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We compute the spectrum of relic gravitons in a model of string cosmology. In the low- and high-frequency
limits we reproduce known results. The full spectrum, however, also displays a series of oscillations which
could give a characteristic signature at the planned LIGO-VIRGO detectors. For special values of the param-
eters of the model the signal reaches its maximum already at frequencies accessible to LIGO and VIRGO and
it is close to the sensitivity of first generation experiments.@S0556-2821~97!07504-8#
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I. INTRODUCTION

In the next few years a number of detectors for gravita-
tional waves, and in particular the Laser Interferometric
Gravitational Wave Observatory~LIGO! and VIRGO inter-
ferometers, are expected to start operating in a range of fre-
quencies between 10 Hz and 1 kHz. One of the possible
signals which could be searched, correlating the output of
two detectors, is a stochastic background of gravitational
waves. This background is expected to have different com-
ponents, with different origins: it will get contributions from
a large number of unresolved sources at modest redshifts, as
well as from radiation of cosmological origin. The latter is
especially interesting, since it would carry information about
the state of the very early Universe.

The basic mechanism of generation of relic gravitational
waves in cosmology has been discussed in a number of pa-
pers, see, e.g., Refs.@1,2#, the reviews@3,4#, and references
therein. The spectrum can be conveniently expressed using

VGW~ f !5
1

rc

drGW
d lnf

,

whererc is the critical density of the Universe,rGW is the
energy density in gravitational waves, andf is the frequency.
Particular attention has been paid to the spectrum produced
in inflationary cosmology. In this case one finds thatVGW
decreases with frequency asf22 from 10218 Hz to 10216 Hz,
and then it is approximately flat up to a maximum cutoff
frequency corresponding to modes which entered the horizon
after reheating. If one assumes an instantaneous transition
between de Sitter and radiation-dominated phases the order
of magnitude of such a cutoff is of a few GHz. While the
frequency dependence ofVGW( f ) is fixed, its magnitude de-
pends on a parameter of the model, the Hubble constant dur-
ing inflation. An upper bound on the spectrum can be ob-
tained from the measurement of the Cosmic Background
Explorer ~COBE! of the anisotropy of the microwave back-
ground radiation. Via the Sachs-Wolfe effect, a large energy
density in gravitational waves at wavelengths comparable to
the present Hubble radius would produce fluctuations in the
temperature of the photon cosmic background. This gives a
limit on VGW @5,6# of about 8310214 at f;10216 Hz. Since
for larger frequencies the spectrum predicted by inflation is
approximately flat, this bound also holds at the frequencies

of interest for LIGO and VIRGO. The planned sensitivities
of these experiments to a stochastic background are of the
order ofVGW;531026, while the advanced LIGO project
aims at 5310211 @6#. In any case, the spectrum predicted by
these inflationary models is too low to be observed.1

Clearly, in order to have a stochastic background which
satisfies the COBE bound, but still has a chance of being
observable at LIGO or VIRGO, the spectrum must grow sig-
nificantly with frequency. A spectrum of this type has been
found in Ref. @9# in a cosmological model suggested by
string theory@10–12#. Because of its fast (; f 3) growth with
frequency at lowf , the COBE bound is easily evaded, and
the most relevant bound for this type of spectrum comes
from nucleosynthesis. The result is that, for a certain range of
values of the parameters of the model, the spectrum might be
accessible at the interferometer experiments, at least at the
advanced level, while satisfying the existing experimental
bounds.

In Ref. @9# this spectrum has been estimated, using ap-
proximate methods, in the low- and high-frequency limits,
and neglecting overall numerical factors. In this paper we
present a detailed computation of the spectrum, solving ex-
actly the relevant differential equations. We fix the numerical
factors and we present the frequency dependence in the in-
termediate region. The latter displays an interesting feature:
it shows a series of oscillations, which might provide a char-
acteristic experimental signature.

