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A way of testing thepp predictions of chiral perturbation theory against experimental data is to use
dispersion relations to continue experimental information into the subthreshold region where the theory should
unambiguously apply. Chell and Olsson have proposed a test of the subthreshold behavior of chiral expansions
which highlights potential differences between the standard and the generalized forms of the theory. We
illustrate how, with current experimental uncertainties, data cannot distinguish between these particulardis-
criminatorycoefficients despite their sensitivity. Nevertheless, the Chell-Olsson test does provide a consistency
check of the chiral expansion, requiring that theO(p6) corrections to thediscriminatorycoefficients in the
standard theory must be;100%. Indeed, some of these have been deduced from the newO(p6) computations
and found to give such large corrections. One can then check that theO(p8) corrections must be much smaller.
We conclude that this test, like others, cannot distinguish between the different forms of chiral symmetry
breaking embodied in the alternative versions of chiral perturbation theory without much more precise experi-
mental information near threshold.@S0556-2821~97!01005-9#

PACS number~s!: 12.39.Fe

I. INTRODUCTION

The fact that scattering amplitudes are analytic functions
means that their behavior at different energy scales is related.
Chiral dynamics controls low energy pion reactions and, for
instance, requires that the amplitude forp1p2→p0p0 has a
line of real zeros below threshold. This on-shell manifesta-
tion of the Adler zero within the Mandelstam triangle, in
turn, demands that thep1p0→p1p0 amplitude must grow
asymptotically. Such relationships between the behavior of
scattering amplitudes at different energies are naturally em-
bodied in dispersion relations. These can be used as a way of
expressing subthreshold amplitudes as integrals over physi-
cal region absorptive parts, to be determined either experi-
mentally or theoretically@1#. Chiral perturbation theory
(xPT! allows the same subthreshold quantities to be ex-
pressed directly in terms of the parameters of the chiral La-
grangian. There are two realizations ofxPT: Standard
~SxPT! @2# and generalized~GxPT! @3#. In SxPT there are
two expansion parameters: the momentum squared of an
emitted pion and the pion mass characterizing the explicit
breaking of chiral symmetry. In GxPT the quark condensate
matrix element is regarded as an additional dimensionful pa-
rameter, in terms of which the standard chiral expansion is
reordered. At any finite order either of SxPT and GxPT may
have an expansion with smaller higher order corrections.

The predictions ofxPT can be compared with the evalu-
ation of dispersion relations in two different ways, which
depend on the inputs to the dispersive integrals. In an ideal-
ized testA, the absorptive parts are input wholly from ex-
periment, then the comparison of the subthreshold expansion
coefficients with the predictions ofxPT tests the efficacy of
the chiral expansion to some given order. Alternatively, in
testB the absorptive parts are input fromxPT ~at least at low
energies!. Then the comparison tests that the amplitudes of

xPT satisfy the appropriate analyticity and crossing proper-
ties, satisfy unitarity at least perturbatively, and are consis-
tent with experiment for energies beyond wherexPT applies.
We will consider these two inequivalent tests in turn.

In 1994, Olsson@4# presented the first of these as a ‘‘strin-
gent test’’ of the chiral expansion schemes, initially reported
in the thesis of Chell. Guided by experimental data, Chell
and Olsson evaluated the subthreshold expansion coefficients
~to be formally defined in Sec. II! using dispersion relations
and compared these with the predictions ofxPT in both its
standard and generalized forms. While many coefficients
evaluated from experiment agreed with both versions of
xPT, several evaluated from experiment were found to be in
far better agreement with GxPT ~with smaller quark conden-
sate! typically by a factor of 2. The results of this test are so
intriguing that this issue is worth investigating further.

