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Interpolating the stage of exponential expansion in the early universe:
Possible alternative with no reheating
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In the standard picture, the inflationary universe is in a supercooled state which ends with a short time, large
scale reheating period, after which the universe goes into a radiation-dominated stage. An alternative is
proposed here in which the radiation energy density smoothly decreases all during an inflationlike stage and
with no discontinuity enters the subsequent radiation-dominated stage. The scale factor is calculated from
standard Friedmann cosmology in the presence of both radiation and vacuum energy density. A large class of
solutions confirm the above identified regime of nonreheating inflationlike behavior for observationally con-
sistent expansion factors and not too large a drop in the radiation energy density. One dynamical realization of
such inflation without reheating is from warm inflation-type scenarios. However the solutions found here are
properties of the Einstein equations with generality beyond slow-roll inflation scenarios. The solutions also can
be continuously interpolated from the nonreheating-type behavior to the standard supercooled limit of expo-
nential expansion, thus giving all intermediate inflationlike behavior between these two extremes. The tem-
perature of the universe and the expansion factor are calculated for various cases. Implications for baryongen-
esis are discussed. This nonreheating, inflationlike regime also appears to have some natural features for a
universe that is between nearly flat and od&0556-282197)04606-7

PACS numbds): 98.80.Cq, 05.40kj

I. INTRODUCTION and

In the original conception of inflatiofi], it was assumed Pu> Pkinetic: 2
that the universe underwent isentropic expansion during the
stage of rapid growth of the scale factor. The entropy reWith
quired to make the post-inflationary universe consistent with _
observation was assumed to be generated in a short-time re- Prinetic=2 B+ pr - 3
heating period. However, it is clear that for a range of mod-
erate thermodynamic conditions, the cosmological horizortiere dp,, is the energy density perturbation, apgdand p,
and flatness problems, which are explained by inflation, reare the background vacuum and radiation energy densities,
quire only the kinematic property that the scale factor growgespectively. Thus energetics alone does not prohibit the re-
rapidly. More recently{2] it was realized that these kine- lation
matic conditions could still arise in the presence of a sus- ]
tained radiation component during inflation. Specifically, in P> P> 3 2, op g - 4
[2] it was shown that under certain isothermal conditions
inflation could still occur. More so, it was shown there thatBy itself this inequality gives no indication of the extent that
within these limits the initial seeds of density perturbationsradiation can modify the supercooled scenario. However, the
could be dominantly of thermal instead of quantum origin. Awarm inflation scenari¢3] demonstrated that at least in the
realization of an isothermal or warm inflation scenario, in thelimit of near thermal equilibrium, the effect is nontrivial. By
context of slow-roll scalar field dynamics for parametrically reexamining this scenario solely in terms of energetidg]n
large dissipation, was shown i8] to be consistent with it became evident that both supercooled and thermal slow-
observational constraints for the amplitude and expansiofpll scenarios could be viewed as limiting cases of a class of
factor, without requiring an ultraflat Coleman-Weinberg po-nonequilibrium kinetic possibilities. A preliminary step to a
tential, which in order to form requires the coupling constantnonequilibrium study is determining the possible kinematic
to be fine-tuned. Questions about the fundamental origin opehaviors of the scale factor for a universe in a mixed state
large dissipation are still left open. of radiation and vacuum energy. This is the first motivation

The warm inflation scenario served as a explicit demonthat leads us to examine the scale factor in this paper.
stration of an otherwise true but ambiguous statement, that In light of this, we find it useful to distinguish between the
inflation can occur in the presence of a thermal componenfehavior of the scale factor, which we consider kinematics,
That this is true is self-evident, as, for example, within thefrom the underlying dynamics that induces this behavior.
context of scalar field theory. Here the requirements for exThe classification of scale factor behavior is considered ki-

ponential expansion are nematic, because it involves characterizing different solu-
tions and different regimes of a given solution, all arising
Pu>0py (1) from a particular equation. Besides inflation, common among
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these are radiation-dominated and matter-dominated behather claim, one would need to study the evolution of the
ior. Originally inflation was associated with an exponentially potential from its high temperature state during the quench.
growing scale factof1]. Subsequently any form of acceler- This would lead to examining the interplay between radia-
ated expansiofiR(t)>0] has become associated with infla- tion and vacuum energy density at the onset of inflation.
tion. Having appreciated this point, the time interval in which
Dynamics enters in determining the time evolution of thethis transition occurs becomes important. The short-time re-
background stress-energy tensor, which is the driving sourcgime is relevant to supercooled new inflation scenarios and
in the scale factor equation. In the context of dynamics, inthe extent to which this interval can be extended is relevant
flation may or may not arise due to a phase transition. Ino warm inflation scenarios. Thus, whether stated in the con-
general, dynamics is stochastic, although the degree of staentional sense of new inflation or the extended sense of
chasticity may well be approximated by pure dynamics orwarm inflation, the out-of-equilibrium evolution of the infla-
near-equilibrium statistical dynamiédnflation scenarios re- tionary potential will require study, and as an initial step, the
alized in a supercooled regime are examples of the formekcale factor dynamics needs to be examined in a mixed state
whereas warm inflation scenari¢8] are examples of the of packground vacuum and radiation energy density. This

latter. _ additional connection to supercooled scenarios provides a
The present most successful formulation of supercooledgcond motivation for this study.

scenarjo_s is new inflatioEB,B]. Although several variaqts of To completely study the nonequilibrium dynamics, the

the original scenario have beef‘ formulat(sfdr a review problem divides into two steps. The first step is determining

gf;fneeiﬁgig%’ aurz ttr?ec;t;srﬁévﬁf: ntg\?v iﬁ?goﬁsasggﬁlﬂ?osthe regimes in which accelerated expansion and pure infla-
' PUOIRR can occur and characterizing the behavior of the scale

are that dynamics can be described by a suitable IOOtem'glactor in these regimes. The second step is understanding

with a suitable order parameter, known as the inflaton, and’. . . :
that evolution is governed by the Lagrangian equations OYVIthII”I the allowed regimes, the class of spectra of primeval

motion. The basic mechanism of new inflation is slow-roll €M€"9Y density perturbatipns._ The first step i_S modera‘Fer
dynamics at supercooled temperatures. model dependent and mainly mvol_ves energetics and Fried-
In the simplest form of new inflation, the inflaton is a Man cosmology. The second step is a more acute problem of
scalar field. The conventional treatment of scalar field dy-dynamics. Although we will only address the first step in this
namics assumes that it is pure vacuum energy dominate@@per, let us make a few comments about the second step.
The various kinematic outcomes are a result of specially cho- In general there is no unique formulation of nonequilib-
sen Lagrangians. In most cases the Lagrangian is unmotitum dynamics for almost any system. The first step in for-
vated from particle phenomenology. Clear exceptions are theaulating any approach requires understanding the scales in
Coleman-Weinberg potential with an untuned coupling con-one’s problem. For inflation the simplest assumption is that
stant, which is motivated by grand unified theori$ and there are two scales: a long-time, long-distance scale associ-
supersymmetric potentials, although in the latter case, thated with vacuum energy dynamics and a single short-time,
choice of the supersymmetric potential is again arbitrary, andhort-distance scale associated with a random force compo-
in the former case new inflation is inconsistent with obsernent. The Hubble time during inflation, H/ appropriately
vation. Making one extension to the new inflation picture,separates the two regimes. For grand unified thé@}ythis
the behavior of the scale factor can also be altered for anyme interval is 14~ 10"3* sec.

