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Causal seed models, such as cosmological defects, generically predict a distinctly different structure to the
CMB power spectrum than inflation, due to the behavior of the perturbations outside the horizon. We provide
a general analysis of their causal generation from isocurvature initial conditions by analyzing the role of stress
perturbations and conservation laws in the causal evolution. Causal stress perturbations tend to generate an
isocurvature pattern of peak heights in the CMB spectrum and shift the first compression, i.e., main peak, to
smaller angular scales than those in the inflationary case, unless the pressure and anisotropic stress fluctuations
balance in such a way as to reverse the sense of gravitational interactions while also maintaining constant
gravitational potentials. Aside from this case, these causal seed models can be cleanly distinguished from
inflation by CMB experiments currently underway.@S0556-2821~97!00606-1#

PACS number~s!: 98.70.Vc, 98.80.Cq, 98.80.Es

I. INTRODUCTION

It is now widely recognized that features in the power
spectrum of cosmic microwave background~CMB! anisotro-
pies can be a gold mine of information for cosmology. A
great deal of experimental effort is being expended in order
to map the CMB accurately over a wide range of angular
scales from the ground, balloons, and eventually space. In
addition to providing valuable information about the cosmo-
logical parameters, it is becoming clear that the CMB can
teach us much about how the fluctuations were generated in
the early Universe. For example, in@1#, it was claimed that
by studying the acoustic signature of the anisotropy spectrum
one can test the inflationary paradigm for fluctuation genera-
tion ~see @2# and references therein for other inflationary
tests!.

The key idea in differentiating inflation from other models
of structure formation, such as defects@3–5#, is the behavior
of the gravitational potential fluctuations outside the horizon.
In inflation, these potentials are approximately constant
while in a viable defect model, or indeed any isocurvature
model, they start out vanishingly small and are generated as
a mode enters the horizon. Coupled with the effects of pho-
ton backreaction, this distinction implies a different structure
in the anisotropy spectrum on small angular scales, allowing
for a test of the inflationary paradigm. Specifically, it was
claimed that, with some exotic exceptions, isocurvature mod-
els produced spectra whose peaks were phase shifted with
respect to the inflationary models@1#. In a very rough sense,
the inflationary driving force excites a cosine mode whereas
the isocurvature one excites a sine mode. Even if the phase
shift were closer top rather than top/2 rad@4#, causing the
peaks to line up with the inflationary model once again, the
nonmonotonic modulation of the peak heights by baryon

drag would allow the defect and inflationary spectra to be
distinguished. We refer the reader to@1# for more details.

In this paper, we specialize the discussion to causalscal-
ing models by applying Turok’s@6# mode expansion tech-
niques to the underlying stress perturbations. These fluctua-
tions are the fundamental source of gravitational instability
in any isocurvature model@7,8#. Detailed discussions of
stress perturbations, conservation laws, and gauge in relativ-
istic perturbation theory as well as their role in causality
arguments are given in Appendices A and B. We explicitly
enforce energy-momentum conservation and thus self-
consistently include the response and backreaction of the
photon-baryon fluid to the gravitational sources@1#. We
show that except for one special case, the resultant CMB
spectra are easily distinguished from their inflationary coun-
terparts. If the dynamical effects of isotropic and anisotropic
stress are exactly balanced, a novel situation may arise in
which the sense of gravity is reversed and hence also the
predictions for the acoustic features in the CMB. We discuss
in detail the model of Turok@9#, which utilizes this mecha-
nism, in Appendix C. Thus out of the general class of causal
models with scaling properties only this one case may be
confused with inflation from its acoustic signature.

II. CONSERVATION LAWS
AND STRESS PERTURBATIONS

Let us assume that the fluctuations which eventually form
large scale structure in the Universe are generated causally
from an initially homogeneous and isotropic Friedman-
Robertson-Walker universe. Causality, together with energy
and momentum conservation, places strong constraints on
the manner in which this can occur. Heuristically, energy
conservation implies that changes in the energy density at
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any location arise only by its ‘‘flow’’ across surfaces. In
general, these flows must obey momentum conservation and
hence only arise from stress variations in the matter, e.g., for
a perfect fluid from gradients in the pressure. It is instructive
to first consider the simple case of a nonrelativistic fluid. We
shall then show how these arguments manifest themselves in
relativistic perturbation theory with a more general stress-
energy tensor for the matter.

A. Nonrelativistic example

Here, we first examine the evolution of perturbations in a
simple nonrelativistic fluid, perhaps with viscosity, but ig-
noring gravitational effects. Energy-momentum conservation
for the perturbations is described by the linearized continuity
and Euler fluid equations

ḋ52] iv i ,

r v̇ i5] i p2] jP i j , ~1!

where summation is implicit,d5dr/r is the density fluctua-
tion, v i is the bulk velocity,p is the pressure, andP i j is the
viscous or anisotropic stress tensor. Density fluctuations can
only be generated by fluid flows. A Fourier decomposition of
the perturbation implies that compared with velocities, the
density must be suppressed by a factor ofk at long wave-
lengths. However, momentum conservation constrains the
form of such flows: they cannot be present initially and thus
must be generated by pressure gradients. The Fourier decom-
position shows that velocities should be suppressed with re-
spect to pressure fluctuations by a factor ofk at long wave-
lengths. Hence, density fluctuations generically scale ask2

times the pressure fluctuations in a fluid ork4 in the power
spectrum. This is the familiar result that causal flows of mat-
ter will establish ak4 density spectrum even when no density
perturbations exist initially@11–14#.

The Poisson equation implies that the resultant potential
fluctuations scale as the pressure itself. In a relativistic con-
text, potential fluctuations are equivalent to curvature fluc-
tuations in the spatial metric. The fact that the generator of
density and curvature fluctuations is causal requires that ini-
tially they must vanish. Hence, we refer to such models for
fluctuation generation asisocurvaturemodels.

The form of the pressure perturbation itself is not arbi-
trary. In fact, if the pressure perturbations are adiabatic,
dp5( ṗ/ ṙ)dr[cs

2dr, then energy-momentum conservation
requiresdr50 and fixesdp50, so that it cannot generate
density perturbations. Thus, it is only the nonadiabatic pres-
sure or ‘‘entropy’’ perturbation that can causally produce
density fluctuations@7#

pG5dp2cs
2dr. ~2!

In general, there are many possible sources of nonadiabatic
pressure, but causality constrains their behavior by requiring
that their fluctuations be uncorrelated outside the horizon.
One natural way to obtain them is to assume the fluid is
composed of a sum overi particle constituents. In this case,

pG5(
i

@piG i1~ci
22cs

2!dr i #, ~3!

so that if the sound speedci in the components does not
equal the total sound speed, i.e., the equations of state for the
components differ, then the initial conditiondr5( idr i50
implies that nonadiabatic pressure perturbationsmustbe gen-
erated. In the cosmological setting, concrete examples of this
mechanism include the baryon and axion isocurvature mod-
els as well as cosmological defect scenarios. This idea that
density fluctuations may be balanced to satisfy total energy-
momentum conservation, is conventionally referred to as
compensation. Compensation once established initially is
maintained by energy-momentum conservation. In principle,
there is no need to enforce it by hand as often done in the
literature@4#. Of course, in practice, energy-momentum con-
servation may be difficult to enforce in a numerical code
with nonlinear dynamics.

Now, let us consider the anisotropic stress. Internal fric-
tion or viscosity is generated when there is relative motion
between various parts of the fluid. The anisotropic stress ten-
sor thus scales as the spatial derivatives of the velocity field
and to lowest order, the first derivative~see, e.g.,@15#!. By
momentum conservation, we know that the velocity field
vanishes initially. Hence, anisotropic stress is only generated
after pressure gradients set up bulk motion. The scaling in
k space is that ofk times the velocity fluctuation ork2 times
the pressure fluctuations. The Euler equation thus implies
that at large scalesthe generation of bulk velocities and
hence density and potential fluctuations through anisotropic
stress is subdominant.

