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In the standard picture, the inflationary universe is in a supercooled state which ends with a short time, large
scale reheating period, after which the universe goes into a radiation-dominated stage. An alternative is
proposed here in which the radiation energy density smoothly decreases all during an inflationlike stage and
with no discontinuity enters the subsequent radiation-dominated stage. The scale factor is calculated from
standard Friedmann cosmology in the presence of both radiation and vacuum energy density. A large class of
solutions confirm the above identified regime of nonreheating inflationlike behavior for observationally con-
sistent expansion factors and not too large a drop in the radiation energy density. One dynamical realization of
such inflation without reheating is from warm inflation-type scenarios. However the solutions found here are
properties of the Einstein equations with generality beyond slow-roll inflation scenarios. The solutions also can
be continuously interpolated from the nonreheating-type behavior to the standard supercooled limit of expo-
nential expansion, thus giving all intermediate inflationlike behavior between these two extremes. The tem-
perature of the universe and the expansion factor are calculated for various cases. Implications for baryongen-
esis are discussed. This nonreheating, inflationlike regime also appears to have some natural features for a
universe that is between nearly flat and open.@S0556-2821~97!04606-7#

PACS number~s!: 98.80.Cq, 05.40.1j

I. INTRODUCTION

In the original conception of inflation@1#, it was assumed
that the universe underwent isentropic expansion during the
stage of rapid growth of the scale factor. The entropy re-
quired to make the post-inflationary universe consistent with
observation was assumed to be generated in a short-time re-
heating period. However, it is clear that for a range of mod-
erate thermodynamic conditions, the cosmological horizon
and flatness problems, which are explained by inflation, re-
quire only the kinematic property that the scale factor grows
rapidly. More recently@2# it was realized that these kine-
matic conditions could still arise in the presence of a sus-
tained radiation component during inflation. Specifically, in
@2# it was shown that under certain isothermal conditions
inflation could still occur. More so, it was shown there that
within these limits the initial seeds of density perturbations
could be dominantly of thermal instead of quantum origin. A
realization of an isothermal or warm inflation scenario, in the
context of slow-roll scalar field dynamics for parametrically
large dissipation, was shown in@3# to be consistent with
observational constraints for the amplitude and expansion
factor, without requiring an ultraflat Coleman-Weinberg po-
tential, which in order to form requires the coupling constant
to be fine-tuned. Questions about the fundamental origin of
large dissipation are still left open.

The warm inflation scenario served as a explicit demon-
stration of an otherwise true but ambiguous statement, that
inflation can occur in the presence of a thermal component.
That this is true is self-evident, as, for example, within the
context of scalar field theory. Here the requirements for ex-
ponential expansion are

rv@drf ~1!

and

rv@rkinetic, ~2!

with

rkinetic[
1
2 ḟ21r r . ~3!

Heredrf is the energy density perturbation, andrv andr r
are the background vacuum and radiation energy densities,
respectively. Thus energetics alone does not prohibit the re-
lation

rv@r r@
1
2 ḟ2, drf . ~4!

By itself this inequality gives no indication of the extent that
radiation can modify the supercooled scenario. However, the
warm inflation scenario@3# demonstrated that at least in the
limit of near thermal equilibrium, the effect is nontrivial. By
reexamining this scenario solely in terms of energetics in@4#,
it became evident that both supercooled and thermal slow-
roll scenarios could be viewed as limiting cases of a class of
nonequilibrium kinetic possibilities. A preliminary step to a
nonequilibrium study is determining the possible kinematic
behaviors of the scale factor for a universe in a mixed state
of radiation and vacuum energy. This is the first motivation
that leads us to examine the scale factor in this paper.

In light of this, we find it useful to distinguish between the
behavior of the scale factor, which we consider kinematics,
from the underlying dynamics that induces this behavior.
The classification of scale factor behavior is considered ki-
nematic, because it involves characterizing different solu-
tions and different regimes of a given solution, all arising
from a particular equation. Besides inflation, common among
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these are radiation-dominated and matter-dominated behav-
ior. Originally inflation was associated with an exponentially
growing scale factor@1#. Subsequently any form of acceler-
ated expansion@R̈(t).0# has become associated with infla-
tion.

Dynamics enters in determining the time evolution of the
background stress-energy tensor, which is the driving source
in the scale factor equation. In the context of dynamics, in-
flation may or may not arise due to a phase transition. In
general, dynamics is stochastic, although the degree of sto-
chasticity may well be approximated by pure dynamics or
near-equilibrium statistical dynamics.1 Inflation scenarios re-
alized in a supercooled regime are examples of the former,
whereas warm inflation scenarios@3# are examples of the
latter.

The present most successful formulation of supercooled
scenarios is new inflation@5,6#. Although several variants of
the original scenario have been formulated~for a review
please see@7,8#!, up to observation the basic assumptions
and mechanism are the same. The new inflation assumptions
are that dynamics can be described by a suitable potential
with a suitable order parameter, known as the inflaton, and
that evolution is governed by the Lagrangian equations of
motion. The basic mechanism of new inflation is slow-roll
dynamics at supercooled temperatures.

In the simplest form of new inflation, the inflaton is a
scalar field. The conventional treatment of scalar field dy-
namics assumes that it is pure vacuum energy dominated.
The various kinematic outcomes are a result of specially cho-
sen Lagrangians. In most cases the Lagrangian is unmoti-
vated from particle phenomenology. Clear exceptions are the
Coleman-Weinberg potential with an untuned coupling con-
stant, which is motivated by grand unified theories@9#, and
supersymmetric potentials, although in the latter case, the
choice of the supersymmetric potential is again arbitrary, and
in the former case new inflation is inconsistent with obser-
vation. Making one extension to the new inflation picture,
the behavior of the scale factor can also be altered for any
given potential when radiation energy is present. Out of pure
kinematic interest, this effect has reason to be examined.

