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Spectrum of relic gravitational waves in string cosmology
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We compute the spectrum of relic gravitons in a model of string cosmology. In the low- and high-frequency
limits we reproduce known results. The full spectrum, however, also displays a series of oscillations which
could give a characteristic signature at the planned LIGO-VIRGO detectors. For special values of the param-
eters of the model the signal reaches its maximum already at frequencies accessible to LIGO and VIRGO and
it is close to the sensitivity of first generation experime80556-282(97)07504-§

PACS numbegps): 98.80.Cq, 04.30.Db, 11.25.Mj, 98.70.Vc

[. INTRODUCTION of interest for LIGO and VIRGO. The planned sensitivities
of these experiments to a stochastic background are of the
In the next few years a number of detectors for gravita-order of Qgy~5%10 8, while the advanced LIGO project
tional waves, and in particular the Laser Interferometricaims at 5<10'1[6]. In any case, the spectrum predicted by
Gravitational Wave Observator.IGO) and VIRGO inter-  these inflationary models is too low to be observed.
ferometers, are expected to start operating in a range of fre- Clearly, in order to have a stochastic background which
guencies between 10 Hz and 1 kHz. One of the possiblgatisfies the COBE bound, but still has a chance of being
signals which could be searched, correlating the output ofbservable at LIGO or VIRGO, the spectrum must grow sig-
two detectors, is a stochastic background of gravitationahificantly with frequency. A spectrum of this type has been
waves. This background is expected to have different comfound in Ref.[9] in a cosmological model suggested by
ponents, with different origins: it will get contributions from string theory{10—17. Because of its fast f3) growth with
a large number of unresolved sources at modest redshifts, #quency at lowf, the COBE bound is easily evaded, and
well as from radiation of cosmological origin. The latter is the most relevant bound for this type of spectrum comes
especially interesting, since it would carry information aboutfrom nucleosynthesis. The result is that, for a certain range of
the state of the very early Universe. values of the parameters of the model, the spectrum might be
The basic mechanism of generation of relic gravitationalaccessible at the interferometer experiments, at least at the
waves in cosmology has been discussed in a number of padvanced level, while satisfying the existing experimental
pers, see, e.g., Refel,2], the reviewq 3,4], and references bounds.
therein. The spectrum can be conveniently expressed using In Ref. [9] this spectrum has been estimated, using ap-
proximate methods, in the low- and high-frequency limits,
Q W(f):i dpew and neglecting overall numerical factors. In this paper we
G pc dInf’ present a detailed computation of the spectrum, solving ex-
actly the relevant differential equations. We fix the numerical
wherep. is the critical density of the Universegy is the  factors and we present the frequency dependence in the in-
energy density in gravitational waves, aht the frequency. termediate region. The latter displays an interesting feature:
Particular attention has been paid to the spectrum producdtishows a series of oscillations, which might provide a char-
in inflationary cosmology. In this case one finds tlixt,,  acteristic experimental signature.
decreases with frequency &s? from 10 8 Hz to 10 *® Hz, As remarked irf9], one must be aware of the fact that it
and then it is approximately flat up to a maximum cutoff might not be legitimate to use field-theoretical methods dur-
frequency corresponding to modes which entered the horizoimg the 'stringy phase’ of the cosmological model, see Sec.
after reheating. If one assumes an instantaneous transitidh and large frequencies are indeed sensitive to this phase.
between de Sitter and radiation-dominated phases the ordetowever, the best one can do, at this stage, is to write down
of magnitude of such a cutoff is of a few GHz. While the a specific cosmological model and see what are its predic-
frequency dependence & (f) is fixed, its magnitude de- tions. Of course, these predictions should only be considered
pends on a parameter of the model, the Hubble constant duas indicative.
ing inflation. An upper bound on the spectrum can be ob- In Sec. Il we present the basic elements of this model of
tained from the measurement of the Cosmic Backgroundtring cosmology. We refer the reader to the original papers
Explorer (COBE) of the anisotropy of the microwave back- [7—13 for further details on the physics of the model, on the
ground radiation. Via the Sachs-Wolfe effect, a large energyroblems that still have to be solvdds the graceful exit
density in gravitational waves at wavelengths comparable to
the present Hubble radius would produce fluctuations in the
temperature of the photon cosmic background. This gives a'More precisely, the deviation from scale invariance in the spec-
limit on Qg [5,6] of about 8 10" atf~10 1 Hz. Since  trum can be parametrized by a “tilth; [7] with typical values
for larger frequencies the spectrum predicted by inflation ign;|~1072. Even taking this tilt into account, it is not likely that
approximately flat, this bound also holds at the frequenciegarth-based laser interferometer can detect this backgr@lnd
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55 SPECTRUM OF RELIC GRAVITATIONAL WAVES IN ... 3331
from the string phase to the standard radiation-dominated 1

era, and of its relation with the usual cosmological problems a(n)= 27 2m), ¢=dy. 5)
as, for example, the horizon problem. s

