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Causal seed models, such as cosmological defects, generically predict a distinctly different structure to the
CMB power spectrum than inflation, due to the behavior of the perturbations outside the horizon. We provide
a general analysis of their causal generation from isocurvature initial conditions by analyzing the role of stress
perturbations and conservation laws in the causal evolution. Causal stress perturbations tend to generate an
isocurvature pattern of peak heights in the CMB spectrum and shift the first compression, i.e., main peak, to
smaller angular scales than those in the inflationary case, unless the pressure and anisotropic stress fluctuations
balance in such a way as to reverse the sense of gravitational interactions while also maintaining constant
gravitational potentials. Aside from this case, these causal seed models can be cleanly distinguished from
inflation by CMB experiments currently underwd$0556-282197)00606-1

PACS numbd(s): 98.70.Vc, 98.80.Cq, 98.80.Es

[. INTRODUCTION drag would allow the defect and inflationary spectra to be
distinguished. We refer the reader[t for more details.

It is now widely recognized that features in the power In this paper, we specialize the discussion to caseal-
spectrum of cosmic microwave backgroui@VB) anisotro-  ing models by applying Turok’$6] mode expansion tech-
pies can be a gold mine of information for cosmology. A niques to the underlying stress perturbations. These fluctua-
great deal of experimental effort is being expended in orde_FiOﬂS are the fundamental source of gravita_tional 'instability
to map the CMB accurately over a wide range of angulafl &ny isocurvature modef7,8]. Detailed discussions of
scales from the ground, balloons, and eventually space. IAl'€SS perturbations, conservation laws, and gauge in relativ-
addition to providing valuable information about the cosmo-IStic perturbation theory as well as their role in causality
logical parameters, it is becoming clear that the CMB carA'guments are given in Appendices A and B. We explicitly
teach us much about how the fluctuations were generated fnforce energy-momentum conservation and thus self-
the early Universe. For example, fitt], it was claimed that —consistently include the response and backreaction of the
by studying the acoustic signature of the anisotropy spectrur@hoton-baryon fluid to the gravitational sourcks. We
one can test the inflationary paradigm for fluctuation generaShow that except for one special case, the resultant CMB
tion (see[2] and references therein for other inflationary SPectra are easily distinguished from their inflationary coun-
tests. terparts. If the dynamical effects of isotropic and anisotropic

The key idea in differentiating inflation from other models Stress are exactly balanced, a novel situation may arise in
of structure formation, such as defefs-5], is the behavior Which the sense of gravity is reversed and hence also the
of the gravitational potential fluctuations outside the horizonPredictions for the acoustic features in the CMB. We discuss
In inflation, these potentials are approximately constantn detail the model of Turok9], which utilizes this mecha-
while in a viable defect model, or indeed any isocurvatureliSm, in Appendix C. Thus out of the general class of causal
model, they start out vanishingly small and are generated d&0dels with scaling properties only this one case may be
a mode enters the horizon. Coupled with the effects of phoconfused with inflation from its acoustic signature.
ton backreaction, this distinction implies a different structure
in the anisotropy spectrum on small angular scales, allowing
for a test of the inflationary paradigm. Specifically, it was
claimed that, with some exotic exceptions, isocurvature mod-
els produced spectra whose peaks were phase shifted with Let us assume that the fluctuations which eventually form
respect to the inflationary moddl$]. In a very rough sense, large scale structure in the Universe are generated causally
the inflationary driving force excites a cosine mode whereagrom an initially homogeneous and isotropic Friedman-
the isocurvature one excites a sine mode. Even if the phadeobertson-Walker universe. Causality, together with energy
shift were closer tar rather than tor/2 rad[4], causing the and momentum conservation, places strong constraints on
peaks to line up with the inflationary model once again, thehe manner in which this can occur. Heuristically, energy
nonmonotonic modulation of the peak heights by baryonconservation implies that changes in the energy density at

Il. CONSERVATION LAWS
AND STRESS PERTURBATIONS
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any location arise only by its “flow” across surfaces. In s
general, these flows must obey momentum conservation and PF:Z [pil'i+(ci —c5) opil, 3
hence only arise from stress variations in the matter, e.g., for

a perfect fluid from gradients in the pressure. It is instructivegg that if the sound speet] in the components does not
to first consider the simple case of a nonrelativistic fluid. Weequal the total sound speed, i.e., the equations of state for the
shall then show how these arguments manifest themselves Hbmponents differ, then the initial conditiafp=3;8p; =0
relativistic perturbation theory with a more general stres:sA,mp"eS that nonadiabatic pressure perturbatiomstbe gen-
energy tensor for the matter. erated. In the cosmological setting, concrete examples of this
mechanism include the baryon and axion isocurvature mod-
els as well as cosmological defect scenarios. This idea that
) . . . . density fluctuations may be balanced to satisfy total energy-
_ Here, we first examine the evolution of perturbations in &nomentum conservation, is conventionally referred to as
simple nonrelativistic fluid, perhaps with viscosity, but ig- .ompensation Compensation once established initially is
noring gravitational effects. Energy-momentum conservation,sintained by energy-momentum conservation. In principle,
for the perturbations is described by the linearized continuitynare is no need to enforce it by hand as often done in the
and Euler fluid equations literature[4]. Of course, in practice, energy-momentum con-
servation may be difficult to enforce in a numerical code

A. Nonrelativistic example

6=~ divi, with nonlinear dynamics.
Now, let us consider the anisotropic stress. Internal fric-
Pbi=(9ip—ﬂjﬂij ' (1) tion or viscosity is generated when there is relative motion

between various parts of the fluid. The anisotropic stress ten-
sor thus scales as the spatial derivatives of the velocity field
where summation is implicith= p/p is the density fluctua- and to lowest order, the first derivatiysee, e.g.[15]). By
tion, v; is the bulk velocity p is the pressure, and;; is the  momentum conservation, we know that the velocity field
viscous or anisotropic stress tensor. Density fluctuations caganishes initially. Hence, anisotropic stress is only generated
only be generated by fluid flows. A Fourier decomposition ofafter pressure gradients set up bulk motion. The scaling in
the perturbation implies that compared with velocities, thex space is that ok times the velocity fluctuation de? times
density must be suppressed by a factokadt long wave-  the pressure fluctuations. The Euler equation thus implies
lengths. However, momentum conservation constrains thehat at large scalesthe generation of bulk velocities and
form of such flows: they cannot be present initially and thushence density and potential fluctuations through anisotropic
must be generated by pressure gradients. The Fourier decogtress is subdominant.
position shows that velocities should be suppressed with re- This simple example shows that the energy-momentum
spect to pressure fluctuations by a factokadt long wave-  conservation equations automatically build in causal behav-
lengths. Hence, density fluctuations generically scalé?as jor. The problem of considering the effects of causality thus
times the pressure fluctuations in a fluididrin the power  reduces to the establishment of causal initial conditions and
spectrum. This is the familiar result that causal flows of matthe enforcement of energy-momentum conservation as the
ter will establish &* density spectrum even when no density Universe evolves under the stresses of the matter.
perturbations exist initially11-14.

