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Institut Non Linéaire de Nice, UMR 129 1361 Route des Lucioles, 06560 Valbonne, France

Cristina Manuel
Department Estructura i Constituents de la Mate`ria, Facultat de Fı´sica, Universitat de Barcelona, Diagonal 647,

08028 Barcelona, Spain
~Received 16 September 1996!

We compute the damping rate of a fermion in a dense relativistic plasma at zero temperature. Just above the
Fermi sea, the damping rate is dominated by the exchange of soft magnetic photons~or gluons in QCD! and
is proportional to (E2m), where E is the fermion energy andm the chemical potential. We also compute the
contribution of soft electric photons and of hard photons. As in the nonrelativistic case, the contribution of
longitudinal photons is proportional to (E2m)2, and is thus nonleading in the relativistic case.
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PACS number~s!: 11.10.Wx, 12.20.Ds, 12.38.Mh, 52.60.1h

The properties of quasiparticles in ultrarelativistic~UR!
plasmas have attracted much attention in the recent past@1#.
A crucial property of a quasiparticle is its decay~or damp-
ing! rate: a quasiparticle which propagates in a plasma is not
stable, as it undergoes collisions with the other particles of
the plasma, and the very concept of a quasiparticle makes
sense only if its damping rate is small enough.

The damping rate of an electron propagating in a nonrel-
ativistic ~NR! plasma was computed almost 40 years ago by
Quinn and Ferrell@2,3#. At first sight, this damping rate is
infinite, due to the singular behavior of the Rutherford cross
section at small angles. However, Quinn and Ferrell were
able to obtain a finite result because the Coulomb interaction
is screened in a plasma~Debye screening!, and in the case of
a degenerate plasma, they showed that the damping rate is
proportional to («p2«F)

2, where«p5p2/2m is the NR ki-
netic energy and«F the Fermi energy, when«p is slightly
larger than«F . The damping rate remains finite for a non-
zero temperatureT: only the value of the Debye screening
length is modified.

It is interesting to extend the calculation of the damping
rate to the case of relativistic plasmas: one may have in mind
either electromagnetic~QED! plasmas, such as found in
white dwarves or in the core of nascent neutron stars, or
chromodynamic~QCD! plasmas such as the quark-gluon
plasma which is believed to be formed for large enough val-
ues of the temperatureT and/or the chemical potentialm.
The NR results are not easily transposed to the relativistic
case because the exchange of magnetic~or transverse! pho-
tons in QED or of magnetic gluons in QCD becomes impor-
tant, while in the NR case it is suppressed by powers of
(v/c)2 with respect to the exchange of electric~or longitudi-
nal! gauge bosons, and is usually neglected. These magnetic
photons, or gluons, give rise to severe infrared~IR! diver-
gences which are not easily cured because there is no static
magnetic screening analogous to Debye screening in the
electric case, but only a weaker dynamical screening@4#. In
many cases, this dynamical screening is sufficient to remove
the IR divergences@5,6#, but it has been known for some
time that it cannot solve easily the IR problem of the damp-

ing rate @7#, at least for nonzeroT. In a recent paper@8#,
Blaizot and Iancu were nevertheless able to derive a finite
result in theTÞ0, m50 case, by using a nonperturbative
approach to resum the leading divergencies. However they
also discovered that the decay law is no longer exponential.

In this work, we address the problem of computing the
damping rate of quasiparticles in degenerate UR plasmas.
For the sake of definiteness, we treat the case of a QED
plasma, but our results may be trivially extended to the QCD
case by substituting to the QED couplinge the QCD cou-
pling g, and by taking into account some color group factors.
In this computation, the basic physical idea is that the colli-
sions of the charged quasiparticle with the particles in the
plasma are governed by photon exchange, and that one must
take into account the fact that the photon propagator is
dressed by the interactions. Actually, this approach is a par-
ticular case of the resummation method proposed by Braaten
and Pisarski@9#, which relies on the properties of the so-
called ‘‘hard thermal loops’’@9,10# or ‘‘hard dense loops’’ in
the degenerate case@11#. Braaten and Pisarski pointed out
the importance of a hierarchy of scales, based on the exis-
tence of a ‘‘hard scale’’ of orderT ~or m), and a ‘‘soft
scale’’ of ordereT ~or em), with e!1. When soft scales are
involved, one must use dressed~or resummed! propagators
and vertices instead of the bare ones in a perturbative expan-
sion. An important feature of the resummation method is that
it leads to gauge independent results, due to the gauge inde-
pendence of the hard thermal~or dense! loops.

Our main result is that, in the caseT50, mÞ0, dynami-
cal screening is able to cure the IR divergences of the damp-
ing rate due to magnetic photon exchange in UR plasmas;
however, in contrast to the NR case, the damping rate is
dominated by magnetic exchange and is proportional to
(E2m), whereE is the relativistic energy of the quasiparti-
cle, while electric photon exchange gives a contribution pro-
portional to (E2m)2, as in the NR case, which may be, in
fact, obtained as a low velocity limit of the relativistic one.
Note, however, that, by convention, energies and chemical
potentials differ by the rest mass of the particle in the NR
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and relativistic cases. Note also that we use a system of units
where\5c5kB51, and that we follow closely the notation
of @1#.