This simple example shows that the energy-momentum
conservation equations automatically build in causal behav-
ior. The problem of considering the effects of causality thus
reduces to the establishment of causal initial conditions and
the enforcement of energy-momentum conservation as the
Universe evolves under the stresses of the matter.

B. Relativistic generalization

Two issues complicate the simple picture of the last sec-
tion. The first is that we must possess a model for how the
stress perturbations evolve. We shall return to consider
causal constraints on their behavior in the next section. The
second is that in relativistic perturbation theory, the stress-
energy tensor of the matter iscovariantlyconserved. Hence,
the continuity and Euler relations of Eq.~1! become

T0n
;n50, Tin;n50. ~4!

Because metric terms enter these equations, the form that the
causal constraint takes depends on the metric representation,
i.e., the gauge. For example, the continuity equation is al-
tered by changes in the spatial metric. The simplest example
is that of the stretching of space due to the background ex-
pansion, which dilutes the number density of particles in
physical space. Likewise, perturbations to the spatial metric
cause similar effects to the density perturbation. To disen-
tangle metric effects on the generation of perturbations from
the truly causal evolution by flows, it is desirable to find a
representation of perturbations that obeys an ordinary con-
servation law. In this context, two quantities have been often
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discussed in the literature: the stress-energy pseudotensor
tmn @16,17# and the comoving curvature perturbationz
@7,18#.

To understand the problem, it is perhaps useful to recall
first the issue of gauge choice. In relativistic perturbation
theory, one has the freedom to choose which spatial surface,
and what coordinate system on this surface, to use in defin-
ing the perturbations. Gauge freedom can be both a compli-
cating annoyance and a very convenient tool, but poses no
real obstacle for applying relativistic perturbation theory.
Once the initial conditions are properly established, covari-
ant conservation of the stress-energy tensor properly and
causally evolves the fluctuations in any gauge. In particular,
all gauges will agree onphysical observables, e.g., CMB
anisotropies. Three gauge choices, for which we give de-
tailed properties in Appendix A, are in common use. Let us
briefly note here their benefits and drawbacks before special-
izing the discussion to the relativistic analogue of the initial
conditions described in the previous section.

Perhaps, the most popular gauge choice is that of synchro-
nous gauge, where the perturbations appear only in the
space-space part of the metric~see, e.g.,@19#!. In this gauge,
the spatial hypersurfaces on which one defines the perturba-
tions are orthogonal to constant-time hypersurfaces and
proper time corresponds to coordinate time. Thus this coor-
dinate system is natural for freely falling observers or cold
dark matter particles. The drawback of this gauge is that the
density perturbations are not easily related to the observable
anisotropy and the gravitational sector is nonintuitive. One
must be careful to compute observables as the individual
components of this gauge can be quite misleading.

The most familiar gauge from courses in relativity is the
conformal Newtonian gauge. In this gauge, the metric is di-
agonal: the space-space part gives the curvature perturbation,
and the time-time part the gravitational potential. This gauge
has been frequently used in analytic work on CMB anisotro-
pies because the representation of the gravitational~Sachs-
Wolfe! effects is simple and the density perturbations corre-
spond closely to the CMB anisotropy. The gauge can be
difficult to work with numerically, and extreme care must be
taken with the initial conditions.

For work involving causality, the obvious gauge choice is
the comoving gauge, also known as the total-matter gauge
and velocity-orthogonal isotropic gauge. This gauge is diffi-
cult to conceptualize, since it contains an off-diagonal time-
space perturbation. However, as we shall show in Appendix
B, the spurious effects of density dilution~from stretching of
the spatial metric! which complicate the analysis of the con-
servation laws are absent in this gauge. More specifically, the
curvature perturbationz in this gauge~superscriptT) is gen-
erated only by pressure~nonadiabatic if the curvature van-
ishes initially! and anisotropic stress fluctuationsp @see Eq.
~A24!, definitions in Sec. A 4, and@20# for anisotropic stress
terms in the relativistic fluid context#

ż52
ȧ

a

1

r1p S dpT2
2

3
p D , ~5!

wherea is the scale factor and temporal derivatives are here-
after with respect to conformal timet5*dt/a. In the case of

a more general stress-energy tensor, we can merely replace
dp andp by the isotropic and anisotropic scalar components
of Tj

i @see Eq.~A4!#.
The direct dependence of the curvature on stress pertur-

bations implies that the causality argument in this gauge is
the most similar to the nonrelativistic case discussed in the
previous section. For example, in the absence of these
stresses, e.g., in the inflationary example with adiabatic fluc-
tuations, the curvature is simply constant outside the horizon
to leading order@21,22#. Thus the proper relativistic gener-
alization in comoving gauge of the causal argument is that
the curvature on the comoving hypersurfacesz vanishes ini-
tially and is only generated by the causal motion of matter
~see@1,7# and Appendix B!.

From this condition, it is simple to reconstruct the causal
constraint in the two other gauges from gauge transforma-
tions ~see Sec. B 1!. The curvature on Newtonian hypersur-
faces is directly proportional to the density fluctuations on
the comoving hypersurfaces@see Eq.~B7!#. This suggests
that the isocurvature condition for the total-matter gauge is
the same as that of the Newtonian gauge. We show in Ap-
pendix B that this intuition is correct, up to an irrelevant
decaying mode@see Eq.~B9!#, if the equation of state is
constant. For the synchronous gauge, the condition that
z50 is identical to the assumption that the pseudoenergy
t00 and the pseudomomentum densityt0i defined in Eq.~B5!
vanish initially @16#. These are components of the stress-
energy pseudotensor commonly employed in the literature,
which likewise obeys an ordinary conservation condition

ṫ005] it0i , ~6!

as one would expect. Thus these three sets of initial condi-
tions: vanishing of the comoving curvaturez, Newtonian
curvatureF, and t00,t0i , are essentially equivalent. Once
these conditions are established, energy-momentum conser-
vation causally evolves the perturbations under the influence
of spatial stresses, generating properties such as ak4 scaling
in the power spectrum of the pseudoenergy and comoving
density perturbation. Let us now turn to the question of
causal stress evolution.

C. Scaling stress sources

Causality implies that no measurable quantity, e.g., the
fields and stress-energy components, can have superhorizon
scale correlations. This implies that their power spectrum
behaves as ‘‘white noise,’’k0 to leading order forkt!1,
unless other symmetries exist to eliminate even this contri-
bution~e.g., energy-momentum conservation and the comov-
ing density perturbation, see also Sec. B 2!. In Appendix B,
we show that for models with scalar fields, this constraint
limits the superhorizon scale behavior of all of the stresses:
the isotropic stressps behave ask0 and the anisotropic
stresses, which depend only on spatial derivatives of fields,
behaves ask2 for kt!1.

Turok @6# raises the interesting question of what general
statements for the CMB anisotropy spectrum can be made if
one combines causality with thescalingansatz. The scaling
ansatz is a powerful tool for analyzing the dynamics and
predictions of defect models@23–25#. It implies that defect
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networks have only one characteristic scale, set by the cur-
rent horizon size. Thus, for example, a string network a few
thousand years after the big bang has the same correlations
as a string network a nanosecond after the big bang. This
scaling ansatz has been useful for studying the dynamics of
the nonlinears model, a simple approximation to defect dy-
namics, that has scaling solutions in both the matter- and
radiation-dominated epochs@26,27#.

For our purposes, scaling may be defined more phenom-
enologically as the assumption that the power~per lnk) in the
metric fluctuations, i.e., in the Newtonian curvature fluctua-
tion k3uFu2, and potential fluctuationk3uCu2 are both the
same on each scale at horizon crossingkt51 and evolve in
a self-similar fashion

F5k23/2f ~kt!, C5k23/2g~kt!. ~7!

The Newtonian potential and curvature perturbations along
with their evolution are directly related to the gravitational
redshifts experienced by a photon@28#. Thus any model
which can explain the flatness of theu*1° large angle an-
isotropy spectrum~e.g.,@29#! must also obey the scaling an-
satz at least approximately. The inflationary scenario natu-
rally generates such fluctuations withf (kt)5g(kt)5 const.
We must now seek a causal mechanism for their generation
through stress perturbations. The ansatz cannot simply be
imposed on the metric fluctuations since this does not guar-
antee that a consistent solution of the conservation and
Einstein-Poisson equations exists.

