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A way of testing themr predictions of chiral perturbation theory against experimental data is to use
dispersion relations to continue experimental information into the subthreshold region where the theory should
unambiguously apply. Chell and Olsson have proposed a test of the subthreshold behavior of chiral expansions
which highlights potential differences between the standard and the generalized forms of the theory. We
illustrate how, with current experimental uncertainties, data cannot distinguish between these paliteular
criminatory coefficients despite their sensitivity. Nevertheless, the Chell-Olsson test does provide a consistency
check of the chiral expansion, requiring that ¥¢p°®) corrections to thediscriminatory coefficients in the
standard theory must be100%. Indeed, some of these have been deduced from th©@pfy computations
and found to give such large corrections. One can then check th@{(@f corrections must be much smaller.

We conclude that this test, like others, cannot distinguish between the different forms of chiral symmetry
breaking embodied in the alternative versions of chiral perturbation theory without much more precise experi-
mental information near threshold50556-282(197)01005-9

PACS numbeps): 12.39.Fe

I. INTRODUCTION xPT satisfy the appropriate analyticity and crossing proper-
ties, satisfy unitarity at least perturbatively, and are consis-
The fact that scattering amplitudes are analytic functiongent with experiment for energies beyond whgfT applies.
means that their behavior at different energy scales is relate@Ve will consider these two inequivalent tests in turn.
Chiral dynamics controls low energy pion reactions and, for |n 1994, Olsson4] presented the first of these as a “strin-
instance, requires that the amplitude fof 7~ — 7°7° hasa  gent test” of the chiral expansion schemes, initially reported
line of real zeros below threshold. This on-shell manifestain the thesis of Chell. Guided by experimental data, Chell
tion of the Adler zero within the Mandelstam triangle, in and Olsson evaluated the subthreshold expansion coefficients
turn, demands that the " 7°— 7" 7° amplitude must grow (1 be formally defined in Sec.)lusing dispersion relations
asymptotically. Such relationships between the behavior ofnq compared these with the predictionsy®fT in both its
scattering amplitudes at different energies are naturally emsi;qard and generalized forms. While many coefficients

bodied in dispersion relations. These can be used as a way Qlaluated from experiment agreed with both versions of

expres;ing subthrgshold amplitudes as in_tegral; over physyPT several evaluated from experiment were found to be in
cal region absorptive parts, to be determined either experf—( ’

mentally or theoretically[1]. Chiral perturbation theory far bettgr agreement with @T (with smallerqugrk conden-
(xPT) allows the same subthreshold quantities to be eX_sate typically by a factor of 2. The results of this test are so

pressed directly in terms of the parameters of the chiral Lai_ntriguing that this issu.e Is vyorth ir'lvestigating furthe'r..
grangian. There are two realizations gfPT: Standard A number of questions immediately come to mir(@:
(SYPT) [2] and generalizedGyPT) [3]. In SyPT there are does thg better ggreerpent W|t_h(BT d_epend on the choice
two expansion parameters: the momentum squared of aﬁ.q‘.experlmental mput’eu).what is pa.rtlcgla_r about the coef-
emitted pion and the pion mass characterizing the explicif'C'emS that are the basis of this discriminatory test? These
breaking of chiral symmetry. In @T the quark condensate duestions, among others, are what we answer in this paper.
matrix element is regarded as an additional dimensionful paln Sec. II, we define the subthreshold expansion and the dis-
rameter, in terms of which the standard chiral expansion iersive representation of the corresponding coefficients. In
reordered. At any finite order either ofBT and GPT may  Sec. lll we give the explicit evaluation of these coefficients
have an expansion with smaller higher order corrections. at O(p*) xPT in its two forms. In Sec. IV we compute
The predictions ofyPT can be compared with the evalu- dispersively these same coefficients using a flexible param-
ation of dispersion relations in two different ways, which etrization of low energyr scattering. We then compare the
depend on the inputs to the dispersive integrals. In an idealispersive and explicit evaluations of the subthreshold coef-
ized testA, the absorptive parts are input wholly from ex- ficients, which allows us to discuss the accuracy of the
periment, then the comparison of the subthreshold expansic@(p*) chiral expansions. We shall see, however, that test
coefficients with the predictions of PT tests the efficacy of A is inconclusive because of the sizable experimental uncer-
the chiral expansion to some given order. Alternatively, intainties in the near threshold amplitudes. In Sec. V we turn to
testB the absorptive parts are input fropfPT (at least at low  testB, which checks the consistency of the chiral expansions
energies Then the comparison tests that the amplitudes oft any given order. In Sec. VI we present our conclusions.
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Il. DEFINING THE TESTS F'e=0(s,t)=F"=0(2u2—t/2,t)
The predictions ofyPT can be verified in two ways. Ei- 1 (= 1 1 2
ther the predictions can be continued into the physical re- =, ’(s’—s+ T 0 Y2211
gions, where data exist, but then one is uncertain about what ) K
energy regime is really appropriate for a given order in X ImF'"=0(s’ 1). (7