The Poisson equation implies that the resultant potential B. Relativistic generalization
fluctuations scale as the pressure itself. In a relativistic con- _ _ ) .
text, potential fluctuations are equivalent to curvature fluc-. | WO issues complicate the simple picture of the last sec-
tuations in the spatial metric. The fact that the generator ofn- The first is that we must possess a model for how the
density and curvature fluctuations is causal requires that inS'€SS perturbations evolve. We shall return to consider

tially they must vanish. Hence, we refer to such models focausal constraints on their behavior in the next section. The
fluctuation generation @socurvaturemodels. second is that in relativistic perturbation theory, the stress-

The form of the pressure perturbation itself is not arbi-EN€rgy tensor of the matter evariantly conserved. Hence,
trary. In fact, if the pressure perturbations are adiabatictn® continuity and Euler relations of E(l) become
op=(p/p) Sp=c2ép, then energy-momentum conservation TO» =0, T". =0, @)
requiresdp=0 and fixessp=0, so that it cannot generate ' '
density perturbations. Thus, it is only the nonadiabatic presBecause metric terms enter these equations, the form that the
sure or “entropy” perturbation that can causally producecausal constraint takes depends on the metric representation,
density fluctuation$7] i.e., the gauge. For example, the continuity equation is al-
tered by changes in the spatial metric. The simplest example
is that of the stretching of space due to the background ex-
pansion, which dilutes the number density of particles in
physical space. Likewise, perturbations to the spatial metric
In general, there are many possible sources of nonadiabat@@use similar effects to the density perturbation. To disen-
pressure, but causality constrains their behavior by requiringangle metric effects on the generation of perturbations from
that their fluctuations be uncorrelated outside the horizonthe truly causal evolution by flows, it is desirable to find a
One natural way to obtain them is to assume the fluid igepresentation of perturbations that obeys an ordinary con-
composed of a sum oveérparticle constituents. In this case, servation law. In this context, two quantities have been often

pI'=p—cZdp. (2)
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discussed in the literature: the stress-energy pseudotensarmore general stress-energy tensor, we can merely replace
7., [16,17] and the comoving curvature perturbatigh Sp andw by the isotropic and anisotropic scalar components
[7,18). of T; [see Eq(A4)].

To understand the problem, it is perhaps useful to recall The direct dependence of the curvature on stress pertur-
first the issue of gauge choice. In relativistic perturbationbations implies that the causality argument in this gauge is
theory, one has the freedom to choose which spatial surfacehe most similar to the nonrelativistic case discussed in the
and what coordinate system on this surface, to use in defirprevious section. For example, in the absence of these
ing the perturbations. Gauge freedom can be both a complitresses, e.g., in the inflationary example with adiabatic fluc-
cating annoyance and a very convenient tool, but poses n@ations, the curvature is simply constant outside the horizon
real obstacle for applying relativistic perturbation theory.to leading ordef21,22. Thus the proper relativistic gener-
Once the initial conditions are properly established, covarialization in comoving gauge of the causal argument is that
ant conservation of the stress-energy tensor properly anghe curvature on the comoving hypersurfa¢egnishes ini-
causally evolves the fluctuations in any gauge. In particularially and is only generated by the causal motion of matter
all gauges will agree omphysical observablese.g., CMB  (see[1,7] and Appendix B.
anisotropies. Three gauge choices, for which we give de- From this condition, it is simple to reconstruct the causal
tailed properties in Appendix A, are in common use. Let usconstraint in the two other gauges from gauge transforma-
briefly note here their benefits and drawbacks before speciations (see Sec. B)L The curvature on Newtonian hypersur-
izing the discussion to the relativistic analogue of the initialfaces is directly proportional to the density fluctuations on
conditions described in the previous section. the comoving hypersurfacdsee Eq.(B7)]. This suggests

Perhaps, the most popular gauge choice is that of synchrehat the isocurvature condition for the total-matter gauge is
nous gauge, where the perturbations appear only in thghe same as that of the Newtonian gauge. We show in Ap-
space-space part of the met(gee, e.g.[19]). In this gauge, pendix B that this intuition is correct, up to an irrelevant
the spatial hypersurfaces on which one defines the perturbaecaying modgsee Eq.(B9)], if the equation of state is
tions are orthogonal to constant-time hypersurfaces andonstant. For the synchronous gauge, the condition that
proper time corresponds to coordinate time. Thus this coorf=0 is identical to the assumption that the pseudoenergy
dinate system is natural for freely falling observers or coldr,, and the pseudomomentum density defined in Eq(B5)
dark matter particles. The drawback of this gauge is that th@anish initially [16]. These are components of the stress-
density perturbations are not easily related to the observablgnergy pseudotensor commonly employed in the literature,

anisotropy and the gravitational sector is nonintuitive. Onewhich likewise obeys an ordinary conservation condition
must be careful to compute observables as the individual
components of this gauge can be quite misleading.

The most familiar gauge from courses in relativity is the
conformal Newtonian gauge. In this gauge, the metric is d."as one would expect. Thus these three sets of initial condi-
agonal: the space-space part gives the curvature perturbatlotn . L i .

: : o : . Idns: vanishing of the comoving curvatuge Newtonian
and the time-time part the gravitational potential. This gauge

has been frequently used in analytic work on CMB anisotrolurvature®, and o, 7;, are essentially equivalent. Once

pies because the representation of the gravitati¢Baths- these conditions are established, energy-momentum conser-

Wolfe) effects is simple and the density perturbations corre—vatlon causally evolves the perturbations under the influence

spond closely to the CMB anisotropy. The gauge can bé’f spatial stresses, generating properties suchkdssaaling _
difficult to work with numerically, and extreme care must be'N th? power speptrum of the pseudoenergy and comoving
taken with the initial conditions. density perturbation. Let us now turn to the question of

For work involving causality, the obvious gauge choice iscausal stress evolution.
the comoving gauge, also known as the total-matter gauge
and velocity-orthogonal isotropic gauge. This gauge is diffi- C. Scaling stress sources
cult to conceptualize, since it contains an off-diagonal time- Causality implies that no measurable quantity, e.g., the
space perturbation. However, as we shall show in Appendixie|qs and stress-energy components, can have superhorizon
B, the spurious effects of density dilutidgfiom stretching of  sca1e correlations. This implies that their power spectrum
the spatial metricwhich complicate the analysis of the con- pahaves as “white noise,k° to leading order forkr<1,
servation laws are absent in this gauge. More specifically, thgnjess other symmetries exist to eliminate even this contri-
curvature perturbatiod in this gauge(superscripfl) is gen-  ption (e.g., energy-momentum conservation and the comov-
erated only by pressur@gonadiabatic if the curvature van- ing density perturbation, see also Sec.)BI2 Appendix B,
ishes initially and anisotropic stress fluctuations[see EQ. \ye show that for models with scalar fields, this constraint
(A24), definitions in Sec. A 4, anf20] for anisotropic stress  |imits the superhorizon scale behavior of all of the stresses:
terms in the relativistic fluid contekt the isotropic stresps behave ask® and the anisotropic

stresses, which depend only on spatial derivatives of fields,

2 ) behaves a&? for kr<1.

Too= 9 Toi (6)

a1

=T apTp op'—=m (5) Turok [6] raises the interesting question of what general

3 statements for the CMB anisotropy spectrum can be made if
one combines causality with trezalingansatz. The scaling

wherea is the scale factor and temporal derivatives are hereansatz is a powerful tool for analyzing the dynamics and

after with respect to conformal time= [dt/a. In the case of predictions of defect mode[23-25. It implies that defect
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networks have only one characteristic scale, set by the cur{a?p (k,7)a’2py(k,7"))= 7Yz -1

rent horizon size. Thus, for example, a string network a few

thousand years after the big bang has the same correlations

as a string network a nanosecond after the big bang. This

scaling ansatz has been useful for studying the dynamics of

the nonlinearr model, a simple approximation to defect dy-

namiqs, that has scaling solutions in both the matter- angy; \which in real space

radiation-dominated epochg6,27.
For our purposes, scaling may be defined more phenom- (fa(r, ") fa(0,7))=0 for r>7+7". (12

enologically as the assumption that the poyr Irk) in the

metric fluctuations, i.e., in the Newtonian curvature fluctua-The symmetry ink7 implies that a diagonal basis exists

tion k3| ®|2, and potential fluctuatiok®| |2 are both the ~wherePaar = San Pa [6]. However, for illustrative purposes,

same on each scale at horizon crosding: 1 and evolve in  we follow Turok in employing

a self-similar fashion

X; 2 PAA/fA(kT)fA/(kT,),
A

(11)

Sin(AKkr)
O=k 3 (kr), Y=k ¥%g(kr). @ fAEW (13

as a convenient basis, wherez@<<1. We shall, therefore,
%dopt in the next section pressure sources of the @tm

o7 12f, which differs from Turok’s suggestion of
a®(ps+3ps) = Y2, (see also Appendix C Our assump-

Y;’g'tfg cag zé{)rﬁlr;?ethe[gza?(arrslzs?fatlrfgbela:ﬁ: :lcr:]zgllii ag;\_ tion follows from scaling and causal constraints on stresses
Py Sp Y- y 9 and allows the density evolution to be simply determined by

satz at least approxmately.. The inflationary scenario natuénergy—momentum conservation from the source stresses.
rally generates such fluctuations wittk7) =g(k7) = const.