A number of questions immediately come to mind:~i!
does the better agreement with GxPT depend on the choice
of experimental input?~ii ! what is particular about the coef-
ficients that are the basis of this discriminatory test? These
questions, among others, are what we answer in this paper.
In Sec. II, we define the subthreshold expansion and the dis-
persive representation of the corresponding coefficients. In
Sec. III we give the explicit evaluation of these coefficients
at O(p4) xPT in its two forms. In Sec. IV we compute
dispersively these same coefficients using a flexible param-
etrization of low energypp scattering. We then compare the
dispersive and explicit evaluations of the subthreshold coef-
ficients, which allows us to discuss the accuracy of the
O(p4) chiral expansions. We shall see, however, that test
A is inconclusive because of the sizable experimental uncer-
tainties in the near threshold amplitudes. In Sec. V we turn to
testB, which checks the consistency of the chiral expansions
at any given order. In Sec. VI we present our conclusions.
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II. DEFINING THE TESTS

The predictions ofxPT can be verified in two ways. Ei-
ther the predictions can be continued into the physical re-
gions, where data exist, but then one is uncertain about what
energy regime is really appropriate for a given order in
xPT, or, by using dispersion relations, experimental data can
be continued below threshold, wherexPT should unambigu-
ously apply. The latter is what we do here by considering the
pp amplitude in the Mandelstam triangle.

To this end, we consider the amplitudes with definite iso-
spin in thet channel:AI t(s,t,u). From these we construct the
functionsF̃ I t(n,t), where

F̃ I t~n,t !5AI t~s,t,u! for I t50,2 ~1!

and

F̃ I t~n,t !5AI t~s,t,u!/n for I t51 ~2!

with

n5
s2u

4m2 and s1t1u54m2 ~3!

andm5mp , the pion mass.1 The three amplitudesF̃ I t are
symmetric undern→2n.

Now, rather than work with these amplitudes throughout
the Mandelstam triangle, it is more convenient to study their
Taylor series expansion about the subthreshold pointt50,
n50 ~i.e., s5u52m2):

F̃ I t~n,t !5(
k,m

Fk,m
~ I t! n2ktm, ~4!

and to study the coefficientsFk,m
(I t) .

Regge theory leads us to expect that forunu→` at fixed
t,

F̃ I t50~n,t !;naP~ t !, where aP~0!.1.08,

F̃ I t51~n,t !;nar~ t !21, where ar~0!.0.5, ~5!

F̃ I t52~n,t !;naE~ t !, where aE~0!,0.

Consequently,F̃ I t51,2 satisfy unsubtracted dispersion rela-
tions, while that for F̃ I t50 requires one subtraction for
t<4m2. Writing FI t(s,t)[F̃ I t(n,t) we have

FI t~s,t !5
1

pE4m2

`

ds8S 1

s82s
1

1

s82uD ImFI t~s8,t !, ~6!

for I t51,2, while

FI t50~s,t !5FI t50~2m22t/2,t !

1
1

pE4m2

`

ds8S 1

s82s
1

1

s82u
2

2

s822m21t/2D
3ImFI t50~s8,t !. ~7!

We are primarily interested in the subthreshold coefficients,
Fk,m
(I t) , for which the dispersive integral is dominated by the

low energy absorptive parts. ForI t51,2, this means
k1m>1, while for I t50 to avoid the dependence on the
subtraction term in Eq.~7! also requires at least one deriva-
tive with respect ton2, i.e., k>1. We, therefore, consider

F1,0
~ I t!5

8m4

p E
4m2

` ds8

~s822m2!3
ImFI t~s8,0!, ~8!

m2F1,1
~ I t!5

4m6

p E
4m2

` ds8

~s822m2!3S 2 ]

]t
ImFI t~s8,t !U

t50

2
3

s822m2ImF
I t~s8,0! D , ~9!

F2,0
~ I t!5

32m8

p E
4m2

` ds8

~s822m2!5
ImFI t~s8,0! ~10!

for I t50,1,2, and

m2F0,1
~ I t!5

m2

p E
4m2

` ds8

s822m2 S 2 ]

]t
ImFI t~s8,t !U

t50

2
1

s822m2ImF
I t~s8,0! D , ~11!

m4F0,2
~ I t!5

m4

p E
4m2

` ds8

s822m2 S ]2

]t2
ImFI t~s8,t !U

t50

2
1

s822m2

]

]t
ImFI t~s8,t !U

t50

1
1

2~s822m2!2
ImFI t~s8,0! D ~12!

for I t51,2.
These form the basis of the Chell-Olsson tests in the

forms previously mentioned. Either we input the experimen-
tal data for thepp amplitudes in the dispersive integrals to
determine the subthreshold coefficients~testA), or we input
thexPT amplitudes to do so~testB).2

III. EXPLICIT EVALUATION
OF SUBTHRESHOLD COEFFICIENTS

We next compute the subthreshold coefficients, defined
by Eq. ~4!, in standard and generalizedxPT based on the

1Note that this definition ofn differs from that of Chell and Ols-
son, who usen5(s2u)/4m.