given potential when radiation energy is present. Out of pure  The assumption of a long-time scale for the evolution of
kinematic interest, this effect has reason to be examined. he vacuum is based on observation. Otherwise inflation
More so than just this reason, one may also project Quq 4 not sustain itself sufficiently long and nor would the

crcumstances sometime in the futurg when ob_servatlonaénergy release maintain smoothness. Accepting this as an
data will allow determination of the optimal potential among empirical constraint, the relaxational dynamics of the infla-

the candidate choicdfor examples of recent attempts please, L .
. . .~~~ ~“ton’s order parameter justifiably could be described by a
see[10,11)). If one accepts the new inflation approximation . o X :
free-energy functional. What the specific functional is re-

that the relaxational dynamics of the inflaton can be de- " : o
quires dynamics. In the presence of a radiation component,

scribed by a potential, the next question is what is the mi he f onal h il f I
croscopic origin of this so preferred potential. If one wereth€ functional need not have any similarity to a fundamenta

restricting oneself to supercooled scenarios, one argument Rotential from the underlying quantum field theory. Further-
that the so preferred potential happens to be the one th&#0re, in grand unified theories as an example, the character-
formed during the rapid quench at the onset of inflation.istic time scale of inflation, H, is about 1&° times faster
Another argument is that this is a fundamental zero temperdhan the characteristic hadronic interaction scale\ghp),
ture potential of an elementary field in the Lagrangian. Sincavhich is a comparison scale where there is good empirical
for supercooled new inflation scenarios, one of the unanunderstanding about matter. Thus, at the inflation scale, fa-
swered questions is that no potential that is suitable for inmiliar concepts about matter and from field theory about
flation has an already known phenomenological origin, thenear-thermal-equilibrium-motivated effective potentials also
second argument is highly predictive. Yet to substantiate eineed not be appropriate.
The problem here has similarities to certain phase separa-
tion problems commonly known in association with binary
The role of stochasticity in cosmology has been emphasized bglloys, and the name synonymous with them, spinodal de-
the Maryland school. For a review please §8#,32. composition, has been used before in new inflation cosmol-
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ogy? The similarity in both cases is that the system is beingassociated with it also a range of power 12], quasiex-
cooled faster than its characteristic response time to equiliponential[13], and exponential5,6] behavior for the scale
brate. Of course, if this analogy is meant to be complete, théactor. However, these varied behaviors arise from the spe-
cooled system should still be at a non-negligible temperatureifics of the particular Lagrangian that is being considered.
since, at least in the binary alloy problem, the relaxationaln what we will examine, for any given Lagrangian, a large
dynamics is driven by short-ranged thermally excited fluc-range of behavior may still arise, depending on the radiation
tuations. The analogy to spinodal decomposition not onlyenergy density content.
gives a nice guiding picture, but it also has a type of consol- There is one other problem that the present work may
ing appeal, which covers for our ignorance about matterhelp clarify. We will discuss it briefly here. However, it gets
much less quantum field theory, under such extreme condinto the realm of field theory dynamics, which this paper will
tions, since at least in the context of alloys the problem ismainly avoid. The most notable shortcoming of new inflation
considered sufficiently complex to make phenomenologicais in explaining small scale energy density inhomogeneities
modeling of the nonequilibrium potential an accepted prac{14,6,15—-17. The problem is sometimes referred to as the
tice. If viewed in the same way, the several scalar inflation-amplitude fluctuation problerfil5]. The warm inflation sce-
ary potentials that have been suggested could be interpretedrio in[3] is a solution to this problem. However, our for-
as the cosmologist’s attempt at nonequilibrium phenomenolmulation there did not detail a time history for an inflation-
ogy. like state with radiation. The present work does and in fact
was its starting motivation. However, as a result of the gen-
erality of the solutions given here, it appears better to con-
A. Hypothesis sider warm inflation as a particular dynamic realization

Although the reasons given above well motivate exami-Within the big-bang-like inflation regime. o
nation of the scale factor, | will now describe an alternative OUr €quations can also be examined for the initial stage of

to the standard inflationary universe scenario. Consider thgNtering into the rapid expansion state, but we will not study

following possibility which will be demonstrated in the se- that here.

guel. It should be easy to convince oneself that a radiation

energy density,(t) of, say, 1 part in 10 000 to the vacuum Il. FORMULATION
energy density, (t) probably should not alter too much the
inflationlike behavior of the scale factor. However, when
looked upon in terms of the temperatufge of the radiation
energy density, this implies that is only an order of mag-
nitude below the scale of the vacuum energy density. If suc
a state for the radiation energy density could be maintaine
by the mutual effects of constant vacuum energy decay and a dr2

steadily decreasing acceleration of the scale factor, it could — ds’=dt?—R?(t) m+r2d 6>+ r?sirfod¢?|. (5)
be possible for an inflationlike stage to smoothly enter into a r

radiation-dominated stage without any discontinuities in

pr(t). This _possibility was suggestive from formulating the fined as the beginning of our treatment.
warm inflation scenari$3].

: X : : - . Let us start with the standard equations of Friedman cos-
In this paper evidence is presented for inflationlike trajec-

tories of the scale factor which solve the horizon and fIatneséna%SS%[le?]’;%;oé etzgitic?':()e faic(;oggi;tligr:h:ngrrz\;eggﬁs%;

problems, but for which the radiation energy density mono- (t). Th . : ;
. ¥ . S : (1). The equations of state which relate the energy density
tonically enters the post-inflation radiation-dominated stagap to the pressure are

with in particular no intermediate reheating stage. This is

We are interested in the scale factor from some short time
after the initial singularity, when quantum gravitational ef-
fects become negligible. We assume that space is homoge-
neous and isotropic, and restrict ourselves to Friedman cos-
ﬁwology with the Robertson-Walker metric

For notational convenience, the origin of cosmic time is de-

regime in between the radiation-dominated and inflation re- P, ()=—p,(1) (6)
gimes, which has features similar to both a big-bang-like v o
explosion and an inflationlike expansion. () ="1p.(1). @