: . . Now, let us consider the Newtonian gravitational potential
We must now seek a causal mechanism for their generati
ﬁ’éee Eq(A18)],

through stress perturbations. The ansatz cannot simply

with their evolution are directly related to the gravitational
redshifts experienced by a photd@8]. Thus any model

imposed on the metric fluctuations since this does not guar- V=—P-8rGam /K> (14)
antee that a consistent solution of the conservation and
Einstein-Poisson equations exists. Thus the scaling ansatz fdr holds equally well ford ex-

Consider first the Newtonian curvatude From the argu-  cept in the presence of anisotropic stress contributiogs
ments of Secs. Il A and II B, properly generalized to theTo produce a flat CMB anisotropy spectrum, any such con-
relativistic case by the gauge considerations of Appendicegibutions must also obey a scaling relation
A and B, a pressure fluctuation sourzegenerates a comov-
ing gauge density perturbatideuperscripfl) of order a’mgor VA g(kT). (19

If the Universe is isotropic initially, anisotropic stress, just as
p&"~(k7)?ps, (8)  the comoving density perturbation, can only be generated by
causal motion of matter implyingkf scaling fork7<1 (see
Sec. Il A for an example The same arguments employed in
deriving a causal form of the pressure source allow us to
write (see[9] for an analogous derivation

and hence from the Newtonian Poisson equat®n)

24 2 oT
k“®~47Gapés 6 [Sin(BlkT) sin(B,k7)

BZ—B2| (Bikr)  (Byk7) |’

fe(kr)= (16)

~47G(a%ps)(kr)2. 9
where 0<(B,B,)<1 and we have normalized the function
to behave askr)? on small scales. Thus Eqdl.3) and (16)
For white noise pressure perturbations, the scaling ansatzepresent the mode decompositions of a scaling isotropic and
Eq. (7), then requires anisotropic stress perturbation which strictly obey causal
constraints for a lack of correlations above the horizon.
aZpgocr 12 (10
lll. IMPLICATIONS FOR THE CMB
for k7<<1. Thus if we adopt this ansatz for the pressure A. Acoustic sources and signatures
source, energy-momentum conservation will naturally gener- Let us first review the formalism set up [d] for calcu-
ate scaling behavior i®. Note also that white noise pressure lating the acoustic oscillations in the CMB for a model with
perturbations imply white noise curvature fluctuations. external gravitational sources. To avoid obscuring the main
Turok [6] points out that to study possible behaviors physical points, we have relegated the technical details to
around and after horizon crossing, we can decompose th&ppendices A and B. The basic idea is that one solves the
source into basis functions that satisfy scaling and a strictquations for the fluid and metric evolution under the influ-
lack of correlations outside the horizon ence of sources which are assumed to interact with the fluids
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only through gravity. For CMB studies, it is convenient to
choose a Newtonian gauge condition to represent these ef-
fects, since the perturbations are more easily interpreted in
this gauge than in the synchronous or comoving gauge. The
Einstein equations tell us that the matter fields generate New-
tonian metric perturbations: specifically the curvatdreand
gravitational potentiail'. 0
Under the methods dfL], the gravitational contributions
of the photon-baryon fluid are separated from the other
sources, = ,+P; and VY=V ,+V¥,. The photon-
baryon oscillator equation is then solved in the presence of
o, and ¥,. If we assume that the source is composed of -5 >
seeds, i.e., a component whose stress-energy tensor makes a .
small perturbation to the background, its contributiofisise e S

5

Egs.(A4) and (A11)] 5 11{0 15 =0
.
.a T T T T T T T T T T T T T T T T
(k2= 3K) D= 47Ga? ps+3—vs/k), (b) ] ]
a 2 TN
8nGa*my, /

K2(V+dg)=—8mGalms,

where we have simply labeled the scalar terms of the stress-
energy tensor of the seeds in the fluid convention without
loss of generality [see Eq.(A4)]. Thus since defect seeds
merely represent a special case of an external source, they
may easily be treated under this formalism.

To summarize the results ¢i], it was established that —5
isocurvature initial conditions, in the sense of Sec. Il B and
Appendix B, robustly predict an anticorrelation between the
source curvature and CMB temperature perturbations at ho- T T S A ST T A N
rizon crossing during radiation domination. The underlying 5 10 15 <0
reason is obvious from the causal arguments of Sec. Il kTt
changes in the source energy density must be compensated ) _
by an opposing change in the radiation density before bulk FIG. 1. (a) Pressure scaling source. The effectl_ve t_emperature
motion has had a chance to redistribute the matter. Sinc@O'HI'* total curvature perturbatio®, and the contribution from
correlations and anticorrelations with the curvature represerif'® SOUrcePs, produced byp, assuming Eq(18) with A=1. No-
compressions and rarefactions in potential wells, respectlce tht the temperature fluctuations are 5|m||a_r to the _canomcal
tively, under normal conditions, the acoustic signature car‘?red'cuon (.)f a ba.ryon"socurvature modelotted I|r_le), not infla-
distinguish between these cagsse Sec. Ill D and Appendix tlon'.(b) An'SOIrOp'.C stress scaling source. EVOIUt'O.n u.nd%.ras'

. IS . . suming Eq.(19) with B;=1, B,=0.5. Photon domination is as-
C for exceptions The specific signature is provided by the

. . - sumed here and in Figs. 3 and 4.
drag baryons induce on the photon-baryon fluid which en- g

h?ncgsﬂco_mpressmnds lo_ver_rarefl;o\ctlﬁns. Th“?* ;he SIgNAtULR,|ing ansatz discussed in Sec. Il C. Specifically, let us break
of an inflationary model is given by the ratio of the acoustiCy,o ressure source into contributions that behave as
peak locations, which measures the phase of the acoustic

oscillation, and an enhancement of the odd peak heights. It sin(AKT

.. . > 2 —1/2. -1/2 n( )
was found that though a distinctly different set of “sine” AmGaps=7 “fa=T (Akr) (18
peak ratios was a common prediction of isocurvature models,

details of the source evolution could be tuned to reproduc%th 0<A<1. This choice is similar to and inspired by the
the inflationary casésee als¢4]) so that the peak height test ansatz of[6] but replaces the assumption faf(p+3p,)

is also necessary. We now consider whether additional a jith the analogous one fa?p, since stress fluctuations are

sumptions, such as scaling in a strictly causal stress mode[ e fundamental source of causally seeded perturbations.

can produce further robust distinctions. This allows energy-momentum conservation to fix the form
of density perturbations from the stress fluctuations and per-
mits a wider class of possible seed soursee Appendix €

Let us now specialize the analysis[df to the case where For simplicity, we here assume that the seed anisotropic
the source pressure fluctuations are from seeds that obey tegessm,=0 and postpone discussion of its effect until the

next section.
We show the evolution of the system under the source
IFor reference, note that the relationship betwd86] and  equation(18) in Fig. 1(a). We have choseA=1 since this is

our notation is Oy =a’ps,0;=3a%ps,0s=—a’ws, and the most extreme of the causal modes in that it produces
1= —a’kvs. features in the source as soon as causally possible. The initial