Let us now proceed to the derivation of our result. We
assume that the quasiparticle energyE is hard~this is auto-
matically ensured in the case of a degenerate plasma!. The
damping rateg(E) is given by the imaginary part of the
quasiparticle self-energyS @12#; more precisely:

g~E!52
1

4E
Tr@ ImS~p01 ih ,p!~P” 1m!#U

p05E

, ~1!

wherem is the electron mass,E5(p21m2)1/2,h→01, and
we have used the, by now, standard notationPm5(p0 ,p);
the lowest order graph forS is drawn in Fig. 1. We are
mainly interested in the contribution of soft photons, so that
the electron-photon vertex and the electron propagator may
be replaced by the bare ones@1,9#: only the photon propaga-
tor need be dressed.

We perform the calculation ofS in the imaginary time
formalism; then the~free! electron propagator is given by

Sf~ ivn ,k!5E
2`

` dk0
2p

~K” 1m!r f~K !

k02 ivn2m
~2!

with

r f~K !52p«~k0!d~k0
22Ek

2!. ~3!

In Eq. ~2!, vn5p(2n11)T is a fermionic Matsubara fre-
quency and«(k0)5k0 /uk0u. The ~resummed! photon propa-
gatorDmn(Q) is written in the Coulomb gauge

Dmn~Q!5dm0dn0DL~Q!1~d i j2q̂i q̂ j !DT~Q!, ~4!

where the spectral representations ofDT andDL read

DL~ ivs ,q!5E
2`

` dq0
2p

rL~q0 ,q!

q02 ivs
2

1

q2
, ~5a!

DT~ ivs ,q!5E
2`

` dq0
2p

rT~q0 ,q!

q02 ivs
. ~5b!

In Eqs. ~4! and ~5!, q̂i5qi /uqu andvs52psT is a bosonic
Matsubara frequency. The explicit expressions of the longi-
tudinal and transverse spectral functionsrL andrT are found
by taking the imaginary parts ofDL andDT ; this gives, for
massless electrons,

rL~q0 ,q!52 ImDL~q01 ih,q!

52 Im
21

q213vP
2 @12~x/2!ln~x11!/~x21!#

,

~6a!

rT~q0 ,q!52 ImDT~q01 ih,q!52 Im
21

~q01 ih!22q22~3/2!vP
2 $x21@x~12x2!/2# ln~x11!/~x21!%

, ~6b!

wherex5(q01 ih)/q, vP5M /A3 is the plasma frequency
which is related to the Debye massM given by

M25
e2

p2 S m21
p2T2

3 D . ~7!

The diagram in Fig. 1 is now evaluated in the imaginary
time formalism@P5( ivn ,p)#

S~P!5e2T(
s
E d3q

~2p!3
gmSf@ i ~vn2vs!,p2q#

3gnDmn~ ivs ,q!. ~8!

The sum over Matsubara frequencies is easily performed
when one plugs in Eq.~8! the spectral representations~2! and
~5! of the propagators. Taking the imaginary part ofS after
the analytical continuationivn1m→p01 ih to Minkowski
space, and taking the trace in Eq.~1!, one finds, for the
damping rate, withk5p2q,

g~E!5
pe2

E E d3q

~2p!3
E

2`

` dk0
2p

r f~k0!E
2`

` dq0
2p

@11n~q0!

2ñ~k0!#d~E2k02q0!$@p0k01p•k1m2#rL~q0 ,q!

12@p0k02~p•q̂!~k•q̂!2m2#rT~q0 ,q!%. ~9!

In Eq. ~9!, n and ñ are Bose-Einstein and Fermi-Dirac dis-
tribution functions (b51/T):

n~q0!5
1

ebq021
, ñ~k0!5

1

eb~k02m!11
. ~10!

Equation~9! could have also been derived from kinetic
theory @14#, using standard identities between the distribu-
tion functions~10!. The casek0,0 @see Eq.~3!# corresponds
in kinetic theory toe12e2 annihilation, which is not IR
singular and is even absent in theT50 case. We thus con-

FIG. 1. Resummed one-loop self-energy of the fermion.
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centrate on thek0.0 case, which corresponds in kinetic
theory to e22e2 scattering. Equation~9! holds for any
value ofm, T, andm. For the sake of simplicity, we shall
restrict ourselves to them50 andT50 case. In theT50
limit, @11n(q0)#5Q(q0) and ñ(k0)5Q(m2E1q0),
whereQ is the step function. Theq0 integration is then
limited by

0<q0<E2m. ~11!

This is also easily seen in kinetic theory, since, due to Pauli
blocking, the quasiparticle can only scatter into states with
energyEup2qu such thatEup2qu<E and, furthermore, the par-
ticle on which it scatters must leave the Fermi sea, so that
Eup2qu>m. Note also that the exchanged photon must be
spacelike:Q2,0, so that the pole part ofrL,T @1# does not
contribute.