xPT, or, by using dispersion relations, experimental data can
be continued below threshold, whey®T should unambigu- We are primarily interested in the subthreshold coefficients,
ously apply. The latter is what we do here by considering thGF(k'%, for which the dispersive integral is dominated by the

m amplitude in the Mandelstam triangle. low energy absorptive parts. Fok,=1,2, this means
To this end, we consider the amplitudes with definite iSO'k+ m=1, while for It:0 to avoid the dependence on the

spin in thet channelA't(s,t,u). From these we construct the subtraction term in Eq(7) also requires at least one deriva-

functionsF't(»,t), where tive with respect tov?, i.e., k=1. We, therefore, consider
= 8u’t (= ds’
F't((v,t)=Alt(s,t,u) for 1,=0,2 (1) (ly_ SH Ly o/
t Flo - 4#2(5’—2,u2)3|m': (s',0), (8)
e 2ty 4K [+ __ds (28| Fli(s',t)
~ 2 = Tl 5, 23| £ IMES,
Fl(n,t)=Al(s,t,u)/v for I,=1 ) b Jaua(s' = 2u0)%| ot =0
3
with _ | '
mh’ﬂF (s ,0)), 9
Y andstttu=4u? 3 32u8 (=  ds
v= > =4u ) _ | L
A F20 - L,LZ(S’ _ZMZ)slmF (s’,0) (10

and u=m,_, the pion mass$.The three amplitudeﬂé't are for 1,=0,1,2, and
symmetric under— — v.

Now, rather than work with these amplitudes throughout 2 () _ M_Zf“’ ds’ zﬂlth(sr t)
the Mandelstam triangle, it is more convenient to study their R - 4M2S'—2,u,2 ot ' =0
Taylor series expansion about the subthreshold pei,
v=0 (i.e.,s=u=2u?): B 1 Lo
—s’—2,u2|mF (s',0)1, (11
E't(v,t)ZE Ff(lt) 2, 4 400 ds 72
k,m i M4F(|t): ’U/_J’ 2(_2|m|:|t(sr t)
02 g 4u2S —2u\ ot =0
and to study the coefficiem%(k"%. J
Regge theory leads us to expect that [fg— o at fixed — ————ImF'{(s’,t)
t s'—2u“at =0
= 1 | ’
F'=Ow,t)~v*®,  where ap(0)=1.08, T 25 —2u22MF(s0 (12

F'oi(v,t)~v*%®~1 where a,(0)=0.5, (5 forl,=1,2.

These form the basis of the Chell-Olsson tests in the
forms previously mentioned. Either we input the experimen-
tal data for ther7 amplitudes in the dispersive integrals to

~ 1s . ) ] determine the subthreshold coefficieftisstA), or we input
ConsequentlyF't™"< satisfy unsubtracted dispersion rela- the , PT amplitudes to do stiestB).2

tions, while that forE'ti) requires one subtraction for
t<4u?. Writing F't(s,t)=F't(»,t) we have lll. EXPLICIT EVALUATION
OF SUBTHRESHOLD COEFFICIENTS

F'=2(3,t)~»e®  where ag(0)<0.

| 1 (= 1 1
Fli(s)=—| ds'|5—=+
m)a2 " \8'—s s'—u

for 1,=1,2, while

ImF'(s’,t), (6) We next compute the subthreshold coefficients, defined
by Eg. (4), in standard and generalizedPT based on the

20f course, test B can only be carried out if the bulk of the con-

tribution to the dispersive integrals comes from the very low energy

Note that this definition o differs from that of Chell and Ols- region whereyPT safely applies. As we will see, this is the case for
son, who usev=(s—u)/4u. the so callediscriminatorycoefficients.
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formulas of Refs[2,3] for the O(p*) mm amplitudes. We

obtain the following.