Consider first the Newtonian curvatureF. From the argu-
ments of Secs. II A and II B, properly generalized to the
relativistic case by the gauge considerations of Appendices
A and B, a pressure fluctuation sourceps generates a comov-
ing gauge density perturbation~superscriptT) of order

rdT;~kt!2ps , ~8!

and hence from the Newtonian Poisson equation~B7!

k2F;4pGa2rdT

;4pG~a2ps!~kt!2. ~9!

For white noise pressure perturbations, the scaling ansatz,
Eq. ~7!, then requires

a2ps}t21/2 ~10!

for kt!1. Thus if we adopt this ansatz for the pressure
source, energy-momentum conservation will naturally gener-
ate scaling behavior inF. Note also that white noise pressure
perturbations imply white noise curvature fluctuations.

Turok @6# points out that to study possible behaviors
around and after horizon crossing, we can decompose the
source into basis functions that satisfy scaling and a strict
lack of correlations outside the horizon

^a2ps~k,t!a82ps~k,t8!&5t21/2t821/2

3(
A

(
A8

PAA8 f A~kt! f A8~kt8!,

~11!

for which in real space

^ f A~r ,t! f A8~0,t8!&50 for r.t1t8. ~12!

The symmetry inkt implies that a diagonal basis exists
wherePAA85dAA8PA @6#. However, for illustrative purposes,
we follow Turok in employing

f A[
sin~Akt!

~Akt!
~13!

as a convenient basis, where 0,A,1. We shall, therefore,
adopt in the next section pressure sources of the forma2ps
}t21/2f A which differs from Turok’s suggestion of
a2(rs13ps)}t21/2f A ~see also Appendix C!. Our assump-
tion follows from scaling and causal constraints on stresses
and allows the density evolution to be simply determined by
energy-momentum conservation from the source stresses.

Now, let us consider the Newtonian gravitational potential
@see Eq.~A18!#,

C52F28pGa2ps /k
2. ~14!

Thus the scaling ansatz forF holds equally well forC ex-
cept in the presence of anisotropic stress contributionsps .
To produce a flat CMB anisotropy spectrum, any such con-
tributions must also obey a scaling relation

a2ps}t21/2f B~kt!. ~15!

If the Universe is isotropic initially, anisotropic stress, just as
the comoving density perturbation, can only be generated by
causal motion of matter implying ak2 scaling forkt!1 ~see
Sec. II A for an example!. The same arguments employed in
deriving a causal form of the pressure source allow us to
write ~see@9# for an analogous derivation!

f B~kt!5
6

B2
22B1

2Fsin~B1kt!

~B1kt!
2
sin~B2kt!

~B2kt! G , ~16!

where 0,(B1 ,B2),1 and we have normalized the function
to behave as (kt)2 on small scales. Thus Eqs.~13! and~16!
represent the mode decompositions of a scaling isotropic and
anisotropic stress perturbation which strictly obey causal
constraints for a lack of correlations above the horizon.

III. IMPLICATIONS FOR THE CMB

A. Acoustic sources and signatures

Let us first review the formalism set up in@1# for calcu-
lating the acoustic oscillations in the CMB for a model with
external gravitational sources. To avoid obscuring the main
physical points, we have relegated the technical details to
Appendices A and B. The basic idea is that one solves the
equations for the fluid and metric evolution under the influ-
ence of sources which are assumed to interact with the fluids
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only through gravity. For CMB studies, it is convenient to
choose a Newtonian gauge condition to represent these ef-
fects, since the perturbations are more easily interpreted in
this gauge than in the synchronous or comoving gauge. The
Einstein equations tell us that the matter fields generate New-
tonian metric perturbations: specifically the curvatureF and
gravitational potentialC.

Under the methods of@1#, the gravitational contributions
of the photon-baryon fluid are separated from the other
sources,F5Fgb1Fs and C5Cgb1Cs . The photon-
baryon oscillator equation is then solved in the presence of
Fs andCs . If we assume that the source is composed of
seeds, i.e., a component whose stress-energy tensor makes a
small perturbation to the background, its contribution is@see
Eqs.~A4! and ~A11!#

~k223K !Fs54pGa2S rs13
ȧ

a
vs /kD ,

~17!
k2~Cs1Fs!528pGa2ps ,

where we have simply labeled the scalar terms of the stress-
energy tensor of the seeds in the fluid convention without
loss of generality1 @see Eq.~A4!#. Thus since defect seeds
merely represent a special case of an external source, they
may easily be treated under this formalism.

To summarize the results of@1#, it was established that
isocurvature initial conditions, in the sense of Sec. II B and
Appendix B, robustly predict an anticorrelation between the
source curvature and CMB temperature perturbations at ho-
rizon crossing during radiation domination. The underlying
reason is obvious from the causal arguments of Sec. II:
changes in the source energy density must be compensated
by an opposing change in the radiation density before bulk
motion has had a chance to redistribute the matter. Since
correlations and anticorrelations with the curvature represent
compressions and rarefactions in potential wells, respec-
tively, under normal conditions, the acoustic signature can
distinguish between these cases~see Sec. III D and Appendix
C for exceptions!. The specific signature is provided by the
drag baryons induce on the photon-baryon fluid which en-
hances compressions over rarefactions. Thus, the signature
of an inflationary model is given by the ratio of the acoustic
peak locations, which measures the phase of the acoustic
oscillation, and an enhancement of the odd peak heights. It
was found that though a distinctly different set of ‘‘sine’’
peak ratios was a common prediction of isocurvature models,
details of the source evolution could be tuned to reproduce
the inflationary case~see also@4#! so that the peak height test
is also necessary. We now consider whether additional as-
sumptions, such as scaling in a strictly causal stress model,
can produce further robust distinctions.

B. Scaling ansatz for pressure

Let us now specialize the analysis of@1# to the case where
the source pressure fluctuations are from seeds that obey the

scaling ansatz discussed in Sec. II C. Specifically, let us break
the pressure source into contributions that behave as

4pGa2ps5t21/2f A5t21/2
sin~Akt!

~Akt!
, ~18!

with 0,A,1. This choice is similar to and inspired by the
ansatz of@6# but replaces the assumption fora2(rs13ps)
with the analogous one fora2ps since stress fluctuations are
the fundamental source of causally seeded perturbations.
This allows energy-momentum conservation to fix the form
of density perturbations from the stress fluctuations and per-
mits a wider class of possible seed sources~see Appendix C!.
For simplicity, we here assume that the seed anisotropic
stressps50 and postpone discussion of its effect until the
next section.

We show the evolution of the system under the source
equation~18! in Fig. 1~a!. We have chosenA51 since this is
the most extreme of the causal modes in that it produces
features in the source as soon as causally possible. The initial

1For reference, note that the relationship between@3,6# and
our notation is Q005a2rs ,Q i i53a2ps ,QS52a2ps , and
P52a2kvs .

FIG. 1. ~a! Pressure scaling source. The effective temperature
Q01C, total curvature perturbationF, and the contribution from
the sourceFs , produced byps assuming Eq.~18! with A51. No-
tice that the temperature fluctuations are similar to the canonical
prediction of a baryon-isocurvature model~dotted line!, not infla-
tion. ~b! Anisotropic stress scaling source. Evolution underps as-
suming Eq.~19! with B151, B250.5. Photon domination is as-
sumed here and in Figs. 3 and 4.
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conditions require a vanishing comoving curvaturez50 or,
equivalently, vanishing stress-energy pseudotensor compo-
nentst00505t0i . As long as the initial conditions are set
early enough so that the pressure has not generated signifi-
cant perturbations, this may be satisfied by setting the indi-
vidual energy density and momentum density perturbations
of the fluids and sources to zero. Note that in the more gen-
eral context in which the source fluctuations are directly re-
lated to density fluctuations, one must be more careful in
setting up consistent, compensated initial conditions.