B. Scaling ansatz for pressure
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conditions require a vanishing comoving curvatgreO or, 8 ———rr — T —
equivalently, vanishing stress-energy pseudotensor compo- - 1
nentstoo=0= 74; . As long as the initial conditions are set
early enough so that the pressure has not generated signifi-
cant perturbations, this may be satisfied by setting the indi- L
vidual energy density and momentum density perturbations L
of the fluids and sources to zero. Note that in the more gen- <
eral context in which the source fluctuations are directly re- T 4
lated to density fluctuations, one must be more careful in =
setting up consistent, compensated initial conditions.
We make the important assumption here that the Universe oL
is radiation dominated as the fluctuation enters the horizon L
which we will discuss further belowsee alsq1]). Notice -
that this model follows the predictions of a canonical isocur- r
vature modekb < (k7) ! (e.g., a baryon or axion isocurva-
ture mode[1,10]), quite closely. Here, the effective tempera-
ture perturbation®,+ ¥ is composed of the temperature
fluctuation on Newton!an surfac_:e@)0=_5';'/4 [see Eq. FIG. 2. The anisotropy power spectrum(/ +1)C,, vs mul-
(A16)], and the Newtonian potentialt which accounts for  tinole number/~ 61, The solid line is the inflationary prediction.
the gravitational redshift or Sachs-Wolfe effect. The dashed line assumes a pressure source with the form of Eq.
Note that the sign change in the pressurk7at = has no  (18) for A=1. The dotted line assumes an anisotropic source with
direct relevance to the question of acoustic phase. The actiafie form of Eq.(19) for B;=1 andB,=0.5. All curves assume the
of a source near or outside the horizon generically drives @ame background cosmolo@y,=1, h=0.5, Q,h?=0.0125. No-
sine mode acoustic wave due to feedback from the selftice that the predictions are out of phase and that even rather than
gravity of the photon-baryon fluid. The situation for which odd peaks are prominent in the noninflationary models.
these arguments fail is if feedback is unimportant, i.e., if the ) _ ) ]
universe isfully matter dominated when the mode enteredlations by anisotropic stresses is delayed compared with for-
the horizon. These issues are treated in a much greater detgiftion by pressure fluctuations. This shifts the acoustic fea-
in [1]. tures toward smaller scales and further away from the
Thus we come to the Conc'usion that th|S Wh0|e C|ass opl’edictions Of inﬂation. On the Othel’ hand, theil’ I‘elatively
pressure-scaling models produces an acoustic signature tHate formation implies that the feedback mechanism from the
bears the canonical isocurvature stamp: a sine mode oscill§ompensating energy density of the photons at Jeans length
tion with a rarefaction-compression-rarefaction pattern tha€rossing is less important, leading to a wider range of pos-
leads to even peak enhancement from the baryons. BotfiPle effects in the CMB anisotropy spectrum.
properties are sufficiently distinctive so as not to be confused L€t us consider a few specific examples. In Figh)1lwe
with inflation (see Fig. 2, even given large variations in the Show the time evolution of fluctuations in the photon-
form of the sourcdsee Fig. 3 This makes the task of dis- dominated era from an anisotropic stress of the form in Eq.
tinguishing them simpler than in the general cigpand (19 with B;=1 and B,=0.5. As the anisotropic stress
renders them testable by the current generation of CMB exsource turns on ak7~B; ', it acts as a direct source of
periments. potential fluctuations¥. It then begins to move matter
around. This produces significant density and accompanying
C. Scaling ansatz for anisotropic stress curvature perturbations which thereafter dominate the struc-
ure of the gravitational potentials, i.e¥,~ —®. The result
an effective temperatui@,+ ¥ that first followsW¥ into a
rarefaction stage. The fluid then turns around to fall into the
growing potential wells of the source. Thus, the qualitative

1 sl 1 c el 1 |

10 100 1000
14

Now, let us consider the effect of anisotropic stressf[
sources that obey the scaling ansatz. These sources are r
resented by the basis of E(L.6):

6 [Sin(BlkT) effect of anisotropic stress on the CMB is the same as iso-
4 GaZﬂ_ :7_—1/2f :T—1/2 . . .
™ s B BZ—BZ (B.k7) tropic stress: the feature at Jeans crossing corresponds to a
2 -1 ! rarefaction in the effective temperature and is suppressed in
sin(B,k7) comparison to the main compressional feature due to infall
T T (Bkn) |’ (19 into the potential well of the source. This expectation is

borne out by the full Boltzmann calculatid80] in Fig. 2.

Anisotropic stress affects the CMB in two ways. It contrib- Because the dynamical effects of anisotropic stress are
utes directly to the gravitational potentil through Eq(14) highly suppressed outside the horizon, the main features of
and hence the Sachs-Wolfe effect. It also acts as a force ithe peaks are shifted toward smaller scales than those for the
the momentum conservation equatipe.g., Eq.(1)] that  pressure model.
moves matter around. Thus it generates true density and cur- Now, let us consider how these results change with the
vature fluctuations inside the horizon in the same way as théorm of the anisotropic stress source. The paramé&erand
pressure perturbations. B, that define the anisotropic stress in Eq. (19) control

The form of Eqg.(19) implies that it is a source of white the maximum ofwg and the rapidity of its subsequent de-
noise fluctuations i above the horizon. Because of the cline, respectively. Here, we have assumed Biat B,. In
(k7)? factor, we expect that the formation of acoustic oscil-Fig. 4, we show how the time evolution of the effective
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BT The crucial distinction between all of these isocurvature
| (a) - models and the inflation is the behavior of the fluctuations
- during horizon crossing. In an isocurvature model, any
10 L e source density fluctuations at this epoch must be compen-
{ g sated to keep the total density fluctuation small. If the pho-

- tons take part in this compensation, as they must if they are
the dominant dynamical component at the epoch of horizon
crossing, this implies an anticorrelation between the source

r S TT—— 1 and photon density fluctuations. Inflationary models generate
e T adiabatic fluctuations so that the density fluctuations of all

=1.0 T the species are correlated at horizon crossing. This leads to

=0.5 ] observable consequences with gulitionalassumption that

=0.0 ] overdense regions of the source represent gravitational po-

S Y T S tential wells. The Compton drag of the baryons on the pho-
5 10 15 R0 tons attempts to compress the photon-baryon fluid in the po-

kTt tential well. In inflationary models, the photons inside the
— ——— well are already overdense such that this effect enhances the
first peak and subsequently all ofmbmpressionalpeaks. In
isocurvature models, the opposite occurs leading to a reduc-
tion of the first(rarefaction peak and an enhancement of the
second and all even peaks.

There are two basic assumptions to this chain of reason-
ing. The first is that the photons must play a role in the
causal compensation. It is possible to construct a model in
which the Universe is fully matter dominated at horizon
crossing for all observable peaks where this assumption is
invalid [1]. However, we have shown in Sec. lll B that this
does not occur in a model with the standard thermal history
and reasonable cosmological parameters. The second as-
sumption is that overdense regions of the source, here taken
to mean all contributions external to the photon-baryon sys-
tem, represent potential wells. This is generally a reasonable
assumption even in the isocurvature case since the ability of

FIG. 3. We show(@ the source curvatur®, and(b) the effec-  the photon density perturbation to counteract the source is
tive temperaturédo+ W for the family of pressure sources of Eq. giminished as the fluctuation passes the Jeans length. Thus
(18). In all cases, the effective temperature approximately followsgq\rce overdensities represent total overdensities. The Pois-
the canonical isocurvature evolution from Fig. 1, which is very g4 equation implies that overdensities represent positive
different from the inflationary casesolid line in panel b curvature fluctuations and hence potential wilithe aniso-

temperature varies witB; andB,. Notice that altering the tropic stress is negligible in comparison to the density fluc-
rapidity of the falloff throughB, has little effect on the tuation[see Eq(14)].
acoustic structure whereas decreadpgshifts the main fea- The latter assumption opens up the possibility that aniso-
tures toward later times and hence smaller scales. Thus tHEOpPiC stress provides a loophole to these arguments. More
anisotropic stress models which have features closest @pecifically, if ms>—pg/2, thenundedense regions of the
those of inflation seB;=1. source represent potential wells and the above expectation
Thus, we can conclude that anisotropic stress fluctuationfr the relative heights of the peaks is inverted. However,
tend to shift the main features toward smaller scales. Such 4Bis does not occur if we just simply take a model with large
the result for pressure fluctuations, this implies that any feaanisotropic stressrs (see Sec. lll & The reason is that a
ture that is near the first peak in an inflationary model mustarge anisotropic stress moves matter around to create a cor-
be subdominant, leading to a low-high-low prediction for therespondingly large density perturbation. The energy-
heights of the featuresee Fig. 2 As such, these models are momentum conservation laws for a seed solfoem Eq.