13

17

SxPT
|t=02
mt Az,
(0):— -~ 2 2
FO 18432773<Fﬂ) [476- 1837+ 96(/ 1 +4/)],
1 wl?
2 (0) _ ~ _
u?F Q) 8192773(FW) [88—617], (14
FO)_ ! Ll 4[608—13577] (15
20724576 | F,
Itzl:
7 w\?
LV |
Fio 18432773(Fw o3l 1o
S I (V) i
#Fo1"gg g4 | F,) 70787 TON 27 )
1 w\?
2p(D) .
T (F ) [64— 93], (18)
1 o\t
(1_ =
FYo=3e5 64073(Fw) [512+757], (19
4p)_ ! Lad [328—451] (20)
# 027 163 840 | F, ’

1071843273 |\ F,

+ ! 2k
- 115272\ F,

X[ 130+ 397 — 192/, — 14421]} . (22

T !
m F11=81927T3<F— [8+197], (23)
F<223=—1§(i) [32+27], (24)
0 24576r° \F,,
1

4 —_— —_—
@) —(Fﬁ [160(/;+5/ ) — 468—757].
(25)

wFo2= 4915207°

In Egs. (13)-(25 71 72 and74 are effective coupling
constants that appear in the polynomial part of @p?)

chiral Lagrangian in gPT [2].
GxPT
|t=03

4 .
[51m—T76+96(/1+/5)], (21)

(2) 8 4
Flo:§M (6ag—Bo)+

o_ut 3p°
Fg,3=?(120a0+1630)+—2—( 967722
2 = 2 2
X{(8—2m)Kky+ 10—577 k5+8muKg
+ 107 u2ky+ (1124 477) ,u4} , (26)
2
w0 = > —B {(32—127) k3+ (40— 157) k3
L1 87 (96mF2)> 0 2
—64u%ko— 80u’Kk,— (1200 +96)u*},  (27)
2
F(O): ! '8—{(128 36m) k3+ (160— 451) k3
2,0 (96 F )2 0 2

+ 48w Ko+ 60mulK,+ (1152- 727wy, (28)

|t:1
FO—_— L B—Z{(2477—64)K2+(40—157T)K2
10”47 (96mF2)2 ° ’

+128u”ko—80u’k,+ (96m— 128 u}, (29

2, 1 2 2
X1 (3m—12) ky+ §(4—7T)K2—127T,u, Ko

15 )
+77T,u Ky— (204 67) (30

1 B?
() _— = . 2 .2
M F]_’]_ 167 (967]_':37)2{(977 32)(8K0 5K2)

+ 127 u?(5k,— 8kg) + 16u* (37— 28)},
(31)

2
w_ L A

F2,0_ 807T W{“‘SW— 128)(8K(2)— 5K§)

+128u%(8ky—5k,) +64u*(157—32)}, (32

3 B?

EL— I
027 320m (96mF2)2

{5(37—8)(8Kk3—5kK3)
+80u?(8ko—5k,)+ 768u’}, (33

It:2'

382
m{(4 )( 8K0+ K2)

+4mu?(8ko+ ky) + 641+ ) u?}, (34
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2
M 8 Bu?
WFGi=— g B gt Baot Bo) 5o ea

332

1
L P o VP (6— ) k2
w(%wFi)z[(z Mot (6 mn;

—MZ(K2+8K0)+4(7T—6)M4], (35
2
A= 277(963;73—FZ7;)2{(8_377)(8K3+K§)
—16u?(8kg+ k) —96(2+ m)u*,  (36)
F(223=LB—222{(32—977><8KS+K§>
07167 (967F2)
+ 127 u?(8ko+ k) + 2887, (37