More so than just this reason, one may also project to
circumstances sometime in the future when observational
data will allow determination of the optimal potential among
the candidate choices~for examples of recent attempts please
see@10,11#!. If one accepts the new inflation approximation
that the relaxational dynamics of the inflaton can be de-
scribed by a potential, the next question is what is the mi-
croscopic origin of this so preferred potential. If one were
restricting oneself to supercooled scenarios, one argument is
that the so preferred potential happens to be the one that
formed during the rapid quench at the onset of inflation.
Another argument is that this is a fundamental zero tempera-
ture potential of an elementary field in the Lagrangian. Since
for supercooled new inflation scenarios, one of the unan-
swered questions is that no potential that is suitable for in-
flation has an already known phenomenological origin, the
second argument is highly predictive. Yet to substantiate ei-

ther claim, one would need to study the evolution of the
potential from its high temperature state during the quench.
This would lead to examining the interplay between radia-
tion and vacuum energy density at the onset of inflation.

Having appreciated this point, the time interval in which
this transition occurs becomes important. The short-time re-
gime is relevant to supercooled new inflation scenarios and
the extent to which this interval can be extended is relevant
to warm inflation scenarios. Thus, whether stated in the con-
ventional sense of new inflation or the extended sense of
warm inflation, the out-of-equilibrium evolution of the infla-
tionary potential will require study, and as an initial step, the
scale factor dynamics needs to be examined in a mixed state
of background vacuum and radiation energy density. This
additional connection to supercooled scenarios provides a
second motivation for this study.

To completely study the nonequilibrium dynamics, the
problem divides into two steps. The first step is determining
the regimes in which accelerated expansion and pure infla-
tion can occur and characterizing the behavior of the scale
factor in these regimes. The second step is understanding
within the allowed regimes, the class of spectra of primeval
energy density perturbations. The first step is moderately
model dependent and mainly involves energetics and Fried-
man cosmology. The second step is a more acute problem of
dynamics. Although we will only address the first step in this
paper, let us make a few comments about the second step.

In general there is no unique formulation of nonequilib-
rium dynamics for almost any system. The first step in for-
mulating any approach requires understanding the scales in
one’s problem. For inflation the simplest assumption is that
there are two scales: a long-time, long-distance scale associ-
ated with vacuum energy dynamics and a single short-time,
short-distance scale associated with a random force compo-
nent. The Hubble time during inflation, 1/H, appropriately
separates the two regimes. For grand unified theory@9#, this
time interval is 1/H'10234 sec.

The assumption of a long-time scale for the evolution of
the vacuum is based on observation. Otherwise inflation
would not sustain itself sufficiently long and nor would the
energy release maintain smoothness. Accepting this as an
empirical constraint, the relaxational dynamics of the infla-
ton’s order parameter justifiably could be described by a
free-energy functional. What the specific functional is re-
quires dynamics. In the presence of a radiation component,
the functional need not have any similarity to a fundamental
potential from the underlying quantum field theory. Further-
more, in grand unified theories as an example, the character-
istic time scale of inflation, 1/H, is about 1010 times faster
than the characteristic hadronic interaction scale (1/LQCD),
which is a comparison scale where there is good empirical
understanding about matter. Thus, at the inflation scale, fa-
miliar concepts about matter and from field theory about
near-thermal-equilibrium-motivated effective potentials also
need not be appropriate.

The problem here has similarities to certain phase separa-
tion problems commonly known in association with binary
alloys, and the name synonymous with them, spinodal de-
composition, has been used before in new inflation cosmol-

1The role of stochasticity in cosmology has been emphasized by
the Maryland school. For a review please see@31,32#.
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ogy.2 The similarity in both cases is that the system is being
cooled faster than its characteristic response time to equili-
brate. Of course, if this analogy is meant to be complete, the
cooled system should still be at a non-negligible temperature,
since, at least in the binary alloy problem, the relaxational
dynamics is driven by short-ranged thermally excited fluc-
tuations. The analogy to spinodal decomposition not only
gives a nice guiding picture, but it also has a type of consol-
ing appeal, which covers for our ignorance about matter,
much less quantum field theory, under such extreme condi-
tions, since at least in the context of alloys the problem is
considered sufficiently complex to make phenomenological
modeling of the nonequilibrium potential an accepted prac-
tice. If viewed in the same way, the several scalar inflation-
ary potentials that have been suggested could be interpreted
as the cosmologist’s attempt at nonequilibrium phenomenol-
ogy.

A. Hypothesis

Although the reasons given above well motivate exami-
nation of the scale factor, I will now describe an alternative
to the standard inflationary universe scenario. Consider the
following possibility which will be demonstrated in the se-
quel. It should be easy to convince oneself that a radiation
energy densityr r(t) of, say, 1 part in 10 000 to the vacuum
energy densityrv(t) probably should not alter too much the
inflationlike behavior of the scale factor. However, when
looked upon in terms of the temperatureTr of the radiation
energy density, this implies thatTr is only an order of mag-
nitude below the scale of the vacuum energy density. If such
a state for the radiation energy density could be maintained
by the mutual effects of constant vacuum energy decay and a
steadily decreasing acceleration of the scale factor, it could
be possible for an inflationlike stage to smoothly enter into a
radiation-dominated stage without any discontinuities in
r r(t). This possibility was suggestive from formulating the
warm inflation scenario@3#.

In this paper evidence is presented for inflationlike trajec-
tories of the scale factor which solve the horizon and flatness
problems, but for which the radiation energy density mono-
tonically enters the post-inflation radiation-dominated stage
with in particular no intermediate reheating stage. This is a
regime in between the radiation-dominated and inflation re-
gimes, which has features similar to both a big-bang-like
explosion and an inflationlike expansion.

The paper is organized as follows. In the next section the
problem is formulated, general solutions are given in Sec.
III, special examples are given in Sec. IV, and finally the
conclusions are in Sec. V. From the class of solutions that we
find for the scale factor, supercooled expansion, which we
call supercooled inflation, is a limiting case. This is a kine-
matic identification. A particular and most noteworthy dy-
namic realization of supercooled inflation scenarios is the
class of new inflation scenarios. Supercooled inflation has

associated with it also a range of power law@12#, quasiex-
ponential@13#, and exponential@5,6# behavior for the scale
factor. However, these varied behaviors arise from the spe-
cifics of the particular Lagrangian that is being considered.
In what we will examine, for any given Lagrangian, a large
range of behavior may still arise, depending on the radiation
energy density content.