As remarked in@9#, one must be aware of the fact that it
might not be legitimate to use field-theoretical methods dur-
ing the ’stringy phase’ of the cosmological model, see Sec.
II, and large frequencies are indeed sensitive to this phase.
However, the best one can do, at this stage, is to write down
a specific cosmological model and see what are its predic-
tions. Of course, these predictions should only be considered
as indicative.

In Sec. II we present the basic elements of this model of
string cosmology. We refer the reader to the original papers
@7–13# for further details on the physics of the model, on the
problems that still have to be solved~as the graceful exit

1More precisely, the deviation from scale invariance in the spec-
trum can be parametrized by a ‘‘tilt’’nT @7# with typical values
unTu;1022. Even taking this tilt into account, it is not likely that
Earth-based laser interferometer can detect this background@8#.
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from the string phase to the standard radiation-dominated
era!, and of its relation with the usual cosmological problems
as, for example, the horizon problem.

The actual computation is performed in Sec. III and the
results are discussed in Sec. IV.

II. THE MODEL

The low-energy string effective action depends on the
metric gmn and on the dilaton fieldf ~we neglect the anti-
symmetric tensor field!. At lowest order in the derivatives
and inef it is given by

S52
1

2ls
2E d4xA2g@e2f~R1]mf]mf!2Vdil~f!#, ~1!

wherels is the string length andf is the dilaton field. The
dilaton potentialVdil(f) is due to nonperturbative effects
and, therefore, vanishes as exp@2cexp(2f)# for f large and
negative, withc a positive constant. We consider a homoge-
neous, isotropic, and spatially flat background,f5f(t),
ds25dt22a2(t)dx2, and we introduce conformal timeh,
dt5a(h)dh. We work in the string frame. The pre-big-bang
scenario proposed by Gasperini and Veneziano@10–12# sug-
gests the following choice for the background metric and
dilaton field.

For 2`,h,hs , with hs,0, we have a dilaton-
dominated regime with

a~h!52
1

Hshs
S h2~12a!hs

ahs
D 2a

, ~2!

f~h!5fs2g ln
h2~12a!hs

ahs
. ~3!

With the valuesa51/(11A3),g5A3 this is a solution of
the equations of motion derived from the effective action~1!
in the absence of external matter@10#. Hs is a parameter with
dimensions of mass.

At a valueh5hs , the curvature becomes of the order of
the string scale, and the lowest order effective action~1! does
not give anymore a good description. We are in a full
‘‘stringy’’ regime. One expects that higher order corrections
to the effective action tame the growth of the curvature, and
both (1/a)da/dt anddf/dt stay approximately constant. In
terms of conformal time, this means

a~h!52
1

Hsh
, f~h!5fs22b ln

h

hs
. ~4!

The stringy phase lasts forhs,h,h1,0. One then expects
that at this stage the dilaton potential becomes operative and,
either with a modification of the classical equations of mo-
tion due to the dilaton potential@13#, or via quantum tunnel-
ing @14#, the solution joins the standard radiation-dominated
solution with constant dilaton, which is also a solution of the
string equations of motion derived from the action~1!, with
external bulk stringy matter @10#. This gives, for
h1,h,h r ~with h r.0),

a~h!5
1

Hsh1
2 ~h22h1!, f5f0 . ~5!

After that, the standard matter-dominated era takes place. We
have chosen the additive and multiplicative constants in
a(h) in such a way thata(h) and da/dh ~and, therefore,
alsoda/dt) are continuous across the transitions.

The equation for the Fourier modes of metric tensor per-
turbations for the two physical polarizations in the transverse
traceless gauge is@15#

d2ck

dh2 1@k22V~h!#ck50 , ~6!

V~h!5
1

a
ef/2

d2

dh2 ~ae2f/2!. ~7!