2
ap@ P B 2
154 FO,Z 6 (60[0+B0)+ 3207 (9671_':37)2{4&4 7T)K0

+(36—5m) K5+ 1607 u’ko+ 20( 16+ 7) 2«5
+128Qu’}. (39

In Egs. (26)—(38) «g, Bo, and B, are parameters that de-
pend on«, B, and subtraction constants in the dispersive

analysis of Sterret al. [3], while

_[5a 4} o [2a 4
Ko=\gp " 2/M KT |3pT 3

68 3 33 3)“2' (39

As an aside, we note that the subthreshold coefficients,
Eq. (4), are not, in fact, independent. While their definition

embodies thes—u symmetry of the amplitude@s inwK or

7N scattering, the =& process actually has three-channe
crossing. This means that the three isospin amplitudes can
the Chew-
Mandelstam invariant amplitudé\(s,t,u). This imposes

each be written in terms of one function, e.g.,

conditions among thE(k":q. For instance,

1
Foo=3(Foo— FE)+a 3 (FE1—F&D+ 5 (F3—F)

1 1
+5 (FI%—Fi9)+ 54(F—F)
+ 2 cem(FI—F20, (40)
4
FEi=—3(Foi—FoD — 3 (Fo3—Fe3) — 7 (FI3—F

(41)

In SYPT, u2F Q= —2.6x10 2, while thek+m=2 terms in
Eq. (41) give —2.7X10 2. In contrast fongﬁ% Eqg. (40),

SxPT gives 5.x10 2, whereas the&k+m=<2 terms give

3085

ing are not, in practice, very useful, since they require con-
nections between a large number of coefficients: relation-
ships that are, of course, automatically satisfied by any
crossing symmetric representation, like thaty®fT.

Of the coefficients listed in Eq913)—(25), we see in
SxPT that, apart fronr %2, F§, F(), andF{), the others
do not depend on the’;, which specify the polynomial
(resonance generate®(p*) corrections to the chiral La-
grangian. Contrastingly{2], the =0 S-wave scattering

length
7 u? 5 M
0_ = Z
a0_3277Ff, 1+84 (F ) /1+2/2 /3
21— 21
/ (42

on which, as we shall see, the dispersive integrals crucially
depend, does involve th€, . In GyPT atO(p*), the coeffi-
cients all depend om, 8, as doesag, Egs.(26)—(39) [5], in

the following way:

2

2
al=—"2
0 96mF2

4872

[(5a+16,8) 1+ F2(5a+16,8))

u 2
+60 F—) (>\1+2>\2)], (43

where \; and \, can be written in terms of the‘_’i's of
SxPT as

1 4 1
}\1 /1_1

5
4872 \2= 78,2 (/2 ) (44

We now evaluate the subthreshold coefﬁmeﬁfﬁ‘m using

Ithe following set of parametefs:

/1=—11, /,=517,

(45)

/3=29, /,=1.86,

for SyPT. As is well known, if a=B=1 the O(p?)
GxPT is identical to its standard form. This remains approxi-
mately true at higher orders ift~1, 8~1. In GyPT, while

B is always close to 1¢ is roughly between 1 and 4 de-
pending on the magnitude of the quark condensate. Since we
want to compare and, in particular, contrast the two versions

of xPT, we here take §PT to have(see footnote B
a=3.1, B=0.93,

aout= 5.5x10"4, Bou*= 3.5x10°3, (46)
Bou?= 1.6x10"3.