The paper is organized as follows. In the next section the
problem is formulated, general solutions are given in Sec. |, Friedman cosmology the ten Einstein equations

lll, special examples are given in Sec. IV, and finally theGM,,=8’7TGT/“, reduce to two independent ones, which are

conclusions are in Sec. V. From the class of solutions that W&om the time-time component, also known as Friedmann’s
find for the scale factor, supercooled expansion, which Wequation

call supercooled inflation, is a limiting case. This is a kine-

matic identification. A particular and most noteworthy dy- RZ Kk 874G

namic realization of supercooled inflation scenarios is the —+ —=—0p, )
class of new inflation scenarios. Supercooled inflation has R® R 3

and from any of the three diagonal space-space components,

2For scalar field inflaton dynamics, the analogy actually is to spin-aII of which give

odal decomposition for a nonconserved order parameter, such as S
found in certain domain growth problerfi33,34], whereas the bi- ZEJF R_+
R2

nary alloy problem involves a conserved order parameter. R R? =~ 8mnGp. ©)
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For our purposes it is preferable to use two other equationsvo general features, one at short and one at long time,

obtained from these, the scale factor equation which are recurring themes to the existence of the big-bang-
. like inflation regime. At long time, ifp,(t) goes to zero
R 8#wG sufficiently fast, from Eqs(18) and (17) one can see that
R~ 3 P(U=pr(D)] (10 R(t—o0)~t12 thus tending to a radiation-dominated behav-
ior. At short time, for an initially radiation-dominated uni-
and the stress energy conservation equation verse,
_ R(t) . t~0)>p,(t~0), (21
pr<t>:—4pr<t>%—pu<t>, 1 Pt 01 pl

Eqgs.(10) and(11) imply R(t~0)~ (a+ bt)*2 Alternatively,
where we have used the equations of stajeand (7). We  this can be seen from Meissner's separation, E4fS. and
aim to solve forR(t) andp,(t) in Egs.(10) and (11), for a  (16), since Eq.(21) implies from Eqgs(15) and(16) that

prescribedp,(t), for t>0, and with arbitrary initial condi-

Y
tions for R(t), R(t), andp,(t) up to the constraints s(t~0)>s(t~0). 22
Taylor expandings(t) about the origin ass=sy+s;t
+5,t%/2+ - - -spt"/nl + - - -+, EQ. (22) implies s3>s,. Us-
ing this and Eq.(18), one can study the initial condition
dependence of entering the inflationlike stage, but we will
not pursue that here.
Let us now turn to specific solutions. Although this paper
p:(0)>0. (14) is focused on the kinematic possibilities for the scale factor,
independent of justification from any specific field theory,
By taking the sum and difference of Friedman’s equationwe will motivate a class of vacuum decay functions from a
(8) and the scale factor equati¢h0), the vacuum and radia- general class of scalar field dynamics. In fact as we will
tion energy densities can be separately expressed in terms siiow below, in the limit of strong dissipation, this motiva-
the scale factor agl9] tion can be partly justified.
. We consider stochastic evolution for the inflaton gov-
3 [R R?  k }

R(0)>0 (12)

R(0)>0 (13

and

erned by the Langevin-like equation

P 1ecR R R 19 |
- R(t)|.
s [ R Rk $(0)+ F+3—Rﬁtﬂ¢<t>+v«¢<t»:nm, 23
Pr(t):%{_ﬁ‘f'@*'@. (16

where 7(t) is a random force function with vanishing en-
For an arbitrary test vacuum functign(t), one can use Eq. Semble averaged expectation value

(15) to solve forR(t). _
We make the substitution (n(1))=0. (24)

The effect of the inflaton’s interaction with radiation is rep-

—_p2

S(=RA(D). 17 resented by the dissipative constdhtaind the random force
Equation(15) then becomes the inhomogeneous wave equatnctionz(t). In a simple model for the radiation system and
tion with time-dependent frequency in the limit of pure inflation R/R=cons} this equation was

397G obtained from quantum field theory [d].
- = p,(1)s=— 2K, (19) We are interested in the limit of strong dissipation,
R

This equation has been widely studi@®,21]. Again we are >z, (29

interested in the solutions to E(L8) for t>0 with arbitrary
initial conditions fors(t) up to the constraints from Egs. and the slow-roll regime
(12—(14) and(17) which imply

50120 9 Ul f] 8l @
For our present purposes, the ensemble-averaged equation of
and motion is all that we need. Thus in the above specified limits,
. Eq. (23) becomes
s(0)>0. (20
d¢ 1 dV(¢)
IIl. SOLUTION dt~ T d¢ ° 27)

In this section solutions are obtained for the scale factof et ys consider potentials of the form
from Eqgs.(10) and(11) for a large class of vacuum energy
decay functions. Even before getting this specific, there are V(p)=AM*""(M—¢)" (28
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in the region

0< <M, (29
where\ is dimensionless. For inflation driven dynamically
at the grand unified scal ~M g 1~ 10" GeV.

Globally all of the potentials in Eq28) are improper for
slow-roll inflation scenarios, since they fail to represent sym

metry breaking. However, our present interest is the behavior

of the scale factor for a large class of slow-roll conditions. In
this sense Eq.28) represents a class of local approximating

ARJUN BERERA

and, forn#2,

po(t) =AM Bp(t+tg )]V, (37)
Substituting the above in E¢18) and solving the homoge-
neous(flat space equation, we find for the scale factor from
Eq. (17) for n=2,

R=/C1lo(z,(1))+ CoKo(za(1)), (39

potentials from which an arbitrary potential can be piecewisednd in then# 2 case for all bun=4,

constructed. Thus it is also not a concern that such potentia
have no minima for odd and are nonanalytic for noninteger
n when¢=M.

In fact near the global minima, where the vacuum energy

goes to zero, quadratia & 2) dependence would be the nor-

Is
R=[By(t+1to )]

X Cil 2—myrca—m @Zn(1)+CoK 2 nya—n)(@Za(t)),

mal expectation for any generic free-energy functional. This
case is not only of special physical interest but is also mathyhere

ematically a little different. We will differentiate this case of

n=2 from all others and refer to it as the quadratic limit.
To keep our discussion explicit, we will express the re-

sults that follow in the context of the slow-roll inflation sce-

nario. However, it should be noted that the solutions for the

scale factor given below carry a relevance beyond the slow-

roll scenario. Let us briefly recall the slow-roll scenario. In
the standard setting of the slow-roll transition, the inflaton

starts near the origin and is making its decent to thg,

symmetry-broken minima ap=M.
At the origin of cosmic time we will assume that the
slow-roll transition begins with
$(0)=eM (30)
and e<1. With these initial conditions, the solutions of Eq.
(27) for potentials in Eq(28) are, forn=2,

]
d(t)=M|1l—exp — = (t—1p.) (31
2 2

and, forn#2,

¢(t):M{l_[Bn(t‘i'tOn)]l/(z_n)}v (32
with

5 _ 4AM?
and
—2)AM?
N 2)AM* r) _ (34)