Inserting the expressions~2!–~5!, the potential is

V~h!5
1

4
~4n221!@h2~12a!hs#

22, 2`,h,hs ,

V~h!5
1

4
~4m221!h22, hs,h,h1 ,

V~h!50, h1,h,h r , ~8!

where 2m5u2b23u, 2n5u2a2g11u. The exact solutions
of Eq. ~6! in the three regions are

ck~h!5Auh2~12a!hsuCHn
~2!@kuh2~12a!hsu#,

2`,h,hs ,

ck~h!5Auhu@A1Hm
~2!~kuhu!1A2Hm

~1!~kuhu!#,

hs,h,h1 ,

ck~h!5 iA 2

pk
@B1e

ikh2B2e
2 ikh#, h1,h,h r , ~9!

whereHn
(1,2) are Hankel’s functions. The constantsA6 ,B6

can be obtained requiring the continuity of the solution and
of its derivative. We have chosen the boundary conditions so
that, ath→2`, ck;exp(ikh). In this case the number of
particles created per unit cell of the phase space is given by
uB2u2.

Before performing the matching, let us discuss the param-
eters of the model. The two constantsa,g parametrize the
solution in the dilaton-dominated phase and, therefore, they
are fixed by the effective action~1!: a51/(11A3),g5A3,
and thenn50 ~anyway, we will write many of our results
for genericn). Instead,m ~or b) is a free parameter which
measures the growth of the dilaton during the stringy phase;
by definitionm>0. The parameterHs is the Hubble constant
during the stringy phase. Since in this model the growth of
the curvature can only be stopped by the inclusion of higher
order terms in the string effective action, it is clear that the
natural value forHs is of the order of the inverse of the string
length ls . If one uses the valuels

2.(2/aGUT)LPl
2 .40LPl

2

then the typical value ofHs is Hs.1/ls.0.15MPl where
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MPl is the Planck mass. Finally, there are the two parameters
hs ,h1. In the solution forck and, therefore, in the spectrum,
they appear in the combinationskuhsu,kuh1u, wherek is the
comoving wave number. If we denote by 2p f the physical
frequency observed at a detector, we have 2p f5k/a(tpres),
where tpres is the present value of cosmic time. Therefore,
using Eq.~4!,

kuh1u52p f a~ tpres!uh1u5
2p f

Hs

a~ tpres!

a~ t1!

5
2p f

Hs
S tpresteq

D 2/3S teqt1 D
1/2

, ~10!

where teq.3.431010h0
24s is the time of matter-radiation

equilibrium, andtpres52/(3H0).2.131017h0
21s. The con-

stanth0 parametrizes the uncertainty in the present value of
the Hubble constantH053.2310218h0 Hz, and it cancels in
Eq. ~10!; t1 is the value of cosmic time when the string phase
ends. In this context, the natural choice ist1.ls . Therefore,
the parameterh1 can be traded for a parameterf 1 defined by

kuh1u5
f

f 1
, f 1.4.331010 HzS Hs

0.15MPl
D S t1ls

D 1/2.
~11!

The order of magnitude off 1 is, therefore, fixed. Note that at
the frequencies of interest for LIGO and VIRGO,f ranges
between 10 Hz and 1 kHz, andf / f 1 is a very small quantity.
Similarly, we can introduce a parameterf s instead ofhs ,
from kuhsu5 f / f s . This parameter depends on the duration of
the string phase and it is, therefore, totally unknown, even as
an order of magnitude. However, sinceuh1u,uhsu, we have
f s, f 1.
Note that the physical wavelength of a perturbation,

a(h)/k, becomes larger than the horizon radius~the pertur-
bation ‘‘crosses outside the horizon’’! at a value ofh such
that kh;1. Therefore, frequencies withf& f s cross outside
the horizon during the dilaton-dominated phase while fre-
quencies withf s, f, f 1 cross outside the horizon during the
string phase. They all reenter the horizon during the
radiation-dominated era, except for frequencies with
f&10216 Hz which reenter during the successive matter-
dominated phase. We will comment later on the effect of the
matter-dominated phase.