B+

easily distinguished from inflation. (A11) for wavelengths well below the background curvature
scalg
D. Implicit assumptions .
Since the effects of causal pressure and anisotropic stress pet 3%( pstPs)=—kuvs,
fluctuations are both individually distinguishable from those a
of inflation, one expects that the combination of the two ] (20)

would result in a spectrum equally distinguishable unless
there is interference between the modes. To better quantify
our intuition and identify possible loopholes, it is instructive
to recall the physical basis for the differences in the CMBimply that for k> 1,7 is typically a strong source of den-
spectra. sity fluctuations.

. a
Us+4avszkp3—§k’ﬂs,
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Can we ever construct a model in whiehy= — p/2? An
exception to the above arguments occurpgf 2¢/3. The
stresses are then so balanced as to maintain a large aniso- i 7
tropic stress without generating a correspondingly large den- 5
sity perturbationsee discussion of Fig, 1t is not sufficient
to have merelyrs=0(p,) to achieve this balance.

For this one exceptional case, it is possible here to have 7 0
gravitational potentials generated by anisotropic stress in- &
stead of by density perturbations. If such a model addition-
ally has the peaks in the inflationary positioasd yields
approximately constant gravitational potential perturbations,
it is possible to evade the arguments of Hu and Whiie
Even though the individual effects of pressure and aniso- [ ~=--B;=0.00 ~
tropic stress fluctuations lead to predictions in accord with R
the canonical isocurvature model, the two may cancel in this
way to evade such expectations. Following Tuf&l, we
explicitly construct such an example in Appendix C. Such L L B B B A R B B s o
models rely on a special relation between the pressure, an- - i
isotropic stress, and density fluctuations, and are thus un- 0 f= P AN n A
stable to perturbations in the equation of sfate discussion S \//
surrounding Eq(C7)]. = R,

In summary, the two assumptions underlying the case for - e a
the distinguishability of inflation from isocurvature models % -2 N\ —
from the acoustic signature are that the photons are dynami-&
cally significant at Jeans crossing and that potential wells -
represent overdense regions in space. These criteria are sat- % e
isfied by a wide range of models including all those currently -4
under consideration involving defects which have observable SR B;=0.50 .
acoustic signatures.  ---- B;=0.25 .
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IV. DISCUSSION kT

All of the causal models for the formation of large scale  Fg. 4. Anisotropic stress scaling source time evolutia):
structure currently being considered can be divided into twas, controls the decline ofr from its maximum and has little effect
classes{(a) inflationary models, which have curvature fluc- on the acoustic featuregb) B, controls the location of the main

tuations on superhorizon scales, dbfiscaling seeded mod- peak in and hence the location of the main acoustic feature.
els, such as strings and textures. In the latter case, there are
no initial curvature fluctuations and stress fluctuations only
gg?irnaé?g??nrgrt: ég?ﬁ: ?:ngzrvs:tliggftrlbutlon of matter ur’Here and leave non-_Gaussian_ signatures in the CMB and/or

We have presented a thorough discussion of this proce wuse decohere_nce in the oscillafidh However, such com-
that can be used to study the general properties of any mogRlications are Ilkely .to make alternate models less, rather
that proposes a causal mechanism for large scale structuf@@n more, like inflation. . _
formation without postulating an inflationary epoch. We ap- The.analy3|s in this paper also reinforces the conclusions
ply these techniques to study a representative class of scalifdj [1]: in an inflationary model, even peaks are produced by
models inspired by Turo6]. For models dominated by rarefaction waves and odd peaks are produced by compres-
white noise isotropic stress fluctuations, the acoustic signasion waves. On the other hand, in isocurvature models, even
ture in the CMB angular power spectrum follows the canoni-peaks are produced by compression waves and odd peaks are
cal signature of a baryon-isocurvature model. Physically, thiproduced by rarefaction waves. As long as the energy density
robust signature arises from the ability of photon backreacin radiation at decoupling is significant and gravitational po-
tion to drive the acoustic oscillatigrl], a feature that must tential wells represent overdense regions, such a model can-
be included in a self-consistent calculation. Models domi-not reproduce the inflationary CMB signature without the
nated by anisotropic stress fluctuations tend to be even moksguivalent of putting in the features by hand.
extreme, with main features pushed toward smaller scales.
Hence, both classes are easily distinguished from inflation by
experime_nt_s currently underw&gee Fig. 2 _ ACKNOWLEDGMENTS
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APPENDIX A: RELATIVISTIC PERTURBATION THEORY ng _Pf_(Pf5?+Ps)Q,
WITH SEEDS
We review the formalism of relativistic perturbation T=[(p¢+pp) (v —B®) +v]Q;,
theory in this appendix and derive the results used in the i G (A4)
main text. We start with a discussion of gauge transforma- To=—[(ps+pr)vy+vs]Qi,
tions in general relativistic perturbation theory and then de- . : .
rive the metric evolution and fluid equations in three com- Ti=[pi+(8pF +Pps) Q1S + (ps7e +ps)Q; -

monly employed gaugetsee alsd16,32). Each of these , , . . . .
gauges has advantages for particular problems we consider fhiS occasionally convenient to break the fluid up into its

the text, and we present all of the details necessary to tran¥@rious particle components, e.go6— Zpi5¢=prdr,
form from one to the other. and we shall preserve generality by writing equations appli-

cable to either the single- or multi-fluid case. The gauge

_ transformations act on the fluid quantities[8%
1. Gauge transformations

The most general form of a metric perturbed by scalar v?=v?+L,
fluctuations i97,8]
= a
goo=—a’[1+2A°Q], §C=5C%+3(1+wy=T,
a
A5
9o = —a’B°Q;, (A1) (A5)

G G 2 a
o R opy = ps +3CfPf(1+Wf)5T,
gij=a[y; +2H Qi+ 2HFQy ],
78= 78
where Q is the kth eigenfunction of the Laplacian, i.e., f fo
H — -1
expﬁk '7X2) in a flat space, Q=—k "Q;, and \hereas for the seed source they only generate second order
Qij =k~ “Qyij + 7i;Q/3 where| denotes a covariant derivative ¢oractions. Herew,=p;/p; defines the equation of state,

with respect to the background three-metyig¢ of constant 2 . .
curvatureK — —HS(l—Qo—QA). The SUperscrip is em- Ci= ps/p;s is the sound speed in the fluid, and we have used

ployed to remind the reader that the actual values vary fronf/Pr=—3(1+wy)(a/a). Notice that the anisotropic stress
gauge to gauge. 7+ has a truly gauge-invariant meaning, and we shall here-

A gauge transformation is a change in the correspondenc@ter drop the superscrif from it.
between the perturbation and the background represented by

the coordinate shifts 2. Synchronous gauge
_ Let us derive the energy-momentum conservation and
T=7+TQ, Einstein-Poisson equations in the familiar synchronous
(A2) gauge and use the gauge transformation above to relate them
X i=x+LQ, to alternate representations. The synchronous gauge is de-

fined by AS=BS=0 implying that proper time corresponds
where the conformal time is defined throughd 7= dt/a(t) with coordinate time and. that constant spatial coordinates are
with a as the scale factofl. corresponds to a choice in time orthogonal to constant-time hypersurfaces, a natural coordi-
slicing andL a choice of spatial coordinates. Under the con-natfe system for fr.e('aly falling observers. From any other co-
dition that metric distances be invariant, they transform the’rdinate system, it is reached by the transformation
metric as[8]
T:aflJ’ dr aA®+ca?,
a L=—1fdﬂBG+kﬂ%+cb
BS=BC+L+KT, where the presence of the integration constant@nd c,
(A3)  reflects the fact that the synchronous condition does not
~ k a uniquely fix the coordinates. In the past, this fact had led to
HE=HP - §L— aT, much confusion since coordinate ambiguityTimppears as a

fictitious gauge mode in the density evolution. It is conven-
tional to define

HE=HS+KL.
h=6H7,
The normal mode decomposition of the scalar part of the (A7)
stress-energy tensor for a fluid)( plus seed sources) — _uS_ } s
yields 7=—Hi~3Hy