Herety, andt, are suitably adjusted to satisfy E(B0).
Equating the potential to the vacuum energy density

pu(1)=V(g(1)) (39
implies, forn=2,

pu(t)=AMexd —Ba(t—to))] (36)

(39

= A exd 22 40

Z,(t)= B, 26Xp ——t (40
4(2—n)Huto | ¢ (4—n)/(4—2n)

z()=—— | —+1 , 41

n(t) a=n) t (41)

oo [8xGAM? [ Balo, "

2= 3 ex 2 ’ ( )

87GAM* 22—
n— T(Bnton)n ( n). (43)

In Egs.(42) and(43) we have identified the Hubble param-
eter att=0 based on the definition

[87Gp,(0)
3

for the respective vacuum energy densities in E§6) and
(37). In the Appendix we have listed properties of modified
Bessel functions that will be useful to us. Finally from the
n+2 cases fon=4 the solution is

H

(44)

R=|B4(t+1g,)[**\/C[Ba(t+1to,)[#+ ColBa(t+tg,)|
(45

where

1

2

1287GAM*

3B; (46)

1/2
)
The inhomogeneous wave equation in Et8), which is
for curved spacd+ 0, can be solved from the above solu-
tions for the homogeneous equation by familiar methods
[20,21]. Irrespective of the slow-roll scenario, the results,
Egs.(38) and(39), are valid for any scenario that motivates




55 INTERPOLATING THE STAGE OF EXPONENTIAL ... 3351

vacuum decay behavior as in Eq86) and (37). Likewise than 1t? at large times in Eq(18). Radiation-dominated
for othéar types of vacuum decay functions, Ef§8) can be  behavior at large time is attained for
solved:
In the next section, the solutions Ed88) and (39), will 4—”<0 (51)
be studied through specific examples. Here some of their 2-n '
general features will be noted. The quadratic limit is exam- o _
ined first. The growing mode d@s- in Eq. (38) from Eqs.  Which implies potentials in Eq28) with
Al) and(A2) is Ky(z5(t)) with
(A1) and(A2) is Ko(zx(t)) sen<d 52

R(t— ~t1/2, 4 : :
(t>e) “7 or vacuum decay functions in E(L8) that decay faster than
2 . _ .
thus asymptotically exhibiting radiation-dominated behavior 1/t”- Finally forn=4, which corresponds to a vacuum decay
Inflationlike expansion at intermediate time is also gov-falling off exactly as 1, R(t) has the same power law
ermned byK,(z,(t)). From Eq.(A2) a large expansion factor Pehavior throughout, with a growth bounded from below by

of e with N=50 will require t1’2.. As su_ch, this case is not useful fpr our present purpose.
This implies that the only symmetric potential about the

2H, symmetry broken point,p=M, that leads to radiation-
B_ZNN' (48) dominated and not inflationlike asymptotic behavior is the

quadratic cas@=2. As an aside, note that tlre=4 case is

This is like what one would expect, since the vacuum energ)i,n_'[eresting since on either_side are solutions with two very

density must decay sufficiently slowly relative to the expan-différent types of asymptotic behavitr. _ _

sion time for the scale factor, in order to be the driving  Returning to the cases in E¢52), the growing mode in

source for inflationlike behavior in the Einstein equations. Ed- (39) 1S Kz_nya-n)(2a(1)). Let us estimate the expan-
In order to establish the dominance of tg(z,(t)) term  SiON factor for a single+# 2 se_ctor of the potential, EqR8),

to the I4(z,(t)) term in Eq.(38), what remains is to show N the range Eq(52) for =0 in Eq.(30) so that

that there is no way for the initial conditions to for€q to Bt =1 (53

be exponentially large relative t6,. Treating 4H,/B,>1 n"0y

and using Eqs(A5) and (A6), this follows from the con-

straints, Eqs(19) and(20). Equation(20) could be satisfied

for C, exponentially large but negative relative @, but

then Eq.(19) would not be satisfied. Having established the R(t—)

dominance of th&y(z,(t)) mode, let us estimate the expan- RO

sion factor for a singlen=2 section of the potential, Eq.

(28), with €=0 in Eq. (30) so thatt02=0 in Eq. (31). We

in Eq. (32). The arguments are the same as above for the
n=2 case with the final result

~(Bnt)1’2ex;{ 2(n— Z)Hn}

@-n)B, (54

Before closing this section, one additional qualifying

find for the asymptotic behavior statement is needed about the solutions, B2®.and(39), if
the vacuum decay functions, E(¥6) and(37), are obtained
R(t—=) (B,t/2)Y/%e?H2/B2 (49  from slow-roll scalar field dynamics. Recall that the energy
R(0) (B,/8H,) Y4 density and pressure of the zero mode of the scalar field are
and so an expansion factor ef2/B2, pye=1d2+V(), (55)
Away from the quadratic limiti§#2) from Eqgs.(39), and

(A5), (A6) we see that for Py= 12— V(). (56)

4-n Therefore, the equation of staf@) is valid in the limit that

—>0 (50 i : oo

2—n the potential energy dominates the kinetic energy

the solution will grow exponentially at large time, and thus L1p2<V(g). (57)

never asymptotes into a radiation-dominated behavior. This

corresponds to a vacuum decay function that decays slow&ne must check that this kinetic energy suppression condi-
tion is always valid.

30ne case is during reheating in supercooled scenarios. For this,
the vacuum decay function in E(1L8) should have the approximate  “It is also an interesting coincidence thmat 4 separates renormal-
time dependence™'lt(1+ cosBt) with B~M>H. These types of izable and nonrenormalizable scalar quantum field theory, with the
equations are treated [20]. The|T'|=0 case is the Mathieu equa- nonrenormalizable sid&>4, corresponding to the observationally
tion. The solutions of these equations describe the scale factor b@consistent non-radiation-dominated asymptotic scale factor be-
havior during those stages of reheating when the equation of stateavior. Furthermore, the=4 case neither asymptotes to radiation-
(6) is valid for the inflaton. Another nontrivial aspect of scale factor dominated behavior nor is believed to be nonperturbatively a non-
behavior in supercooled scenarios is at the beginning where initiakivial quantum field theory35]. Of course, for the inflaton, since it
condition dependence on preinflationary radiation energy densitys coupled to gravity, the whole theory is always nonrenormalizable
can be studied. For this, the solutions, E2p), for n~0 are useful.  in any case.
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For this, first recall that the exact equation of motion for stage is defined as the time period when the scale factor has
the inflaton in the limit, Eq(25), is the second order equa- positive acceleration
tion .

R(t)>0, (61
¢+Td+V'(¢)=0. (58) with the time “just before,”tg,, and “just after,” t,,, in-

flation being defined as the end points of the accelerated
expansion interval

In Sec. IMb) we will examine a particulan# 2 case from
Eqg. (39) which can be fully expressed with simple analytic
functions. Then in Sec. I&¢) we will examine the quadratic
limit. For this study, we will first convert to a set of dimen-
<0. (59) sionless quantities.

