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Applicability of Martin’s equations in high-energy elastic hadron scattering
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The validity region of Martin’s equations enabling one to determine ttiependence of the real part of the
elastic hadron amplitude from its imaginary part is critically reexamined. It can be concluded on the basis of
a more precise analysis that quite unjustified and in principle incorrect physical results are obtained if the
equations are used outside this region, i.e.,|fpe0.15 Ge\f. [S0556-282(97)04905-9

PACS numbd(s): 13.85.Dz, 25.40.Cm

Martin [1] showed that at asymptotic values ®fand at It was already shown for high-energyp and forpp elastic
infinitesimal values oft the real part of the elastic hadron scatterings that inserting the experimental data into (Bg.
scattering amplitude may be related to the imaginary part byhe function®(7) satisfying condition(5) is real for rather
the equation small values ofr only (corresponding tdt|<0.15 Ge\f).

At higher values oft| the expression under the square root
in differential Eq. (3) becomes complex. The function
®(7) ceases to be real and becomes complex which contra-
dicts the basic assumption of Martin’s equatighsand(2).
where It means that Martin's equations cannot be applied to the
mentioned higher values af[4,5].
ImFN(s, 7) Nevertheless, the papers have been continuously pub-
ImEN(s.0) (2 lished[6—11] in which Martin’s equations have been applied
' to the region of diffractive minimum; i.e., far behind the

_ ; _~+. mentioned boundary of the allowed values of momentum

and 7=|t|o(s). Here's is the square of fotal center-of transfers. The starting point in the quoted papers consisted in

momentum energyt the four-momentum transfer squared, ruct h logiond ficall bit
ando,(S) the total cross section. Many attempts were done-onstructing a phenomenologicaind practically arv rany

in the past to make use of these formulas in analyzing exlgaglnary P";‘f of etlatﬁtlc dhf?dmtr.] amplllt'uﬂae., t_?ﬁ functllon t
perimental data obtained at higher, but finite values ahd f (T)"] vanis tlhng % i e d rgc |_\t/r?thm|nr:m|um].c M et_rga par
at all measured values of When applied to finite energies orail 7 was then determinec wi € help ot Martin's equa-

Martin's Egs.(1) and(2) have also been called geometrical 'E|30)ns (1) and (2) without testing any consistency with Eg.
scaling equation§2]. : . . . . -
Functiond () may be brought to a close relation to ex- There is, of course, a certain deficiency in determining the

perimentally established values of the elastic hadron differ-real'ty. region .Of function®(7) in papgrs[4,5] as it was
ential cross sectionla™(s, 7)/dr as it is possible to write established with the help of an approximate approach based

; . on an approximate interference formdte2], in which the
[3,4] with the help of Eqs(1) and (2): influence of Coulomb scattering at higher valuegtbfwas
1 fully neglected while some non-negligible corrections should
=—{—pd(71)+[D(s, 7—)—(1)2(7-)]1/2}' ©) exist according to a more general and more exact approach
pT [13,14, which might influence the previous results making
them not fully certain. To give a definite answer to persistent
where use of Martin’s equations in the region of diffractive mini-
N mum a new analysis under more exact conditions has been
do(s,7)/d7 (4  Pperformed.
do™N(s,0)/d7’ It was shown in our previous pappt] that the region of
7 values, where the functio®(7) is real, is tightly con-
and p is the ratio of the real to imaginary parts of elastic nected with the roots of the equation
hadron amplitude in forward directigin order for®’(0) to
be finite, only the plus sign in Eq3) in front of the square fN(s,7)=0, (6)
root should be considerg¢dFunction ®(7) can be deter-
mined in principle for any type of elastic hadron scatteringthe functionf™(s, ) being defined as
from the corresponding experimental data by solving differ-
ential equation(3). Mutual consistence of Eq$l) and (2)
requires® () to be real for anyr=0 and to fulfill the initial
condition

N _ N i
ReFY(s, 1) =ReF (S,O)dT[T(I)(T)], (1)

O (7)=

dd(7)
dr

D(s,7)=(1+p?)