There is one other problem that the present work may
help clarify. We will discuss it briefly here. However, it gets
into the realm of field theory dynamics, which this paper will
mainly avoid. The most notable shortcoming of new inflation
is in explaining small scale energy density inhomogeneities
@14,6,15–17#. The problem is sometimes referred to as the
amplitude fluctuation problem@15#. The warm inflation sce-
nario in @3# is a solution to this problem. However, our for-
mulation there did not detail a time history for an inflation-
like state with radiation. The present work does and in fact
was its starting motivation. However, as a result of the gen-
erality of the solutions given here, it appears better to con-
sider warm inflation as a particular dynamic realization
within the big-bang-like inflation regime.

Our equations can also be examined for the initial stage of
entering into the rapid expansion state, but we will not study
that here.

II. FORMULATION

We are interested in the scale factor from some short time
after the initial singularity, when quantum gravitational ef-
fects become negligible. We assume that space is homoge-
neous and isotropic, and restrict ourselves to Friedman cos-
mology with the Robertson-Walker metric

ds25dt22R2~ t !F dr2

12kr2
1r 2du21r 2sin2udf2G . ~5!

For notational convenience, the origin of cosmic time is de-
fined as the beginning of our treatment.

Let us start with the standard equations of Friedman cos-
mology @16,18# for the scale factorR(t) in the presence of
vacuum energy densityrv(t) and radiation energy density
r r(t). The equations of state which relate the energy density
r to the pressurep are

pv~ t !52rv~ t !, ~6!

pr~ t !5 1
3r r~ t !. ~7!

In Friedman cosmology the ten Einstein equations
Gmn58pGTmn reduce to two independent ones, which are
from the time-time component, also known as Friedmann’s
equation

Ṙ2

R2 1
k

R2 5
8pG

3
r, ~8!

and from any of the three diagonal space-space components,
all of which give

2
R̈

R
1
Ṙ2

R2 1
k

R2 528pGp. ~9!

2For scalar field inflaton dynamics, the analogy actually is to spin-
odal decomposition for a nonconserved order parameter, such as
found in certain domain growth problems@33,34#, whereas the bi-
nary alloy problem involves a conserved order parameter.
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For our purposes it is preferable to use two other equations
obtained from these, the scale factor equation

R̈

R
5
8pG

3
@rv~ t !2r r~ t !# ~10!

and the stress energy conservation equation

ṙ r~ t !524r r~ t !
Ṙ~ t !

R~ t !
2 ṙv~ t !, ~11!

where we have used the equations of state~6! and ~7!. We
aim to solve forR(t) andr r(t) in Eqs.~10! and ~11!, for a
prescribedrv(t), for t.0, and with arbitrary initial condi-
tions forR(t), Ṙ(t), andr r(t) up to the constraints

R~0!.0 ~12!

Ṙ~0!.0 ~13!

and

r r~0!.0. ~14!

By taking the sum and difference of Friedman’s equation
~8! and the scale factor equation~10!, the vacuum and radia-
tion energy densities can be separately expressed in terms of
the scale factor as@19#

rv~ t !5
3

16pG
F R̈
R

1
Ṙ2

R2 1
k

R2G , ~15!

r r~ t !5
3

16pG
F2

R̈

R
1
Ṙ2

R2 1
k

R2G . ~16!

For an arbitrary test vacuum functionrv(t), one can use Eq.
~15! to solve forR(t).

We make the substitution

s~ t !5R2~ t !. ~17!

Equation~15! then becomes the inhomogeneous wave equa-
tion with time-dependent frequency

s̈2
32pG

3
rv~ t !s522k. ~18!

This equation has been widely studied@20,21#. Again we are
interested in the solutions to Eq.~18! for t.0 with arbitrary
initial conditions for s(t) up to the constraints from Eqs.
~12!–~14! and ~17! which imply

s~0!.0 ~19!

and

ṡ~0!.0. ~20!

III. SOLUTION

In this section solutions are obtained for the scale factor
from Eqs.~10! and ~11! for a large class of vacuum energy
decay functions. Even before getting this specific, there are

two general features, one at short and one at long time,
which are recurring themes to the existence of the big-bang-
like inflation regime. At long time, ifrv(t) goes to zero
sufficiently fast, from Eqs.~18! and ~17! one can see that
R(t→`);t1/2, thus tending to a radiation-dominated behav-
ior. At short time, for an initially radiation-dominated uni-
verse,

r r~ t;0!@rv~ t;0!, ~21!

Eqs.~10! and~11! imply R(t;0);(a1bt)1/2. Alternatively,
this can be seen from Meissner’s separation, Eqs.~15! and
~16!, since Eq.~21! implies from Eqs.~15! and ~16! that

ṡ2~ t;0!@ s̈~ t;0!. ~22!

Taylor expanding s(t) about the origin ass5s01s1t
1s2t

2/21•••snt
n/n!1•••1, Eq. ~22! implies s1

2@s2. Us-
ing this and Eq.~18!, one can study the initial condition
dependence of entering the inflationlike stage, but we will
not pursue that here.

Let us now turn to specific solutions. Although this paper
is focused on the kinematic possibilities for the scale factor,
independent of justification from any specific field theory,
we will motivate a class of vacuum decay functions from a
general class of scalar field dynamics. In fact as we will
show below, in the limit of strong dissipation, this motiva-
tion can be partly justified.

We consider stochastic evolution for the inflaton gov-
erned by the Langevin-like equation

f̈~ t !1FG13
Ṙ~ t !

R~ t !
G ḟ~ t !1V8„f~ t !…5h~ t !, ~23!

whereh(t) is a random force function with vanishing en-
semble averaged expectation value

^h~ t !&50. ~24!

The effect of the inflaton’s interaction with radiation is rep-
resented by the dissipative constantG and the random force
functionh(t). In a simple model for the radiation system and
in the limit of pure inflation (Ṙ/R5const! this equation was
obtained from quantum field theory in@4#.

We are interested in the limit of strong dissipation,

G@
Ṙ

R
, ~25!

and the slow-roll regime

Guḟu@uf̈u. ~26!

For our present purposes, the ensemble-averaged equation of
motion is all that we need. Thus in the above specified limits,
Eq. ~23! becomes

df

dt
52

1

G

dV~f!

df
. ~27!

Let us consider potentials of the form

V~f!5lM42n~M2f!n ~28!
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in the region

0,f,M , ~29!

wherel is dimensionless. For inflation driven dynamically
at the grand unified scaleM;MGUT'1014 GeV.

