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The validity region of Martin’s equations enabling one to determine thet dependence of the real part of the
elastic hadron amplitude from its imaginary part is critically reexamined. It can be concluded on the basis of
a more precise analysis that quite unjustified and in principle incorrect physical results are obtained if the
equations are used outside this region, i.e., forutu*0.15 GeV2. @S0556-2821~97!04905-9#

PACS number~s!: 13.85.Dz, 25.40.Cm

Martin @1# showed that at asymptotic values ofs and at
infinitesimal values oft the real part of the elastic hadron
scattering amplitude may be related to the imaginary part by
the equation

ReFN~s,t!5ReFN~s,0!
d

dt
@tF~t!#, ~1!

where

F~t!5
ImFN~s,t!

ImFN~s,0!
~2!

and t5utus tot(s). Here s is the square of total center-of-
momentum energy,t the four-momentum transfer squared,
ands tot(s) the total cross section. Many attempts were done
in the past to make use of these formulas in analyzing ex-
perimental data obtained at higher, but finite values ofs and
at all measured values oft. When applied to finite energies
Martin’s Eqs.~1! and ~2! have also been called geometrical
scaling equations@2#.

FunctionF(t) may be brought to a close relation to ex-
perimentally established values of the elastic hadron differ-
ential cross sectiondsN(s,t)/dt as it is possible to write
@3,4# with the help of Eqs.~1! and ~2!:

dF~t!

dt
5

1

rt
$2rF~t!1@D~s,t!2F2~t!#1/2%, ~3!

where

D~s,t!5~11r2!
dsN~s,t!/dt

dsN~s,0!/dt
, ~4!

and r is the ratio of the real to imaginary parts of elastic
hadron amplitude in forward direction@in order forF8(0) to
be finite, only the plus sign in Eq.~3! in front of the square
root should be considered#. FunctionF(t) can be deter-
mined in principle for any type of elastic hadron scattering
from the corresponding experimental data by solving differ-
ential equation~3!. Mutual consistence of Eqs.~1! and ~2!
requiresF(t) to be real for anyt>0 and to fulfill the initial
condition

F~0!51. ~5!

It was already shown for high-energypp and for p̄p elastic
scatterings that inserting the experimental data into Eq.~3!
the functionF(t) satisfying condition~5! is real for rather
small values oft only ~corresponding toutu&0.15 GeV2).
At higher values ofutu the expression under the square root
in differential Eq. ~3! becomes complex. The function
F(t) ceases to be real and becomes complex which contra-
dicts the basic assumption of Martin’s equations~1! and~2!.
It means that Martin’s equations cannot be applied to the
mentioned higher values oft @4,5#.

Nevertheless, the papers have been continuously pub-
lished@6–11# in which Martin’s equations have been applied
to the region of diffractive minimum; i.e., far behind the
mentioned boundary of the allowed values of momentum
transfers. The starting point in the quoted papers consisted in
constructing a phenomenological~and practically arbitrary!
imaginary part of elastic hadron amplitude@i.e., the function
F(t)# vanishing at the diffractive minimum. The real part
for all t was then determined with the help of Martin’s equa-
tions ~1! and ~2! without testing any consistency with Eq.
~3!.

There is, of course, a certain deficiency in determining the
reality region of functionF(t) in papers@4,5# as it was
established with the help of an approximate approach based
on an approximate interference formula@12#, in which the
influence of Coulomb scattering at higher values ofutu was
fully neglected while some non-negligible corrections should
exist according to a more general and more exact approach
@13,14#, which might influence the previous results making
them not fully certain. To give a definite answer to persistent
use of Martin’s equations in the region of diffractive mini-
mum a new analysis under more exact conditions has been
performed.