We make the important assumption here that the Universe
is radiation dominated as the fluctuation enters the horizon
which we will discuss further below~see also@1#!. Notice
that this model follows the predictions of a canonical isocur-
vature modelFs}(kt)21 ~e.g., a baryon or axion isocurva-
ture model@1,10#!, quite closely. Here, the effective tempera-
ture perturbationQ01C is composed of the temperature
fluctuation on Newtonian surfacesQ05dg

N/4 @see Eq.
~A16!#, and the Newtonian potentialC which accounts for
the gravitational redshift or Sachs-Wolfe effect.

Note that the sign change in the pressure atkt5p has no
direct relevance to the question of acoustic phase. The action
of a source near or outside the horizon generically drives a
sine mode acoustic wave due to feedback from the self-
gravity of the photon-baryon fluid. The situation for which
these arguments fail is if feedback is unimportant, i.e., if the
universe isfully matter dominated when the mode entered
the horizon. These issues are treated in a much greater detail
in @1#.

Thus we come to the conclusion that this whole class of
pressure-scaling models produces an acoustic signature that
bears the canonical isocurvature stamp: a sine mode oscilla-
tion with a rarefaction-compression-rarefaction pattern that
leads to even peak enhancement from the baryons. Both
properties are sufficiently distinctive so as not to be confused
with inflation ~see Fig. 2!, even given large variations in the
form of the source~see Fig. 3!. This makes the task of dis-
tinguishing them simpler than in the general case@1# and
renders them testable by the current generation of CMB ex-
periments.

C. Scaling ansatz for anisotropic stress

Now, let us consider the effect of anisotropic stress
sources that obey the scaling ansatz. These sources are rep-
resented by the basis of Eq.~16!:

4pGa2ps5t21/2f B5t21/2
6

B2
22B1

2Fsin~B1kt!

~B1kt!

2
sin~B2kt!

~B2kt! G . ~19!

Anisotropic stress affects the CMB in two ways. It contrib-
utes directly to the gravitational potentialC through Eq.~14!
and hence the Sachs-Wolfe effect. It also acts as a force in
the momentum conservation equation@e.g., Eq. ~1!# that
moves matter around. Thus it generates true density and cur-
vature fluctuations inside the horizon in the same way as the
pressure perturbations.

The form of Eq.~19! implies that it is a source of white
noise fluctuations inC above the horizon. Because of the
(kt)2 factor, we expect that the formation of acoustic oscil-

lations by anisotropic stresses is delayed compared with for-
mation by pressure fluctuations. This shifts the acoustic fea-
tures toward smaller scales and further away from the
predictions of inflation. On the other hand, their relatively
late formation implies that the feedback mechanism from the
compensating energy density of the photons at Jeans length
crossing is less important, leading to a wider range of pos-
sible effects in the CMB anisotropy spectrum.

Let us consider a few specific examples. In Fig. 1~b!, we
show the time evolution of fluctuations in the photon-
dominated era from an anisotropic stress of the form in Eq.
~19! with B151 and B250.5. As the anisotropic stress
source turns on atkt;B1

21, it acts as a direct source of
potential fluctuationsC. It then begins to move matter
around. This produces significant density and accompanying
curvature perturbations which thereafter dominate the struc-
ture of the gravitational potentials, i.e.,C;2F. The result
is an effective temperatureQ01C that first followsC into a
rarefaction stage. The fluid then turns around to fall into the
growing potential wells of the source. Thus, the qualitative
effect of anisotropic stress on the CMB is the same as iso-
tropic stress: the feature at Jeans crossing corresponds to a
rarefaction in the effective temperature and is suppressed in
comparison to the main compressional feature due to infall
into the potential well of the source. This expectation is
borne out by the full Boltzmann calculation@30# in Fig. 2.
Because the dynamical effects of anisotropic stress are
highly suppressed outside the horizon, the main features of
the peaks are shifted toward smaller scales than those for the
pressure model.

Now, let us consider how these results change with the
form of the anisotropic stress source. The parametersB1 and
B2 that define the anisotropic stressps in Eq. ~19! control
the maximum ofps and the rapidity of its subsequent de-
cline, respectively. Here, we have assumed thatB1.B2. In
Fig. 4, we show how the time evolution of the effective

FIG. 2. The anisotropy power spectrum,l (l 11)Cl , vs mul-
tipole numberl ;u21. The solid line is the inflationary prediction.
The dashed line assumes a pressure source with the form of Eq.
~18! for A51. The dotted line assumes an anisotropic source with
the form of Eq.~19! for B151 andB250.5. All curves assume the
same background cosmologyV051, h50.5, Vbh

250.0125. No-
tice that the predictions are out of phase and that even rather than
odd peaks are prominent in the noninflationary models.
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temperature varies withB1 andB2. Notice that altering the
rapidity of the falloff throughB2 has little effect on the
acoustic structure whereas decreasingB1 shifts the main fea-
tures toward later times and hence smaller scales. Thus the
anisotropic stress models which have features closest to
those of inflation setB151.

Thus, we can conclude that anisotropic stress fluctuations
tend to shift the main features toward smaller scales. Such as
the result for pressure fluctuations, this implies that any fea-
ture that is near the first peak in an inflationary model must
be subdominant, leading to a low-high-low prediction for the
heights of the features~see Fig. 2!. As such, these models are
easily distinguished from inflation.

D. Implicit assumptions

Since the effects of causal pressure and anisotropic stress
fluctuations are both individually distinguishable from those
of inflation, one expects that the combination of the two
would result in a spectrum equally distinguishable unless
there is interference between the modes. To better quantify
our intuition and identify possible loopholes, it is instructive
to recall the physical basis for the differences in the CMB
spectra.

The crucial distinction between all of these isocurvature
models and the inflation is the behavior of the fluctuations
during horizon crossing. In an isocurvature model, any
source density fluctuations at this epoch must be compen-
sated to keep the total density fluctuation small. If the pho-
tons take part in this compensation, as they must if they are
the dominant dynamical component at the epoch of horizon
crossing, this implies an anticorrelation between the source
and photon density fluctuations. Inflationary models generate
adiabatic fluctuations so that the density fluctuations of all
the species are correlated at horizon crossing. This leads to
observable consequences with theadditionalassumption that
overdense regions of the source represent gravitational po-
tential wells. The Compton drag of the baryons on the pho-
tons attempts to compress the photon-baryon fluid in the po-
tential well. In inflationary models, the photons inside the
well are already overdense such that this effect enhances the
first peak and subsequently all odd~compressional! peaks. In
isocurvature models, the opposite occurs leading to a reduc-
tion of the first~rarefaction! peak and an enhancement of the
second and all even peaks.

There are two basic assumptions to this chain of reason-
ing. The first is that the photons must play a role in the
causal compensation. It is possible to construct a model in
which the Universe is fully matter dominated at horizon
crossing for all observable peaks where this assumption is
invalid @1#. However, we have shown in Sec. III B that this
does not occur in a model with the standard thermal history
and reasonable cosmological parameters. The second as-
sumption is that overdense regions of the source, here taken
to mean all contributions external to the photon-baryon sys-
tem, represent potential wells. This is generally a reasonable
assumption even in the isocurvature case since the ability of
the photon density perturbation to counteract the source is
diminished as the fluctuation passes the Jeans length. Thus
source overdensities represent total overdensities. The Pois-
son equation implies that overdensities represent positive
curvature fluctuations and hence potential wellsif the aniso-
tropic stress is negligible in comparison to the density fluc-
tuation @see Eq.~14!#.

The latter assumption opens up the possibility that aniso-
tropic stress provides a loophole to these arguments. More
specifically, if ps.2rs/2, thenunderdense regions of the
source represent potential wells and the above expectation
for the relative heights of the peaks is inverted. However,
this does not occur if we just simply take a model with large
anisotropic stressps ~see Sec. III C!. The reason is that a
large anisotropic stress moves matter around to create a cor-
respondingly large density perturbation. The energy-
momentum conservation laws for a seed source@from Eq.
~A11! for wavelengths well below the background curvature
scale#

ṙs13
ȧ

a
~rs1ps!52kvs ,

~20!

v̇s14
ȧ

a
vs5kps2

2

3
kps ,

imply that for kt@1,ps is typically a strong source of den-
sity fluctuations.