55 DISTINGUISHING CAUSAL SEEDS FROM INFLATION 3297

as the fundamental metric variables. Covariant conservatioNotice that the third equation implies thht unlike 7%, is
of the stress-energy contributions of the fluid yields the condependent only op+ 3p.

tinuity equation for the backgroungd;= —3(p;+ ps)(a/a)
and for the perturbations 3. Newtonian gauge

The Newtonian gauge is defined by the sheer-free condi-

s :
a7 ) _ (koS h/2)—3g Wi r.. (A8 tion |_3N= H$‘=0, and it is conventional to caIINthe remaining
d7\ 1+ws a l+wg metric variables the Newtonian potentifl=A" and curva-

) ture quctuation(DEH’C'. From an arbitrary gauge, it is
as well as the Euler equation reached by the transformation
; 2 _ GG/2 T— _ L} : 2
. a cs Wy T=-BCO/k+HS/K> [=-3(h+67)/K?],
S, Z 1 _apr2y, S_ S T 2
vt g (1= 8coy= gy Ko i+ o KTy (A14)
L=—HS/k [=3(h+67)/kK],
2 W ki)
-5 - s . .. . .

3 1+wf( f where we have also specialized it to synchronous gauge in

(A9) the square brackets. Thus the Newtonian metric perturba-
tions can be written in terms of their synchronous counter-

Here, the nonadiabatic pressure perturbation or “entropy’Parts as
and is manifestly gauge invariafqg. (A5)]. Likewise, con-

fluctuation is defined as
la . o
servation of the seed source gives the equations b=—nt+5 5(h+677)/k :

. . a. .
p(T = 8pS—c250, (AL0) V=3 h+6nt 2 (h+6n)
(A15)

_ a and likewise for the fluid variables
pst 35(Ps+ ps) == kUS '

a . .
é 2 (A11) 8= 67— 3 (1+wp)_(h+67)/k2,
1'154_4505:kps—gk(1—3K/k2)7Ts,

a . .
N_ snaS_ 3 o2 a 2
which are also manifestly gauge invariant. OPr=9pF— 2 Cfpf(lJer)a(th67’)/k . (A1)

In this gauge, the Einstein equations are straightforward

to derive. The evolution of the scale factor is determined by oN=v3+ 3 (h+67)/k.
a\’ 87G It is a straightforward exercise in algebra to transform the
a tK= 3 arpr, (A12) synchronous gauge equations. The conservation equations
become
and the rg:tric perturbations are given in terms of the matter ST _
sources f N oo a w;
—_ = — + — A
o dr\1+w; (kvg+3®) 3a 1+wfrf’
(k?—3K) —§E=—4wea2[5s +pe] ; 2
T az e N 2 (1= 30 =Ky kT
Uit a i 1+ wy f 1+wy f (A17)
. K . .
———(h+67)= [ (pr+pr)vs+ 2w
k7] 2k(h 67]) 47Ga [(pT pT)UT US], _§ 1+\fN (1_3K/k2)k7Tf+k\P,
(A13) f
ht h= —8mGa? 8 Ipr+38pS+ pst3ps]
a T T = and Einstein-Poisson equations become
.. a. .
h+617+25(h+677)—2k277:—leGaZ[pTwTJr ). (k2—3K)q>=4wGa2[pT5.'#+ps

a
+3—[(pr+ppvy+uvsllky,
2In [33] there is a typographical error in EGA16) and the first of a[(pT PrjvT+os] J
Egs. (A45). These equations are missing a minus sign. No results (A18)
are changed. K2 (W +®)=—87Ga%(prm+ ms).
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It is also useful to note that the gauge transformation prop- k ) .
erties imply that from an arbitrary gauge the Newtonian po- ~ia—3rAmGa (prortps)
tential can be constructed as

_ —87Ga%(pymr+ mg)lK.
a
(k2—3K)CI>=477Ga2( 5$pT+ 35[(p-|—+ pPT) The evolution of the metric perturbations can be obtained
from the relationgA13) and(A9) for the synchronous Pois-
son and Euler equations
X (v$—BC) +v4]/k]|, (A19)
) §==95(pr+pr),
L . . . (A24)
which is commonly called the gauge-invariant Poisson equa- a
tion. Zzaf— Klvi+vd/(pr+pr) 1K,
4. Comoving gauge where the fundamental source to metric fluctuations is given
The comoving gaugésuperscriptT) is defined by the by the stress perturbations
vanishing of the energy density fli’=0 and the auxiliary , , )
condition HT=0. It is also sometimes called the velocity- ~ S=CTprdr+prl't+ps— 5 (1=3K/k)(prmr+ o)
orthogonal isotropic gauge, the total-matter gauge, and the - (A25)
rest-frame gauge. For convenience, we derteA” and = 0p1+ps— 5 (1 3K/K?)(prarr+ ).

=H/. From an arbitrary gauge, it is reached b . .
=HL y gaug y The fact that stress perturbations act as the direct source of

T=[v8+vs/(pr+pr)—BCUk [={vS+uve/(pr+pp}/k], CcOmMoving curvature is important for the causal arguments we
make in Sec. Il.
— G _ 1
L==Hr/k [=z(h+67)/k], (A20) APPENDIX B: CAUSALITY AND CONSERVATION
where we have again also specialized to synchronous gauge Once the stress fluctuations are known, the causal evolu-
and used the notationp¢+ pr)vt=2¢(ps+ps)vs to pre- tion of matter and metric fluctuations is determined by
serve generality in the multifluid case. The gauge transforenergy-momentum conservation and the Einstein-Poisson
mations imply that equations, respectively. Thus to impose causality on a model,
one must merely ensure that the initial conditions are causal
a and enforce causal stress perturbation behavior. In this ap-
(=P a[v‘ll\"+US/(PT+ pr) 17k pendix, we shall consider these two issues in detail.

(A21)
1. Initial conditions

a
s
=—p——[vitv/(p++ /k,
g a[vT vs/(prtpr)] If the initial conditions could be set up when the metric of

the Universe was precisely Friedman-Robertson-Walker,
and the comoving density is defined as they are trivial: zero perturbations in all quantities initially,
_ independent of complications such as gauge. Realistically,
T_ 55 a_ o however, we can only start the calculation some finite time
6p=0r+3(1+wy)_[vrtus/(prtprl/k. (A22)  afterwards when stress fluctuations and consequently, some
metric, energy density, and momentum density fluctuations