2Of course, test B can only be carried out if the bulk of the con-
tribution to the dispersive integrals comes from the very low energy
region wherexPT safely applies. As we will see, this is the case for
the so calleddiscriminatorycoefficients.
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formulas of Refs.@2,3# for the O(p4) pp amplitudes. We
obtain the following.

SxPT
I t50:

F1,0
~0!5

1

18 432p3 S m

Fp
D 4@4762183p196~ l̄ 114l̄ 2!#,

~13!

m2F1,1
~0!5

1

8192p3 S m

Fp
D 4@88261p#, ~14!

F2,0
~0!5

1

24 576p3 S m

Fp
D 4@6082135p#, ~15!

I t51:

F1,0
~1!5

7

18 432p3 S m

Fp
D 4@813p#, ~16!

m2F0,1
~1!5

1

36 864p3 S m

Fp
D 4@76287p196~ l̄ 22 l̄ 1!#,

~17!

m2F1,1
~1!5

1

73 728p3 S m

Fp
D 4@64293p#, ~18!

F2,0
~1!5

1

368 640p3 S m

Fp
D 4@512175p#, ~19!

m4F0,2
~1!5

1

163 840p3 S m

Fp
D 4@328245p#, ~20!

I t52:

F1,0
~2!5

1

18 432p3 S m

Fp
D 4@51p276196~ l̄ 11 l̄ 2!#, ~21!

m2F0,1
~2!5

1

32p S m

Fp
D 2H 211

1

1152p2 S m

Fp
D 2

3@130139p2192l̄ 22144l̄ 4#J , ~22!

m2F1,1
~2!5

21

8192p3 S m

Fp
D 4@8119p#, ~23!

F2,0
~2!5

1

24576p3 S m

Fp
D 4@32127p#, ~24!

m4F0,2
~2!5

1

491520p3 S m

Fp
D 4@160~ l̄ 115l̄ 2!2468275p#.

~25!

In Eqs. ~13!–~25! l̄ 1 , l̄ 2, and l̄ 4 are effective coupling
constants that appear in the polynomial part of theO(p4)
chiral Lagrangian in SxPT @2#.

GxPT
I t50:

F1,0
~0!5

m4

9
~120a0116b0!1

3b2

p~96pFp
2 !2

3H ~822p!k0
21S 102 5

2
p Dk2

218pm2k0

110pm2k21~11214p!m4J , ~26!

m2F1,1
~0!5

3

8p

b2

~96pFp
2 !2

$~32212p!k0
21~40215p!k2

2

264m2k0280m2k22~120p196!m4%, ~27!

F2,0
~0!5

1

8p

b2

~96pFp
2 !2

$~128236p!k0
21~160245p!k2

2

148pm2k0160pm2k21~1152272p!m4%, ~28!

I t51:

F1,0
~1!5

1

4p

b2

~96pFp
2 !2

$~24p264!k0
21~40215p!k2

2

1128m2k0280m2k21~96p2128!m4%, ~29!

m2F0,1
~1!5

4

3
m4b01

b2

p~96pFp
2 !2

3H ~3p212!k0
21

15

8
~42p!k2

2212pm2k0

1
15

2
pm2k22~2016p!m4J , ~30!

m2F1,1
~1!5

1

16p

b2

~96pFp
2 !2

$~9p232!~8k0
225k2

2!

112pm2~5k228k0!116m4~3p228!%,

~31!

F2,0
~1!5

1

80p

b2

~96pFp
2 !2

$~45p2128!~8k0
225k2

2!