For the quadratic case=2, this equation can be exactly
solved and it can be verified that the slow-roll condition, Eq.
(26), and the kinetic energy suppression condition, &3),
are both valid for alt>0 provided

AM?2
1'*2

" . . . ) A. Dimensionless theory
In addition, if p,(0) is required to be large in Eq&6) and

(37), so that\ cannot be made tiny, E459) implies We will work with the dimensionless quantities defined as

I'>M (60) ()= D) 62)
> . a = y
T R(g)
This is the large dissipative regime required for warm infla- 0.(7)
tion [3]. b(r)=—-, (63
For the cases 2n<4, to verify Eq.(57), first it will be Pu(Ta1)
shown that the solutions, E432), are consistent with the
slow-roll condition, Eq(26), for all t>0. Next a direct veri- o(r)= pi(7) (64)
fication will be made that the solutions, E82), respect the pu(Te)’

condition, Eq.(57). Addressing step one, it is observed from
Eq. (32) that for the entire range €n<4, ¢(t) vanishes
faster thanp(t) ast—o. Thus Eq.(26) is satisfied under the r=Ht, (65)
same parametric restrictions as in the 2 case, Eqs(59)

and (60). Proceeding to the second step, it can be verifiedrg, is the time when accelerated expansion begins, sl
from the slow-roll approximate solutions, E@32), that defined in Eq.(44) except with the vacuum energy density
#2(t) vanishes faster thaW(¢(t)) ast—o. Thus in the evaluated atg, p,(7g). Definings,(r)=a*(r), the Meiss-
regime, Eq(60), Eq. (57) is satisfied for alt>0 so that Eq. ner separation, Eq$15) and(16), in terms ofs,(t) and the

where dimensionless time

(6) is always valid. rescaled quantities is
To summarize, it has been verified that the equation of 1 &2 K
state(6) is valid for the scalar field for at>0 and in the b(r)= Sa(7) (66)
entire range Zn<4, when in the strong dissipative regime, 4so(1) d7*  2H%s,(7)
Eq. (60). This type of slow-roll motion is analogous to an
overdamped oscillatd]. Note that confirming the validity 2nd
of Eq. (6) for all t>0 is more than needgd, since in any case 1 d2s,(7) 1 ds,(7)|2 K
p.(t) overtakesp,(t) at some much earlier stage. c(r)=- . . ( ) 5 .
The results presented in this section now demonstrate the 4sy(7) dr 4sy(m) | dr 2H%s4(7)
existence of inflationlike scale factor trajectories which (67)

smoothly go into a radiation-dominated behavior without a

discontinuous reheating stage. The radiation energy density will be related to a tempera-

ture measure by the Stefan-Boltzmann radiation law

IV. EXAMPLES pr(T)~T4(7). (68)

In this section we will examine some specific examplesThis law need not hold under far from equilibrium condi-
from the solutions for the scale factor in E488) and(39).  tions, but we will nevertheless refer () as the tempera-
In these examples we will see how the radiation energy denure of the universe at time. We will study the temperature
sity eventually overtakes the vacuum energy density with n@f the universe in terms of the ratio
discontinuities, and in the processes the universe smoothly
goes from an inflationlike to a radiation-dominated stage. We T(7)
will also study the magnitude of decrease in the radiation a(7)= ' (69)
energy density, thus the temperature of the universe, from
before to after the inflationlike stage. In supercooled sce- The field theory quantities will also be rescaled. The natu-
narios, the post-inflation temperature is referred to as theal scale for them i81 notH and in general these two scales
reheating temperature, but here it is better to call it the initialare different. This scale disparity is an inherent feature of
temperature after inflatiorT,,, . In particular the inflationlike scalar field slow-roll dynamics. A primitive source of the
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dilemmas encountered in slow-roll scenarios is its two-scale B.n=8/3
nature. The natural time scale in the field theory to release | ot s consider the case=8/3 from then=2 class of

the vacuum energy, W, in general differs from the charac- ,tantials in Eq(28) which in rescaled parameters is
teristic cosmological expansion timeHL/ In grand unified

theories this disparity works against theoretical preference, V(o)=AM*(1- )83 (74)
since
Solving the slow-roll equation of motion
1M <1/H. (70)
do 3 53
Had this inequality been reversed, it would have been para- G, 7 Ke(l= o) (75

metrically satisfying and perhaps a strong argument for theo-
retical consistency between cosmology and particle physicsvhere using Eqs(34)
However, since this is not the case, it either means slow-roll

dynamics is wrong, field theory dynamics for inflation at the _ Bgz 1608
grand unified scale is wrong, grand unified theory is incom- 83~ Hgs 9y (76)
plete or wrong, or that the physics needs further elaboration,
perhaps from nonequilibrium methods. We will not addressand with the initial condition
the dynamical problem here, but it is worthwhile to keep
track of the scale disparity. Thus we will rescale everything o(0)=0, (77)
with respect toH, but for quantities wher# is the natural we find
scale, the rescaling will include the additional factor
1
B= % (71) o=l e D (78)

The field theory quantities are rescaled as This implies that the rescaled vacuum energy density is

I'=vyBH 72 =
YB (72) b(r) oot D (79
and . .
Solving the homogeneous wave equati®8) using Eq.(79)
¢=0BH. (73  we find
|
= \/ 1)(c 27 C 2T 80
a(n)= (kgpTt+1)| CieEX m +Coex (I(g/g,Tl) . (80)
|
Here 75, C4, andC, are determined by the initial radiation 1 (dSa( a1\ 2
energy density, 82(rg) | d7 =b(7g). (85
c(0) —r 81) In Eq. (85), s2(7)=1, but we retain it explicitly since the
b(0) same equality holds at, , and we will use it below to
determiner,, .
the defining relation fofrg, , Let us verify the various general features discussed in
earlier sections for this specific example. At large time, by
b(rg)=c(7g), (82)  inspection of Eq(80) one finds
and from Eqgs(62), which implies a(r—o)~7, (86)
a(rg)=1. 83 which verifies an asymptotic radiation-dominated behavior.