It was shown in our previous paper@4# that the region of
t values, where the functionF(t) is real, is tightly con-
nected with the roots of the equation

f N~s,t!50, ~6!

the functionf N(s,t) being defined as

f N~s,t!5
1

t
1

~d/dt!@dsN~s,t!/dt#1/2

@dsN~s,t!/dt#1/2
, ~7!

i.e., it is fully determined by the modulus of elastic hadron
amplitude. Equation~6! can be rewritten also as
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B~ t !5
2

t
, ~8!

where the generalt-dependent diffractive slope at given en-
ergy

B~ t !5
d

dt S lndsN

dt D ~9!

is directly established from experimental data, which pro-
vides much easier insight into the given problem. Using now
the results of paper@13# we could determine more precise
roots of Eq.~6! or Eq. ~8! for both previously mentioned
cases of elastic scatterings; i.e., for thepp case at the energy
of 53 GeV~using data from Ref.@15#! and for thep̄p case at
the energy of 541~546! GeV ~using data from Ref.@16#!.
The positions of these roots being determined by the inter-
sections of the curves illustrating thet dependence of the
diffractive slopesB(t) with hyperbola 2/t are shown in Fig.
1 for both the investigated cases of elastic scatterings.

That the functionF(t) becomes complex fort>t1 @t1 is
the smallest root of Eq.~6!# was shown in paper@4# by using
differential equation for the phaseas(t) of elastic hadron
amplitude and for the functionv(s,t) @renormalized func-
tion F(t)#; for details see previous paper@4#, the paragraph
after Eq. ~3.3! @17#. However, it was not answered in this
paper whether the functionF(t) does not become again real
at t higher than the other roots of Eq.~6!.

That the functionF(t) remains complex for allt.t1
may be shown by solving Eq.~3! in the complex plane in the
whole interval of allowedt values. Let us define real and
imaginary parts ofF(t) by

F~t!5F1~t!1 iF2~t!. ~10!

Then Eq.~3! can be transformed into the normal system of
two nonlinear differential equations of the first order:

dF1~t!

dt
5

1

rt H 2rF1~t!1F12~@D2~s,t!1F1
4~t!1F2

4~t!

22D~s,t!F1
2~t!12D~s,t!F2

2~t!

12F1
2~t!F2

2~t!#1/21D~s,t!2F1
2~t!

1F2
2~t!!G1/2J ,

dF2~t!

dt
5

1

rt H 2rF2~t!1F12~@D2~s,t!1F1
4~t!1F2

4~t!

22D~s,t!F1
2~t!12D~s,t!F2

2~t!

12F1
2~t!F2

2~t!#1/22D~s,t!1F1
2~t!

2F2
2~t!!G1/2J . ~11!

In contradistinction to the differential equations solved in
paper@4# the right-hand sides of both the Eqs.~11! do not
contain any singular points in the intervalR5^«,tmax&; here
« is a finite~arbitrarily small! positive number andtmax cor-
responds to the minimal measured value oft. Both the right-
hand sides are represented by continuous functions~satisfy-
ing the Lipschitz condition! in variables t, F1, and F2
provided the elastic hadron differential cross section, gener-
ating the functionD(s,t) @Eq. ~4!# is a smooth function of
t. It follows from Peano’s and Picard’s theorems@18#, that
the solution of Eqs.~11! @with initial condition ~5! or with
F(«)511F8(0)«# exists and is unique and continuously
differentiable.

If the expression under the square root in original differ-
ential equation~3! is non-negative then its solution, i.e., the
real functionF should coincide with the solution of the sys-
tem of differential equations~11!; therefore, the imaginary
partF2 should be zero in this region. But if this expression
starts to be generally complex thenF2 becomes different
from zero. Equations~11! must be solved numerically, which
requires the functionD(s,t) to be represented by a smooth
function. That may be guaranteed by representing the differ-
ential cross section with the help of elastic hadron modulus
uFN(s,t)u parameterized, e.g., according to our previous pa-
per @13#.

It has been found by solving Eqs.~11! under new condi-
tions ~with the help of the Runge-Kutta method! that Eqs.
~11! possess a real solution only fort<t1, i.e., for
utu<ut1u, wheret1520.172 GeV2 in the pp elastic scatter-
ing and t1520.133 GeV2 in the p̄p elastic scattering. The
influence of the new more exact approach of separating Cou-
lomb and hadron parts in elastic scattering on the boundary
limits is not, therefore, substantial. Evidently, the value of
t, where the solutionF(t) of Eqs. ~3! becomes complex
coincides with the first smallest root of Eq.~6!. Outside these
regions, i.e., for allt.t1, the functionF(t) ceases to be
real and becomes complex. The resultingt dependence of
the functionF(t) ~i.e., of both the real and imaginary parts
of it! for the case ofp̄p scattering is shown in Fig. 2. For the
case ofpp elastic scattering at an energy of 53 GeV the
picture is similar.