1128m2~8k025k2!164m4~15p232!%, ~32!

F0,2
~1!5

3

320p

b2

~96pFp
2 !2

$5~3p28!~8k0
225k2

2!

180m2~8k025k2!1768m4%, ~33!

I t52:

F1,0
~2!5

8

9
m4~6a02b0!1

3b2

4p~96pFp
2 !2

$~42p!~8k0
21k2

2!

14pm2~8k01k2!164~11p!m4%, ~34!
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m2F0,1
~2!52

m2

3
b22

8

9
m4~3a01b0!2

bm2

32pFp
2

1
3b2

p~96pFp
2 !2

H ~22p!k0
21

1

8
~62p!k2

2

2m2~k218k0!14~p26!m4J , ~35!

m2F1,1
~2!5

3

16p

b2

~96pFp
2 !2

$~823p!~8k0
21k2

2!

216m2~8k01k2!296~21p!m4%, ~36!

F2,0
~2!5

1

16p

b2

~96pFp
2 !2

$~3229p!~8k0
21k2

2!

112pm2~8k01k2!1288pm4%, ~37!

m4F0,2
~2!5

m4

6
~6a01b0!1

3

320p

b2

~96pFp
2 !2

$40~42p!k0
2

1~3625p!k2
21160pm2k0120~161p!m2k2

11280m4%. ~38!

In Eqs. ~26!–~38! a0 , b0, andb2 are parameters that de-
pend ona, b, and subtraction constants in the dispersive
analysis of Sternet al. @3#, while

k08S 5a

6b
2
4

3Dm2, k282S 2a

3b
1
4

3Dm2. ~39!

As an aside, we note that the subthreshold coefficients,
Eq. ~4!, are not, in fact, independent. While their definition
embodies thes2u symmetry of the amplitudes~as inpK or
pN scattering!, the pp process actually has three-channel
crossing. This means that the three isospin amplitudes can
each be written in terms of one function, e.g., the Chew-
Mandelstam invariant amplitudeA(s,t,u). This imposes
conditions among theFk,m

(I t) . For instance,

F0,0
~2!5

1

3
~F0,0

~0!2F0,0
~2!!1

4

3
~F0,1

~0!2F0,1
~2!!1

8

3
~F0,2

~0!2F0,2
~2!!

1
1

6
~F1,0

~0!2F1,0
~2!!1

1

24
~F2,0

~0!2F2,0
~2!!

1 (
k,m.2

ck,m~Fk,m
~0! 2Fk,m

~2! !, ~40!

F0,1
~2!52

1

3
~F0,1

~0!2F0,1
~2!!2

4

3
~F0,2

~0!2F0,2
~2!!2

1

4
~F1,0

~0!2F1,0
~2!!

2
1

8
~F2,0

~0!2F2,0
~2!!1 (

k,m.2
dk,m~Fk,m

~0! 2Fk,m
~2! !. ~41!

In SxPT,m2F0,1
(2)522.631022, while thek1m<2 terms in

Eq. ~41! give 22.731022. In contrast forF0,0
(2) Eq. ~40!,

SxPT gives 5.031022, whereas thek1m<2 terms give
6.631022. So these relationships from three-channel cross-

ing are not, in practice, very useful, since they require con-
nections between a large number of coefficients: relation-
ships that are, of course, automatically satisfied by any
crossing symmetric representation, like that ofxPT.

Of the coefficients listed in Eqs.~13!–~25!, we see in
SxPT that, apart fromF1,0

(0,2) , F0,1
(1) , F0,1

(2), andF0,2
(2), the others

do not depend on thel̄ i , which specify the polynomial
~resonance generated! O(p4) corrections to the chiral La-
grangian. Contrastingly@2#, the I50 S-wave scattering
length

a0
05

7m2

32pFp
2 H 11

5

84p2 S m

Fp
D 2F l̄ 112l̄ 22

3

8
l̄ 3

1
21

10
l̄ 41

21

8 G J ~42!

on which, as we shall see, the dispersive integrals crucially
depend, does involve thel̄ i . In GxPT atO(p4), the coeffi-
cients all depend ona,b, as doesa0

0, Eqs.~26!–~39! @5#, in
the following way:

a0
05

m2

96pFp
2 H ~5a116b!S 11

m2

48p2Fp
2 ~5a116b! D

160S m

Fp
D 2~l112l2!J , ~43!

where l1 and l2 can be written in terms of thel̄ i ’s of
SxPT as

l15
1

48p2 S l̄ 12
4

3D , l25
1

48p2 S l̄ 22
5

6D . ~44!

