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Contrary to the assertion of Kundra´t and Lokajı´ček that the Martin formula, which relates the real part of the
elastic hadron-hadron scattering amplitude with its imaginary part, can be used only at small momentum
transfersutu&0.15(GeV/c)2 in the CERN ISR and Spp̄S region, the formula can be used consistently at high
energies for the observed experimental data in the whole region of the momentum transfer of the experiments.
Their errors are due to an inappropriate numerical approach for solving the problem.@S0556-2821~97!05005-4#

PACS number~s!: 13.85.Dz, 12.40.Nn

Martin @1# derived a formula which relates the real part of
the elastic scattering amplitude with its imaginary part by
assuming asymptotic behavior. This formula was used in
several analyses of high energy elastic processes since then
@2#. Kundrát and Lokajı´ček @3# examined the Martin formula
by analyzing the experimental data of thepp elastic differ-
ential cross sections in the CERN Intersecting Storage Rings
~ISR! energy region and concluded that the formula can be
used only in the region of small momentum transfers,
utu&0.15(GeV/c)2. They repeated their assertion later@4#.
We consider, however, their conclusion is not correct. Since
the Martin formula has still been used even after their criti-
cism @5# and no counter argument to their papers seems to
have been published so far, it will be meaningful to scruti-
nize their points.

Neglecting spin effects, the differential cross section can
be given in the center-of-mass system~c.m.s.! as

ds

dt
5pH r2S ddt@ tIm F~s,t !# D 21@ ImF~s,t !#2J , ~1!

if the real part of the scattering amplitude ReF(s,t) is given
from the imaginary part of the scattering amplitude
ImF(s,t) by the Martin formula@1#

ReF~s,t !5r
d

dt
@ tImF~s,t !#. ~2!

Heres is the squared c.m.s. total energy,t the squared mo-
mentum transfer, andr the ratio of the real part to the imagi-
nary part of the forward scattering amplitude.

In Ref. @3# Kundrát and Lokajı´ček tried to solve Eq.~1! or
its equivalentsnumericallyas a differential equation for Im
F(s,t) using the experimental data ofpp differential cross
sections in the CERN ISR energies. They claimed that the
experimental data allow ImF(s,t) to be real only at small
momentum transfers and any application of the Martin for-
mula to larger values ofutu loses any physical sense.

In this paper we show that their assertion does not hold.
There are two ways for the use of Eq.~1! to determine the
scattering amplitude:~i! one is to assume some analytic form
for the imaginary part and to fit the cross section by varying
its parameters, and~ii ! the other is to solve it as the differ-
ential equation with respect to the imaginary part for the
given differential cross section data which are represented in
some parametric form.

The consistency of the first method~i! with the Martin
formula ~2! is evident and the method can be utilized for the
ISR and CERN Super Proton Synchrotron~Spp̄S! data in the
entire momentum transfer region of the experimental mea-
surements. Here the problem is whether or not the resulting
amplitude reproduces well the experimental data~the total
and elastic cross sections, the differential cross section, and
the real part of the forward scattering amplitude!. The appli-
cability of this approach can be refuted only on this ground,
if the validity of the formula~2! is justified.

The second approach~ii ! was examined by Kundra´t and
Lokajı́ček. They found that the solution becomes singular
around the first zero of the real part of the scattering ampli-
tude and they concluded that Eq.~1! has a unique solution
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only in a small momentum transfer region at ISR and
Spp̄S energies and beyond this region the solution becomes
complex and leads to no physical consequences. However,
this does not correctly state the situation: the unique physical
solution exists for the given experimental data in the entire
region of the momentum transfer and it is possible to have an
approximate solution to the exact physical solution. The dif-
ficulty they found stems from the numerical method used to
solve Eq.~1!, not in the application of Eq.~1! to the experi-
mental data at the nonasymptotic energy region. A careful
consideration about the critical points of the differential
equation is required to obtain the physical amplitude.

First we briefly summarize the critical points of the first
order ordinary differential equation@6#. We write the differ-
ential equation in the form

dy

dx
5
Q~x,y!

P~x,y!
, ~3!

then the critical points of this equation appear at the point
(x,y) determined by the conditionsP(x,y)50 and
Q(x,y)50. If P(x,y) andQ(x,y) are expressed as

P~x,y!5a11x1a12y, Q~x,y!5a21x1a22y, ~4!

the critical points are classified by the eigenvalues of the
coefficient matrix (ai j ) into nodes, saddle points, foci, and
centers@6#.

Now we take the following equation, which is equivalent
to Eq. ~1!:

da~t!

dt
5

rt f ~t!2tana

rttana
, ~5!

where a is the phase of the scattering amplitude,F(t)
5 i uF(t)ue2 ia(t),t[utus t with the total cross sections t , and

f ~t![
1

t
2
B~t!

2
, B~t!52

d

dt
ln
ds

dt
. ~6!

Here we have omitted the energy variables. Let the roots of
f (t) be t i ( i51,2,3,. . . ). Thecritical pointsPi are

P0 : t050, a05arctanr,
~7!

Pi : t i , a i50~modp! ~ i51,2,3, . . .!.

We examine the critical points about a realistic case. For
this purpose we take the differential cross section given by
the pp scattering amplitude at 52.8 GeV in Ref.@7# as the
experimental data. The imaginary part of the scattering am-
plitude is given by

ImF~s,t !5A1e
~1/2!B1t1A2e

~1/2!B2t

2A3F11cS 12
t

t0
D 2Ge~1/2!B3t, ~8!

where the values of the parameters areA152.081,
A253.398, A350.00608(mb)1/2(GeV/c)21, B1520.622,
B259.066, B351.302(GeV/c)22, t0526.612(GeV/c)2,
andc53.512. We assumer50.0701 for the real part. In this

case the functionf (t) is shown in Fig. 1, which is essentially
the same as that given in Fig. 1 of Ref.@3#.

