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Damping rate of quasiparticles in degenerate ultrarelativistic plasmas
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We compute the damping rate of a fermion in a dense relativistic plasma at zero temperature. Just above the
Fermi sea, the damping rate is dominated by the exchange of soft magnetic ptortghsons in QCD and
is proportional to E— u), where E is the fermion energy apdthe chemical potential. We also compute the
contribution of soft electric photons and of hard photons. As in the nonrelativistic case, the contribution of
longitudinal photons is proportional toE{ )2, and is thus nonleading in the relativistic case.
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PACS numbeis): 11.10.Wx, 12.20.Ds, 12.38.Mh, 52.6¢h

The properties of quasiparticles in ultrarelativisfidR)  ing rate[7], at least for nonzerd. In a recent papef8],
plasmas have attracted much attention in the recent{fphst Blaizot and lancu were nevertheless able to derive a finite
A crucial property of a quasiparticle is its decéyr damp-  result in theT#0, u=0 case, by using a nonperturbative
ing) rate: a quasiparticle which propagates in a plasma is naipproach to resum the leading divergencies. However they
stable, as it undergoes collisions with the other particles olso discovered that the decay law is no longer exponential.
the plasma, and the very concept of a quasiparticle makes In this work, we address the problem of computing the
sense only if its damping rate is small enough. damping rate of quasiparticles in degenerate UR plasmas.

The damping rate of an electron propagating in a nonrelfor the sake of definiteness, we treat the case of a QED
ativistic (NR) plasma was computed almost 40 years ago byylasma, but our results may be trivially extended to the QCD
_qunn and Ferrel[2,_3]. At first sig_ht, this damping rate is gge by substituting to the QED coupliegthe QCD cou-
infinite, due to the singular behavior of the Rutherford Cros$ling g, and by taking into account some color group factors.

section at small angles. However, Quinn and Ferrell wergy, yhis computation, the basic physical idea is that the colli-
able to obtain a finite result because the Coulomb interactioQiy s of the charged quasiparticle with the particles in the

Eggreeenneergtlerz] a@;ﬁ;@ﬁgyiﬁgﬁgg‘I?r?aatntilencﬁg?nc?se ?;te Qlasma are governed by photon exchange, and that one must
o grtional top(s e ’)2 v?//heres — 52/2m is the I\Fl)R ?(i— thke into account the fact that the photon propagator is
Eeti?: energy an(tp thFe I’:ermi engrg;) when,, is slightly dressed by the interactions. Actually, this approach is a par-
F . P ticular case of the resummation method proposed by Braaten
larger thaner. The damping rate remains finite for a non- and Pisarsk{9], which relies on the propperriies of %/he so-
zero temperaturd@: only the value of the Debye screening called “hard the;rmal loopsT9,10] or “hard dense loops” in

length is modified. : S
It is interesting to extend the calculation of the dampingth® degenerate casél]. Braaten and Pisarski pointed out

rate to the case of relativistic plasmas: one may have in min{1® importance of a hierarchy of scales, based on the exis-
either electromagneti¢QED) plasmas, such as found in tence of a “hard scale” of ordefl (or u), and a “soft
white dwarves or in the core of nascent neutron stars, opcale” of ordereT (or ex), with e<1. When soft scales are
chromodynamic(QCD) plasmas such as the quark-gluon involved, one must use dresséal resummefl propagators
plasma which is believed to be formed for large enough valand vertices instead of the bare ones in a perturbative expan-
ues of the temperatur& and/or the chemical potential. ~ sion. An important feature of the resummation method is that
The NR results are not easily transposed to the relativisti@t leads to gauge independent results, due to the gauge inde-
case because the exchange of magretidransversepho-  pendence of the hard therm@lr densg loops.

tons in QED or of magnetic gluons in QCD becomes impor- Our main result is that, in the ca3e=0, w# 0, dynami-

tant, while in the NR case it is suppressed by powers ofal screening is able to cure the IR divergences of the damp-
(v/c)? with respect to the exchange of electfir longitudi-  ing rate due to magnetic photon exchange in UR plasmas;
nal) gauge bosons, and is usually neglected. These magnetiowever, in contrast to the NR case, the damping rate is
photons, or gluons, give rise to severe infrafdd) diver- dominated by magnetic exchange and is proportional to
gences which are not easily cured because there is no sta(E— w), whereE is the relativistic energy of the quasiparti-
magnetic screening analogous to Debye screening in thee, while electric photon exchange gives a contribution pro-
electric case, but only a weaker dynamical screefljgin  portional to €— u)?, as in the NR case, which may be, in
many cases, this dynamical screening is sufficient to removtact, obtained as a low velocity limit of the relativistic one.
the IR divergence$5,6], but it has been known for some Note, however, that, by convention, energies and chemical
time that it cannot solve easily the IR problem of the damp-potentials differ by the rest mass of the particle in the NR
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with

pi(K)=2me (ko) 8(k3—ED). ©)