Turning to the growth of the scale factor, to obtain an expo-
nentially large one from E80) at large time, the only way
is from the first term(the growing modg and only if
1l/kg>1. The constraints, Egs(19) and (20), imply
2 C,>|C,|, so that the growing mode cannot be suppressed
dsa(O)) —r+1 (84) due to an exponentially small coefficie@t, relative toC,.

dr To leave no ambiguity, let us focus on one case among a

large class which are all about the same for what we want to

and, from Eq.(82), study. For simplicity, in the case we will consider, arrange

From Egs.(66) and(67) and restricting to flat space, explic-
itly the first two conditions above imply, from E¢81),

1

4s5(0)
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the initial conditions so that inflation begins at the origin of 1000 T
cosmic timerg=0. One can confirm from Eq¢83) and C " A
(84) thatC,; andC, are about the same order of magnitude, L .
: X 800 —
so that at large time, only the growing mode need be re- - .
tained. For completeness we find C ]
600 |- —
1 K o) C ]
cl=—(1+ J2- i“) (87) > F ;
2 2 400 -
and
200 — -
1 Kg/3 C ]
C2_§< 1_ \/§+ 7 : (88) 0 C Ll 2= =] | I | | 111 | I N

0 200 400 600 800
From the growing mode in E480) we see that to obtain T

N, e-folds of expansion requires
FIG. 1. The inverse Hubble parameter for a quadratic slow-roll
1 potential with vacuum decay coefficients for the solihshed
K/s_ Ne, (89 cases«k,=0.03 (0.04). The initial conditions ag{0)=1.5.
which agrees with our generak* 2 approximation formula, Solving for 7, with the constraint,, >0 we find
Eq. (54). In grand unified theories, for the Coleman-

i ial wi i 2 2(2-1)
Weinberg potential with an untuned coupling constant, one = —(\/f— 1)—1|~ (92)
has 3~10* and\~1 so that from Eqs(76) and (89) this A kel Kars K2y
implies

so that, from Eq(67),
y~Nex 10%, (90)

. . L . Kg/a
which for N.~ 50 impliesy~ 10°. This gives an overviewed c(ta)~—7= = (93
explanation for the large dissipative constant found in the 16( V2-1)
warm inflation scenario of3]. However, the estimate here
for y is a little higher, because in the actual scenario, the
finite-temperature Coleman-Weinberg potential has a smaller c(7a)
curvature. In this simplified discussion, this meaBsis a(TAI):(C(T )
smaller. Bl

~ We see once again that the largenesg ofiakes a seem- Recalling from Eq(89) thatN, e-folds of expansion require
ingly undesired appearance in the dynamics. Whereas in Sy, .=1/N,, if N,~50-70, we find that the temperature

percooled scenarios it forces a fine-tuning of the couplingyrops by a factor 1/50—1/70 from the beginning to the end of
constant, here it forces the dissipative constant to be larggfflation with the duration of inflation being

than one would naively want. It remains a theoretical quess, — g~ N2~ 2500—4900.

tion whether such a large dissipative constant has an expla- 1o symmarize, in this subsection we have presented an
nation. However, up to the parametric level, the warm infla-eyample that can be verified by inspection in which the scale
tion approach still has a hope of salvaging the simplest granghctor expands sufficiently and then smoothly tends towards
unified theory motivated Coleman-Weinberg model for infla- 5 ragiation-dominated behavior at large time. In the course of
ton dynamics. In new inflation, this possibility is not even this the temperature of the universe during the inflationlike

parametric_ally .satisfying, since fine-tuning the coupling CON-stage drops between one and two orders of magnitude.
stant also implies that the vacuum energy, and so the Hubble

constant during inflation, drops substantially.

Turning to the radiation energy density next, our interest
is to compute from the ratio in EQGQ), a(TAI)' To keep an Let us next examine the quadratic limit with the vacuum
explicit example in mind, we again take,=0 with C; and  decay function
C, as given in Eqs(87) and(88). Herer,, is determined by
a solution once again tb(7)=c(7), and so for a second
solution to Eq.(85) for 7, >75=0. One clearly expects & The plots are in Fig. 1 for the inverse Hubble parameter
second intersection, sinceb(r), which goes as
(kgam+1) ™4, is falling off faster tharc(r), which at large 1 a(r)
time goes as g7+ 1) 2, and after the first intersection at H- W (96)
g1, B(7)>c(7). To determiner,,, only the growing mode
of s(7) is retained fron{ds(7)/dr]?, to give the relation  and in Fig. 2 for the temperature ratig(7) defined in Eq.
(69). In both figures the soliddashed curve is for the
vacuum decay coefficient,=0.03 (0.04). The calculations
were done by a numerical integration of the coupled scale

0.25
~ 1'2K8/3 . (94)

C. Quadratic limit

b(7)=exp— k,7). (95)

2
Kg3

T(K8/3TAI+1)2+ Kea kgaTa 1) —1=0.  (91)
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1.0 L — T T T a(TA|)%%\1.05(2. (99)
0.8 One can verify that the approximation formulas, E(28)

and (99), reproduce the results fary, and a(7,;), respec-
tively, that were quoted above from the numerical calcula-

06 tions. Similar approximation formulas can also be obtained
8 for then#2 cases.
0.4 In Fig. 2 observe the initial steep drop é(7) for 7<<1.

’0—1'|||||l||l||llll

There is a very short initial transient period in which the
initial radiation energy density stabilizes, followed by a
steady state stage. For both cases in Fig. 2, we started with a
radiation energy densitg(0)=1.5. Thus initially the first
term on the right-hand side of E@ll) (the “sink term”)
. rapidly depletesp,(t) [equivalently c(7) in the rescaled
theory] until an approximate balance is reached by the sec-

FIG. 2. The ratioa(7) of the universe’s temperature at cosmic ond term(the “source term’), after which steady state is
time 7 to that at the beginning of inflatiorg, , for the same cases reached. The initial conditions on the radiation energy den-
as in Fig. 1. For the soliddashed curve, the inflationlike stage sity have a mild effect on the long-time behavior. For ex-
begins atrg =0.073 (0.074) and ends af, =323 (228). In both  ample, increasing(0) by a factor of 500 has less than a 1%
cases the temperature of the universe drops by about a factor of 18ffect on Ne. Without the source term, which arises from
with e-folds 67 (51). vacuum energy depletion, all the radiation energy would rap-

. . _idly redshift away, as in supercooled scenarios.
factor equatior(10) and stress-energy conservation equation

(112), with the vacuum decay function in E(5). As a cross-
check, at each iteration the so computed scale factor was
substituted into the left-hand side of Friedmann’s equation There are two possibly concerning or possibly predictive
(8), with the resulting energy density found from the right- outcomes of scenarios occurring entirely in the big-bang-like
hand side compared with that from the numerical integrationinflation regime. We believe they are general features of such
This also means the results cross-check separatelg(fgr  scenarios, although we do not have proof. First, to attain an
and c(7) from Egs.(66) and (67), but since this requires observationally consistent expansion factor, it does not ap-
a(), it is not a more stringent test. pear possible for the post-inflation temperatilizg to be the