(d/dn)[daN(s, 7)/d ]2
[doN(s,7)/d7r]Y2

(s, m= 1+ (7)
T

i.e., it is fully determined by the modulus of elastic hadron
d(0)=1. (5)  amplitude. Equatiori6) can be rewritten also as
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FIG. 1. The intersections of diffractive slopBgt) correspond-
ing to pp elastic scattering at energy of 53 GeV andpo elastic
scattering at energy of 54546) GeV with hyperbola 2/

2
B()=T. ®)

where the generatdependent diffractive slope at given en-
ergy

d/ doN
B(t)= a(h’]w) 9

is directly established from experimental data, which pro-
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1

ddy(r) 1
B 2

dr p_T

—2D(s,7)®%(7)+2D(s, 7)D3(7)

([D?(s,7)+ (1) +D3(7)

[_P‘Dl(TH'

+203(1)®3(7) 1Y%+ D(s,7)— D2(7)

1/2
+®3(7) }
do 1 1
—j§3=gﬂ—p®xﬂ+5@D%aﬂ+@ﬁﬂ+®§ﬂ

—2D(s,7)®%(7)+2D(s,7)D3(7)

+203(1)®5(7) ¥~ D(s,7) +Y(7)

1/ 2}

In contradistinction to the differential equations solved in
paper[4] the right-hand sides of both the Eq4.1) do not
contain any singular points in the intenRl= (&, Thay; here
¢ Is a finite (arbitrarily smal) positive number and,,, cor-
responds to the minimal measured valug.d8oth the right-
hand sides are represented by continuous functisaissfy-
ing the Lipschitz conditionin variables 7, ®,, and ®,
provided the elastic hadron differential cross section, gener-
ating the functionD(s,7) [Eq. (4)] is a smooth function of
7. It follows from Peano’s and Picard’s theorefis3], that
the solution of Eqs(11) [with initial condition (5) or with
d(e)=1+d'(0)e] exists and is unique and continuously
differentiable.

If the expression under the square root in original differ-

- ®3(7)) (12)

vides much easier insight into the given problem. Using novential equatior(3) is non-negative then its solution, i.e., the

the results of papefl3] we could determine more precise
roots of Eq.(6) or Eq. (8) for both previously mentioned
cases of elastic scatterings; i.e., for the case at the energy
of 53 GeV/(using data from Ref.15]) and for thepp case at
the energy of 541(546) GeV (using data from Ref{16]).

real function® should coincide with the solution of the sys-
tem of differential equation§ll); therefore, the imaginary
partd, should be zero in this region. But if this expression
starts to be generally complex th&h, becomes different
from zero. Equation§l1) must be solved numerically, which

The positions of these roots being determined by the interrequires the functiom (s, 7) to be represented by a smooth

sections of the curves illustrating thedependence of the
diffractive slopesB(t) with hyperbola 2/ are shown in Fig.
1 for both the investigated cases of elastic scatterings.

That the functiond(7) becomes complex for= 7, [14 is
the smallest root of Eq6)] was shown in papd#] by using
differential equation for the phases(7) of elastic hadron
amplitude and for the functiom(s,7) [renormalized func-
tion ®(7)]; for details see previous paplet], the paragraph
after Eq.(3.3) [17]. However, it was not answered in this
paper whether the functio® (7) does not become again real
at 7 higher than the other roots of E(f).

That the function®(7) remains complex for alr> 7,
may be shown by solving E3) in the complex plane in the
whole interval of allowedr values. Let us define real and
imaginary parts ofb(7) by

P(r)=P(7)+iDy(7). (10

function. That may be guaranteed by representing the differ-
ential cross section with the help of elastic hadron modulus
|FN(s,7)| parameterized, e.g., according to our previous pa-
per[13].