Globally all of the potentials in Eq.~28! are improper for
slow-roll inflation scenarios, since they fail to represent sym-
metry breaking. However, our present interest is the behavior
of the scale factor for a large class of slow-roll conditions. In
this sense Eq.~28! represents a class of local approximating
potentials from which an arbitrary potential can be piecewise
constructed. Thus it is also not a concern that such potentials
have no minima for oddn and are nonanalytic for noninteger
n whenf5M .

In fact near the global minima, where the vacuum energy
goes to zero, quadratic (n52) dependence would be the nor-
mal expectation for any generic free-energy functional. This
case is not only of special physical interest but is also math-
ematically a little different. We will differentiate this case of
n52 from all others and refer to it as the quadratic limit.

To keep our discussion explicit, we will express the re-
sults that follow in the context of the slow-roll inflation sce-
nario. However, it should be noted that the solutions for the
scale factor given below carry a relevance beyond the slow-
roll scenario. Let us briefly recall the slow-roll scenario. In
the standard setting of the slow-roll transition, the inflaton
starts near the origin and is making its decent to the
symmetry-broken minima atf5M .

At the origin of cosmic time we will assume that the
slow-roll transition begins with

f~0!5eM ~30!

ande!1. With these initial conditions, the solutions of Eq.
~27! for potentials in Eq.~28! are, forn52,

f~ t !5M F12expS 2
B2

2
~ t2t02! D G ~31!

and, fornÞ2,

f~ t !5M $12@Bn~ t1t0n!#
1/~22n!%, ~32!

with

B2[
4lM2

G
~33!

and

Bn[
n~n22!lM2

G
. ~34!

Here t02 and t0n are suitably adjusted to satisfy Eq.~30!.
Equating the potential to the vacuum energy density

rv~ t !5V„f~ t !… ~35!

implies, forn52,

rv~ t !5lM4exp@2B2~ t2t02!# ~36!

and, fornÞ2,

rv~ t !5lM4@Bn~ t1t0n!#
n/~22n!. ~37!

Substituting the above in Eq.~18! and solving the homoge-
neous~flat space! equation, we find for the scale factor from
Eq. ~17! for n52,

R5AC1I 0„z2~ t !…1C2K0„z2~ t !…, ~38!

and in thenÞ2 case for all butn54,

R5@Bn~ t1t0n!#
1/4

3AC1I ~22n!/~42n!„zn~ t !…1C2K ~22n!/~42n!„zn~ t !…,

~39!

where

z2~ t ![
4

B2
H2expS 2B2

2
t D ~40!

zn~ t ![
4~22n!Hnt0n

~42n! S t

t0n
11D ~42n!/~422n!

, ~41!

with

H2[A8pGlM4

3
expS B2t02

2
D , ~42!

Hn[A8pGlM4

3
~Bnt0n!

n/2~22n!. ~43!

In Eqs.~42! and ~43! we have identified the Hubble param-
eter att50 based on the definition

H[A8pGrv~0!

3
~44!

for the respective vacuum energy densities in Eqs.~36! and
~37!. In the Appendix we have listed properties of modified
Bessel functions that will be useful to us. Finally from the
nÞ2 cases forn54 the solution is

R5uB4~ t1t04!u
1/4AC1uB4~ t1t04!u

m1C2uB4~ t1t04!u
2m,
~45!

where

m5
1

2 S 11
128pGlM4

3B4
2 D 1/2. ~46!

The inhomogeneous wave equation in Eq.~18!, which is
for curved spacekÞ0, can be solved from the above solu-
tions for the homogeneous equation by familiar methods
@20,21#. Irrespective of the slow-roll scenario, the results,
Eqs.~38! and ~39!, are valid for any scenario that motivates
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vacuum decay behavior as in Eqs.~36! and ~37!. Likewise
for other types of vacuum decay functions, Eq.~18! can be
solved.3

In the next section, the solutions Eqs.~38! and ~39!, will
be studied through specific examples. Here some of their
general features will be noted. The quadratic limit is exam-
ined first. The growing mode ast→` in Eq. ~38! from Eqs.
~A1! and ~A2! is K0„z2(t)… with

R~ t→`!;t1/2, ~47!

thus asymptotically exhibiting radiation-dominated behavior.
Inflationlike expansion at intermediate time is also gov-

erned byK0„z2(t)…. From Eq.~A2! a large expansion factor
of eN with N>50 will require

2H2

B2
;N. ~48!

This is like what one would expect, since the vacuum energy
density must decay sufficiently slowly relative to the expan-
sion time for the scale factor, in order to be the driving
source for inflationlike behavior in the Einstein equations.

In order to establish the dominance of theK0„z2(t)… term
to the I 0„z2(t)… term in Eq.~38!, what remains is to show
that there is no way for the initial conditions to forceC1 to
be exponentially large relative toC2. Treating 4H2 /B2@1
and using Eqs.~A5! and ~A6!, this follows from the con-
straints, Eqs.~19! and ~20!. Equation~20! could be satisfied
for C1 exponentially large but negative relative toC2, but
then Eq.~19! would not be satisfied. Having established the
dominance of theK0„z2(t)… mode, let us estimate the expan-
sion factor for a singlen52 section of the potential, Eq.
~28!, with e50 in Eq. ~30! so thatt0250 in Eq. ~31!. We
find for the asymptotic behavior

R~ t→`!

R~0!
;

~B2t/2!1/2e2H2 /B2

~pB2/8H2!
1/4 , ~49!

and so an expansion factor ofe2H2 /B2.
Away from the quadratic limit (nÞ2) from Eqs.~39!, and

~A5!, ~A6! we see that for

42n

22n
.0 ~50!

the solution will grow exponentially at large time, and thus
never asymptotes into a radiation-dominated behavior. This
corresponds to a vacuum decay function that decays slower

than 1/t2 at large times in Eq.~18!. Radiation-dominated
behavior at large time is attained for

42n

22n
,0, ~51!

which implies potentials in Eq.~28! with

2,n,4 ~52!

or vacuum decay functions in Eq.~18! that decay faster than
1/t2. Finally for n54, which corresponds to a vacuum decay
falling off exactly as 1/t2, R(t) has the same power law
behavior throughout, with a growth bounded from below by
t1/2. As such, this case is not useful for our present purpose.
This implies that the only symmetric potential about the
symmetry broken point,f5M , that leads to radiation-
dominated and not inflationlike asymptotic behavior is the
quadratic casen52. As an aside, note that then54 case is
interesting since on either side are solutions with two very
different types of asymptotic behavior.4

Returning to the cases in Eq.~52!, the growing mode in
Eq. ~39! is K (22n)/(42n)„zn(t)…. Let us estimate the expan-
sion factor for a singlenÞ2 sector of the potential, Eq.~28!,
in the range Eq.~52! for e50 in Eq. ~30! so that

Bnt0n51 ~53!

in Eq. ~32!. The arguments are the same as above for the
n52 case with the final result

R~ t→`!