To summarize, the model has a dimensionful parameter
f s , which can have any value in the range 0, f s, f 1, and a
dimensionless parameterm>0 ~or, equivalently,b with
2m5u2b23u). The dimensionless constantsa,n are fixed,
a51/(11A3),n50 and the dimensionful constantsHs , f 1
are fixed within an uncertainty of about one or two orders of
magnitude. The constantfs appearing in Eq.~2! drops out
from the potential, Eq.~7! and it is, therefore, irrelevant for
our purposes.2

III. THE SPECTRUM

Performing the matching ath5hs , we get

A656 i
pxsAa

4 FHn
~2!8~axs!Hm

~1,2!~xs!2Hn
~2!~axs!

3Hm
~1,2!8~xs!1

1

2xs

12a

a
Hn

~2!~axs!Hm
~1,2!~xs!G ,

~12!

where xs5 f / f s ; in Hm
(1,2)(xs), Hm

(1)(xs) refers toA1 and
Hm
(2)(xs) refers toA2 . In deriving these expressions we have

used the identity between Hankel functions

Hn
~2!8~x!Hn

~1!~x!2Hn
~1!8~x!Hn

~2!~x!524i /~px!.

The constantC appearing in Eq.~9! has been fixed requiring
uA1u22uA2u251, which givesuCu51. Next, we perform the
matching ath5h1. However, at the frequencies of interest
for LIGO and VIRGO,kuh1u5 f / f 15O(1028) and, there-
fore, in this second matching we can use the small argument
limit of the Hankel functions, with a totally negligible error.
This gives a relatively simple analytical expression for the
coefficientB2 which, apart from an irrelevant overall phase,
is, for mÞ0,3

B25Apa
2m21

8
G~m!S f

2 f s
D S f

2 f 1
D 2m21/2

3FHn
~2!8S a f

f s
D JmS ff sD2Hn

~2!S a f

f s
D Jm8 S ff sD

1
~12a!

2a

f s
f
Hn

~2!S a f

f s
D JmS ff sD G , ~13!

whereJm(z) is the Bessel function. The spectrum of gravi-
tational waves is expressed with the quantity

VGW~ f !5
1

rc

drGW
d lnf

5
1

rc
16p2f 4uB2u2, ~14!

whererc53H0
2MPl

2 /(8p). Then, our result for the spectrum
is

VGW~ f !5b~m!
~2p f s!

4

H0
2MPl

2 S f 1f sD
2m11S ff sD

522m

3UHn
~2!8S a f

f s
D JmS ff sD2Hn

~2!S a f

f s
D Jm8 S ff sD

1
~12a!

2a

f s
f
Hn

~2!S a f

f s
D JmS ff sD U

2

, ~15!

where

2For comparison, in Ref.@9# the two parameters which are not
fixed are chosen asgs /g1, which in our notation is (f s / f 1)

b, and
zs5 f 1 / f s .

3For m50 the small argument limit of the Hankel function is
different. The result form50 is the same as eq.~13! if one writes
2 lnf/f1 instead ofG(m) and setsm50 in the remaining expression.
In the following we write our formulas formÞ0.
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b~m!5
a

48
22m~2m21!2G2~m!. ~16!

In the most interesting casen50, using the identity
H0
(2)8(z)52H1

(2)(z), we can rewrite the spectrum as

VGW~ f !5b~m!
~2p f s!

4

H0
2MPl

2 S f 1f sD
2m11S ff sD

522m

3UH0
~2!S a f

f s
D Jm8 S ff sD1H1

~2!S a f

f s
D JmS ff sD

2
~12a!

2a

f s
f
H0

~2!S a f

f s
D JmS ff sD U

2

. ~17!

Expanding our exact expression for small values off / f s ~i.e.,
considering modes crossing the horizon in the dilaton phase!,
we get, forn50,

VGW~ f !.
~2m21!2

192m2a

~2p f s!
4

H0
2MPl

2 S f 1f sD
2m11S ff sD

3

3H ~2ma211a!2

1
4

p2 F ~2ma211a!S lna f

2 f s
1gED22G2J ,

~18!

where gE.0.5772 . . . is Euler constant. This expression
agrees with the result obtained in the literature, see Eq.~5.7!
of Ref. @12#, apart for the numerical constants which cannot
be computed using only the approximate solution discussed
in Refs.@12,9#.