In columns 2 and 3 of Table I, we list the values of the
subthreshold coefficients determined byPFS and G/PT as

3These are the values of the parameters fgPB and GPT

6.6x 10 2. So these relationships from three-channel crossguoted by Olsson in his talk at the MIT workshpg.
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TABLE I. Comparison of the predictions i®(p*) SyPT and | with E;=0.8—0.9 GeV generally dominates. In this region,

GxPT for those subthreshold coefficients that we shall see, Sec. \gpnly S and P waves need to be included. In terms of the
can be reliably calculated dispersively, together with the results ophase shiftsg',(s), we have

Table II.
N / 1
Dispersive result ImF'=9s,t)= %[ _sin258(s)
SYPT GxPT (Table 1) s—4u”|3
Coefficient o(p% o(pY a3=0.20 5
FO 176x102  1.72¢10°2  (1.6+0.2)x10°2 T3 1t s—4,ﬁ)sm251(s)+ 3S'n25°(s))’
w?F) —-2.07x10° -221x10°° —(2.1+0.3)x10°°
F& 1.23x10°%  1.42¢<10°°  (1.7+0.3)x10°° - a2 s (1.
F 1.08<107°  2.22x10°°  (25£0.4)x10°° IMF S 0= Sert—au2 S_4Mz[§S'n258(S)
w?F® —-0.51x107% -1.18<107® —(1.1+0.2)x10°°
F® 3.32x107%  7.88x10°*  (6.8+1.0)x10°* 3 2t o S
wEY 1.87x10°%  4.01x10°*  (4.8+0.8)x10°* ) 1+s—4,u2 Si? 84(s) Esmzﬁg(s) ’
F3 46710  433x10°°  (5.1x0.8)x10°3 47)
w?F@ -1.35¢10°°% -1.91x10° —(2.1x0.3)x10°®
F3 0.78x10°°  1.26x10°%  (1.3+0.2)x10°° s (1
wFE 1.23x10°%  127x10°°  (1.1+0.2)x10°° IMF't=2(s,t)= \/S_—W[ §sin258(s)
, , , , 3 2t 1
just described. Ignoring the final column for the moment, we ~3 1+S——4,u2) sin25}(5)+ gsinzﬁg(s)]_

see that the values foF{Y}, w?F{%), FY, F, and
w*F§3, are in close agreement regardless of which version
of xPT is used. However, each &, w?F{, F,
w*FS, w?F® F are predicted to differ by a factor of 2.
Consequently, one may expect that if we can evaluate these s—4pu?
from experiment, data could distinguish between the two 5'/(S)=<?
versions ofyPT, at least taD(p?). It is to the evaluation of ® (48)
thesediscriminatorycoefficients that we now turn.

n the low energy region the phase shifts may usefully be
expanded in powers of momenta by

)/+1/2

where a, are the scattering lengths ard the effective

IV. EVALUATION OF THE DISPERSIVE INTEGRALS: ranges. This near threshold expansion is naturally embodied
TEST A in the following flexibly convenient representation of the
The evaluation of the subthreshold coefficients accordiné)has‘e shift$8] in terms of theK matrix:
to testA consists of inputting experimental data for ther
amplitudes with definite isospin in the channel into the K = [ S tans',(s)
dispersive integrals for the subthreshold coefficients, Egs. ’ s—a4u?
(8)—(12), as Chell and Olssop] did. However the experi- .y ) 5
mental information in the very low energy region near :(3_4“ I LR (S_4'“ ) Au—s,
——| {a,+b
threshold is still very poof6]. Moreover, as we shall see, it 4u T 4p? S—SI/ ’
is precisely this energy regime that is most important for the
evaluation of the subthreshold coefficients. Consequently, - 4p?
we perform tesi\ using a parametrization of thes ampli- bl =b!, —a) T_au? +(a))%8,, (49

tudes that reproduces the major features of the experimental
data, as a way of restricting the uncertainties.

We calculate the dispersive integrals of E(®—(12) by
subdividing the energy rang&, where s=E?, into three
regions: (I) 2u<E<E,, the near threshold region(l)
E,<E<E,, the intermediate energy regiofitl) E,<E, the

where, as already mentioned, thlg, b, ands!, are fixed to
give a parametrization consistent with experiment and with
xPT in its appropriate version. Other parametrizations have
been tried and these alter our numbers little — this is a
consequence of the integrals being dominated by the near

high energy regiong; is 0.8—0.9 GeV, whileE, is chosen ) . . o
o thatE% is halfway between thes(1690) andf ,(2050) threshold absorptive B%rts. To |Ilgstrate this, we show in Fig.
o as functions of energf = Js for

resonance squared masses, in keeping with finite energly the integrands foF,
sum-rule phenomenology, i.€,=1.85 GeV. As we shall W0 different values of thd =0 S-wave scattering length
see, for almost all the integrals of Eq8)—(12), region Ill,  ag. One sees that the low energy region largely determines
where Regge behavior of the form given in E¢®.applies, their dispersive evaluation, except k.