R~0!
;~Bnt !

1/2expF2~n22!Hn

~42n!Bn
G . ~54!

Before closing this section, one additional qualifying
statement is needed about the solutions, Eqs.~38! and~39!, if
the vacuum decay functions, Eqs~36! and~37!, are obtained
from slow-roll scalar field dynamics. Recall that the energy
density and pressure of the zero mode of the scalar field are

rf5 1
2 ḟ21V~f!, ~55!

pf5 1
2 ḟ22V~f!. ~56!

Therefore, the equation of state~6! is valid in the limit that
the potential energy dominates the kinetic energy

1
2 ḟ2!V~f!. ~57!

One must check that this kinetic energy suppression condi-
tion is always valid.

3One case is during reheating in supercooled scenarios. For this,
the vacuum decay function in Eq.~18! should have the approximate
time dependencee2uGut(11cosBt) with B;M@H. These types of
equations are treated in@20#. The uGu50 case is the Mathieu equa-
tion. The solutions of these equations describe the scale factor be-
havior during those stages of reheating when the equation of state
~6! is valid for the inflaton. Another nontrivial aspect of scale factor
behavior in supercooled scenarios is at the beginning where initial
condition dependence on preinflationary radiation energy density
can be studied. For this, the solutions, Eq.~39!, for n;0 are useful.

4It is also an interesting coincidence thatn54 separates renormal-
izable and nonrenormalizable scalar quantum field theory, with the
nonrenormalizable side,n.4, corresponding to the observationally
inconsistent non-radiation-dominated asymptotic scale factor be-
havior. Furthermore, then54 case neither asymptotes to radiation-
dominated behavior nor is believed to be nonperturbatively a non-
trivial quantum field theory@35#. Of course, for the inflaton, since it
is coupled to gravity, the whole theory is always nonrenormalizable
in any case.
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For this, first recall that the exact equation of motion for
the inflaton in the limit, Eq.~25!, is the second order equa-
tion

f̈1Gḟ1V8~f!50. ~58!

For the quadratic casen52, this equation can be exactly
solved and it can be verified that the slow-roll condition, Eq.
~26!, and the kinetic energy suppression condition, Eq.~57!,
are both valid for allt.0 provided

lM2

G2 !0. ~59!

In addition, if rv(0) is required to be large in Eqs.~36! and
~37!, so thatl cannot be made tiny, Eq.~59! implies

G@M . ~60!

This is the large dissipative regime required for warm infla-
tion @3#.

For the cases 2,n,4, to verify Eq.~57!, first it will be
shown that the solutions, Eq.~32!, are consistent with the
slow-roll condition, Eq.~26!, for all t.0. Next a direct veri-
fication will be made that the solutions, Eq.~32!, respect the
condition, Eq.~57!. Addressing step one, it is observed from
Eq. ~32! that for the entire range 2,n,4, f̈(t) vanishes
faster thanḟ(t) ast→`. Thus Eq.~26! is satisfied under the
same parametric restrictions as in then52 case, Eqs.~59!
and ~60!. Proceeding to the second step, it can be verified
from the slow-roll approximate solutions, Eq.~32!, that
ḟ2(t) vanishes faster thanV„f(t)… as t→`. Thus in the
regime, Eq.~60!, Eq. ~57! is satisfied for allt.0 so that Eq.
~6! is always valid.

To summarize, it has been verified that the equation of
state~6! is valid for the scalar field for allt.0 and in the
entire range 2<n,4, when in the strong dissipative regime,
Eq. ~60!. This type of slow-roll motion is analogous to an
overdamped oscillator@4#. Note that confirming the validity
of Eq. ~6! for all t.0 is more than needed, since in any case
r r(t) overtakesrv(t) at some much earlier stage.

The results presented in this section now demonstrate the
existence of inflationlike scale factor trajectories which
smoothly go into a radiation-dominated behavior without a
discontinuous reheating stage.

IV. EXAMPLES

In this section we will examine some specific examples
from the solutions for the scale factor in Eqs.~38! and~39!.
In these examples we will see how the radiation energy den-
sity eventually overtakes the vacuum energy density with no
discontinuities, and in the processes the universe smoothly
goes from an inflationlike to a radiation-dominated stage. We
will also study the magnitude of decrease in the radiation
energy density, thus the temperature of the universe, from
before to after the inflationlike stage. In supercooled sce-
narios, the post-inflation temperature is referred to as the
reheating temperature, but here it is better to call it the initial
temperature after inflation,TAI . In particular the inflationlike

stage is defined as the time period when the scale factor has
positive acceleration

R̈~ t !.0, ~61!

with the time ‘‘just before,’’ tBI , and ‘‘just after,’’ tAI , in-
flation being defined as the end points of the accelerated
expansion interval

In Sec. IV~b! we will examine a particularnÞ2 case from
Eq. ~39! which can be fully expressed with simple analytic
functions. Then in Sec. IV~c! we will examine the quadratic
limit. For this study, we will first convert to a set of dimen-
sionless quantities.

A. Dimensionless theory

We will work with the dimensionless quantities defined as

a~t![
R~t!

R~tBI!
, ~62!

b~t![
rv~t!

rv~tBI!
, ~63!

c~t![
r r~t!

rv~tBI!
, ~64!

where dimensionless time

t[Ht, ~65!

tBI is the time when accelerated expansion begins, andH is
defined in Eq.~44! except with the vacuum energy density
evaluated attBI , rv(tBI). Definingsa(t)[a2(t), the Meiss-
ner separation, Eqs.~15! and ~16!, in terms ofsa(t) and the
rescaled quantities is

b~t!5
1

4sa~t!

d2sa~t!

dt2
1

k

2H2sa~t!
~66!

and

c~t!52
1

4sa~t!

d2sa~t!

dt2
1

1

4sa
2~t!

S dsa~t!

dt D 21 k

2H2sa~t!
.