We now evaluate the subthreshold coefficientsFk,m
(I t) using

the following set of parameters:3

l̄ 1521.1, l̄ 25 5.7,
~45!

l̄ 35 2.9, l̄ 45 1.6,

for SxPT. As is well known, if a5b51 the O(p2)
GxPT is identical to its standard form. This remains approxi-
mately true at higher orders ifa'1, b'1. In GxPT, while
b is always close to 1,a is roughly between 1 and 4 de-
pending on the magnitude of the quark condensate. Since we
want to compare and, in particular, contrast the two versions
of xPT, we here take GxPT to have~see footnote 3!

a53.1, b5 0.93,

a0m
45 5.531024, b0m

45 3.531023, ~46!

b2m
25 1.631023.

In columns 2 and 3 of Table I, we list the values of the
subthreshold coefficients determined by SxPT and GxPT as

3These are the values of the parameters for SxPT and GxPT
quoted by Olsson in his talk at the MIT workshop@4#.
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just described. Ignoring the final column for the moment, we
see that the values forF1,0

(0) , m2F1,1
(0) , F2,0

(0) , F1,0
(2) , and

m4F0,2
(2), are in close agreement regardless of which version

of xPT is used. However, each ofF1,0
(1) , m2F1,1

(1) , F2,0
(1) ,

m4F0,2
(1) , m2F1,1

(2) F2,0
(2) are predicted to differ by a factor of 2.

Consequently, one may expect that if we can evaluate these
from experiment, data could distinguish between the two
versions ofxPT, at least toO(p4). It is to the evaluation of
thesediscriminatorycoefficients that we now turn.

IV. EVALUATION OF THE DISPERSIVE INTEGRALS:
TEST A

The evaluation of the subthreshold coefficients according
to testA consists of inputting experimental data for thepp
amplitudes with definite isospin in thet channel into the
dispersive integrals for the subthreshold coefficients, Eqs.
~8!–~12!, as Chell and Olsson@4# did. However the experi-
mental information in the very low energy region near
threshold is still very poor@6#. Moreover, as we shall see, it
is precisely this energy regime that is most important for the
evaluation of the subthreshold coefficients. Consequently,
we perform testA using a parametrization of thepp ampli-
tudes that reproduces the major features of the experimental
data, as a way of restricting the uncertainties.

We calculate the dispersive integrals of Eqs.~8!–~12! by
subdividing the energy range,E, where s5E2, into three
regions: ~I! 2m<E<E1, the near threshold region;~II !
E1,E<E2, the intermediate energy region;~III ! E2,E, the
high energy region.E1 is 0.8–0.9 GeV, whileE2 is chosen
so thatE2

2 is halfway between ther3(1690) andf 4(2050)
resonance squared masses, in keeping with finite energy
sum-rule phenomenology, i.e.E251.85 GeV. As we shall
see, for almost all the integrals of Eqs.~8!–~12!, region III,
where Regge behavior of the form given in Eqs.~5! applies,
gives a negligible contribution. We use the Regge residues
determined in Ref.@7#. In region II, the f 2(1270) and
r3(1690) contributions are included in the narrow resonance
approximation and are also, for the most part, small. Region

I with E150.8–0.9 GeV generally dominates. In this region,
only S and P waves need to be included. In terms of the
phase shifts,d l

I (s), we have

ImFI t50~s,t !5A s

s24m2H 13sin2d00~s!

1 3S 11
2t

s24m2D sin2d11~s!1
5

3
sin2d0

2~s!J ,
ImFI t51~s,t !5

4m2

2s1t24m2A s

s24m2H 13sin2d00~s!

