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Contrary to the assertion of Kundrand Lokajcek that the Martin formula, which relates the real part of the
elastic hadron-hadron scattering amplitude with its imaginary part, can be used only at small momentum
transfergt|<0.15(GeVk)? in the CERN ISR and [$pS region, the formula can be used consistently at high
energies for the observed experimental data in the whole region of the momentum transfer of the experiments.
Their errors are due to an inappropriate numerical approach for solving the pr¢Bl@556-282(97)05005-4

PACS numbd(s): 13.85.Dz, 12.40.Nn

Martin [1] derived a formula which relates the real part of Heres is the squared c.m.s. total energythe squared mo-
the elastic scattering amplitude with its imaginary part bymentum transfer, ang the ratio of the real part to the imagi-
assuming asymptotic behavior. This formula was used imary part of the forward scattering amplitude.
several analyses of high energy elastic processes since then|n Ref.[3] Kundra and Lokajcek tried to solve Eq(1) or
[2]. Kundra and Lokajcek [3] examined the Martin formula jts equivalentswumericallyas a differential equation for Im
by analyzing the experimental data of the elastic differ- £ (s t) using the experimental data pfp differential cross
ential cross sections in the CERN Intersecting Storage Ringsections in the CERN ISR energies. They claimed that the
(ISR) energy region and concluded that the formula can beyperimental data allow IF(s,t) to be real only at small
used only in the region of small momentum transfers,nomentum transfers and any application of the Martin for-
|t|=0.15(GeVkt)?. They repeated their assertion lafdl.  mula to larger values dft| loses any physical sense.

We consider, however, their conclusion is not correct. Since | this paper we show that their assertion does not hold.
the Martin formula has still been used even after their criti-There are two ways for the use of Ed) to determine the
cism [5] and no counter argument to their papers seems tQcattering amplitude(i) one is to assume some analytic form
have been published so far, it will be meaningful to scruti-fo, the imaginary part and to fit the cross section by varying

nize their points. _ . _ its parameters, angi) the other is to solve it as the differ-
Neglecting spin effects, the differential cross section carential equation with respect to the imaginary part for the
be given in the center-of-mass systéom.s) as given differential cross section data which are represented in

some parametric form.
2 The consistency of the first methdd with the Martin
+HImF(s,H]7, (D formula(2) is evident and the method can be utilized for the
ISR and CERN Super Proton Synchroti@p pS) data in the

if the real part of the scattering amplitude fR&, ) is given entire momentum transfer reg.ion of the experimental mea-
from the imaginary part of the scattering amplitude surements. Here the problem is whether or not the resulting
ImF(s,t) by the Martin formula[1] amplitude reproduces well the experimental détee total

and elastic cross sections, the differential cross section, and
q the real part of the forward scattering amplitud€he appli-
_ = cability of this approach can be refuted only on this ground,
REF(s,D)=p g UIMF(s,0]. @ i the validity of the formula(2) is justified.
The second approadfi) was examined by Kundtand
Lokajicek. They found that the solution becomes singular
*Electronic address: kawasaki@cc.gifu-u.ac.jp around the first zero of the real part of the scattering ampli-
TElectronic address: tmaehar@sed.hiroshima-u.ac.jp tude and they concluded that E{.) has a unique solution
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0556-2821/97/5%)/32254)/$10.00 55 3225 © 1997 The American Physical Society



3226 COMMENTS 55

only in a small momentum transfer region at ISR and 0.10
SppS energies and beyond this region the solution becomes I
complex and leads to no physical consequences. However,
this does not correctly state the situation: the unique physical 0.05 I
solution exists for the given experimental data in the entire r
region of the momentum transfer and it is possible to have an
approximate solution to the exact physical solution. The dif- e
ficulty they found stems from the numerical method used to ha
solve Eq.(1), not in the application of Eq) to the experi-

mental data at the nonasymptotic energy region. A careful

consideration about the critical points of the differential -0.05 ]
equation is required to obtain the physical amplitude.
First we briefly summarize the critical points of the first L
order ordinary differential equatidi®]. We write the differ- 010 - 1(')0 — 2(',0 — 00
ential equation in the form .
dy Q(xy) : : .
X Py’ (©)] FIG. 1. The functionf(7) corresponding to the amplitud®).