Let us observe that the low frequency limit in which Eq.
~18! holds is actuallyf! f s! f 1. If we are interested in the
limit f! f s; f 1 we should not take the small argument limit
of the Hankel function when performing the matching at
h1. Rather, we must keep the exact expression and perform
the expansion in the final result. If we do not make any
assumption on the value off 1 / f s , a straightforward compu-
tation shows that in the limitf / f s!1,f / f 1!1,

B2.
1

4mApa
XS m2

1

2D H 11
ip

4
~12a22ma!

3F12
2i

p S lna f

2 f s
1gED G J

3S f

2 f s
D mS f

2 f 1
D 2m21/2

1S m1
1

2D
3H 11

ip

4
~12a12ma!F12

2i

p S lna f

2 f s
1gED G J

3S f

2 f s
D 2mS f

2 f 1
D m21/2C

from which we derive again Eq.~18! if we now take
f s! f 1. As we will see below, the graviton spectrum is neg-
ligibly small unlessf s! f 1, so the physically relevant limit is

the one which leads to Eq.~18!. If we, instead, consider the
spectrum withn.0 a simple calculation gives a low fre-
quency behavior; f 322n, without logarithmic corrections
~the absence of the lnf term is due to the different small
argument limit ofHn

(1,2) for n50 and forn.0).
Expanding Eq.~17! in the limit f@ f s @but still f! f 1 since

Eq. ~17! holds only in this limit#, i.e., considering modes
crossing the horizon in the string phase, we find, instead,

VGW~ f !.
4b~m!

p2a

~2p f s!
4

H0
2MPl

2 S f 1f sD
2m11S ff sD

322m

5
4b~m!

p2a

~2p f 1!
4

H0
2MPl

2 S ff 1D
322m

, ~19!

which agrees, in the frequency dependence, with the result of
Ref. @9#.4 It is important to stress that in the high frequency
limit the unknown parameterf s cancels.

Finally, at sufficiently largef , there is a rather sharp cut-
off and the spectrum goes to zero exponentially. The cutoff
can be obtained computing the spectrum without performing
the limit f! f 1 in the second matching. More simply, the
cutoff frequency fmax can be estimated from
kmax
2 .uV(h1)u, which gives

fmax.
1

2
Au4m221u f 1 . ~20!

IV. DISCUSSION

From Eq.~19! we see that the form of the spectrum de-
pends crucially on whetherm,3/2, m53/2, orm.3/2. Let
us consider first the casem.3/2. In this case the spectrum is
a decreasing function off if f@ f s . Numerically,

~2p f 1!
4

H0
2MPl

2 .1.431026
1

h0
2 S Hs

0.15MPl
D 4 S t1ls

D 2, ~21!

and in Eq.~19! this number is multiplied by (f 1 / f )
2m23;

f 1 / f is O(108) at f5100 Hz and even larger for smaller
frequencies, while 2m23 is positive in this case. Therefore,
for m.3/2, VGW would violate any experimental bound.
More precisely, the computation becomes invalid because
we should include the back reaction of the produced gravi-
tons on the metric@9#. We will, therefore, consider only
0,m<3/2. In this case, the spectrum at low frequencies
increases as; f 3ln2f, and at high frequencies increases as
f 322m ~or goes to a constant ifm53/2).
Figure 1 shows the form of the spectrum form51.4 and

for m53/2. In this figure we plotVGW( f ), measured in units
of V05b(m)@(2p f s)

4/(H0
2MPl

2 )#( f 1 / f s)
2m11, which is the

overall constant appearing in Eq.~17!, vs f / f s . We see that,
compared to the low- and high-frequency expansions dis-
cussed in@9#, the spectrum also displays a series of oscilla-
tions. Depending on the value off s , the window available to

4For the comparison with Ref. @9#, note that, since
2m5u2b23u, if 2b.3, the dependence onf is ; f 322m5 f 622b

while, if 2b,3, f 322m5 f 2b which, therefore, reproduces Eq.~3.5!
of Ref. @9#.
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the LIGO and VIRGO interferometers,f between 10 Hz and
1 kHz, may contain many oscillations, and this would pro-
vide a rather characteristic signature, since these oscillations
have a well-defined and nontrivial analytical form, given by
the square of a bilinear of Bessel functions, see Eq.~17!.