1
3

2 S 11
2t

s24m2D sin2d11~s!2
5

6
sin2d0

2~s!J ,
~47!

ImFI t52~s,t !5A s

s24m2H 13sin2d00~s!

2
3

2 S 11
2t

s24m2D sin2d11~s!1
1

6
sin2d0

2~s!J .
In the low energy region the phase shifts may usefully be
expanded in powers of momenta by

d l
I ~s!5S s24m2

4m2 D l 11/2FalI 1bl
I S s24m2

4m2 D1 . . . G ,
~48!

where al
I are the scattering lengths andbl

I the effective
ranges. This near threshold expansion is naturally embodied
in the following flexibly convenient representation of the
phase shifts@8# in terms of theK matrix:

K l
I [A s

s24m2tand l
I ~s!

5S s24m2

4m2 D l H alI 1b̃l
I S s24m2

4m2 D J 4m22sl
I

s2sl
I ,

b̃l
I 5bl

I 2al
I S 4m2

sl
I24m2D 1~al

I !3d l 0 , ~49!

where, as already mentioned, theal
I , bl

I , andsl
I are fixed to

give a parametrization consistent with experiment and with
xPT in its appropriate version. Other parametrizations have
been tried and these alter our numbers little — this is a
consequence of the integrals being dominated by the near
threshold absorptive parts. To illustrate this, we show in Fig.
1, the integrands forFk,m

(I t) as functions of energyE5As for
two different values of theI50 S-wave scattering length
a0
0. One sees that the low energy region largely determines
their dispersive evaluation, except forF0,1

(1,2) .
In Table II, we present the contributions to the dispersive

integrals in regions I, II, and III. In region I theS-wave
parameters have been fixed to those determined by Schenk
@8#, which represent the well-known experimental results re-

TABLE I. Comparison of the predictions inO(p4) SxPT and
GxPT for those subthreshold coefficients that we shall see, Sec. IV,
can be reliably calculated dispersively, together with the results of
Table II.

Coefficient
SxPT
O(p4)

GxPT
O(p4)

Dispersive result
~Table II!
a0
050.20

F1,0
(0) 1.7631022 1.7231022 (1.660.2)31022

m2F1,1
(0) 22.0731023 22.2131023 2(2.160.3)31023

F2,0
(0) 1.2331023 1.4231023 (1.760.3)31023

F1,0
(1) 1.0831023 2.2231023 (2.560.4)31023

m2F1,1
(1) 20.5131023 21.1831023 2(1.160.2)31023

F2,0
(1) 3.3231024 7.8831024 (6.861.0)31024

m4F0,2
(1) 1.8731024 4.0131024 (4.860.8)31024

F1,0
(2) 4.6731023 4.3331023 (5.160.8)31023

m2F1,1
(2) 21.3531023 21.9131023 2(2.160.3)31023

F2,0
(2) 0.7831023 1.2631023 (1.360.2)31023

m4F0,2
(2) 1.2331023 1.2731023 (1.160.2)31023
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FIG. 1. Integrands of the dispersion relations forFk,m
(I t) as in Eqs.~8!–~12!, in energy region I as a function ofAs evaluated using Eqs.

~49! and ~47! with a0
050.20 ~solid lines! anda0

050.27 ~dashed lines!. The ordinate is given in arbitrary dimensionless units.

TABLE II. Contribution to the subthreshold coefficients Eqs.~8!–~12! from the three different energy
regions as explained in the text. Typical uncertainties are 15%, 10%, 25%, respectively, in these three
contributions.