The critical points appear at=0 and the roots of (7).

then the critical points of this equation appear at the poinE : . - o .
; " ase the functiofi( 7) is shown in Fig. 1, which is essentiall
(x,y) determined by the conditionsP(x,y)=0 and the same as that(gi)ven in Fig. 1 0? RB]. y

Q(x,y)=0. If P(x,y) andQ(x,y) are expressed as There are four critical points Py=(0,arctap),
= - P,=(7,0), P,=(7,,0), andP3;=(73,0), where r;,7,, and
P(X,y)=ajX+ayy, X,Y)=axX+ayy, 4 1=\ 2 2 3 3 _ 1,72 )
(oY) =2 1 QXY)=axx+azy @ 73 are 19.49, 148.85, and 214.76, respectively. We can easily
the critical points are classified by the eigenvalues of theésee thatP, is a saddle pointP; a node,P, a saddle point,
coefficient matrix @;;) into nodes, saddle points, foci, and and Ps a node, respectively. Let us examine the solutions

centerq6]. around these critical points. Here it is to be noted that only
Now we take the following equation, which is equivalent the analytic solution can be physical fer0.
to Eq.(1): Po: By making a linear approximation for the denomina-
tor and the numerator at the right-hand side of Ex), we
da(7) B prf(7)—tanx 5 have
dr prtam dy  —(12pB(0)x—(1+p?)y o
where « is the phase of the scattering amplitude(7) dx pX ’

=i|F(7)|e "7, r=|t| o, with the total cross sectiom,, and ,
where new variableg andy are x=7 andy= a—arctamp.

1 B(7) d do The eigenvalues of the coefficient matrix are
f(n==———F—, B(n=—4In—. (6)
r 2 dr dr AN=p2 Ap=—(1+p2). (10)

Here we have omitted the energy variabld.et the roots of  The real eigenvalues with opposite signs imply that this criti-
f(r) ber; (i=1,23,...). Thecritical pointsP; are cal point is a saddle point. Wittp=0.0701, we have
\;=0.00491 anc\,= — 1.00491.
The general solution of this differential equation is given
() in terms of these eigenvalues as

Po: 70=0, ag=arctamp,

Pi: Tiy ai:O(mOdﬂ) (i:1,2,3, )
2 21(1+p%) —

We examine the critical points about a realistic case. For X|2(1+2%)y+ B(0)px|*H 1 =Co, D
this purpose we take the differential cross section given byyhereC, is the integration constant.
the pp scattering amplitude at 52.8 GeV in RéT] as the The solution passing the origirxy)=(0,0) is given by
experimental data. The imaginary part of the scattering ame —0. This gives two equations
plitude is given by

(a) x=0

ImF(s,t) =A,eY2B1t 4 A, e(1/2B3t
and

V2B (g oy BOP
B Y="51+2,9%

_A3

t 2
1+C( 1— t—)
0 (12)

where the values of the parameters afg=2.081,

A,=3.398, A;=0.00608(mbY¥%GeV/c) !, B;=20.622, which are the separatrices. Clearly the solutionis analytic
B,=9.066, B;=1.302(GeVt) 2, ty=—6.612(GeVt)?,  and physical one.