It has been found by solving Eq&l1) under new condi-
tions (with the help of the Runge-Kutta methothat Egs.
(11) possess a real solution only for<sy, i.e., for
|t|<|t,|, wheret;=—0.172 GeV in the pp elastic scatter-
ing andt;=—0.133 GeV in the pp elastic scattering. The
influence of the new more exact approach of separating Cou-
lomb and hadron parts in elastic scattering on the boundary
limits is not, therefore, substantial. Evidently, the value of
7, where the solutionb(7) of Egs. (3) becomes complex
coincides with the first smallest root of E@). Outside these
regions, i.e., for allr> 74, the function®(r) ceases to be
real and becomes complex. The resultinglependence of
the function®(7) (i.e., of both the real and imaginary parts
of it) for the case opp scattering is shown in Fig. 2. For the

Then Eq.(3) can be transformed into the normal system ofcase ofpp elastic scattering at an energy of 53 GeV the

two nonlinear differential equations of the first order:

picture is similar.
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ted for publication in which they criticize results from our
previous papel4]. Their paper contains practically two basic
statements which both contradict our conclusions. First, they

. _ pp 541 GeV argue that the equation
dO’N(S,T)_dO'N(S,O) ®? , d ® )2
3 dar  dr (1) +p d_T[T (7] T3 52"
(12

derived with the help of the Martin’s equatioft is valid in
the whole range of measurédalues. And second, they state
that the same holds for E¢p) of Ref.[20] [or Eq. (3.3 of
Ref.[4]] being under some limiting conditions equivalent to
i Eq. (12). We will show now that any of these statements may
o t———"t e L be hardly regarded as true.
7 (mb Gev?) (i) The Martin’s equations are based on the assumption
| | | | | | | | | that the function®(7) is real. We have shown in Reff4]
o 0025 005 0075 01 0125 015 0175 0o and demonstrateq toa greater detail in this paperdhal)
“t (Cevd) may be real only in the interval (8,). ®(7) becomes com-
plex for any > 7.

FIG. 2. Ther dependence of both real and imaginary parts of (i) One can, of course, postulate the validity of Eg).(of
function ®(7) for pp peripheral elastic scattering at energy of Ref.[20]) for the whole range of all measuredralues. Then
541(546) GeV; Re®(7)-full line, Im®(7)-dotted line. we must look for the solution of this first order differential
equation with one initial condition

a(0)=arctarip). (13

The reality of the functionP(7) is a basic condition for
Martin’s equations to be mathematically consistent. OutsidéVhen the given equation cannot be solved analytically we
the reality region Martin's equation lose any physical sensehave shown in Ref[4] that there is a sudden change in
Consequently, they can never be used at higher values of «(7) behavior in a close neighborhood of, which is in full
especially in the region of diffractive minimum. Any physi- agreement with the characteristics of EtR). The authors of
cal sense cannot be attributed to attemip®,11,19, either,  Ref.[20] have performed, however, a valuable analysis when
in which some corrections are added to get a numerical fithey showed that Eq5) (of Ref.[20]) has a nodal point in
with experimental data. The mentioned inconsistency in-;. The individual solutions in this point are then distin-
creases when in some papégt9,11] the standard West and guished by the values of integration constént (see, e.g.,
Yennie relative phas€l2] is made use of, combining the Eq. (15) of Ref.[20]) in a corresponding linear approxima-
basic assumption of the exponential differential cross sectiotion [21]; this constantC, may possess any real value in
with strong experimental nonexponentialiior details see principle. It is practically impossible to establish its actual
papers[13,14)). Consequently, one must conclude that thevalue corresponding to the initial conditidd3) as evalua-
guoted paper§6—10| contain a significant mathematical in- tion from the corresponding numerical solution exhibits
consistency using Martin’s equations in the regionstpf changes by many tenths of order whegoes neatr,. Con-
where® (1) must be complex. sequently, the resulting solution presented in R2€] rep-

There is only one mathematically consistent way of en+esents a combination of three components belonging to dif-
abling Martin’s equations to be used at the valawesr, (at  ferent initial conditions, given by Eq(13), specified by
finite energies namely, to use higher derivatives of function C;=0 and a=#/2 in a close neighborhood of diffractive
®(7) in equations exhibiting geometrical scalifg,4]. In  minimum.
such a case we should obtain, however, more complicated Realizing the existence of the nodal point enables us to
equations for both the real and imaginary parts of elastizinderstand why Dias de Deus and Krf8] could already
hadron amplitude, and the simplicity and the beauty of thehave proposed a similar solution many years ago starting
Martin’s equations would be lost. from similar initial conditions inT=0 and in the diffraction

Note addedDuring the preparation of this work a paper minimum, since both the different branches had to meet in
by Kawasaki, Maehara, and Yonezal28] has been submit- the nodal point.
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