There are four critical points P05(0,arctanr),
P15(t1,0), P25(t2 ,0), andP35(t3 ,0), wheret1 ,t2, and
t3 are 19.49, 148.85, and 214.76, respectively. We can easily
see thatP0 is a saddle point,P1 a node,P2 a saddle point,
and P3 a node, respectively. Let us examine the solutions
around these critical points. Here it is to be noted that only
the analytic solution can be physical fort>0.

P0: By making a linear approximation for the denomina-
tor and the numerator at the right-hand side of Eq.~5!, we
have

dy

dx
5

2~1/2!rB~0!x2~11r2!y

r2x
, ~9!

where new variablesx and y are x5t and y5a2arctanr.
The eigenvalues of the coefficient matrix are

l15r2, l252~11r2!. ~10!

The real eigenvalues with opposite signs imply that this criti-
cal point is a saddle point. Withr50.0701, we have
l150.00491 andl2521.00491.

The general solution of this differential equation is given
in terms of these eigenvalues as

xu2~112r2!y1B~0!rxur
2/~11r2!5C0 , ~11!

whereC0 is the integration constant.
The solution passing the origin (x,y)5(0,0) is given by

C050. This gives two equations

~a! x50

and

~b! y52
B~0!r

2~112r2!
x, ~12!

which are the separatrices. Clearly the solution~b! is analytic
and physical one.

P1: We have

FIG. 1. The functionf (t) corresponding to the amplitude~8!.
The critical points appear att50 and the roots off (t).
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dy

dx
5

rt1f 8~t1!x2y

rt1y
, ~13!

where new variablesx and y are x5t2t1 , y5a. The ei-
genvalues of the coefficient matrix are

l1,25
1

2
$216@114r2t1

2f 8~t1!#
1/2%. ~14!

From f 8(t1)520.002233 we havel1520.004184 and
l2520.9958. The real eigenvalues with the same signs im-
ply that the critical point is a node. The general solution of
Eq. ~14! is

rt1y2l1x5C1urt1y2l2xul2 /l1, ~15!

whereC1 is the integration constant.
All the integral curves pass the originx5y50 and their

slopes (y8) take a common valuel1 /rt1 at the origin since
l2 /l1.1, except for the valueC15` which gives the so-
lution rt1y2l2x50. The physical solution is given by the
integration constantC150.

P2 ,P3: In the same way we can calculate the solutions
around these points. For the lack of space we omit the re-
sults.

In order to obtain the analytic solution, or more precisely,
to have a solution which is a good approximation to the
analytic solution by the numerical method, we may start the
calculation fromts neart50, since att50 the equation is
critical. We choosets as small as possible and set the initial
valuea(ts) arbitrary but preferably near arctan(r) and solve
the differential equation~5! by some method such as the
Runge-Kutta one. The integral curve very quickly ap-
proaches the exact solution and ends att5t1 where all the
solutions contact as seen in Fig. 2. There is practically no
problem to obtain a solution with reasonable accuracy to the
physical solution in the region 0<t<t1.

For t.t1 we can no longer solvenumericallythe differ-
ential equation toward largert. If we dare try to continue the
calculation, there would be only vanishing chance for obtain-
ing the physical solution even for a very short interval of

t, as easily understood by the node structure of theP1 point.
Any solution, if acquired small errors, easily turns aside from
the analytic solution and moves nearly vertical direction.
This explains what has happened in the calculation of Kun-
drát and Lokajı´ček @3# .

How do we obtain a reasonable solution in the region
t.t1? This would be simply carried out if we could locate
the zero of the imaginary part of the scattering amplitude
correctly: what we have to do is to solve numerically the
differential equation starting from the zero point of the
imaginary part, witha(t ImF50)52p/2 backwardly tot1
and forwardly tot3. This works quite well. Unfortunately,
however, we cannot locate the zero of the imaginary part
fairly accurately for a given differential cross section unless
the real part around the zero of the imaginary part is so small
that a very sharp dip structure appears in the differential
cross section. The present example at 52.8 GeV gives
t ImF505145.62 and the dip of the differential cross section
appears attdip5149.48. The ambiguity in locating the zero
of the imaginary part brings some uncertainties to the real
part around the zero of the imaginary part. We show the
situation in Fig. 3. The exact physical solution behaves most
smoothlyin the dip region.

The first method~i! is clearly of better utility than the
second one~ii !, since the former automatically satisfying Eq.
~1! needs no additional procedure of solving the differential
equation which induces uncertainties to the real part, while
the fitting procedures to the experimental data, either through
the imaginary part or directly, require almost the same
amount of computational work.

Finally it should be noted that at finite energy there exists
the problem of the validity of the Martin formula which is
obtainable under some asymptotic assumptions, but this is a
question different from that Kundra´t and Lokajı´ček have
raised. If the experimental data do not show the geometrical
scaling behavior@9#, the application of the Martin formula
will not be suitable. We may use the derivative dispersion
relation @7,8,10# which reduces to the Martin formula if the
geometrical scaling holds.

FIG. 2. Integral curves of the differential equation~5!. The thick
solid curve is the exact physical solution which is analytic in the
entire region of the momentum transfert>0.

FIG. 3. The uncertainty of the real part coming from the ambi-
guity in the location of the zero of the imaginary part of the scat-
tering amplitude. We show the real parts around the exact solution
~the solid curve! by assuming the zero of the imaginary part at the
dip location of the differential cross sectiontdip ~the dotted curve!,
0.953tdip ~the dashed curve!, and 1.053tdip ~the dot-dashed
curve!.
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