andc=3.512. We assume=0.0701 for the real part. In this P1: We have
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FIG. 2. Integral curves of the differential equati(®. The thick FIG. 3. The uncertainty of the real part coming from the ambi-
solid curve is the exact physical solution which is analytic in theguity in the location of the zero of the imaginary part of the scat-
entire region of the momentum transfer0. tering amplitude. We show the real parts around the exact solution
(the solid curve by assuming the zero of the imaginary part at the
dy prf'(r)x—y dip location of the differential cross sectiag, (the dotted curvg
ax_ orv (13 0.95%X 74, (the dashed curye and 1.0X 74, (the dot-dashed
Py curve.
where new variablex andy arex=r7—r7,, y=a. The ei- . a5 easily understood by the node structure ofRth@oint.
genvalues of the coefficient matrix are Any solution, if acquired small errors, easily turns aside from
the analytic solution and moves nearly vertical direction.
\ =E{—1+[1+4p27-2f’(7- )1¥2 (14) This explains what has happened in the calculation of Kun-
Lzmat == LRI ' drat and Lokajcek [3] .

How do we obtain a reasonable solution in the region
From f'(7;)=—0.002233 we haver,=—-0.004184 and 7> r,? This would be simply carried out if we could locate
A,=—0.9958. The real eigenvalues with the same signs imthe zero of the imaginary part of the scattering amplitude
ply that the critical point is a node. The general solution ofcorrectly: what we have to do is to solve numerically the

Eq. (14) is differential equation starting from the zero point of the
imaginary part, witha(7mg=q) = — m/2 backwardly tor;
pTY — N X=Cq|pry—Aox| 2/, (15  and forwardly tors. This works quite well. Unfortunately,
however, we cannot locate the zero of the imaginary part
whereC, is the integration constant. fairly accurately for a given differential cross section unless

All the integral curves pass the origk=y=0 and their the real part around the zero of the imaginary part is so small
slopes ') take a common valuk;/p7; at the origin since that a very sharp dip structure appears in the differential
No/N1>1, except for the valu€, = which gives the so- cross section. The present example at 52.8 GeV gives
lution pTy—A,x=0. The physical solution is given by the 7ime=o=145.62 and the dip of the differential cross section
integration constant,;=0. appears atgjp,=149.48. The ambiguity in locating the zero

P,,P5: In the same way we can calculate the solutionsOf the imaginary part brings some uncertainties to the real
around these points. For the lack of space we omit the rePart around the zero of the imaginary part. We show the
sults. S|tuat|(r)]r|1 in chlg.dB_,. The.exact physical solution behaves most

In order to obtain the analytic solution, or more precisely,SM0othlyin the dip region. .
to have a solution which is a good approximation to the e(;rohned fcIJrr?éiiTestir:wc():(:flt)h;ng:;aélryaazog?;i?cra”;“stgtifshff;% gthEeq
ggli Izlt;izglgr%?‘:?_bﬁég?rn:? eg:ﬁigg;ti%d'ﬂm eergjgtiztﬁritsthe(sl) ne.eds no adgitional procedure _of solving the differential

i S ’ . .~ equation which induces uncertainties to the real part, while
critical. We chqose-s as small as possible and set the initial o fitting procedures to the experimental data, either through
value a(r) arbitrary but preferably near arctah@nd solve o imaginary part or directly, require almost the same
the differential equatlor(S_) by some method such as the gmount of computational work.

Runge-Kutta one. The integral curve very quickly ap-  Finally it should be noted that at finite energy there exists
proaches the exact solution and ends-atr; where all the  the problem of the validity of the Martin formula which is
solutions contact as seen in Fig. 2. There is practically n@btainable under some asymptotic assumptions, but this is a
problem to obtain a solution with reasonable accuracy to thguestion different from that Kundraand Lokajcek have
physical solution in the region97r< 7. raised. If the experimental data do not show the geometrical

For 7> 7; we can no longer solveumericallythe differ-  scaling behaviof9], the application of the Martin formula
ential equation toward larger. If we dare try to continue the will not be suitable. We may use the derivative dispersion
calculation, there would be only vanishing chance for obtainrelation[7,8,10 which reduces to the Martin formula if the
ing the physical solution even for a very short interval of geometrical scaling holds.
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