Coefficient Region I Region II Region III Total

F1,0
(0) 1.5631022 3.4631024 2.5431024 1.631022

m2F1,1
(0) 22.1931023 2.0931025 1.6331025 22.131023

F2,0
(0) 1.6731023 1.9231027 1.1031028 1.731023

F1,0
(1) 2.5231023 6.9631026 5.3031027 2.531023

m2F0,1
(1) 21.4631023 9.5731024 2.0031023 Unreliable

m2F1,1
(1) 21.0831023 4.0531027 3.6531028 21.131023

F2,0
(1) 6.7931024 4.3431029 3.81310211 6.831024

m4F0,2
(1) 3.8631024 8.7831026 9.1231025 4.831024

F1,0
(2) 4.8831023 2.2931024 ;1025 5.131023

m2F0,1
(2) 23.9831022 1.3931022 ;1022 Unreliable

m2F1,1
(2) 22.1231023 1.2531025 ;1026 22.131023

F2,0
(2) 1.2531023 1.7031027 ;1028 1.331023

m4F0,2
(2) 1.1331023 21.0031025 ;1025 1.131023
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FIG. 1 ~Continued!.
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FIG. 1 ~Continued!.
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viewed in@6# and match one loop SxPT near threshold, i.e.,
we take m5139.6 MeV, a0

050.20, b0
050.24,

s0
05(0.865 GeV)2, a0

2520.042, b0
2520.075,

s0
252(0.685 GeV)2. For theP wave we takea1

150.037,
b1
150.005, ands1

15(0.77 GeV)2, the squaredr mass. The
uncertainties are typically 10% in region II, 25% in region III
and, even keepinga0

0 fixed at itsO(p4) xPT value,;15%
in region I. With these uncertainties, the dispersive results of
Table II are added as the last column in Table I. One now
sees that the coefficients for which SxPT and
GxPT predicted a common value, agree well with their dis-
persive evaluation from experiment. In contrast, the so-called
discriminatorycoefficients, that generally differ by a factor
of 2 atO(p4), are far closer to the predictions of GxPT ~with
a53.1,b50.93) than with SxPT. This is at first sight rather
surprising since the input absorptive parts have been explic-
itly designed~by Schenk@8#! to matchO(p4) SxPT. In con-
trast, the coefficients in GxPT to O(p4) are in very good
agreement with the same dispersive evaluation. If this were
the whole story then this would indicate that low orders in
GxPT more rapidly embody key resonance contributions.

However, let us return to the evaluation of thediscrimi-
natory coefficients from experimental information. In Fig. 1
we see that all thediscriminatory coefficients are entirely
dominated by the very near threshold region below 450 MeV
or so and though the values given in column fourth of Table
I have 15% errors, this is assuming a particular value of the
I50 S-wave scattering length,a0

050.20 in Eq.~49!. If we
fold in the real uncertainties from the Geneva-SaclayKe4
results@9# on the near threshold phase shifts, then one would
readily see that for these coefficients the present experimen-
tal uncertainties are more than 100%@6# ~compare the two
curves in Fig. 1! encompassing both SxPT and what we call
GxPT in Table I. Thus experiment cannot presently distin-
guish between these differing versions ofxPT and so test
A is inconclusive. Nonetheless, the Chell-Olsson test in form
B does tell us that theO(p6) corrections in SxPT must be
large, as we discuss next.

V. WHEN IS THE CHELL-OLSSON TEST AN IDENTITY
„TEST B…?

For the discriminatory coefficients, the dispersive inte-
grals are controlled by the near threshold region where we

would expectxPT should itself be applicable. Then these
relations should be an identity, since the amplitudes ofxPT
satisfy the crossing and analyticity properties that Eqs.~6!
and ~7! embody. Thus if we evaluate the subthreshold coef-
ficients directly fromxPT in either form atO(p4), for ex-
ample, or alternatively input theO(p4) imaginary parts into
the dispersive integrals forFk,m

(I t) , Eqs. ~8!–~12!, the results
should be the same. However, comparing columns 2 and 4 of
Table I, we see that inputting phases with theO(p4)
S-wave scattering length ofa0

050.20 does not reproduce S
xPT. This is becausexPT only satisfies unitarity perturba-
tively. Consistency with theO(p4) subthreshold coefficients
requires theO(p4) imaginary parts be input into the disper-
sive integrals. ThisO(p4) absorptive part is wholly given by
theO(p2) real part, since

Imf l
I
„s,O~p4!…5A12

4m2

s
@Ref l

I
„s,O~p2!…#2. ~50!

