gaussian random
field the variables$u,f,c% are all uniformly distributed, re-
flecting complete lack of structure besides the power spec-
trum. In terms of the various levels of structure considered,
we can then characterize Gaussian fluctuations as shapeless,
delocalized and disconnected. By comparison with a Gauss-
ian we may then define structure at different levels. We will
say that fluctuations, for whichu ’s are not uniformly distrib-
uted, are shapeful. If thef ’s are not uniformly distributed
we shall say the fluctuations are localized. If thec ’s are not
uniformly distributed the fluctuations are connected. Al-
though visual structure has room within these definitions,
they are considerably more abstract and general. We may
consider highly nonvisual types of structure such as shapeful
but delocalized fluctuations or disconnected, localized,
stringy fluctuations. In this sense we regard our formalism as
a robust definition of structure, which goes beyond what is
visually recognizable and so is tied down to our particular
and narrow path of natural selection. We may imagine an
alien civilization with Fourier space eyes~say, interferomet-

FIG. 19. A spherical hot spot which has been deconstructed at
different levels. On the top left-hand panel we have the pure non-
Gaussian signal. The anglesu i ’s have been redrawn uniformly on
the top right picture. On the bottom left the phasesf i ’s were re-
drawn unformly. On the bottom right, we applied an independent
unformly distributed rotation on all rings in Fourier space. From top
to bottom and left to right, a plain regular sphere, a shapeless
sphere, a delocalized sphere, and a disconnected sphere.

FIG. 20. The Kaiser-Stebbins effect~top left! and its various
stages of deconstruction. The anglesu i ’s have been redrawn uni-
formly on the top right picture. On the bottom left, the phases
f i ’s were redrawn unformly. On the bottom right we applied an
independent uniformly distributed rotation on all rings in Fourier
space. Respectively, we have strings, shapeless strings, unlocalized
strings, and disconnected strings.
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ric eyes@30#!, and a brain trained to recognize Fourier space
structure at many different levels, structure that would seem
totally nonobvious to our human eyes.

To illustrate the limitations of human vision we shall now
destroy highly structured maps level by level, that is Gaus-
sianize only one of the variable types$u,f,c%. Initially,
there will be structure at every level, shape, position, and
connectedness. We will remove structure gradually, a fact
not disasterous for the alien civilization referred above, but
which will illustrate the limitations of the human visual
method for recognizing non-Gaussianity. In Fig. 19 we play
this game with a sphere. We depict a spherical hot spot in
real space, then a shapeless sphere, a delocalized sphere, and
a disconnected sphere. For the case of a sphere we find that
what we recognize as shape is mostly localization. A shape-
less sphere keeps its recognizable features. On the other
hand, a delocalized sphere loses it characteristic features. In-
deed, the idea of a shapeful but nonlocalized object sounds
somewhat surreal for all we can visually conceptualize. Nev-

ertheless, our formalism will reveal the strong but not obvi-
ous non-Gaussianity exhibited by a delocalized sphere.

In Fig. 20 we repeat the same exercise for a map display-
ing the Kaiser-Stebbins effect from cosmic strings. Shapeless
strings, delocalized strings, and disconnected strings are
shown. Considerable disarray is introduced in every case, but
one may say that disconnected strings as well as delocalized
strings are perhaps the most messy of them. This is consis-
tent with the strong signal inc we have found for the case of
the realistic Kaiser-Stebbins effect. On the other hand, the
fact that linelike discontinuities are present even for shape-
less strings shows how much more structure there is in the
map on top of the structure which we can recognize. This is
important since the beautiful patchwork is very fragile to the
hard realities of noise and superposed Gaussian signal. In the
real world, it turns out, the nonvisual feature, which is the
connectedness of strings, happens to survive much better
than the patchwork~which reflects mostly localization!.
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