The actual computation is performed in Sec. Ill and theagter that, the standard matter-dominated era takes place. We

results are discussed in Sec. IV. have chosen the additive and multiplicative constants in
a(#) in such a way that(»n) andda/d» (and, therefore,
Il. THE MODEL alsoda/dt) are continuous across the transitions.

The equation for the Fourier modes of metric tensor per-

The low-energy string effective action depends on theyrpations for the two physical polarizations in the transverse
metric g,,, and on the dilaton fields (we neglect the anti- {5celess gauge [45]

symmetric tensor field At lowest order in the derivatives

. ¢ . . . 2
and ine? it is given by (jj:ka +[K2=V(7)]th=0, (6)
1
S=- 57 f dxgle R+ a,60" ) —Va($)], Q) 1
s V( ’r])= ge¢/2d—7]2(8.97 ('blz). (7)

where) is the string length and is the dilaton field. The

dilaton potentialVg(¢) is due to nonperturbative effects

and, therefore, vanishes as pxgexp(—¢)] for ¢ large and 1

negative, withc a positive constant. We consider a homoge- V(7)= Z(4y2— Dinp—(1—a)ps] 2, —e<n<ns,

neous, isotropic, and spatially flat backgroungi= ¢(t),

ds?=dt?—a?(t)dx?, and we introduce conformal time, 1

dt=a( ?7)d 7. We work in the s;ri_ng frame. The pre-big-bang V(n)=~(4ul—1)p"2, np<n<ni,

scenario proposed by Gasperini and Veneziditz-12 sug- 4

gests the following choice for the background metric and

dilaton field. V(m)=0, m<n<mn;, ®
For —o<p<ps, with 7,<0, we have a dilaton-

dominated regime with

Inserting the expression®)—(5), the potential is

where u=|28—-3|, 2v=|2a— y+1|. The exact solutions
of Eqg. (6) in the three regions are

_ 1 (=) () = n—(1—a) nd CHZ[K| n— (1—a) 4],
a(n) Hoy P , 2
sils S _oo<77<7ls,
— 1_ s
#m)= o= yin 2 @ = lAHP (K 7)+A HP (K 7)1,
Ns< <171,

With the valuesa=1/(1+3),y= /3 this is a solution of
the equations of motion derived from the effective actibn 2 , ,
in the absence of external matfd0]. H, is a parameter with ~ #(7) =i \/ E[Bﬁ'k”— B_e 7], m<n<n, 9
dimensions of mass.
At a valuen= 7, the curvature becomes of the order of where H(1? are Hankel's functions. The constams. ,B..
the string scale, and the lowest order effective actiordoes  can e obtained requiring the continuity of the solution and
not give anymore a good description. We are in a fullf jts derivative. We have chosen the boundary conditions so
“stringy” regime. One expects that higher order correctionsinat at 5 —oo, g, ~exp(kz). In this case the number of
to the effective action tame the growth of the curvature, angharticles created per unit cell of the phase space is given by
both (1A)da/dt andq¢/dt s_tay approximately constant. In IB_|2.
terms of conformal time, this means Before performing the matching, let us discuss the param-
L eters of the model. The two constanisy parametrize the
_ _ 7 solution in the dilaton-dominated phase and, therefore, they
aly)= Hsn' ¢(m)= s Zﬁlna' @ are fixed by the effective actiofl): a=1/(1+3),y=+3,
and theny=0 (anyway, we will write many of our results
The stringy phase lasts faf< 7< 7;<0. One then expects for genericv). Instead,u (or B) is a free parameter which
that at this stage the dilaton potential becomes operative anfiieasures the growth of the dilaton during the stringy phase;
either with a modification of the classical equations of mo-by definitionu=0. The parametet is the Hubble constant
tion due to the dilaton potentifl 3], or via quantum tunnel- during the stringy phase. Since in this model the growth of
ing [14], the solution joins the standard radiation-dominatedthe curvature can only be stopped by the inclusion of higher
solution with constant dilaton, which is also a solution of theorder terms in the string effective action, it is clear that the
string equations of motion derived from the actidn, with natural value foHg is of the order of the inverse of the string
external bulk stringy matter[10]. This gives, for length\s. If one uses the valua2=(2/agyr)L3=40L3
m<n<mn, (with ,>0), then the typical value oHg is Hg=1/\¢=0.15Mp, where
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M, is the Planck mass. Finally, there are the two parameters Ill. THE SPECTRUM
7s,71- In the solution fory, and, therefore, in the spectrum,