~67!

The radiation energy density will be related to a tempera-
ture measure by the Stefan-Boltzmann radiation law

r r~t!;T4~t!. ~68!

This law need not hold under far from equilibrium condi-
tions, but we will nevertheless refer toT(t) as the tempera-
ture of the universe at timet. We will study the temperature
of the universe in terms of the ratio

a~t![
T~t!

T~tBI!
. ~69!

The field theory quantities will also be rescaled. The natu-
ral scale for them isM notH and in general these two scales
are different. This scale disparity is an inherent feature of
scalar field slow-roll dynamics. A primitive source of the
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dilemmas encountered in slow-roll scenarios is its two-scale
nature. The natural time scale in the field theory to release
the vacuum energy, 1/M , in general differs from the charac-
teristic cosmological expansion time 1/H. In grand unified
theories this disparity works against theoretical preference,
since

1/M!1/H. ~70!

Had this inequality been reversed, it would have been para-
metrically satisfying and perhaps a strong argument for theo-
retical consistency between cosmology and particle physics.
However, since this is not the case, it either means slow-roll
dynamics is wrong, field theory dynamics for inflation at the
grand unified scale is wrong, grand unified theory is incom-
plete or wrong, or that the physics needs further elaboration,
perhaps from nonequilibrium methods. We will not address
the dynamical problem here, but it is worthwhile to keep
track of the scale disparity. Thus we will rescale everything
with respect toH, but for quantities whereM is the natural
scale, the rescaling will include the additional factor

b[
M

H
. ~71!

The field theory quantities are rescaled as

G[gbH ~72!

and

f[sbH. ~73!

B. n58/3

Let us consider the casen58/3 from thenÞ2 class of
potentials in Eq.~28! which in rescaled parameters is

V~s!5lM4~12s!8/3. ~74!

Solving the slow-roll equation of motion

ds

dt
5
3

2
k8/3~12s!5/3, ~75!

where using Eqs.~34!

k8/3[
B8/3

H8/3
5
16lb

9g
~76!

and with the initial condition

s~0!50, ~77!

we find

s~t!512
1

~k8/3t11!3/2
. ~78!

This implies that the rescaled vacuum energy density is

b~t!5
1

~k8/3t11!4
. ~79!

Solving the homogeneous wave equation~18! using Eq.~79!
we find

a~t!5A~k8/3t11!FC1expS 2t

~k8/3t11! D1C2expS 22t

~k8/3t11! D G . ~80!

HeretBI , C1, andC2 are determined by the initial radiation
energy densityr ,

c~0!

b~0!
5r , ~81!

the defining relation fortBI ,

b~tBI!5c~tBI!, ~82!

and from Eqs.~62!, which implies

a~tBI!51. ~83!

From Eqs.~66! and~67! and restricting to flat space, explic-
itly the first two conditions above imply, from Eq.~81!,

1

4sa
2~0!

S dsa~0!

dt D 25r11 ~84!

and, from Eq.~82!,

1

8sa
2~tBI!

S dsa~tBI!

dt D 25b~tBI!. ~85!

In Eq. ~85!, sa
2(tBI)51, but we retain it explicitly since the

same equality holds attAI , and we will use it below to
determinetAI .

Let us verify the various general features discussed in
earlier sections for this specific example. At large time, by
inspection of Eq.~80! one finds

a~t→`!;t1/2, ~86!

which verifies an asymptotic radiation-dominated behavior.
Turning to the growth of the scale factor, to obtain an expo-
nentially large one from Eq.~80! at large time, the only way
is from the first term ~the growing mode! and only if
1/k8/3@1. The constraints, Eqs.~19! and ~20!, imply
C1.uC2u, so that the growing mode cannot be suppressed
due to an exponentially small coefficientC1 relative toC2.
To leave no ambiguity, let us focus on one case among a
large class which are all about the same for what we want to
study. For simplicity, in the case we will consider, arrange
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the initial conditions so that inflation begins at the origin of
cosmic timetBI50. One can confirm from Eqs.~83! and
~84! thatC1 andC2 are about the same order of magnitude,
so that at large time, only the growing mode need be re-
tained. For completeness we find

C15
1

2 S 11A22
k8/3

2 D ~87!

and

C25
1

2 S 12A21
k8/3

2 D . ~88!

From the growing mode in Eq.~80! we see that to obtain
Ne e-folds of expansion requires

1

k8/3
5Ne , ~89!

which agrees with our generalnÞ2 approximation formula,
Eq. ~54!. In grand unified theories, for the Coleman-
Weinberg potential with an untuned coupling constant, one
hasb;104 and l;1 so that from Eqs.~76! and ~89! this
implies

g;Ne3104, ~90!

which forNe;50 impliesg;106. This gives an overviewed
explanation for the large dissipative constant found in the
warm inflation scenario of@3#. However, the estimate here
for g is a little higher, because in the actual scenario, the
finite-temperature Coleman-Weinberg potential has a smaller
curvature. In this simplified discussion, this meansb is
smaller.

We see once again that the largeness ofb makes a seem-
ingly undesired appearance in the dynamics. Whereas in su-
percooled scenarios it forces a fine-tuning of the coupling
constant, here it forces the dissipative constant to be larger
than one would naively want. It remains a theoretical ques-
tion whether such a large dissipative constant has an expla-
nation. However, up to the parametric level, the warm infla-
tion approach still has a hope of salvaging the simplest grand
unified theory motivated Coleman-Weinberg model for infla-
ton dynamics. In new inflation, this possibility is not even
parametrically satisfying, since fine-tuning the coupling con-
stant also implies that the vacuum energy, and so the Hubble
constant during inflation, drops substantially.

Turning to the radiation energy density next, our interest
is to compute from the ratio in Eq.~69!, a(tAI). To keep an
explicit example in mind, we again taketBI50 with C1 and
C2 as given in Eqs.~87! and~88!. HeretAI is determined by
a solution once again tob(t)5c(t), and so for a second
solution to Eq.~85! for tAI.tBI50. One clearly expects a
second intersection, sinceb(t), which goes as
(k8/3t11)24, is falling off faster thanc(t), which at large
time goes as (k8/3t11)22, and after the first intersection at
tBI , b(t).c(t). To determinetAI , only the growing mode
of sa(t) is retained from@ds(t)/dt#2, to give the relation

k8/3
2

4
~k8/3tAI11!21k8/3~k8/3tAI11!2150. ~91!