FIG. 1. The intersections of diffractive slopesB(t) correspond-
ing to pp elastic scattering at energy of 53 GeV and top̄p elastic
scattering at energy of 541~546! GeV with hyperbola 2/t.
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The reality of the functionF(t) is a basic condition for
Martin’s equations to be mathematically consistent. Outside
the reality region Martin’s equation lose any physical sense.
Consequently, they can never be used at higher values oft
especially in the region of diffractive minimum. Any physi-
cal sense cannot be attributed to attempts@10,11,19#, either,
in which some corrections are added to get a numerical fit
with experimental data. The mentioned inconsistency in-
creases when in some papers@10,11# the standard West and
Yennie relative phase@12# is made use of, combining the
basic assumption of the exponential differential cross section
with strong experimental nonexponentiality~for details see
papers@13,14#!. Consequently, one must conclude that the
quoted papers@6–10# contain a significant mathematical in-
consistency using Martin’s equations in the regions oft,
whereF(t) must be complex.

There is only one mathematically consistent way of en-
abling Martin’s equations to be used at the valuest.t1 ~at
finite energies!; namely, to use higher derivatives of function
F(t) in equations exhibiting geometrical scaling@3,4#. In
such a case we should obtain, however, more complicated
equations for both the real and imaginary parts of elastic
hadron amplitude, and the simplicity and the beauty of the
Martin’s equations would be lost.

Note added.During the preparation of this work a paper
by Kawasaki, Maehara, and Yonezawa@20# has been submit-

ted for publication in which they criticize results from our
previous paper@4#. Their paper contains practically two basic
statements which both contradict our conclusions. First, they
argue that the equation

dsN~s,t!

dt
5
dsN~s,0!

dt FF2~t!1r2S ddt
@tF~t!# D 2G 1

11r2
,

~12!

derived with the help of the Martin’s equations@1# is valid in
the whole range of measuredt values. And second, they state
that the same holds for Eq.~5! of Ref. @20# @or Eq. ~3.3! of
Ref. @4## being under some limiting conditions equivalent to
Eq. ~12!. We will show now that any of these statements may
be hardly regarded as true.

~i! The Martin’s equations are based on the assumption
that the functionF(t) is real. We have shown in Ref.@4#
and demonstrated to a greater detail in this paper thatF(t)
may be real only in the interval (0,t1). F(t) becomes com-
plex for anyt.t1.

~ii ! One can, of course, postulate the validity of Eq.~5! ~of
Ref. @20#! for the whole range of all measuredt values. Then
we must look for the solution of this first order differential
equation with one initial condition

a~0!5arctan~r!. ~13!

When the given equation cannot be solved analytically we
have shown in Ref.@4# that there is a sudden change in
a(t) behavior in a close neighborhood oft1, which is in full
agreement with the characteristics of Eq.~12!. The authors of
Ref. @20# have performed, however, a valuable analysis when
they showed that Eq.~5! ~of Ref. @20#! has a nodal point in
t1. The individual solutions in this point are then distin-
guished by the values of integration constantC1 „see, e.g.,
Eq. ~15! of Ref. @20#… in a corresponding linear approxima-
tion @21#; this constantC1 may possess any real value in
principle. It is practically impossible to establish its actual
value corresponding to the initial condition~13! as evalua-
tion from the corresponding numerical solution exhibits
changes by many tenths of order whent goes neart1. Con-
sequently, the resulting solution presented in Ref.@20# rep-
resents a combination of three components belonging to dif-
ferent initial conditions, given by Eq.~13!, specified by
C150 anda5p/2 in a close neighborhood of diffractive
minimum.

Realizing the existence of the nodal point enables us to
understand why Dias de Deus and Kroll@3# could already
have proposed a similar solution many years ago starting
from similar initial conditions int50 and in the diffraction
minimum, since both the different branches had to meet in
the nodal point.
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