Performing the matchin =75, We get
they appear in the combinatiokéz|,k| .|, wherek is the g 9 a=7s g

comoving wave number. If we denote byr® the physical mxal ,
frequency observed at a detector, we havef 2 k/a(tpes, A== % H (axS)H;lz)(xs)— H'? (ax,)
wheret,. is the present value of cosmic time. Therefore,
using Eq.(4), ) 1 1—
XHE? (Xg) + 5 TH(Z)(axs)H (19(xs) |,
S
27t a(tpred
k| 771| 2wfa(t pres)|7/l| HS a(ty) (12
of [t \ 231 |12 where xs=f/fs; in H2(xg), HV(x,) refers toA, and
= tpres) (t—eq) , (100 HP(x,) refers toA_ . In deriving ‘these expressions we have
s Ve ! used the identity between Hankel functions
where te=3.4x10°hy*s is the time of matter-radiation H' (HD () —HD' (x)H 2 (x) = — 4i/ (X).

equmbnum andtyes 2/(3H)=2.1x 10" hy 's. The con-

stanthy parametrizes the uncertainty in the present value ofThe constan€ appearing in Eq(9) has been fixed requiring

the Hubble constarti=3.2x10 'h, Hz, and it cancels in  |A, |2~ |A_|?=1, which givesC|=1. Next, we perform the

Eq. (10); t, is the value of cosmic time when the string phasematching atp= »,. However, at the frequencies of interest

ends. In this context, the natural choicejs-\s. Therefore, for LIGO and VIRGO,k|5,|=f/f;=0(10 8) and, there-

the parameter;, can be traded for a parametfgrdefined by  fore, in this second matching we can use the small argument
limit of the Hankel functions, with a totally negligible error.

£ He £, |12 This gives a relatively simple analytical expression for the
k| m1|= T f1=4.3x 10" Hz W)( ) coefficientB_ which, apart from an irrelevant overall phase,
! TP is, for u#02
11
2u—1 f Tuml2
The order of magnitude df, is, therefore, fixed. Note that at B_=\7a 8 F(’“)(Z_fs) (Z_fl)

the frequencies of interest for LIGO and VIRG®O ranges
between 10 Hz and 1 kHz, aridf, is a very small quantity.

2) af f @ af| [f
Similarly, we can introduce a paramety instead of 7, XIS el 72 =B 72l £
from k| ¢ = f/f. This parameter depends on the duration of ° ° ° *
the string phase and it is, therefore, totally unknown, even as (1-a) fg (2) af f
an order of magnitude. However, sincg,|<| 7, we have T o Ju )] (13

f<f,.

Note that the physical wavelength of a perturbation,wherelJ,(z) is the Bessel function. The spectrum of gravi-
a(n)/k, becomes larger than the horizon raditi®e pertur- tational waves is expressed with the quantity
bation “crosses outside the horizopat a value ofy such
thatkn~ 1. Therefore, frequencies withs f cross outside 1 dpGW 1
the horizon during the dilaton-dominated phase while fre- Qew(f)= b dinf
guencies withf << f<f, cross outside the horizon during the
string phase. They all reenter the horizon during thewherep.=3HZM32/(87). Then, our result for the spectrum
radiation-dominated era, except for frequencies withjs
f<10 1® Hz which reenter during the successive matter-

16772 f4B_|?, (14)

dominated phase. We will comment later on the effect of the (2mfg)? £\ 2#FL £\57 2
matter-dominated phase. ew(f)=b(u) 27 HZM2 f_ f.

To summarize, the model has a dimensionful parameter s
fs, which can have any value in the rangg 6,<f,;, and a [ af f of f

imensi : i XIHP'| —3,| = | -HZ| —|J!
dimensionless parametee=0 (or, equivalently, 8 with N AN v\, f.
2u=|28—-3]). The dimensionless constanisv are fixed,
a=1/(1+3),r=0 and the dimensionful constanit,f; (1-a) fs o faf f]?
X e ; + —HN— 3, =], (15

are fixed within an uncertainty of about one or two orders of 2 f 7 | fg) M £y

magnitude. The constamts appearing in Eq(2) drops out
from the potential, Eq(7) and it is, therefore, irrelevant for where
our purposes.