To give an idea of the magnitude of the spectrum, in Figs.
2 and 3 we ploth0

2VGW( f ) for m51.4 and form53/2, for a
specific value off s , f s5100 Hz~this choice of parameters is
motivated below!, and forHs50.15MPl and t15ls , in the
frequency range relevant for LIGO and VIRGO.~Note that
the quantity of interest for the experimentalist is notVGW but
h0
2VGW, sinceh0 only reflects our uncertainty in the quantity
which we use to normalize the result.!

It is also useful to give the result in terms of the quantity
hc( f ), which is the dimensionless strainDL/L produced in
the arms of the detector, and is related toVGW( f ) by @16#

hc~ f !.1.3310220Ah02VGW~ f !S 100 Hzf D . ~22!

Figure 4 shows a plot ofhc( f ) vs f for f s510 Hz and for
m53/2 andm51.4.

Let us then discuss what is the best possible result that we
can obtain from this model, varying the two parametersf s
and m, with 0, f s, f 1 and 0,m<3/2. Suppose that we
want to detect a signal at a given frequency, sayf5100 Hz.

In Fig. 5 we plotVGW, from Eq.~17!, as a function off s at
fixed f . We see that, independently ofm, it increases for
decreasingf s , and whenf s! f it reaches asymptotically the
constant value given by Eq.~19!. So, if we want to detect a
signal at a given frequencyf , the optimal situation is ob-
tained if the value off s is smaller thanf . How much smaller
is not very important, since as a function off s , VGW satu-
rates and practically reaches its maximum value as soon as,
say,f s,0.5f . The maximumVGW is, therefore, given by Eq.
~19!, which still depends on the other parameterm. Since
f / f 1 is a very small parameter, we see immediately that the
best possible situation is realized whenm53/2. Note that
this meansb50 or b53, and in the first case not only the
derivative of the dilaton with respect to cosmic time, but
even the dilaton itself stays constant during the stringy
phase.

In this case,VGW reaches a maximum value

h0
2VGW

max5
2h0

2

3p

~2p f 1!
4

H0
2MPl

2 .3.031027S Hs

0.15MPl
D 4 S t1ls

D 2.
~23!

If m53/2, this maximum value is reached as long asf. f s
and, therefore, iff s is smaller than, say, 10 Hz, it is already
reached in the VIRGO-LIGO frequency range; after that, the
signal oscillates around a constant value~Fig. 3!. If instead

FIG. 1. VGW, measured in units ofV05b(m)@(2p f s)
4/

(H0
2MPl

2 )#( f 1 / f s)
2m11 vs f / f s for m51.4 andm51.5.

FIG. 2. VGW( f ) vs f for m51.4, f s5100 Hz and
f 154.331010 Hz; for comparison we also show the low- and high-
frequency limits.

FIG. 3. VGW( f ) vs f for m51.5, f s5100 Hz and
f 154.331010 Hz; for comparison we also show the low- and high-
frequency limits.

FIG. 4. hc( f ) vs f for m51.5 andm51.4, f s510 Hz and
f 154.331010 Hz.
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m,3/2, Eq. ~19! shows that there is a further suppression
factor (f / f 1)

322m and, therefore, the maximum value is
reached only at the cutoff frequencyfmax; f 1, that is for
frequencies around 10 or 100 GHz. However, ifm is not
close enough to 3/2, the suppression factor (f / f 1)

322m

makes the signal very small at LIGO-VIRGO frequencies,
unless one uses unnaturally large values ofHs ,t1 ~Fig. 2!.

Let us then discuss whether this maximum value is com-
patible with the experimental constraints mentioned in the
Introduction.

We consider first the nucleosynthesis bound@17,6,18#

E VGW~ f !d~ lnf !<
7

43
~Nn23!~11zeq!