In Eq. (2), op=7(2n+1)T is a fermionic Matsubara fre-
FIG. 1. Resummed one-loop self-energy of the fermion.  quéncy ancb(ll<0)=.k0/|k.0|. The (resummed photon propa-

gatorA ,,(Q) is written in the Coulomb gauge

and relativistic cases. Note also that we use a system of units

wfh[elr]eﬁ =c=kg=1, and that we follow closely the notation AL (Q)=08,08,0AL(Q)+(8;—qi0)AT(Q), (4

of [1].

Let us now proceed to the derivation of our result. Weyhere the spectral representationsdgfand A, read
assume that the quasiparticle enekjyys hard(this is auto-

matically ensured in the case of a degenerate plasiite = dgo pL(Ge,q) 1

damping ratey(E) is given by the imaginary part of the A (iwg,q)= . —, (5a)
guasiparticle self-energy [12]; more precisely: —w2m (o—iws (
WE)=— =TS (ot i 7, p)(P+m)] . (D Arliws.y= [~ 20 prido.0) b
4E po=E s 27 (o—iwg’

wherem is the electron mas€&=(p?+m?)2 7—0", and
we have used the, by now, standard notation=(po,p);
the lowest order graph fok is drawn in Fig. 1. We are
mainly interested in the contribution of soft photons, so tha
the electron-photon vertex and the electron propagator ma
be replaced by the bare onds9]: only the photon propaga-
tor need be dressed. )
We perform the calculation oF in the imaginary time pL(Go,q)=21mA (qo+i7,q)

formalism; then thefree) electron propagator is given by -1

:2| I ’
. _feo dko (K+m)p(K) " TP+ 30d[1— (/2)In(x+ 1)/(x—1)]
Si(iwn.k)= —27T Kog—lwp—pu (6a)

In Egs.(4) and (5), g;=0;/|q| and ws=27sT is a bosonic
Matsubara frequency. The explicit expressions of the longi-
udinal and transverse spectral functignsandp+ are found
%ﬁy taking the imaginary parts &, andA+; this gives, for
assless electrons,

-1
(Qo+i7)2— %= (312) wa{ X2+ [ x(1—x?)/2]In(x+ 1)/ (x— 1)}’

p1(do,q)=21IMA(go+iz,q)=21m (6b)

wherex=(qo+in)/q, wp=M/\/§ is the plasma frequency me? [ d3q (= dkg = dgq
which is related to the Debye mabs given by Y(E)= ?J 23 o Pi(ko) f_wﬁ[1+ n(do)

2 2712 ~
M2=%2 R 773T ) @) —T(ko)18(E—ko—do){[Poko+ P-k+m?IpL(0o,q)
+2[ poko— (p- ) (k- ) —m*]pr(o.a)}. 9
The diagram in Fig. 1 is now evaluated in the imaginary
time formalism[P= (i w,,,p)] |
d3q In Eqg. (9), n andn are Bose-Einstein and Fermi-Dirac dis-
— a2 T H _ _ . ’
>(P)=e Tg f (27)3 uSili(0n=wg),p—d] tribution functions 3= 1/T):

Xy A (lws,q). 8 1 -
¥ib (i ws,0) ® G0 s Tho)= e (10
The sum over Matsubara frequencies is easily performed
when one plugs in Ed8) the spectral representatiof® and Equation(9) could have also been derived from kinetic
(5) of the propagators. Taking the imaginary partphfter  theory[14], using standard identities between the distribu-
the analytical continuationw,+ u— po+i#7 to Minkowski  tion functions(10). The cas&,<<0 [see Eq(3)] corresponds
space, and taking the trace in E(.), one finds, for the in kinetic theory toe™ —e™ annihilation, which is not IR
damping rate, wittk=p—q, singular and is even absent in tlie=0 case. We thus con-
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centrate on the&ko>0 case, which corresponds in kinetic qq. Keeping only the leading terms, the first denominator in
theory to e” —e~ scattering. Equatior(9) holds for any Egq. (15), corresponding to longitudinal photon exchange,
value ofm, T, andu. For the sake of simplicity, we shall may be replaced byg?+ M?), which leads to Debye screen-
restrict ourselves to them=0 andT=0 case. In theT=0 ing. The second denominator in E@.5), corresponding to
limit, [14+n(ge)]=0(qe) and n(ky)=O(u—E+qp), transverse photon exchange, may be replaced by