3For u=0 the small argument limit of the Hankel function is
2For comparison, in Refl9] the two parameters which are not different. The result fop.=0 is the same as e@l3) if one writes
fixed are chosen ag,/g;, which in our notation is /f;)#, and 2 Inf/f, instead of'(x) and setsw=0 in the remaining expression.
z="f,/fs. In the following we write our formulas fop#0.
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a the one which leads to Eq18). If we, instead, consider the
b(u)= 4—822"(2M—1)2F2(M)- (16)  spectrum withy>0 a simple calculation gives a low fre-

quency behavior~ 327, without logarithmic corrections

In the most interesting case=0, using the identity (the absence of the fnterm is due to the different small

H®"(2)=—H{?(z2), we can rewrite the spectrum as argument limit OfH(Vl’z_) for v=0 and fory>0). _
Expanding Eq(17) in the limit f> f [but still f<f, since
(2mfg)? |\ 2rHY £\52¢ Eq. (17) holds only in this limii, i.e., considering modes
Qew(f)=b(w) o= + = crossing the horizon in the string phase, we find, instead,
H2MZ, | T, f,
f f af f 4b(u) (27Tfs)4(f1)2“+1( f)32“
3] il TR B BT Bl I Qo= —— —5— | == —
X|Mo (fs)"ﬂ AR (fs)%(fs) ="z g 15 IR,
l-a)f af f\]2 ab(w) (2mfy)t[ £1372~
_¢ )—SHE)Z) —13,l =1l . (17) =2, HZvZ \T. : (19
2a f fo) H fq ma  HoMp (11

Expanding our exact expression for small value$/éf (i.e., ~ Which agrees, in the frequency dependence, with the result of
considering modes crossing the horizon in the dilaton phaseRef. [9].” It is important to stress that in the high frequency

we get, forv=0, limit the unknown parametefr; cancels.
Finally, at sufficiently largef, there is a rather sharp cut-
(2u=1)% (2mwf)? [f| 271 £13 off and the spectrum goes to zero exponentially. The cutoff
Qou(f)= 192u’a H%M |23| f_S f_S can be obtained computing the spectrum without performing

the limit f<f, in the second matching. More simply, the
cutoff frequency f,.x can be estimated from

_ 2
x[(z,ua 1+a) k2.=|V(71)|, which gives

4 af 2 1
+? Qua—1+a) |n2—fs+’yE —2} ], fmaxzle|4uz—l|f1. (20
(18)
IV. DISCUSSION
where yg=0.57722 ... is Euler constant. This expression
agrees with the result obtained in the literature, see(kd) From Eq.(19) we see that the form of the spectrum de-

of Ref.[12], apart for the numerical constants which cannotPends crucially on whethee<3/2, u=3/2, or u>3/2. Let

be computed using only the approximate solution discusseds consider first the cage>3/2. In this case the spectrum is

in Refs.[12,9]. a decreasing function df if f>f,. Numerically,

(18) holds is actualht <121, f we are imerested inthe (2712’ Lt )’
STesTy. =1.4x10 °= =, (21

limit f<f,~f; we should not take the small argument limit H5ME, hg\ 0. A

of the Hankel function when performing the matching at . ) . o o3

1. Rather, we must keep the exact expression and perfor@nd in Eq.(19) this number is multiplied by f( /f)~*~;

the expansion in the final result. If we do not make anyf1/f is O(10°) at f=100 Hz and even larger for smaller

assumption on the value &f/f, a straightforward compu- frequencies, while 2 -3 is positive in this case. Therefore,

tation shows that in the limit/f <1,f/f,<1, for u>3/2, Qgw would violate any experimental bound.
More precisely, the computation becomes invalid because

we should include the back reaction of the produced gravi-

B_= ! ((,u—%) 1+ Izw(l—a—Z,ua) tons on the metrid9]. We will, therefore, consider only
4#\/5 0<u=<3/2. In this case, the spectrum at low frequencies
2i [ af increases as-f3In?f, and at high frequencies increases as
x| 1— —(In—+ Ye H 3724 (or goes to a constant ji=3/2).
w2, Figure 1 shows the form of the spectrum for=1.4 and
f\R/ O\ rm12 1 for u=23/2. In this figure we plof)cy(f), measured in units
X 2_1‘3) (Z_fl) Hluts of QO=b(,u)[(27-rf5)4/(I-'|5M',23|)](f1/f5)2“+1, which is the
overall constant appearing in EQL7), vs f/f;. We see that,
i 2i [ aof compared to the low- and high-frequency expansions dis-
X[1+ 7 (1-a+2pa)l- ;( In2_f5+ VE) } cussed ir(9], the spectrum also displays a series of oscilla-

tions. Depending on the value &f, the window available to

f\ 7~ f ,u—1/2)