For both cases in Fig. 1, the inverse Hubble parametesame order of magnitude as that just before inflatigy, In
starts out flat, which is characteristic of inflationlike behav-supercooled scenarios this is referred to as a perfect reheat-
ior. It then veers up at a time of order-33 (25) in the ing and can be achieved by adjusting the decay width, which
solid (dashedi case and finally tends to a slope of 2 at largecontrols the reheating time period, to be sufficiently large
times, thus becoming a radiation dominated universe ofi23,16. In big-bang-like inflation scenarios, for observation-
schedule. Inflation begins in the soli@ashedl case at ally sufficient expansion, we generally find tiag is at least
75 =0.073 (0.074) and ends af, =323 (228), so thatthe one order of magnitude beloWg . Thus for inflationary
duration of inflation ista — 75~323 (228). During the in-  dynamics at the grand unified scale one exp@gjs- (0.1—
flationary period, the scale factor expands rapidly with totalp.0))M 7. In the context of grand unified theory, this im-
e-folds Ne=67 (51), which agrees with estimates from our plies that theX boson, withMy~ M g7, would not partici-
approximation formula, Eq48), and the temperature drops pate in post-inflation baryongenesis, although the lighter
by a factora(7a)=11 (10). Higgs boson still couldi24]. Moreover, the picture is further

The numerical results fory and a(7,) also can be altered since in the big-bang-like class of inflation scenarios,
cross-checked to approximate analytic expressions, Solvinghere would be no violent discontinuities jn(t) at the end
Eq. (89) for the second solution aty, > 7, noting from the  of the inflationlike stage. This implies that baryongenesis
Appendix thatky(z,(7)) dominates in the solution, E(B8),  could commence within the inflationlike stage and smoothly
at long time, and usingKy(z)/dz=—K(z), one finds for carry on afterwards. One can also consider long sustained
any k, the general relation big-bang-like inflation scenarios, in which the temperature

drops by a few orders of magnitude during the inflationlike
K1(za(7a1) — 2 stage. For such scenarios, studies of baryongenesis from out-
Ko(Zo(Ta)) of-equilibrium decay processes at temperatures well below
M gyt may be useful25]. As a final complementary note to
From[22] one finds that this is satisfied fag~1.05, so that this concern pertaining to baryongenesis, the lower tempera-
from Eq. (40) we obtain the approximate formula ture condition implies that magnetic monopole suppression
works effectively.

The second point of concern for big-bang-like inflation
scenarios with not too large a drop in the temperature during
the inflationlike stage is that they generally appear to have
Assuming 7g;<1 so thatc(rg)~1, as for the numerical not very large upper bounds on the expansion factor with
cases presented above, and using (88) we obtain e-folds Ng'~ 1000, butNg'®*~ 100 being typical. Since ob-
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servation indicate®N.> 50-70, this is still acceptable. For There are many possibilities suggested by our results from
comparison, in the solution of the Coleman-Weinberg modemild but long sustained accelerated expansion to the standard
in new inflation, it is found thaN,~ 10’ [6]. In general new exponential inflation. With any of these, due to the presence
inflation models are reported to predict very largdolds  Of radiation, the dynamic explanation may require the range
N, [16]. As one optimistic interpretation about the small from familiar methods of finite temperature quantum field
e-fold constraint for scenarios within the big-bang-like infla- theory to a full nonequilibrium statistical mechanical

tion regime, this is preferred if the universe is between nearl);re"’_‘tmenﬁ Both further theoretical research and experimen-
flat and oper{26]. tal information is needed to narrow the _pOSS|b|I|t|es. _
In this paper we have shown that for a large range of There are two extreme points .Of view that one might
%dopt. One is that the very early universe mostly wants to be

vacuum energy density decay trajectories, an early univers

initially in a radiation dominated stage can enter an inflation-2diation dominated but just sneaks into a inflationlike phase

like stage and finally enter back into a radiation-dominatecfOr a little whil.e.. The ot.he.r is that the.very early “”i"‘??se has
stage with the radiation energy density suffering no shar[.I)rOUb.Ie containing r§d|at|or_1 energy just after the 'f““a' sin-
alterations during this motion and with a post—inflationaryQUIaT'ty’ and so poppusly mflateg until some hegtlng or re-
temperature within a range consistent with observation an eating mec_hamsm fmally stab_|I_|ze§ the rad|f_;1t|on_ energy.
theory. This regime differs from the standard inflation re- he former is the mildest modification of preinfiation era

gime where the radiation energy density quickly vanishes a‘ﬂ“i”king and the latter reflects present thinking. For now,

the onset of inflation and then is quickly regenerated at th(??(perimem a’.‘d theory do n_ot. indicate a strong prefer.ence for
either viewpoint. However, it is a useful exercise to view the

end of inflation in a short-time reheating era. We reempha- : )
size that the solutions we have found are properties of th roblem from both extremes, since from either end the other
ooks like a remote limiting case. This in our opinion is

Einstein equations, independent of quantum field theory. W

also reiterate that in the presence of non-negligible radiatiorpyMPtomatic of a misunderstanding about the radiation en-

one need not be restricted to familiar near equilibrium quanérgy content in the very early universe. As such, we believe

tum field theory methods in searching for dynamical modelstheorles that make no presumptions about the radiation con-

This is not to preclude conventional treatments. In fact, dei[ent all during the early universe better repre'sen't the prgsent
tatus of experimental information about this time period.

spite our emphasis on the kinematic properties of the 1tlna(Ehus, allowing for any of the possible scale factor behaviors

answer and its model-independent origin, one should note - S ; :
that we motivated all our results from the conventional dy- erived here appears a more realistic starting point to further
study.

namical picture.
One cannot say without further investigation what the rel-
evance of the present results are. It has been established by ACKNOWLEDGMENTS

this study that sufficiently rapid expansion behavior is more | ihank Krzysztof Meissner for his contribution and en-

general than only that found in the inflation regime. As with couragement, Tom Kephart for a careful reading of the final
any generalization, there is always a danger that it is nothinganscript, and the following for helpful discussions: Misha
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there seems no special reasons that favor the supercoolggpported by the U.S. Department of Energy. The initial

limit to any of the other possibilities demonstrated here., ok pegan at the Pennsylvania State University also under
Also, if the naturality principle carries the interpretation that\; 5 pog support.

any possibility not otherwise ruled out by observation nor
theoretical common sense is a candidate solution, then again
the present generalization has substance. Finally, in conjunc-
tion with warm inflation[3], a suggestive solution to the  This appendix contains some properties of the modified
amplitude fluctuation problem presents itself. However, a dyBessel functionK ,(z) andl,(z), which are useful for the
namical explanation for large dissipation, which is neededesults in the text. At smalt, the asymptotic behaviors for
for that scenario, requires investigation. On the other handy=0 are
cosmic string formatior}27-29,7, which is typically con-
sidered a post-inflation mechanism for large scale structure lo(|z| —0)~1, (AL)
or beginning at the end stage of a supercooled scef@0ip
could be a possible mechanism within a large period of &
big-bang-like inflation scenario. SSome considerations for reheating, such g88}, may be useful

The most interesting result from this study is the findingalso here. In addition further examination could be made of the
of an inflationlike regime of scale factor behavior that as-possible nonequilibrium potentia(sr free energy functionalghat
ymptotes to the radiation-dominated regime without a reheatean form. An example from spinodal decompositiofidg], which
ing stage. However, returning to the introductory commentsstarts from a master equation and attempts to deduce the free energy
the solutions presented here have applicability also to théunctional. This treatment was for a conserved order parameter,
class of supercooled inflation scenarios. In addition, by dewhereas for inflaton dynamics a similar treatment is needed for a
creasing any of the coefficienBin Egs.(33) and(34), one  nonconserved order parameter. Other approaches which may be
can smoothly interpolate from the big-bang-like stage of in-useful are in38]. Finally the works in[39] offer guidance in for-
flation to the supercooled stage of exponential expansiommulating the nonequilibrium problem in an expanding universe.