Note that the right-hand sid®HS) is the same if we employ have already formed. As is evident from Appendix A, cova-
the Newtonian gauge density and velocity perturbation/iant energy-momentum conservation, and hence the causal

va=va, we obtain for the conservation equations different gauges. It is_use_ful to pick a representat_ion that
corresponds to our naive intuition for causal evolution dis-

d 5fT _ aw cgssed in Sec. II: tha; thgse three quantitie; should be.negli—
o\ T =—(ko{+ 3g)_3§1+—wfrf’ (A23) ((;ubly small near t_he initial epoch well outside the horizon
see also Appendix dfi]).
We can summarize this intuition as follows: pressure gra-
o a o T dients can cause a change in the momentum density of the
vit Z(1=3ch)vy matter and hence a bulk velocity of ordeer Sp/(p+p).
The divergence of the bulk velocity then kinematically forms
o2 4 a density perturbation of ordek¢)28p/(p+ p), correspond-
__f T_o% 20 T ing to a curvature fluctuation of ordeip/(p+p) from the
1+wfk§f 3aCT[vT+vS/(pT+pT)] Poisson equation. The fact that this process requires the
movement of matter sets the causal constraint that the energy
+ ikrf— 2 Wi (1—3K/K2)kr, density fluctuation, momentum density, and curvature fluc-
1+w; 3 1+w; tuation all must vanish initially. However, this intuition only
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holds if metric terms in the energy-momentum conservation 1 a.
equations leave the basic form of the conservation equations o= — (k?7/47G)Q=| 6 Ja’pr+a’ps—=—= —h|Q,
unaltered. 87G a
The comoving gauge provides the desired representation. ) s . (BS)
If we assume that the wavelength of the fluctuation is much roi=a(pr+pr)vT+uvs](ik)Q,
less than the curvature scale of the background, as we shall . .
throughout this section, EGA24) implies that the curvature E0- (B4) takes on the form of a conservation equation
perturbatior? in this gauge only changes under the influence
of stress sources, exactly as we would naively expect. In the

absence of stress sourcés 0, the continuity equation of | the literature this quantity is called the stress-energy
Eq. (A23) reduces to an ordinary conservation law for num-pseudotensofr16] and is ordinarily, rather than covariantly,
ber density fluctuations in a fluid:s0{/ng)8{/(1+w;)  conserved. It is easy to see from EB3) that the vanishing
and d(én{/ng)/dr=—kv{ . Furthermore, in this gauge we of the ¢ curvature initially is equivalent to the statement that
can rewrite Eq(A23) purely in terms of the stress@ssing  74,,=0 and 75;=0, i.e., that the pseudoenergy perturbation
Eg. (A24)], making manifest the intuition developed earlier and the pseudomomentum density vanish initially as one
regarding stresses as the generators of velocities and thusuld expect for conserved quantities. Thus the two sets of
density perturbations. The continuity equation for the com-nitial conditions are entirely equivalent.
bined fluid and source components becomes Finally, let us consider the initial conditions for the New-
tonian gauge. From EgA19), the Newtonian curvatur® is

:7'00: ai Toi - (B6)

d 5¥pT+p a algebraically related to the comoving gauge densities as
7| o | = ~MeT Ul (preprl 3o F, (BY)  TITEEY o9
T (k2—3K)P=47Ga%(prdi+ps). (B7)
where

This implies that the isocurvature condition in the comoving
(B2) gauge (=0 should be directly related to the isocurvature
condition in Newtonian gaugésee also discussion ifi]).
Let us rewrite EqQ.(A21) using the Newtonian continuity
equation(Al7) and the derivative of the Poisson equation

(pr+pr)F=cil8tpr+ps]—§(prmr+my).

Note that the adiabatic pressure teqzmi is proportional
to the density perturbations and is thus initially ineffective.
Furthermore, anisotropic terms are generically suppressed 6(?‘18) as(22]
k? compared with pressure terms outside the horizon. Thus 5
Eqg. (B1) implies that energy density perturbations in this (=D+=
gauge are built up initially by energy density flows. Com- 31+wy
bined with the stress sources from the Euler equation, this _ _ o .
implies that 81pr+ps will build a tail that scales as If anisotropic stress vanishes initially, the equation of state of
(kn)(8pT+p,) for kr<1, as expected. Thus our intuition the background is constant ada evolv_es as a power law
as to the nature of the causal constraint can be carried dff€n {=®. The two curvature fluctuations are comparable
rectly over to the comoving gauge, unlike the synchronou€*cept in the degenerate case whgred and
and Newtonian gauges where the total density fluctuation is

2 wi ) d a
not suppressed by {)“ with respect to the pressure fluctua r_ 5[3(1+WT)+1]- (BY)

a -
-0V
a

. (B8)

tion outside the horizon. ()
In comoving gauge, the causal constraint is imposed by

assuming that the curvatute=0 initially. The above argu- In the radiation-dominated exa;=1/3 and this represents a

ments also show that setting the comoving total density ténode that decays a®o7 2. Thus the condition/=0 is

zero initially is essentially equivalent though slightly more equivalent tod =0 except for a decaying mode which be-

restrictive as we shall show below. For calculational pur-comes negligible well before horizon crossing. In the New-

poses, it is convenient to represent this constraint in otheionian gauge one can thus take=0 or equivalently, its

gauges. Recall that the curvature is constructed from syn- source5$pT+ ps=0 as the initial condition.

chronous gauge perturbations as

2. Stress structure

a : . . :
ki=—kn—=[v3+vs/(pr+pr], (B3) Causality constrains the possible forms which the stress
a perturbations can take. We generically expect white noise
. 5 perturbations except in cases where conservation laws forbid
where as stated above we ignore factor&ék” throughout  their generation. In the latter case, stress fluctuations outside
this section. To shed more light on this condition, it is usefulthe horizon can fall off much steeper than white noise.
to recall how energy flux generates metric perturbations in | et us first examine the case of a scalar field since it is

this gaugesee Eq(A13)], relevant to cosmological defect models. Generically, the dy-
) , S namics of a scalar fields is governed by its Lagrangian
knp=4mwGa[(pr+pr)vitus]. (B4)  £(¢,¢). The stress-energy tensor of the scalar field is

Notice if we make the assignment T, =0,49,6—9,,L. (B10)
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Thus, if we decompose its stresses, only the isotropic stregsflation from isocurvature models. For this to occur by the
or “pressure,” action of seed sources, the isotropic and anisotropic stresses
must be exactly balanced so as to create no density pertur-
Tii bations from dynamical effects, yet still allow the anisotropic
Ps=— (B11) o ) ;
3 stress to generate gravitational potential perturbations. More
specifically, we requirers=3p¢/2 during the epoch when

depends on botlp and €¢, while the anisotropic stresses the acoustic oscillations form and for the scales on which
depend only orv . they are observable. Thed, 7s) basis employed in the main

The causality constraint can be expressed as a conditid§Xt is not welllsuited to discuss this case since th_e isotropic
on the autocorrelation function af: and anisotropic stresses are assumed to be independent
sources. Although that basis is natural for work on causal
. constraints, we must now search for an alternate representa-
(#(r,7)(0,7))=0 for r>r, (B12)  tion to explicitly build a counterexample. We show here that
properties of the model introduced by Tur@ are a direct
wherer is comoving distance. If we expant{(r, ) in terms consequence of enforeing these rather special requirements.
i ) o R . There are four functiongs,ps,vs, andg that define the
of harmonic functions, this constraint implies thatk,7)  gyress-energy tensor of the seed source and two constraint

0 . I H H ” H
«k” for kr<1: ¢ behaves as “white noise” outside the gquations from energy-momentum conservatisee Egs.
horizon. The causality constraint also limits the spatial be(A4) and(A11)]

havior of the derivatives of: Q;S(IZ, 7) must scale ak® or as
some positive power ok to avoid producing superhorizon

fluctuations and ¢(Kk, 7) =ik ¢(k, 7) must scale ak! due to d , .a, »
; ; ; — + = + =—
the constraint on the behavior éf ThusTyy and the isotro- dr2 PsT R8 (pst3ps) kaCvs,
pic stress for the scalar field scales as white noise to lowest (C1)

order, whereas anisotropic stress, which is related to the
square of the gradient by E€B10), scales ak? outside the d , a ) 5 2,
horizon. g vst2za vs=ka“ps— §ka s,

Just as energy-momentum conservation limits the form of
the density fluctuation, additional symmetries can constrain
the superhorizon scale behavior of the stress tensor. For ewhere we assumi/k?—0. This leaves two free functions
ample, in electromagnetism charge conservation restricts that may be specified. Singg and ¢ have different super-
spatial stresses produced by electromagnetism so that th@rizon scale behavior it is not possible to apply the desired
large scale behavior of the fields implies that all of theconstraintw,=3p¢/2 directly. One way to enforce it is to
stresses scale &S for smallk. Charge conservation implies require av—0 for k=>1. Momentum conservation also
that causal processes cannot create superhorizon correlatiafgplies thata®v scales ak for kr<1. The remaining con-
in charge or current density, nor can local monopoles bejition can be taken as a causal constrainpgt 3ps. Note
created. Summing random electrior magneti¢ dipoles  that this choice directly specifies both of the synchronous
leads to an electromagnetic field whose strength declines afuge gravitational sourcésee equations second and third
1/L~k on superhorizon scales. Since the electromagnetigf Egs.(A13)].