“For the comparison with Ref.[9], note that, since
from which we derive again Eq(18) if we now take 2u=|28-3|, if 23>3, the dependence dhis ~f3~2#=6"28
fs<f,. As we will see below, the graviton spectrum is neg-while, if 28<3, f3~2#={2f which, therefore, reproduces E.5
ligibly small unlessf<<f, so the physically relevant limitis of Ref.[9].
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FIG. 1. Oy, measured in units ofo=b(u)[(2nfJ* FIG. 3. Qgw(f) vs f for w=15, f;=100 Hz and
+ — — . .
(HoMp) I(f1/f)“#* vs f/fs for u=1.4 andu=1.5. f,=4.3x10'° Hz; for comparison we also show the low- and high-

frequency limits.
the LIGO and VIRGO interferometer$,between 10 Hz and
1 kHz, may contain many oscillations, and this would pro-|, Fig. 5 we plotQgy, from Eq.(17), as a function of at
vide a rather characteristic signature, since these oscillationgeq . We see that, independently gf, it increases for
have a Well-defingpl and nontrivial anal)_/tical form, given bydecreasing‘s, and whenf .<f it reaches asymptotically the
the square of a bilinear of Bessel functions, see(®@.  constant value given by E¢L9). So, if we want to detect a
To give an |de2a of the magnitude of the spectrum, in F'gssignal at a given frequenc§, the optimal situation is ob-
2 and 3 we plohoQey(f) for p=1.4 and foru=3/2,fora  tined if the value of is smaller tharf. How much smaller
specific value of ¢, f;=100 Hz(this choice of parameters iS is not very important, since as a function f, Qg satu-
motivated beloy, and forHs=0.1Mp andt; =X, in the  rates and practically reaches its maximum value as soon as,
frequency range relevant for LIGO and VIRGote that say,f<<0.5f. The maximum{)ay is, therefore, given by Eq.
the quantity of interest for the experimentalist is fibf,, but (19), which still depends on the other parameter Since
h5Qcw, sinceh, only reflects our uncertainty in the quantity f/f, is a very small parameter, we see immediately that the
which we use to normalize the resjilt. best possible situation is realized whear=3/2. Note that
It is also useful to give the result in terms of the quantity thijs means3=0 or =3, and in the first case not only the
he(f), which is the dimensionless strairl/L produced in  derivative of the dilaton with respect to cosmic time, but
the arms of the detector, and is relatedxgy,(f) by [16] even the dilaton itself stays constant during the stringy
phase.

he(f)=1.3x10"2 thew(f)( 10? HZ). In this case () reaches a maximum value
2 4 4 2
héﬂmaX—ZhO (2mh)” 3 0x 107( Hs ) (t—l) .

Figure 4 shows a plot ofi;(f) vs f for f;=10 Hz and for GW~ 3, HZM2.
o™V PI
u=3/2 andu=1.4. (23)
Let us then discuss what is the best possible result that we
can obtain from this model, varying the two parametiys If w=3/2, this maximum value is reached as longfasf
and u, with 0<f,<f, and O<u=<3/2. Suppose that we and, therefore, if is smaller than, say, 10 Hz, it is already
want to detect a signal at a given frequency, §ay100 Hz.  reached in the VIRGO-LIGO frequency range; after that, the
signal oscillates around a constant valigy. 3. If instead

(22

B Q,(f) 10°
k(f)

= == high frequency
=== low frequency
— exact

-0 |

10

f(Hz)

f(Hz)

FIG. 2. Qgw(f) vs f for wu=14, f;=100 Hz and
f,=4.3x 10'° Hz; for comparison we also show the low- and high-  FIG. 4. h(f) vs f for =15 andu=1.4, f;=10 Hz and

frequency limits. f,=4.3x 10'° Hz.
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f.(Hg) f(Hz)