21, ~24!

where 11zeq.2.323104h0
2 is the redshift at the time of

radiation-matter equilibrium andNn is the equivalent number
of neutrino species@17#. Using the recent analysis of Ref.
@19#, Nn,3.9, we get

E h0
2VGW~ f !d~ lnf !,6.331026. ~25!

For m53/2, VGW reaches its maximum value atf; f s and
stays approximately constant until the cutoff atf; f 1 is
reached and, therefore, the bound gives

h0
2VGW

maxln
f 1
f s

&6.331026. ~26!

If we take f s;100 Hz @which still satisfiesf s, f at the fre-
quency f51 kHz accessible to LIGO and VIRGO, so that
Eq. ~23! applies#, Eq. ~26! gives an upper bound on the spec-
trum predicted by string cosmology

h0
2VGW

max,3.231027, ~27!

which can be obtained from Eq.~23! with very natural values
of Hs ,t1. This number is smaller than the planned sensitivity
of the LIGO and VIRGO detectors in a first phase but well
within the planned sensitivity of the advanced project.
Smaller values off s give a more stringent bound, but the
dependence is only logarithmic: iff s;1027 Hz, the maxi-
mum value ofh0

2VGW is 1.531027.
The bound from msec pulsars is@20#

h0
2VGW~ f51028 Hz!,1028. ~28!

From Fig. 1 we see that, in order to suppress the result at
f51028 Hz, we must havef s@1028 Hz, which is well com-
patible with the conditionf s&102 Hz required before. If at
f;1 kHz we haveh0

2VGW
max53.231027, as suggested by Eq.

~27!, at f! f s we get

h0
2VGW.3.331029S ff sD

3

ln2
f

f s
. ~29!

We see that a value of, say,f s.1027 Hz is sufficient to
bringVGW( f51028 Hz! well below the experimental bound.
The COBE bound is even more easily satisfied since if
f s.1027 Hz the value ofVGW at f510216 Hz is totally
negligible. Figure 6 shows the spectrum forf s5100 Hz and
m53/2 in a large range of frequencies, and compares it to
the experimental bounds.

From Fig. 6 we can understand why the matter-dominated
phase is not important for the upper bound on the spectrum
at LIGO-VIRGO frequencies. As in the standard inflationary
computation@2#, the Bogoliubov coefficients are sensible to
this phase only at frequenciesf,10216 Hz. These frequen-
cies are not directly relevant for LIGO-VIRGO. However, in
the inflationary case, the spectrum is approximately flat from
10216 Hz up to the cutoff frequency and, therefore, the
COBE bound is the dominant one. Then, a change in the
form of the spectrum at these frequencies changes drastically
the upper bound on the parameters of the model and, there-
fore, on the spectrum at any frequency. In our case, instead,
even if the spectrum in the COBE frequency range, i.e.,f
between 10218 and 10216 Hz, is amplified by the matter-
dominated era, we are still very far~some 50 orders of mag-
nitude! from saturating the COBE bound. Of course, the
matter-dominated phase must be taken into account when
redshifting the comoving frequency to the present value, see
Eq. ~10!.

In conclusion, in the most favorable casem53/2 and
1027 Hz , f s&100 Hz, the relic gravitational waves back-
ground predicted by string cosmology at the frequencies of
LIGO and VIRGO is abouth0

2VGW
max53.231027, which is

FIG. 5. VGW vs f s for m51.4, at fixed f5100 Hz and
f 154.331010 Hz.

FIG. 6. VGW( f ) vs f for m51.5, f s510 Hz, and
f 154.331010 Hz compared to the experimental bounds.
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smaller than the planned sensitivity for coincidence experi-
ments with interferometers in the first phase, but well within
the sensitivity at which the advanced LIGO project aims.
This maximum value ofVGW might also be comparable to
the sensitivities which could be reached correlating resonant
bar detectors such as EXPLORER, NAUTILUS, and

AURIGA @21#. At the same time, the spectrum satisfies the
existing experimental bounds.
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