gives a negligible contribution. We use the Regge residues In Table Il, we present the contributions to the dispersive
determined in Ref[7]. In region IlI, the f,(1270) and integrals in regions I, Il, and lIl. In region | th&-wave
p3(1690) contributions are included in the narrow resonancgarameters have been fixed to those determined by Schenk
approximation and are also, for the most part, small. Regiof8], which represent the well-known experimental results re-
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TABLE II. Contribution to the subthreshold coefficients E¢8)—(12) from the three different energy
regions as explained in the text. Typical uncertainties are 15%, 10%, 25%, respectively, in these three
contributions.

Coefficient Region | Region I Region Il Total
F® 1.56x10 2 3.46x10°* 2.54x10 4 1.6x10 2
w?FQ) —2.19x10°3 2.09x10°° 1.63x10°° -2.1x10°8
F 1.67x10°° 1.92x1077 1.10x10°® 1.7x10°°
F&R 2.52<10°3 6.96x10°° 5.30< 10"’ 2.5x10°°
w?F —1.46x10°3 9.57x10 % 2.00x10°3 Unreliable
w?FM —-1.08<10°° 4.05<10°7 3.65<10°8 -1.1x10°8
F& 6.79<10°* 4.34x10°° 3.81x10 1 6.8<10°4
wAFS 3.86x10°* 8.78<10°® 9.12x10°° 4.8x10°*
F3 4.88x10°° 2.29x10°4 ~10°° 5.1x10°2
2|:(2) —3.98x102 1.39x 102 ~1072 Unreliable
2F(2) —2.12¢<10°3 1.25x10°° ~10° -2.1x10°3
F(?) 1.25<10°3 1.70x10°7 ~10°8 1.3x10°3
wFE 1.13x10°3 —1.00x10°° ~10°° 1.1x10°°3
15 T T l T T 17T LI T 11 L B | | LI | LI | T 1T T 7 1
o L N Integrand (F(f_ A ]
2 10p : —
3 r i
< ]
ER n
< ud -
g" L i
E i ]
- 0 _l | | T | I | I 11 1.1 I £t 11 I | I | I ] 111 1
3 4 5 .6 7 8 8 1
Vs (GeV)
0 ‘I T 1 1 I T TT l LR | LILILIE ]
g - © -
QSE -2 Integrand (u°F') -
E : :
£ -4 —
R ]
3 -y N
= 1
E -6 - '| II, -
& oty T
2 rov .
'E _B -| 1 l 1 1 1 1 l Lt 1 I | 1 | 11 1 1 I | - I 1.1 .1 1 I | I | ]
3 4 5 8 7 8 .9 1
Vs (GeV)
10 _I T I LI | T T 1771 I T 1 17T | T 1T 17T | UL | LI | T T T 1 i
ss B A Integrand (F&) -
eg - 'l \\ E
N -
) o * -
T oaf ]
s :
= 0 :| - Lol | 1 1 1 ' i1 1 1 [ L1 11 | i 11 1 :
3 4 5 6 7 .8 9 1
VS (GeV)

FIG. 1. Integrands of the dispersion relatlons Rﬂ‘) as in Eqs(8)—(12), in energy region | as a function afs evaluated using Egs.
(49) and (47) with a0 0.20 (solid lines and aO 0.27 (dashed lines The ordinate is given in arbitrary dimensionless units.
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TABLE lll. Comparison of the results for those subthreshold coefficients that can be reliably calculated
dispersively, Witha8=0.16 and 0.23, with their predictions inyBT and GPT atO(p*).