FIG. 3. We show~a! the source curvatureFs and~b! the effec-
tive temperatureQ01C for the family of pressure sources of Eq.
~18!. In all cases, the effective temperature approximately follows
the canonical isocurvature evolution from Fig. 1, which is very
different from the inflationary case~solid line in panel b!.
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Can we ever construct a model in whichps*2rs/2? An
exception to the above arguments occurs ifps52ps/3. The
stresses are then so balanced as to maintain a large aniso-
tropic stress without generating a correspondingly large den-
sity perturbation~see discussion of Fig. 1!. It is not sufficient
to have merelyps5O(ps) to achieve this balance.

For this one exceptional case, it is possible here to have
gravitational potentials generated by anisotropic stress in-
stead of by density perturbations. If such a model addition-
ally has the peaks in the inflationary positionsand yields
approximately constant gravitational potential perturbations,
it is possible to evade the arguments of Hu and White@1#.
Even though the individual effects of pressure and aniso-
tropic stress fluctuations lead to predictions in accord with
the canonical isocurvature model, the two may cancel in this
way to evade such expectations. Following Turok@9#, we
explicitly construct such an example in Appendix C. Such
models rely on a special relation between the pressure, an-
isotropic stress, and density fluctuations, and are thus un-
stable to perturbations in the equation of state@see discussion
surrounding Eq.~C7!#.

In summary, the two assumptions underlying the case for
the distinguishability of inflation from isocurvature models
from the acoustic signature are that the photons are dynami-
cally significant at Jeans crossing and that potential wells
represent overdense regions in space. These criteria are sat-
isfied by a wide range of models including all those currently
under consideration involving defects which have observable
acoustic signatures.

IV. DISCUSSION

All of the causal models for the formation of large scale
structure currently being considered can be divided into two
classes:~a! inflationary models, which have curvature fluc-
tuations on superhorizon scales, and~b! scaling seeded mod-
els, such as strings and textures. In the latter case, there are
no initial curvature fluctuations and stress fluctuations only
generate them through the causal redistribution of matter un-
der energy-momentum conservation@7,8#.

We have presented a thorough discussion of this process
that can be used to study the general properties of any model
that proposes a causal mechanism for large scale structure
formation without postulating an inflationary epoch. We ap-
ply these techniques to study a representative class of scaling
models inspired by Turok@6#. For models dominated by
white noise isotropic stress fluctuations, the acoustic signa-
ture in the CMB angular power spectrum follows the canoni-
cal signature of a baryon-isocurvature model. Physically, this
robust signature arises from the ability of photon backreac-
tion to drive the acoustic oscillation@1#, a feature that must
be included in a self-consistent calculation. Models domi-
nated by anisotropic stress fluctuations tend to be even more
extreme, with main features pushed toward smaller scales.
Hence, both classes are easily distinguished from inflation by
experiments currently underway~see Fig. 2!.

A realistic model, such as strings or textures, may contain
additional complications beyond the simple toy models ex-
plored in this paper, such as tensor and vector contributions
as well as reionization. It can also require nonlinear evolu-
tion of the sources that couple the normal modes discussed

here and leave non-Gaussian signatures in the CMB and/or
cause decoherence in the oscillation@4#. However, such com-
plications are likely to make alternate models less, rather
than more, like inflation.

The analysis in this paper also reinforces the conclusions
of @1#: in an inflationary model, even peaks are produced by
rarefaction waves and odd peaks are produced by compres-
sion waves. On the other hand, in isocurvature models, even
peaks are produced by compression waves and odd peaks are
produced by rarefaction waves. As long as the energy density
in radiation at decoupling is significant and gravitational po-
tential wells represent overdense regions, such a model can-
not reproduce the inflationary CMB signature without the
equivalent of putting in the features by hand.
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FIG. 4. Anisotropic stress scaling source time evolution:~a!
B2 controls the decline ofps from its maximum and has little effect
on the acoustic features;~b! B1 controls the location of the main
peak inps and hence the location of the main acoustic feature.
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APPENDIX A: RELATIVISTIC PERTURBATION THEORY
WITH SEEDS

We review the formalism of relativistic perturbation
theory in this appendix and derive the results used in the
main text. We start with a discussion of gauge transforma-
tions in general relativistic perturbation theory and then de-
rive the metric evolution and fluid equations in three com-
monly employed gauges~see also@16,32#!. Each of these
gauges has advantages for particular problems we consider in
the text, and we present all of the details necessary to trans-
form from one to the other.

1. Gauge transformations

The most general form of a metric perturbed by scalar
fluctuations is@7,8#

g0052a2@112AGQ#,

g0 j52a2BGQj ,

gi j5a2@g i j12HL
GQg i j12HT

GQi j #,

~A1!

where Q is the kth eigenfunction of the Laplacian, i.e.,
exp(ik•x) in a flat space, Qi[2k21Qu i , and
Qi j5k22Qu i j1g i j Q/3 whereu denotes a covariant derivative
with respect to the background three-metricg i j of constant
curvatureK52H0

2(12V02VL). The superscriptG is em-
ployed to remind the reader that the actual values vary from
gauge to gauge.

A gauge transformation is a change in the correspondence
between the perturbation and the background represented by
the coordinate shifts

t̃5t1TQ,
~A2!

x̃ i5xi1LQi ,

where the conformal timet is defined throughdt5dt/a(t)
with a as the scale factor.T corresponds to a choice in time
slicing andL a choice of spatial coordinates. Under the con-
dition that metric distances be invariant, they transform the
metric as@8#

AG̃5AG2Ṫ2
ȧ

a
T,

BG̃5BG1L̇1kT,
~A3!

HL
G̃5HL

G2
k

3
L2

ȧ

a
T,

HT
G̃5HT

G1kL.

The normal mode decomposition of the scalar part of the
stress-energy tensor for a fluid (f ) plus seed source (s)
yields

T0
052r f2~r fd f

G1rs!Q,

Ti
05@~r f1pf !~v f

G2BG!1vs#Qi ,
~A4!

T0
i 52@~r f1pf !v f

G1vs#Qi ,

Tj
i5@pf1~dpf

G1ps!Q#d j
i1~pfp f

G1ps!Qj
i .

It is occasionally convenient to break the fluid up into its
various particle components, e.g.,r fd f→( fr fd f5rTdT ,
and we shall preserve generality by writing equations appli-
cable to either the single- or multi-fluid case. The gauge
transformations act on the fluid quantities as@8#

v f
G̃5v f

G1L̇,

d f
G̃5d f

G13~11wf !
ȧ

a
T,

~A5!

dpf
G̃5dpf

G13cf
2r f~11wf !

ȧ

a
T,

p f
G̃5p f

G ,

whereas for the seed source they only generate second order
corrections. Here,wf5pf /r f defines the equation of state,
cf
25 ṗf / ṙ f is the sound speed in the fluid, and we have used

ṙ f /r f523(11wf)(ȧ/a). Notice that the anisotropic stress
p f has a truly gauge-invariant meaning, and we shall here-
after drop the superscriptG from it.

2. Synchronous gauge

Let us derive the energy-momentum conservation and
Einstein-Poisson equations in the familiar synchronous
gauge and use the gauge transformation above to relate them
to alternate representations. The synchronous gauge is de-
fined byAS5BS50 implying that proper time corresponds
with coordinate time and that constant spatial coordinates are
orthogonal to constant-time hypersurfaces, a natural coordi-
nate system for freely falling observers. From any other co-
ordinate system, it is reached by the transformation

T5a21E dt aAG1c1a
21,

~A6!