Solving for tAI with the constrainttAI.0 we find

tAI5
1

k8/3
F 2

k8/3
~A221!21G' 2~A221!

k8/3
2 , ~92!

so that, from Eq.~67!,

c~tAI !'
k8/3
4

16~A221!4
~93!

and

a~tAI !5S c~tAI !

c~tBI!
D 0.25'1.2k8/3. ~94!

Recalling from Eq.~89! thatNe e-folds of expansion require
k8/351/Ne , if Ne;50–70, we find that the temperature
drops by a factor 1/50–1/70 from the beginning to the end of
inflation with the duration of inflation being
tAI2tBI;Ne

2; 2500–4900.
To summarize, in this subsection we have presented an

example that can be verified by inspection in which the scale
factor expands sufficiently and then smoothly tends towards
a radiation-dominated behavior at large time. In the course of
this, the temperature of the universe during the inflationlike
stage drops between one and two orders of magnitude.

C. Quadratic limit

Let us next examine the quadratic limit with the vacuum
decay function

b~t!5exp~2k2t!. ~95!

The plots are in Fig. 1 for the inverse Hubble parameter

1

H
[

a~t!

da~t!/dt
~96!

and in Fig. 2 for the temperature ratioa(t) defined in Eq.
~69!. In both figures the solid~dashed! curve is for the
vacuum decay coefficientk250.03 (0.04). The calculations
were done by a numerical integration of the coupled scale

FIG. 1. The inverse Hubble parameter for a quadratic slow-roll
potential with vacuum decay coefficients for the solid~dashed!
casesk250.03 (0.04). The initial conditions arec(0)51.5.
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factor equation~10! and stress-energy conservation equation
~11!, with the vacuum decay function in Eq.~95!. As a cross-
check, at each iteration the so computed scale factor was
substituted into the left-hand side of Friedmann’s equation
~8!, with the resulting energy density found from the right-
hand side compared with that from the numerical integration.
This also means the results cross-check separately forb(t)
and c(t) from Eqs. ~66! and ~67!, but since this requires
ä(t), it is not a more stringent test.

For both cases in Fig. 1, the inverse Hubble parameter
starts out flat, which is characteristic of inflationlike behav-
ior. It then veers up at a time of ordert;33 (25) in the
solid ~dashed! case and finally tends to a slope of 2 at large
times, thus becoming a radiation dominated universe on
schedule. Inflation begins in the solid~dashed! case at
tBI50.073 (0.074) and ends attAI5323 (228), so that the
duration of inflation istAI2tBI'323 (228). During the in-
flationary period, the scale factor expands rapidly with total
e-foldsNe567 (51), which agrees with estimates from our
approximation formula, Eq.~48!, and the temperature drops
by a factora(tAI)511 (10).

The numerical results fortAI and a(tAI) also can be
cross-checked to approximate analytic expressions, Solving
Eq. ~85! for the second solution attAI.tBI , noting from the
Appendix thatK0„z2(t)… dominates in the solution, Eq.~38!,
at long time, and usingdK0(z)/dz52K1(z), one finds for
anyk2 the general relation

K1„z2~tAI !…

K0„z2~tAI !…
5A2. ~97!

From @22# one finds that this is satisfied forz2'1.05, so that
from Eq. ~40! we obtain the approximate formula

tAI'2
2

k2
lnS 1.05k2

4 D . ~98!

Assuming tBI!1 so thatc(tBI)'1, as for the numerical
cases presented above, and using Eq.~98! we obtain

a~tAI !'
1
2A1.05k2. ~99!

One can verify that the approximation formulas, Eqs.~98!
and ~99!, reproduce the results fortAI anda(tAI), respec-
tively, that were quoted above from the numerical calcula-
tions. Similar approximation formulas can also be obtained
for the nÞ2 cases.

In Fig. 2 observe the initial steep drop ina(t) for t,1.
There is a very short initial transient period in which the
initial radiation energy density stabilizes, followed by a
steady state stage. For both cases in Fig. 2, we started with a
radiation energy densityc(0)51.5. Thus initially the first
term on the right-hand side of Eq.~11! ~the ‘‘sink term’’!
rapidly depletesr r(t) @equivalently c(t) in the rescaled
theory# until an approximate balance is reached by the sec-
ond term ~the ‘‘source term’’!, after which steady state is
reached. The initial conditions on the radiation energy den-
sity have a mild effect on the long-time behavior. For ex-
ample, increasingc(0) by a factor of 500 has less than a 1%
effect onNe . Without the source term, which arises from
vacuum energy depletion, all the radiation energy would rap-
idly redshift away, as in supercooled scenarios.

V. CONCLUSION

There are two possibly concerning or possibly predictive
outcomes of scenarios occurring entirely in the big-bang-like
inflation regime. We believe they are general features of such
scenarios, although we do not have proof. First, to attain an
observationally consistent expansion factor, it does not ap-
pear possible for the post-inflation temperatureTAI to be the
same order of magnitude as that just before inflation,TBI . In
supercooled scenarios this is referred to as a perfect reheat-
ing and can be achieved by adjusting the decay width, which
controls the reheating time period, to be sufficiently large
@23,16#. In big-bang-like inflation scenarios, for observation-
ally sufficient expansion, we generally find thatTAI is at least
one order of magnitude belowTBI . Thus for inflationary
dynamics at the grand unified scale one expectsTAI; ~0.1–
0.01!MGUT. In the context of grand unified theory, this im-
plies that theX boson, withMX;MGUT, would not partici-
pate in post-inflation baryongenesis, although the lighter
Higgs boson still could@24#. Moreover, the picture is further
altered since in the big-bang-like class of inflation scenarios,
there would be no violent discontinuities inr r(t) at the end
of the inflationlike stage. This implies that baryongenesis
could commence within the inflationlike stage and smoothly
carry on afterwards. One can also consider long sustained
big-bang-like inflation scenarios, in which the temperature
drops by a few orders of magnitude during the inflationlike
stage. For such scenarios, studies of baryongenesis from out-
of-equilibrium decay processes at temperatures well below
MGUT may be useful@25#. As a final complementary note to
this concern pertaining to baryongenesis, the lower tempera-
ture condition implies that magnetic monopole suppression
works effectively.