APPENDIX
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Ko(|z|—0)~—In[z], (A2) ™
Ky(|2|—o0)~ HGXD(—M)- (AB)
and, forv+0,
|V(|Z|_>O)~lf(zli|)1) | A3) Finally recall that
Ki(2)=K_,(2), (A7)

1 1\
Kpyy(12l=0)~5T(») EIZI) , (A4)

and for a negative argument
where Eq.(A3) is valid for all v exceptv#—-1,—2,... .
At large z, for all v,

L(—lzh)=€",(]2)), (A8)
expl|z])
| (|2 —o0)~ ———, (A5) _
V27| Ku(=lz)=e K (|2 ~iml (|2). (A9
[1] A. H. Guth, Phys. Rev. 23, 347(198)). [22] Handbook of Mathematical Functionsedited by M.
[2] A. Berera and L. Z. Fang, Phys. Rev. Letd, 1912(1995. Abramowitz and I. A. SteguiDover, New York, 1972
[3] A. Berera, Phys. Rev. Lett5, 3218(1995. [23] A. Albrecht, P. J. Steinhardt, M. S. Turner, and F. Wilczek,
[4] A. Berera, Phys. Rev. B4, 2519(1996. P.hys. Rev. Lett48, 1437 (1982; A. D. Dolgov and A. D..
[5] A. Albrecht and P. J. Steinhardt, Phys. Rev. Ld, 1220 Linde, Phys. Lett116B, 329 (1982; L. F. Abbott, E. Farhi,
(1982; A. Linde, Phys. Lett108B, 389(1982. and M. B. Wise,ibid. 117B, 29 (1982.

[6] J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, Phys. Rev. 24] For a review of baryongenesis please FE8.

28, 679(1983; R. Brandenberger and R. Katibid. 29, 2172 [25] S. Dimopoulos and L. Hall, Phys. Lett. 896, 135(1987; M.
(1984, Claudson, L. Hall, and I. Hinchliffe, Nucl. Phy&241, 309

[7] K. A. Olive, Phys. Rep190, 307 (1990. (1984.
[8] R. H. Brandenberger, Rev. Mod. Phy, 1 (1985. [26] G. F. R. Ellis, Class. Quantum Gra¥, 891 (1988.

. [27] T. W. B. Kibble, J. Phys. 29, 1387(1979.
[9] H. Georgi and S. L. Glashow, Phys. Rev. L&, 438(1974. [28] T. Vachaspati and A. Vilenkin, Phys. Rev.3D, 2036(1984);

[10] E. W. Kolb, A. Abney, E. J. Copeland, A. R. Liddle, and J. E. N. Turok, Nucl. PhysB242 520 (1985: T. W. B. Kibble,

Lidsey, i.n Unified Symmetry in the Small and in thg Large ibid. B252, 227 (1985; D. P. Bennett, Phys. Rev. D 33, 872
Proceedings of the Conference, Coral Gables, Florida, 1994, (1986

edited by B. Kursunoglet al. (Plenum, New York, 1995 [29] U. Pen, D. N. Spergel, and N. Turok, Phys. Rev4 692

Report No. astro-ph/940702uinpublishedl (1994.

[11] R. L. Davis, H. M. Hodges, G. F. Smoot, P. J. Steinhardt, an(tgo] Q. Shafi and Z. Vilenkin, Phys. Rev. P9, 1870(1984).

M. S. Turner, Phys. Rev. Let69, 1856(1992. [31] B. L. Hu, J. P. Paz, and Y. H. Zhang, in Proceedings of the
[12] F. Lucchin and S. Mataresse, Phys. Rev3® 1316(1985. Chateau du Pont d'Oye 1992, gr-gc/9512@d8published, p.
[13] A. Linde, Phys. Lett129B, 177 (1983. 227.

[14] A. H. Guth and S. -Y. Pi, Phys. Rev. Lett9, 1110(1982; S. [32] B. L. Hu and A. Matacz, UMD-PP-94-44, presented at Work-
Hawking, Phys. Lett115B, 295 (1982; A. A. Starobinskii, shop on Noise and Order, Los Alamos, NM, 1993, Report No.
ibid. 117B, 175(1982. UMD-pp-94-44, astro-ph/931201@npublishedl

[15] R. H. Brandenberger, Nucl. PhyB245 328(1984. [33] S. M. Allen and J. W. Cahn, Acta Metal®7, 1085(1979.

[16] E. W. Kolb and M. S. TurnerThe Early UniversgAddison-  [34] A. J. Bray, Adv. Phys43, 357 (1994).

Wesley, New York, 1990 [35] K. G. Wilson and J. Kogut, Phys. Refl2, 75 (1974; A.
[17] P. J. E. Peeble®rinciples of Physical Cosmologyrinceton Aizenmann, Phys. Rev. Letd7, 1 (1981); J. Frohlich, Nucl.

University Press, Princeton, NJ, 1993 Phys.B200[FS4]281 (1982; M. Luscher and P. Weisibid.
[18] S. WeinbergGravitation and Cosmology: Principles and Ap- B290[FS20, 25(1987.

plications of the General Theory of Relativifohn Wiley and  [36] D. Boyanovsky, H. J. de Vega, and R. Holman, Phys. Rev. D

Sons, New York, 1972 49, 2769(19949, and references therein.

[19] This separation was pointed out to me by Krzysztof A. Meiss-[37] J. S. Langer, Ann. Phy$N.Y.) 65, 53 (1971).
ner. [38] M. Gleiser and R. O. Ramos, Phys. RevbQ) 2441(1994); A.

[20] A. D. Polyanin and V. F. Zaitse\Exact Solutions for Ordinary Hosoya and M. Sakagamiibid. 29, 2228 (1984; M.
Differential Equationg CRC, New York, 199% Morikawa, ibid. 33, 3607(1986.

[21] E. Kamke,Differentialgleichungen Lsungsmethoden und'to [39] B. L. Hu, Phys. Lett108B, 19(1982; 123B, 189(1983; I. H.
sungen(Chelsea, New York, 1948 Redmount and F. R. Ruiz, Phys. Rev.3D, 2289(1989.