L52E dt~BG1kTG!1c2 ,

where the presence of the integration constantsc1 and c2
reflects the fact that the synchronous condition does not
uniquely fix the coordinates. In the past, this fact had led to
much confusion since coordinate ambiguity inT appears as a
fictitious gauge mode in the density evolution. It is conven-
tional to define

h56HL
S ,

~A7!

h52HL
S2

1

3
HT
S
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as the fundamental metric variables. Covariant conservation
of the stress-energy contributions of the fluid yields the con-
tinuity equation for the backgroundṙ f523(r f1pf)(ȧ/a)
and for the perturbations

d

dt S d f
S

11wf
D 52~kv f

S1ḣ/2!23
ȧ

a

wf

11wf
G f , ~A8!

as well as the Euler equation

v̇ f
S1

ȧ

a
~123cf

2!v f
S5

cf
2

11wf
kd f

S1
wf

11wf
kG f

2
2

3

wf

11wf
~123K/k2!kp f .

~A9!

Here, the nonadiabatic pressure perturbation or ‘‘entropy’’
fluctuation is defined as

pfG f5dpf
G2cf

2dr f
G , ~A10!

and is manifestly gauge invariant@Eq. ~A5!#. Likewise, con-
servation of the seed source gives the equations

ṙs13
ȧ

a
~rs1ps!52kvs ,

~A11!

v̇s14
ȧ

a
vs5kps2

2

3
k~123K/k2!ps ,

which are also manifestly gauge invariant.
In this gauge, the Einstein equations are straightforward

to derive. The evolution of the scale factor is determined by

S ȧ
a
D 21K5

8pG

3
a2rT , ~A12!

and the metric perturbations are given in terms of the matter
sources as2

~k223K !h2
ȧ

a

ḣ

2
524pGa2@d T

SrT1rs#,

kḣ2
K

2k
~ ḣ16ḣ !54pGa2@~rT1pT!vT

S1vs#,

~A13!

ḧ1
ȧ

a
ḣ528pGa2@d T

SrT13dpT
S1rs13ps#,

ḧ16ḧ12
ȧ

a
~ ḣ16ḣ !22k2h5216pGa2@pTpT1ps#.

Notice that the third equation implies thath, unlike h, is
dependent only onr13p.

3. Newtonian gauge

The Newtonian gauge is defined by the sheer-free condi-
tion BN5HT

N50, and it is conventional to call the remaining
metric variables the Newtonian potentialC[AN and curva-
ture fluctuationF[HL

N . From an arbitrary gauge, it is
reached by the transformation

T52BG/k1ḢT
G/k2 @52 1

2 ~ ḣ16ḣ !/k2#,

~A14!
L52HT

G/k @5 1
2 ~h16h!/k#,

where we have also specialized it to synchronous gauge in
the square brackets. Thus the Newtonian metric perturba-
tions can be written in terms of their synchronous counter-
parts as

C5
1

2
F ḧ16ḧ1

ȧ

a
~ ḣ16ḣ !G Y k2,

~A15!

F52h1
1

2

ȧ

a
~ ḣ16ḣ !/k2,

and likewise for the fluid variables

d f
N5d f

S2 3
2 ~11wf !

ȧ

a
~ ḣ16ḣ !/k2,

dpf
N5dpf

S2 3
2 cf

2r f~11wf !
ȧ

a
~ ḣ16ḣ !/k2, ~A16!

v f
N5v f

S1 1
2 ~ ḣ16ḣ !/k.

It is a straightforward exercise in algebra to transform the
synchronous gauge equations. The conservation equations
become

d

dt S d f
N

11wf
D 52~kv f

N13Ḟ!23
ȧ

a

wf

11wf
G f ,

v̇ f
N1

ȧ

a
~123cf

2!v f
N5

cf
2

11wf
kd f1

wf

11wf
kG f

2
2

3

wf

11wf
~123K/k2!kp f1kC,

~A17!

and Einstein-Poisson equations become

~k223K !F54pGa2H rTd T
N1rs

13
ȧ

a
@~rT1pT!vT

N1vs#/kJ ,
~A18!

k2~C1F!528pGa2~pTpT1ps!.

2In @33# there is a typographical error in Eq.~A16! and the first of
Eqs. ~A45!. These equations are missing a minus sign. No results
are changed.
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It is also useful to note that the gauge transformation prop-
erties imply that from an arbitrary gauge the Newtonian po-
tential can be constructed as

~k223K !F54pGa2S dT
GrT13

ȧ

a
@~rT1pT!

3~vT
G2BG!1vs#/kD , ~A19!

which is commonly called the gauge-invariant Poisson equa-
tion.

4. Comoving gauge

The comoving gauge~superscriptT) is defined by the
vanishing of the energy density fluxTi

050 and the auxiliary
conditionHT

T50. It is also sometimes called the velocity-
orthogonal isotropic gauge, the total-matter gauge, and the
rest-frame gauge. For convenience, we denotej[AT and
z[HL

T . From an arbitrary gauge, it is reached by

T5@vT
G1vs /~rT1pT!2BG#/k @5$vT

S1vs /~rT1pT!%/k#,

L52HT
G/k @5 1

2 ~h16h!/k#, ~A20!

where we have again also specialized to synchronous gauge
and used the notation (rT1pT)vT5( f(r f1pf)v f to pre-
serve generality in the multifluid case. The gauge transfor-
mations imply that

z5F2
ȧ

a
@vT

N1vs /~rT1pT!#/k

52h2
ȧ

a
@vT

S1vs /~rT1pT!#/k,

~A21!

and the comoving density is defined as

d f
T5d f

S13~11wf !
ȧ

a
@vT

S1vs /~rT1pT!#/k. ~A22!

Note that the right-hand side~RHS! is the same if we employ
the Newtonian gauge density and velocity perturbation.
Since the velocity is the same as in the Newtonian gauge,
v f
T5v f

N , we obtain for the conservation equations

d

dt S d f
T

11wf
D 52~kv f

T13ż !23
ȧ

a

wf

11wf
G f , ~A23!

v̇ f
T1

ȧ

a
~123cf

2!v f
T

5
cf
2

11wf
kd f

T23
ȧ

a
cT
2@vT

T1vs /~rT1pT!#

1
wf

11wf
kG f2

2

3

wf

11wf
~123K/k2!kp f

2
k

k223K
4pGa2~rTdT

T1rs!

28pGa2~pTpT1ps!/k.

The evolution of the metric perturbations can be obtained
from the relations~A13! and~A9! for the synchronous Pois-
son and Euler equations

j52S/~rT1pT!,
~A24!

ż5
ȧ

a
j2K@vT

T1vs
T/~rT1pT!#/k,

where the fundamental source to metric fluctuations is given
by the stress perturbations

S5cT
2rTdT

T1pTGT1ps2
2
3 ~123K/k2!~pTpT1ps!

5dpT
T1ps2

2
3 ~123K/k2!~pTpT1ps!.

~A25!

The fact that stress perturbations act as the direct source of
comoving curvature is important for the causal arguments we
make in Sec. II.

APPENDIX B: CAUSALITY AND CONSERVATION

Once the stress fluctuations are known, the causal evolu-
tion of matter and metric fluctuations is determined by
energy-momentum conservation and the Einstein-Poisson
equations, respectively. Thus to impose causality on a model,
one must merely ensure that the initial conditions are causal
and enforce causal stress perturbation behavior. In this ap-
pendix, we shall consider these two issues in detail.

1. Initial conditions

If the initial conditions could be set up when the metric of
the Universe was precisely Friedman-Robertson-Walker,
they are trivial: zero perturbations in all quantities initially,
independent of complications such as gauge. Realistically,
however, we can only start the calculation some finite time
afterwards when stress fluctuations and consequently, some
metric, energy density, and momentum density fluctuations
have already formed. As is evident from Appendix A, cova-
riant energy-momentum conservation, and hence the causal
constraint on these quantities, takes on different forms in
different gauges. It is useful to pick a representation that
corresponds to our naive intuition for causal evolution dis-
cussed in Sec. II: that these three quantities should be negli-
gibly small near the initial epoch well outside the horizon
~see also Appendix of@1#!.