FIG. 5. Qgw vs fg for u=1.4, at fixed f=100 Hz and FIG. 6. Qgw(f) vs f for wu=15, f;=10 Hz, and
f,=4.3x 10" Hz. f,=4.3x10'° Hz compared to the experimental bounds.
n<3/2, Eqg.(19) shows that there is a further suppression 2 a8 -
factor (f/f,)372* and, therefore, the maximum value is hollew(f=10""Hz)<10 = (28)

reached only at the cutoff frequendy,,,~f, that is for
frequencies around 10 or 100 GHz. Howeveruifis not

, 32 From Fig. 1 we see that, in order to suppress the result at
close enough to 3/2, the suppression factdff{)*~<*

_ =108 Hz, we must havé.>10"8 Hz, which is well com-
makes the signal very small at LIGO-VIRGO frequencles'patible with the conditiorf <107 Hz required before. If at

unless one uses unnaturally Iargg valueﬁgftl (Fig. 2_). f~1 kHz we havdwéﬂg\?\,xz 3.2x10°7, as suggested by Eq.
Let us then discuss whether this maximum value is com-(27) atf<f, we get
patible with the experimental constraints mentioned in the™ "’ s
Introduction.
We consider first the nucleosynthesis bolid,6,19 £13  f
h3Q gw=3.3X 10—9(f—) |n2f—. (29)
S S

f Qow(Hd(Inf)< 413(N,,—3)(1+zeq)_1, (24)

_ Oh2 is th dshi he i We see that a value of, sa§,>10 ' Hz is sufficient to
where 1+ zeq=2.32<10°h; is the redshift at the time of pn40  (f=1078 Hz) well below the experimental bound.
radiation-matter equilibrium anll,, is the equivalent number 1" cOBE bound is even more easily satisfied since if
of neutrino specie$l7]. Using the recent analysis of Ref. f.>10"7 Hz the value ofQgy at f=10"6 Hz is totally

[19], N,<3.9, we get negligible. Figure 6 shows the spectrum for=100 Hz and
u=3/2 in a large range of frequencies, and compares it to
J h5Qaw(f)d(Inf)<6.3x107°. (25)  the experimental bounds.

From Fig. 6 we can understand why the matter-dominated
phase is not important for the upper bound on the spectrum
at LIGO-VIRGO frequencies. As in the standard inflationary
computation 2], the Bogoliubov coefficients are sensible to
this phase only at frequenciés<10 ® Hz. These frequen-

f, cies are not directly relevant for LIGO-VIRGO. However, in
hgﬂg\f}\ﬁnf—SG.SX 1078, (26)  the inflationary case, the spectrum is approximately flat from
s 10 ¢ Hz up to the cutoff frequency and, therefore, the
If we take fs~100 Hz[which still satisfiesf,<f at the fre- COBE bound is the dominant one. Then, a change in the
quencyf=1 kHz accessible to LIGO and VIRGO, so that form of the spectrum at these frequencies changes drastically
Eq. (23) applied, Eq. (26) gives an upper bound on the spec- the upper bound on the parameters of the model and, there-

For u=3/2, Qg reaches its maximum value &t-f; and
stays approximately constant until the cutoff atf, is
reached and, therefore, the bound gives

trum predicted by string cosmology fore, on the spectrum at any frequency. In our case, instead,
even if the spectrum in the COBE frequency range, fe.,
h3Q0a%<3.2x 107, (27)  between 10'® and 10 ' Hz, is amplified by the matter-

dominated era, we are still very fggome 50 orders of mag-

which can be obtained from E(23) with very natural values nitude from saturating the COBE bound. Of course, the
of Hg,t4. This number is smaller than the planned sensitivitymatter-dominated phase must be taken into account when
of the LIGO and VIRGO detectors in a first phase but wellredshifting the comoving frequency to the present value, see
within the planned sensitivity of the advanced project.Eq. (10).
Smaller values off; give a more stringent bound, but the  In conclusion, in the most favorable cage=3/2 and
dependence is only logarithmic: fi~10"7 Hz, the maxi- 10 7 Hz <f,=100 Hz, the relic gravitational waves back-
mum value ofh3Qgy is 1.5x107 7. ground predicted by string cosmology at the frequencies of

The bound from msec pulsars[i20] LIGO and VIRGO is abouh3QIa=3.2x10"7, which is
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smaller than the planned sensitivity for coincidence experiAURIGA [21]. At the same time, the spectrum satisfies the
ments with interferometers in the first phase, but well withinexisting experimental bounds.
the sensitivity at which the advanced LIGO project aims.

This maximum value of)g,, might also be comparable to ACKNOWLEDGMENTS
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