stress tensor, Causality is enforced in the manner of Sec. Il C by requir-
ing [6,9]
T.= ! 1(E2+B2) E.E,—B.B (B13)
i~ 202 Yij— EjEj—bibj|, ) _ 71/25|n(Ak7-)
A7Ga(ps+3ps)=Cy7 —(AkT) ,
is quadratic in the field strengths, this smklbehavior of _ . (C2)
E and B implies that both the isotropic and anisotropic 6 1|sin(Bikr) sin(Bykr)

2., — —1/2
stresses scale &2 for small k. In magnetohydrodynamics, 47C&Vs=Car
the isotropic component gives the magnetic pressure whereas

the anisotropic part gives thexB force in the Euler equa- For computational convenience, we relax the assumption of

tion. The Newtonian version of these calculations can bgre scaling inp,+3ps at the matter-radiation transition,
found in[34]. In this type of model, the specific signature in defining

the CMB from white noise pressure contributions of Sec.

Il B is replaced by the more general properties discussed in C g
Sec. Il C. C,=(rala)™", (C3

B2-B2kr| (Bikr)  (Bykr) |’

APPENDIX C: MIMICKING INFLATION which requiresC; to take the form,

As discussed in Sec. Il D, the ability of anisotropic stress 2 1

to reverse the sign of gravity opens up the possibility of a C,= - (C4)

loophole to the arguments behind the distinguishability of 3 1+47ala
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Thus C; and C, interpolate between constants in the

T T TTTT] T Ty T T T T 17171

radiation- and matter-dominated epochs. An examination of ° E Temperature Vi _
Eq. (C1) shows that fokr>1 the stress-energy components o3 / E
take the form 3 4 / =
2 E % ’ 3
a’ps=—3a’p,=—2a’w,=const, a’v,=0 (C5 . 1 £ Infl = E
9\ F -_l—-—”’ps=2ﬂs/ls E

) » o0 R F——HHH — -+
for all A,B,,B, as desired. The additional parameters merely & o ‘ 3
= [ Polarization ]

determine at what point the model takes on this special form

for the stress-energy tensor. Sineet 27, is the source of 10
gravitational potential fluctuations of the se®d, this im-

plies that at late times

-2

T T T

—_
o
T

] E

q)SZCOI']St, \I’SZO, (C6) L 1 ||||||1|O I TR | |1|$O A 1 ||||1||0|OO

and thus overdensities of the seed provide no gravitational ‘

attraction for the other matter components in the Universe. It F|G. 5. Isocurvature model that mimics inflation. By choosing
is important thatb,, and hencea’ps, are constant in order the stress-energy tensor of the seed to reverse the sign of gravity,
to remove metric “stretching” effects of the source as well the general arguments of the main text are evaded. Differences
as infall. Again, this illustrates the very special nature of Eq.remain at large angles, especially in the polarization spectrum.
(C5: not only must there exist a relation between theThese spectra were obtained by a full Boltzmann calculation of the
stresses but also some component3 of must beconstant  model of Eq.(C2) with A=1, B;=1, B,=0.5 with cosmological
while others must beera We comment on the stability of parameter€),=1, h=0.5, Qph?=0.0125.

this situation below.

By breaking the relation between overdensities more or modifying the scaling relation, the polarization spectrum

. ; . ) provides a means to distinguish the two, at least in principle.
strictly speaking, curvature fluctuationand potential fluc- Finally, let us briefly discuss the implications of con-

tuations, the door for mimicking inflation has been Openedstraints of the form, Eq(C2), to support the claim that it is
One still needs to actuallyeversethe sign of gravity such o special form o,f the st}ess-energy tensor in EZp),
that matter tends to fall out of overdense regions of the seedgiher than some more general causal property, that permits
This is readily achieved if an additional component such aghis counterexample. For example, in the synchronous gauge
cold dark matter(CDM) exists in the Universe. Causality it m|ght seem that fixing)s+ 3pS aloneis sufficient to de-
requires that this additional component has density fluctuatermine the behavior of CMB fluctuatiod$]. In synchro-
tions anticorrelated with the seed at horizon crossing. Sincous gauge, the metric perturbation is specified by two func-
density fluctuations in this component create gravitationations, h and » [see Eq.(A7)]. The important point to note
potential wells whereas those in the seed do not, the nethout the metric evolution equatiofs13) is thath, but not
result is that underdense regions of the seed correspond ), is only dependent on the evolution @f 3p-type sources.
gravitational potential wells. The fundamental criterion for Likewise, the conservation equatiof&8) and (A9) imply
the existence of a counterexample has now been(sest that before last scattering, the photon evolution is driven
Sec. llID). Furthermore, since these potential wells ariseonly by h. Thus the synchronous temperature perturbation at
from CDM fluctuations and both the infall and “stretching” |ast scattering is purely determined by the assumption for
gravitational effects of the source are absent, they are cory_+3p,. This doeshot, however, imply that the structure of
stant in the matter-dominated epoch which results in ahe observed anisotropy is so determined. To obtain the ob-
baryon-drag signal of alternating peaks that can closelgerved anisotropy, one must free-stream the radiation from
mimic the standard-CDM inflationary prediction. We show the last-scattering surface to the present. After last scattering,
an explicit calculation of such a model with=1, B;=1, the gravitational redshift fromy, which is dependent on the
andB,=0.5 in Fig. 5. The initial conditions are established form of vs, generates photon quadrupole fluctuatipsese,
in this synchronous gauge calculation to eliminate the come g.,[31] Eq. (63)]. This is, in fact, obvious from the New-
ponents of the stress-energy pseudotensor by detailed babnian treatment which mixess,vs, and m in the gravita-
ance of the seed and fluid componehtEhe acoustic spec- tional source for acoustic oscillations in the effective tem-
trum does indeed mimic the inflationary model ratherperature[see Eq.(17)]. Since gauge choice does not affect
closely. Differences do occur near and above the horizon ghysical observableghe two must predict the same anisot-
last scattering and it is interesting to note that they show Upopy for a given source model: they just choose to divide it
more strikingly as the absence of a first polarization peakinto fluid temperature and gravitational redshift in different
Thus, even if the model is altered to match the large anglgnanners. Thus, one cannot simply use the fluid temperature
temperature spectrum by including tensor and vector modeg synchronous gauge to make arguments about the corre-
sponding temperature in the Newtonian gauge without fully
specifying the model.

®Specifically, we take h=(12/7)J7, &,=38,=—(4/9)rh, Now, let us consider whether any choice, other than the
8,=6.=(3/4)8,, and all other components zero. Formally, the asymptotic form of Eq(C5), is possible for such seed con-
fluid velocities do not vanish, but we found that setting them to zerdributions. Let us rewrite the conservation equation, EQq.
initially gave the same answers as including the compensation. (C1), as
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1
L2
+3k

47wG az(ps+ 3ps)

+ = wGa’k?m,. (C7)

If we also requirea?(ps+ 3ps)—0 as in Eq.(C2), then this
equation is dynamically unstable and requiggp to di-

verge unlesp,=—3ps=—2m5. Thus the only model that
can be constructed out of thg+ 3ps form assumed in Eq.
(C2), or indeed any form which impliekl +3ps/p¢ <1 at

late times, satisfies EqC5). Such modelsnust have the
novel property of anisotropic stress fluctuations canceling the
gravitational attraction of matter to the seed overdensities. Of
course, this relation need only hold for scales upon which
acoustic peaks are visible in the CMB.

In summary, the counterexample of Tur¢®] recon-
structed here relies on very special properties of a specific
stress-energy tensor and not on general properties of causally
generated fluctuations.
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