We can summarize this intuition as follows: pressure gra-
dients can cause a change in the momentum density of the
matter and hence a bulk velocity of order (kt)dp/(p1r).
The divergence of the bulk velocity then kinematically forms
a density perturbation of order (kt)2dp/(p1r), correspond-
ing to a curvature fluctuation of orderdp/(p1r) from the
Poisson equation. The fact that this process requires the
movement of matter sets the causal constraint that the energy
density fluctuation, momentum density, and curvature fluc-
tuation all must vanish initially. However, this intuition only
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holds if metric terms in the energy-momentum conservation
equations leave the basic form of the conservation equations
unaltered.

The comoving gauge provides the desired representation.
If we assume that the wavelength of the fluctuation is much
less than the curvature scale of the background, as we shall
throughout this section, Eq.~A24! implies that the curvature
perturbationz in this gauge only changes under the influence
of stress sources, exactly as we would naively expect. In the
absence of stress sourcesż50, the continuity equation of
Eq. ~A23! reduces to an ordinary conservation law for num-
ber density fluctuations in a fluid: (dnf

T/nf)}d f
T/(11wf)

and d(dnf
T/nf)/dt52kv f

T . Furthermore, in this gauge we
can rewrite Eq.~A23! purely in terms of the stresses@using
Eq. ~A24!#, making manifest the intuition developed earlier
regarding stresses as the generators of velocities and thus
density perturbations. The continuity equation for the com-
bined fluid and source components becomes

d

dt S dT
TrT1rs
rT1pT

D 52k@vT
T1vs /~rT1pT!#13

ȧ

a
F, ~B1!

where

~rT1pT!F5cT
2@dT

TrT1rs#2 2
3 ~pTpT1ps!. ~B2!

Note that the adiabatic pressure term}cT
2 is proportional

to the density perturbations and is thus initially ineffective.
Furthermore, anisotropic terms are generically suppressed by
k2 compared with pressure terms outside the horizon. Thus
Eq. ~B1! implies that energy density perturbations in this
gauge are built up initially by energy density flows. Com-
bined with the stress sources from the Euler equation, this
implies that dT

TrT1rs will build a tail that scales as
(kt)2(dpT

T1ps) for kt!1, as expected. Thus our intuition
as to the nature of the causal constraint can be carried di-
rectly over to the comoving gauge, unlike the synchronous
and Newtonian gauges where the total density fluctuation is
not suppressed by (kt)2 with respect to the pressure fluctua-
tion outside the horizon.

In comoving gauge, the causal constraint is imposed by
assuming that the curvaturez50 initially. The above argu-
ments also show that setting the comoving total density to
zero initially is essentially equivalent though slightly more
restrictive as we shall show below. For calculational pur-
poses, it is convenient to represent this constraint in other
gauges. Recall that thez curvature is constructed from syn-
chronous gauge perturbations as

kz52kh2
ȧ

a
@vT

S1vs /~rT1pT!#, ~B3!

where as stated above we ignore factors ofK/k2 throughout
this section. To shed more light on this condition, it is useful
to recall how energy flux generates metric perturbations in
this gauge@see Eq.~A13!#,

kḣ54pGa2@~rT1pT!vT
S1vs#. ~B4!

Notice if we make the assignment

t00[2~k2h/4pG!Q5Fd T
Sa2rT1a2rs2

1

8pG

ȧ

a
ḣGQ,

~B5!
t0i[a2@~rT1pT!vT

S1vs#~ i k̂ i !Q,

Eq. ~B4! takes on the form of a conservation equation

ṫ005] it0i . ~B6!

In the literature this quantity is called the stress-energy
pseudotensor@16# and is ordinarily, rather than covariantly,
conserved. It is easy to see from Eq.~B3! that the vanishing
of thez curvature initially is equivalent to the statement that
t0050 andt0i50, i.e., that the pseudoenergy perturbation
and the pseudomomentum density vanish initially as one
would expect for conserved quantities. Thus the two sets of
initial conditions are entirely equivalent.

Finally, let us consider the initial conditions for the New-
tonian gauge. From Eq.~A19!, the Newtonian curvatureF is
algebraically related to the comoving gauge densities as

~k223K !F54pGa2~rTdT
T1rs!. ~B7!

This implies that the isocurvature condition in the comoving
gaugez50 should be directly related to the isocurvature
condition in Newtonian gauge~see also discussion in@1#!.
Let us rewrite Eq.~A21! using the Newtonian continuity
equation~A17! and the derivative of the Poisson equation
~A18! as @22#

z5F1
2

3

1

11wT
S a
ȧ

Ḟ2CD. ~B8!

If anisotropic stress vanishes initially, the equation of state of
the background is constant andF evolves as a power law
then z}F. The two curvature fluctuations are comparable
except in the degenerate case wherez50 and

Ḟ

F
52

ȧ

a
@ 3
2 ~11wT!11#. ~B9!

In the radiation-dominated erawT51/3 and this represents a
mode that decays asF}t23. Thus the conditionz50 is
equivalent toF50 except for a decaying mode which be-
comes negligible well before horizon crossing. In the New-
tonian gauge one can thus takeF50 or equivalently, its
sourcedT

TrT1rs50 as the initial condition.

2. Stress structure

Causality constrains the possible forms which the stress
perturbations can take. We generically expect white noise
perturbations except in cases where conservation laws forbid
their generation. In the latter case, stress fluctuations outside
the horizon can fall off much steeper than white noise.

Let us first examine the case of a scalar field since it is
relevant to cosmological defect models. Generically, the dy-
namics of a scalar fieldf is governed by its Lagrangian
L(f,ḟ). The stress-energy tensor of the scalar field is

Tmn5]mf]nf2gmnL. ~B10!
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Thus, if we decompose its stresses, only the isotropic stress
or ‘‘pressure,’’

ps5
Tii
3
, ~B11!

depends on bothḟ and¹W f, while the anisotropic stresses
depend only on¹W f.

The causality constraint can be expressed as a condition
on the autocorrelation function off:

^f~rW,t!f~0,t!&50 for r.t, ~B12!

wherer is comoving distance. If we expandf(rW,t) in terms
of harmonic functions, this constraint implies thatf(kW ,t)
}k0 for kt!1: f behaves as ‘‘white noise’’ outside the
horizon. The causality constraint also limits the spatial be-
havior of the derivatives off: ḟ(kW ,t) must scale ask0 or as
some positive power ofk to avoid producing superhorizon
fluctuations and¹W f(kW ,t)5 ikWf(kW ,t) must scale ask1 due to
the constraint on the behavior off. ThusT00 and the isotro-
pic stress for the scalar field scales as white noise to lowest
order, whereas anisotropic stress, which is related to the
square of the gradient by Eq.~B10!, scales atk2 outside the
horizon.

Just as energy-momentum conservation limits the form of
the density fluctuation, additional symmetries can constrain
the superhorizon scale behavior of the stress tensor. For ex-
ample, in electromagnetism charge conservation restricts the
spatial stresses produced by electromagnetism so that the
large scale behavior of the fields implies that all of the
stresses scale ask2 for smallk. Charge conservation implies
that causal processes cannot create superhorizon correlations
in charge or current density, nor can local monopoles be
created. Summing random electric~or magnetic! dipoles
leads to an electromagnetic field whose strength declines as
1/L;k on superhorizon scales. Since the electromagnetic
stress tensor,

Ti j5
1

4p F12 ~E21B2!g i j2EiEj2BiBj G , ~B13!

is quadratic in the field strengths, this smallk behavior of
E and B implies that both the isotropic and anisotropic
stresses scale ask2 for small k. In magnetohydrodynamics,
the isotropic component gives the magnetic pressure whereas
the anisotropic part gives theJW3BW force in the Euler equa-
tion. The Newtonian version of these calculations can be
found in @34#. In this type of model, the specific signature in
the CMB from white noise pressure contributions of Sec.
III B is replaced by the more general properties discussed in
Sec. III C.