The second point of concern for big-bang-like inflation
scenarios with not too large a drop in the temperature during
the inflationlike stage is that they generally appear to have
not very large upper bounds on the expansion factor with
e-foldsNe

max;1000, butNe
max;100 being typical. Since ob-

FIG. 2. The ratioa(t) of the universe’s temperature at cosmic
time t to that at the beginning of inflation,tBI , for the same cases
as in Fig. 1. For the solid~dashed! curve, the inflationlike stage
begins attBI50.073 (0.074) and ends attAI5323 (228). In both
cases the temperature of the universe drops by about a factor of 10,
with e-folds 67 ~51!.
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servation indicatesNe. 50–70, this is still acceptable. For
comparison, in the solution of the Coleman-Weinberg model
in new inflation, it is found thatNe;107 @6#. In general new
inflation models are reported to predict very largee-folds
Ne @16#. As one optimistic interpretation about the small
e-fold constraint for scenarios within the big-bang-like infla-
tion regime, this is preferred if the universe is between nearly
flat and open@26#.

In this paper we have shown that for a large range of
vacuum energy density decay trajectories, an early universe
initially in a radiation dominated stage can enter an inflation-
like stage and finally enter back into a radiation-dominated
stage with the radiation energy density suffering no sharp
alterations during this motion and with a post-inflationary
temperature within a range consistent with observation and
theory. This regime differs from the standard inflation re-
gime where the radiation energy density quickly vanishes at
the onset of inflation and then is quickly regenerated at the
end of inflation in a short-time reheating era. We reempha-
size that the solutions we have found are properties of the
Einstein equations, independent of quantum field theory. We
also reiterate that in the presence of non-negligible radiation,
one need not be restricted to familiar near equilibrium quan-
tum field theory methods in searching for dynamical models.
This is not to preclude conventional treatments. In fact, de-
spite our emphasis on the kinematic properties of the final
answer and its model-independent origin, one should note
that we motivated all our results from the conventional dy-
namical picture.

One cannot say without further investigation what the rel-
evance of the present results are. It has been established by
this study that sufficiently rapid expansion behavior is more
general than only that found in the inflation regime. As with
any generalization, there is always a danger that it is nothing
more than a mathematical novelty offering no new physical
insight. In the present case, this does not appear to be a
correct statement. First, in light of the new list of options,
there seems no special reasons that favor the supercooled
limit to any of the other possibilities demonstrated here.
Also, if the naturality principle carries the interpretation that
any possibility not otherwise ruled out by observation nor
theoretical common sense is a candidate solution, then again
the present generalization has substance. Finally, in conjunc-
tion with warm inflation @3#, a suggestive solution to the
amplitude fluctuation problem presents itself. However, a dy-
namical explanation for large dissipation, which is needed
for that scenario, requires investigation. On the other hand,
cosmic string formation@27–29,7#, which is typically con-
sidered a post-inflation mechanism for large scale structure
or beginning at the end stage of a supercooled scenario@30#,
could be a possible mechanism within a large period of a
big-bang-like inflation scenario.

The most interesting result from this study is the finding
of an inflationlike regime of scale factor behavior that as-
ymptotes to the radiation-dominated regime without a reheat-
ing stage. However, returning to the introductory comments,
the solutions presented here have applicability also to the
class of supercooled inflation scenarios. In addition, by de-
creasing any of the coefficientsB in Eqs.~33! and~34!, one
can smoothly interpolate from the big-bang-like stage of in-
flation to the supercooled stage of exponential expansion.

There are many possibilities suggested by our results from
mild but long sustained accelerated expansion to the standard
exponential inflation. With any of these, due to the presence
of radiation, the dynamic explanation may require the range
from familiar methods of finite temperature quantum field
theory to a full nonequilibrium statistical mechanical
treatment.5 Both further theoretical research and experimen-
tal information is needed to narrow the possibilities.

There are two extreme points of view that one might
adopt. One is that the very early universe mostly wants to be
radiation dominated but just sneaks into a inflationlike phase
for a little while. The other is that the very early universe has
trouble containing radiation energy just after the initial sin-
gularity, and so copiously inflates until some heating or re-
heating mechanism finally stabilizes the radiation energy.
The former is the mildest modification of preinflation era
thinking and the latter reflects present thinking. For now,
experiment and theory do not indicate a strong preference for
either viewpoint. However, it is a useful exercise to view the
problem from both extremes, since from either end the other
looks like a remote limiting case. This in our opinion is
symptomatic of a misunderstanding about the radiation en-
ergy content in the very early universe. As such, we believe
theories that make no presumptions about the radiation con-
tent all during the early universe better represent the present
status of experimental information about this time period.
Thus, allowing for any of the possible scale factor behaviors
derived here appears a more realistic starting point to further
study.
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APPENDIX

This appendix contains some properties of the modified
Bessel functionsKn(z) and I n(z), which are useful for the
results in the text. At smallz, the asymptotic behaviors for
n50 are

I 0~ uzu→0!;1, ~A1!

5Some considerations for reheating, such as in@36#, may be useful
also here. In addition further examination could be made of the
possible nonequilibrium potentials~or free energy functionals! that
can form. An example from spinodal decomposition is@37#, which
starts from a master equation and attempts to deduce the free energy
functional. This treatment was for a conserved order parameter,
whereas for inflaton dynamics a similar treatment is needed for a
nonconserved order parameter. Other approaches which may be
useful are in@38#. Finally the works in@39# offer guidance in for-
mulating the nonequilibrium problem in an expanding universe.
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K0~ uzu→0!;2 lnuzu, ~A2!

and, fornÞ0,

I n~ uzu→0!;
~ 1
2 uzu!n

G~n11!
, ~A3!

K unu~ uzu→0!;
1

2
G~n!S 12 uzu D 2unu

, ~A4!

where Eq.~A3! is valid for all n exceptnÞ21,22, . . . .
At large z, for all n,

I n~ uzu→`!;
exp~ uzu!

A2puzu
, ~A5!

Kn~ uzu→`!;A p

2uzu
exp~2uzu!. ~A6!

Finally recall that

Kn~z!5K2n~z!, ~A7!

and for a negative argument

I n~2uzu!5einpI n~ uzu!, ~A8!

Kn~2uzu!5e2 inpKn~ uzu!2 ipI n~ uzu!. ~A9!
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