where © is the step function. The, integration is then 4
limited by X

49%+ 7

+8M2gx°. (17
0<qo<E—p. (11

. . s . It can be shown that the last term in HQ.7) gives a sub-
This is also easily seen in kinetic theory, since, due to Paulj,minant contribution, while the second term leads to the

blocking, the quasiparticle can only scatter into states Wi”hsual form of dynamical screenifig—6]. Computing sepa-

energyE,_q such thak,_y<E and, furthermore, the par- 401y the longitudinal and transverse contributions, we find,
ticle on which it scatters must leave the Fermi sea, so thé\’vith u* = (q*/M)?

Ejp-q=n- Note also that the exchanged photon must be

spacelike:Q?<0, so that the pole part gf, 1 [1] does not 2(E— )2 (u* du
contribute. Yeor(E)= f

Now, the IR singular contribution comes from small val- 32mM 0 JG(UJrl)2
ues of the photon momentuq) in order to isolate this kine- e2M2

matical region, we follow Braaten and Yuéh3] and intro- =

E—Z(W—l) 18
77( M)WW, (18

duce an intermediate cutoff* such thateu<<q*<<u. The 16

“soft” region is defined by g<q*, the “hard” one by ) ) )
q>q*: in this latter region we may take thd2=0 limit in T (E)= eM Ju*du\/aln 1+ 7 (E-n) )
the denominators of the spectral functigns; in Eq. (9) [1]. Vsoft 47° ), 16M2u3

Let us concentrate on the soft region, where we can make the 5 -
approximation e eM

1
o4 (B~ )+t 5o (E—M)Z( - Wg)

Elp-q=E—0o=E—p-q. (12 (19
Keeping only the leading terms in E¢), we find the

contribution from the soft region tg(E): where we have only kept the leading terms B-{u«) and

1/9*.
e’ diq The total contribution of the soft region to the decay rate
Ysof E)= ?f (27)3[(9(%) —O(pn—E+0do)]0(q*—0q) is obtained by adding the longitudinal and transverse contri-
butions to get

X{pL(00,q) +(1=CoSO)pr(do.)}, (13 , -
e e‘M of T 1
with go=p-q=qco%. It is convenient to use as integration Ysott(B)= 57— (E—p)+—5—(E-p) (W_ a3
variablesq, andq, the integration domaib being (20)
D:{0<qgo<E—u; do=qg=q*}. (14 The transverse contribution dominates over the longitudinal
one for small values ofEf— u).
Then Eq.(13) becomes X=0,/0) We finally evaluate the contribution from the hard region.

2012 q Since we are only interested in extracting the leading depen-
0 : . .

Ysoil E) = _f dq dq[ den.ce in the fermionic energy of the decay rate, we will use

5 4 Jo 02007+ MPQu() P+ M*w?X%2 4 simple approach to compute the hard contribution. It is

] possible to recover bare or unresummed perturbation theory

Jo
T2 2 M2Q,00 12+ MA72x2/4

(15) to ordere* by using the spectral densitig) neglecting
M? in the denominatorgl]. This is only valid in the momen-
tum transfer regiom>qg*. Therefore one finds for the hard

where contribution to the decay rate

$+ﬂ]. (20)

Q=1 3N Tx, Q0= QuX)+ M fnax, [0

xX)=1-5In , X)=—Qq(X ‘ max

! 2 1-x' 7 B 12 Yhard E)= SWJ qu ddo 597
q* 0 q

(16)

Note that in the absence of screenmgmely, by setting After a straightforward computation one finds
M =0 in the denominators of Eq15)], one would get IR A
divergent integrals. In general, the integrals in Eldy) must {(E)= e'M (E— )2 1 _ 1 22)
be computed numerically. Fortunately, it is possible to derive Yhar 327 - Mg Qg
an accurate analytical result in the physically interesting case
(E—u)<<M. Indeed, it is easy to check that in this region whereq,,=u is the maximum momentum transfer that it is
one may expand the denominators in ELp) in powers of allowed by kinematics.
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The total decay rate is found just by adding the soft anccomes infinite as the fermion energy approaches the Fermi
hard contributions. Then one finds that the dependence ognergy, so that the Fermi sea is stable.

the scaleg* cancels, as it should. The result is .
< After this work was completed, we learned that our results

have been obtained independently by J.-Y. Ollitrault and B.
T i) Vanderheyden; it was also pointed out to us by Ph. Nezie
2M° Q?na ' that the €— ) behavior of the damping rate was obtained

(23)  in a different context by Holstein, Pincus and Nortdrb].
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