APPENDIX C: MIMICKING INFLATION

As discussed in Sec. III D, the ability of anisotropic stress
to reverse the sign of gravity opens up the possibility of a
loophole to the arguments behind the distinguishability of

inflation from isocurvature models. For this to occur by the
action of seed sources, the isotropic and anisotropic stresses
must be exactly balanced so as to create no density pertur-
bations from dynamical effects, yet still allow the anisotropic
stress to generate gravitational potential perturbations. More
specifically, we requireps53ps/2 during the epoch when
the acoustic oscillations form and for the scales on which
they are observable. The (ps ,ps) basis employed in the main
text is not well suited to discuss this case since the isotropic
and anisotropic stresses are assumed to be independent
sources. Although that basis is natural for work on causal
constraints, we must now search for an alternate representa-
tion to explicitly build a counterexample. We show here that
properties of the model introduced by Turok@9# are a direct
consequence of enforcing these rather special requirements.

There are four functionsrs ,ps ,vs , andps that define the
stress-energy tensor of the seed source and two constraint
equations from energy-momentum conservation@see Eqs.
~A4! and ~A11!#

d

dt
a2rs1

ȧ

a
a2~rs13ps!52ka2vs ,

~C1!

d

dt
a2vs12

ȧ

a
a2vs5ka2ps2

2

3
ka2ps ,

where we assumeK/k2→0. This leaves two free functions
that may be specified. Sinceps andps have different super-
horizon scale behavior it is not possible to apply the desired
constraintps53ps/2 directly. One way to enforce it is to
require a2vs→0 for kt@1. Momentum conservation also
implies thata2vs scales ask for kt!1. The remaining con-
dition can be taken as a causal constraint onrs13ps . Note
that this choice directly specifies both of the synchronous
gauge gravitational sources@see equations second and third
of Eqs.~A13!#.

Causality is enforced in the manner of Sec. II C by requir-
ing @6,9#

4pGa2~rs13ps!5C1t
21/2

sin~Akt!

~Akt!
,

~C2!

4pGa2vs5C2t
21/2

6

B2
22B1

2

1

kt Fsin~B1kt!

~B1kt!
2
sin~B2kt!

~B2kt! G .
For computational convenience, we relax the assumption of
pure scaling inrs13ps at the matter-radiation transition,
defining

C15~tȧ/a!21, ~C3!

which requiresC2 to take the form,

C252
2

3

1

114tȧ/a
. ~C4!
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Thus C1 and C2 interpolate between constants in the
radiation- and matter-dominated epochs. An examination of
Eq. ~C1! shows that forkt@1 the stress-energy components
take the form

a2rs523a2ps522a2ps5const, a2vs50 ~C5!

for all A,B1 ,B2 as desired. The additional parameters merely
determine at what point the model takes on this special form
for the stress-energy tensor. Sincers12ps is the source of
gravitational potential fluctuations of the seedCs , this im-
plies that at late times

Fs5const, Cs50, ~C6!

and thus overdensities of the seed provide no gravitational
attraction for the other matter components in the Universe. It
is important thatFs , and hencea2rs , are constant in order
to remove metric ‘‘stretching’’ effects of the source as well
as infall. Again, this illustrates the very special nature of Eq.
~C5!: not only must there exist a relation between the
stresses but also some components ofTmn must beconstant
while others must bezero. We comment on the stability of
this situation below.

By breaking the relation between overdensities~or more
strictly speaking, curvature fluctuations! and potential fluc-
tuations, the door for mimicking inflation has been opened.
One still needs to actuallyreversethe sign of gravity such
that matter tends to fall out of overdense regions of the seed.
This is readily achieved if an additional component such as
cold dark matter~CDM! exists in the Universe. Causality
requires that this additional component has density fluctua-
tions anticorrelated with the seed at horizon crossing. Since
density fluctuations in this component create gravitational
potential wells whereas those in the seed do not, the net
result is that underdense regions of the seed correspond to
gravitational potential wells. The fundamental criterion for
the existence of a counterexample has now been met~see
Sec. III D!. Furthermore, since these potential wells arise
from CDM fluctuations and both the infall and ‘‘stretching’’
gravitational effects of the source are absent, they are con-
stant in the matter-dominated epoch which results in a
baryon-drag signal of alternating peaks that can closely
mimic the standard-CDM inflationary prediction. We show
an explicit calculation of such a model withA51, B151,
andB250.5 in Fig. 5. The initial conditions are established
in this synchronous gauge calculation to eliminate the com-
ponents of the stress-energy pseudotensor by detailed bal-
ance of the seed and fluid components.3 The acoustic spec-
trum does indeed mimic the inflationary model rather
closely. Differences do occur near and above the horizon at
last scattering and it is interesting to note that they show up
more strikingly as the absence of a first polarization peak.
Thus, even if the model is altered to match the large angle
temperature spectrum by including tensor and vector modes

or modifying the scaling relation, the polarization spectrum
provides a means to distinguish the two, at least in principle.

Finally, let us briefly discuss the implications of con-
straints of the form, Eq.~C2!, to support the claim that it is
the special form of the stress-energy tensor in Eq.~C5!,
rather than some more general causal property, that permits
this counterexample. For example, in the synchronous gauge
it might seem that fixingrs13ps alone is sufficient to de-
termine the behavior of CMB fluctuations@6#. In synchro-
nous gauge, the metric perturbation is specified by two func-
tions, h andh @see Eq.~A7!#. The important point to note
about the metric evolution equations~A13! is thath, but not
h, is only dependent on the evolution ofr13p-type sources.
Likewise, the conservation equations~A8! and ~A9! imply
that before last scattering, the photon evolution is driven
only by h. Thus the synchronous temperature perturbation at
last scattering is purely determined by the assumption for
rs13ps . This doesnot, however, imply that the structure of
the observed anisotropy is so determined. To obtain the ob-
served anisotropy, one must free-stream the radiation from
the last-scattering surface to the present. After last scattering,
the gravitational redshift fromh, which is dependent on the
form of vs , generates photon quadrupole fluctuations@see,
e.g.,@31# Eq. ~63!#. This is, in fact, obvious from the New-
tonian treatment which mixesrs ,vs , andps in the gravita-
tional source for acoustic oscillations in the effective tem-
perature@see Eq.~17!#. Since gauge choice does not affect
physical observables, the two must predict the same anisot-
ropy for a given source model: they just choose to divide it
into fluid temperature and gravitational redshift in different
manners. Thus, one cannot simply use the fluid temperature
in synchronous gauge to make arguments about the corre-
sponding temperature in the Newtonian gauge without fully
specifying the model.

Now, let us consider whether any choice, other than the
asymptotic form of Eq.~C5!, is possible for such seed con-
tributions. Let us rewrite the conservation equation, Eq.
~C1!, as

3Specifically, we take ḣ5(12/7)At i , dg5dn52(4/9)t i ḣ,
db5dc5(3/4)dg , and all other components zero. Formally, the
fluid velocities do not vanish, but we found that setting them to zero
initially gave the same answers as including the compensation.

FIG. 5. Isocurvature model that mimics inflation. By choosing
the stress-energy tensor of the seed to reverse the sign of gravity,
the general arguments of the main text are evaded. Differences
remain at large angles, especially in the polarization spectrum.
These spectra were obtained by a full Boltzmann calculation of the
model of Eq.~C2! with A51, B151, B250.5 with cosmological
parametersV051, h50.5, Vbh

250.0125.
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F d2
dt2

12S ȧ
a
D d

dt
2
1

3
k2G4pGa2rs

52F d
dt

S ȧ
a
D 12S ȧ

a
D 21 1

3
k2G4pGa2~rs13ps!

1
8

3
pGa2k2ps . ~C7!

If we also requirea2(rs13ps)→0 as in Eq.~C2!, then this
equation is dynamically unstable and requiresa2rs to di-

verge unlessrs523ps522ps . Thus the only model that
can be constructed out of thers13ps form assumed in Eq.
~C2!, or indeed any form which impliesu113ps /rsu!1 at
late times, satisfies Eq.~C5!. Such modelsmust have the
novel property of anisotropic stress fluctuations canceling the
gravitational attraction of matter to the seed overdensities. Of
course, this relation need only hold for scales upon which
acoustic peaks are visible in the CMB.

In summary, the counterexample of Turok@9# recon-
structed here relies on very special properties of a specific
stress-energy tensor and not on general properties of causally
generated fluctuations.
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