Thus the Chell-Olsson test should become an identity, if we
input phases at the appropriate order. Working toO(p4) for
the coefficients, we must input phases atO(p2) for which
a0
050.16 in SxPT ora0

050.23 in our version of GxPT with
a53.1. With these values we obtain the results in Table III.

We now see complete agreement between the dispersive
results and the explicit evaluation~except forF1,0

(2) which
appears to be due to a poorer convergence in the dispersive
evaluation!. The fact that the discriminatory coefficients in
SxPT and GxPT differ by a factor 2 atO(p4) just reflects
the fact that the imaginary parts of the near threshold ampli-
tudes are very nearly proportional to (a0

0)2 and
(0.23/0.16)2'2.1. Moreover, the large change in thedis-
criminatorycoefficients in SxPT between their values in col-
umn 2 of Table III and column 2 of Table I means that the
O(p6) corrections must be large—since inputtingO(p4)
phases in Table I generatesO(p6) coefficients. The recent
two-loop calculation of thepp amplitude by Bijnenset al.
@10# bears this out, as Moussallam has checked.4 In Table IV

4B. Moussallam~private communication!.

TABLE III. Comparison of the results for those subthreshold coefficients that can be reliably calculated
dispersively, witha0

050.16 and 0.23, with their predictions in SxPT and GxPT atO(p4).

Coefficient
SxPT
O(p4)

Dispersive results
a0
050.16

GxPT
O(p4)

Dispersive results
a0
050.23

F1,0
(0) 1.7631022 (1.460.2)31022 1.7231022 (1.460.2)31022

m2F1,1
(0) 22.0731023 2(1.560.3)31023 22.2131023 2(1.860.4)31023

F2,0
(0) 1.2331023 (1.360.3)31023 1.4231023 (1.560.3)31023

F1,0
(1) 1.0831023 (1.560.3)31023 2.2231023 (2.660.4)31023

m2F1,1
(1) 20.5131023 2(0.660.1)31023 21.1831023 2(1.260.3)31023

F2,0
(1) 3.3231024 (3.760.6)31024 7.8831024 (8.260.5)31024

m4F0,2
(1) 1.8731024 (2.060.5)31024 4.0131024 (4.060.4)31024

F1,0
(2) 4.6731023 (2.660.6)31023 4.3331023 (3.960.6)31023

m2F1,1
(2) 21.3531023 2(1.460.2)31023 21.9131023 2(2.060.4)31023

F2,0
(2) 0.7831023 (0.860.1)31023 1.2631023 (1.360.2)31023

m4F0,2
(2) 1.2331023 (1.060.2)31023 1.2731023 (1.160.2)31023
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we give examples of the change atO(p6), for F1,0
(1) and

F1,1
(1) . The self-consistency is now clear after these 100%

corrections.
The fact that theO(p6) I50 S-wave scattering length

differs by 8% from itsO(p4) value in SxPT @10#, allows us
to estimate that thediscriminatorycoefficients will have just
a 17% correction atO(p8) and so the Standard perturbative
expansion is improving.

VI. CONCLUSIONS

The Chell-Olsson test is indeed stringent. However, using
presently available experimental information, it is not able to
distinguish between SxPT and GxPT. This reflects the large
uncertainties in the near thresholdS-wave phases that hope-
fully measurements ofKe4 decays with higher statistics and
smaller systematic uncertainties at DAFNE will improve.

The coefficients in the subthreshold expansion that have
the most potential to distinguish both forms ofxPT, the ones

we have calleddiscriminatory, all have no polynomial
O(p4) corrections in terms of thel̄ i ’s of SxPT. Curiously
enough we have shown that these same coefficients have
;100% corrections atO(p6) and the recent explicit calcu-
lation of Bijnenset al. @10# of the two-looppp amplitude
shows that is, in fact, so. Indeed, these same calculations and
our study allow an estimate of;17% to be made for the
O(p8) corrections to these subthreshold coefficients. Thus
the Chell-Olsson test becomes an identity when applied to
the amplitudes ofxPT. This is because they have the cross-
ing and analytic properties of the full amplitude provided we
recognize that unitarity is only satisfied perturbatively—
order by order.
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