Now, the IR singular contribution comes from small val-
ues of the photon momentumq; in order to isolate this kine-
matical region, we follow Braaten and Yuan@13# and intro-
duce an intermediate cutoffq* such thatem!q*!m. The
‘‘soft’’ region is defined by q,q* , the ‘‘hard’’ one by
q.q* : in this latter region we may take theM250 limit in
the denominators of the spectral functionsrL,T in Eq. ~9! @1#.
Let us concentrate on the soft region, where we can make the
approximation

Eup2qu5E2q0.E2p̂•q. ~12!

Keeping only the leading terms in Eq.~9!, we find the
contribution from the soft region tog(E):

gsoft~E!.
e2

2 E d3q

~2p!3
@Q~q0!2Q~m2E1q0!#Q~q*2q!

3$rL~q0 ,q!1~12cos2u!rT~q0 ,q!%, ~13!

with q05p̂•q5qcosu. It is convenient to use as integration
variablesq0 andq, the integration domainD being

D:$0<q0<E2m; q0<q<q* %. ~14!

Then Eq.~13! becomes (x5q0 /q)

gsoft~E!.
e2M2

4p E
D
dq0dqH q0

2@q21M2Q1~x!#21M4p2x2/2

1
q0

@2 q21M2Q2~x!#21M4p2x2/4 J , ~15!

where

Q1~x!512
x

2
ln

11x

12x
, Q2~x!52Q1~x!1

1

12x2
.

~16!

Note that in the absence of screening@namely, by setting
M50 in the denominators of Eq.~15!#, one would get IR
divergent integrals. In general, the integrals in Eq.~15! must
be computed numerically. Fortunately, it is possible to derive
an accurate analytical result in the physically interesting case
(E2m)!M . Indeed, it is easy to check that in this region
one may expand the denominators in Eq.~15! in powers of

q0. Keeping only the leading terms, the first denominator in
Eq. ~15!, corresponding to longitudinal photon exchange,
may be replaced by (q21M2), which leads to Debye screen-
ing. The second denominator in Eq.~15!, corresponding to
transverse photon exchange, may be replaced by

4 q41
p2M4x2

4
18M2q2x2. ~17!

It can be shown that the last term in Eq.~17! gives a sub-
dominant contribution, while the second term leads to the
usual form of dynamical screening@4–6#. Computing sepa-
rately the longitudinal and transverse contributions, we find,
with u*5(q* /M )2,

gsoft
L ~E!.

e2~E2m!2

32pM E
0

u* du

Au~u11!2

.
e2M2

16p
~E2m!2S p

4M3 2
1

3q* 3D , ~18!

gsoft
T ~E!.

e2M

4p3E
0

u*
duAulnS 11

p2~E2m!2

16M2u3 D
.

e2

24p
~E2m!1

e2M2

32p
~E2m!2S 2

1

3q* 3D ,
~19!

where we have only kept the leading terms in (E2m) and
1/q* .

The total contribution of the soft region to the decay rate
is obtained by adding the longitudinal and transverse contri-
butions to get

gsoft~E!.
e2

24p
~E2m!1

e2M2

32p
~E2m!2S p

2M3 2
1

q* 3D .
~20!

The transverse contribution dominates over the longitudinal
one for small values of (E2m).

We finally evaluate the contribution from the hard region.
Since we are only interested in extracting the leading depen-
dence in the fermionic energy of the decay rate, we will use
a simple approach to compute the hard contribution. It is
possible to recover bare or unresummed perturbation theory
to order e4 by using the spectral densities~6! neglecting
M2 in the denominators@1#. This is only valid in the momen-
tum transfer regionq.q* . Therefore one finds for the hard
contribution to the decay rate

ghard~E!.
e2M2

8p E
q*

qmax
dqE

0

E2m

dq0H q0q4 1
q0
2q4 J . ~21!

After a straightforward computation one finds

ghard~E!.
e2M2

32p
~E2m!2S 1

q* 3
2

1

qmax
3 D , ~22!

whereqmax.m is the maximum momentum transfer that it is
allowed by kinematics.
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The total decay rate is found just by adding the soft and
hard contributions. Then one finds that the dependence on
the scaleq* cancels, as it should. The result is

g~E!.
e2

24p
~E2m!1

e2M2

32p
~E2m!2S p

2M3 2
1

qmax
3 D .

~23!

In conclusion, we have been able to compute the damping
rate of a quasiparticle in a degenerate ultrarelativistic plasma,
when the fermion energyE is just above the Fermi energy
m. This damping rate is dominated by transverse photon~or
gluon! exchange and proportional to (E2m). This behavior
arises from the combined effect of dynamical screening and
phase space restrictions due to Pauli blocking. The lifetime
t is related tog by t;1/g, and therefore the lifetime be-

comes infinite as the fermion energy approaches the Fermi
energy, so that the Fermi sea is stable.

After this work was completed, we learned that our results
have been obtained independently by J.-Y. Ollitrault and B.
Vanderheyden; it was also pointed out to us by Ph. Nozie`res
that the (E2m) behavior of the damping rate was obtained
in a different context by Holstein, Pincus and Norton@15#.
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