SxPT Dispersive results GxPT Dispersive results
Coefficient o(p* ad=0.16 o(p% a3=0.23
F® 1.76x10°2 (1.4£0.2)x 1072 1.72x107°2 (1.4£0.2)x 1072
w?FQ) —2.07x1073 —(1.5+0.3)x1073 —2.21x1073 —(1.8+0.4)x 1073
F&Y 1.23x1072 (1.3+0.3)x10°3 1.42<1072 (1.5+0.3)x 1073
F& 1.08x10°3 (1.5£0.3)x 1073 2.22x1073 (2.6£0.4)x 1073
w?F® —0.51x1073 —(0.6+£0.1)x1073 —1.18x10°3 —(1.2£0.3)x10°2
F& 3.32x1074 (3.7£0.6)x 10~ * 7.88x 1074 (8.2+0.5)x10°*
wAFSY 1.87x10°* (2.0+0.5)x10°* 4.01x10°* (4.0£0.4)x 1074
F3 4.67<10°° (2.6£0.6)x 1073 4.33x1073 (3.9+0.6)x 1073
w33 —1.35x1072 —(1.4+0.2)x1073 —1.91x1073 —(2.0+0.4)x1073
F$3 0.78x10°3 (0.8+0.1)x 1073 1.26x10°2 (1.3+0.2)x 1073
wFE 1.23x10°3 (1.0£0.2)x 1073 1.27x10°3 (1.1+0.2)x 1073

viewed in[6] and match one loop)8T near threshold, i.e., would expectyPT should itself be applicable. Then these
we take w=139.6 MeV, a8=0.20, b8=0.24, relations should be an identity, since the amplitudeg®T
s9=(0.865 GeVy, agz —0.042, sz —0.075, satisfy the crossing and analyticity properties that EGs.
s§= —(0.685 GeVY. For theP wave we takeai=0.037, and(7) embody. Thus if we evaluate the subthreshold coef-
bi:0-005- anobi=(0.77 GeVY, the squaregp mass. The ficients directly fromyPT in either form ato(p?), for ex-
uncertainties are typically 10% in region Il, 25% in region lIl ample, or alternatively input the®(p*) imaginary parts into
and, even keepingg fixed at itsO(p*) xPT value,~15% the dispersive integrals fd?ﬁ'%, Egs.(8)—(12), the results

in region I. With these uncertainties, the_dispersive results o§hould be the same. However, comparing columns 2 and 4 of
Table Il are added as the last column in Table I. One noWraple |, we see that inputting phases with tEp*)

SEes tha(;_ tf&e coefficientsl for WhiCh”XB.-L haf‘dd_ S-wave scattering length af3=0.20 does not reproduce S
GxPT predicted a common value, agree well with their dis- PT. This is becausgPT only satisfies unitarity perturba-

persive evaluation from experiment. In contrast, the so-calle ively. Consistency with th©(p?) subthreshold coefficients
discriminatory coefficients, that generally differ by a factor Y. 4 y . P . X :

of 2 atO(p%), are far closer to the predictions of®T (with requires theD(p ). 'mag'”ary parf(s be mput into the_ disper-
a=3.1,3=0.93) than with §PT. This is at first sight rather SIve mtezgrals. Th|$)(|c_) ) absorptive partis wholly given by
surprising since the input absorptive parts have been explidh® O(p?) real part, since

itly designed(by SchenK8]) to matchO(p*) SyPT. In con-

trast, the coefficients in €T to O(p*) are in very good | . T -
agreement with the same dispersive evaluation. If this were  IMf,(5,0(p™)= \/ 1~ —{Ref,(s,0(p")]". (50
the whole story then this would indicate that low orders in

GxPT more rapidly embody key resonance contributions. . o
XHowever IeFt) usyreturn tg thg evaluation of ttiscrimi- ' hus the Chell-Olsson test should become an identity, if we

natory coefficients from experimental information. In Fig. 1 INPut phases at the appropriate order. Worl<2|ng)(qo4) for

we see that all thaliscriminatory coefficients are entirely the coefficients, we must input phasesCGtp®) for which
dominated by the very near threshold region below 450 Me\&g="0.16 in SPT orag=0.23 in our version of GPT with

or so and though the values given in column fourth of Tablex=3.1. With these values we obtain the results in Table IlI.

| have 15% errors, this is assuming a particular value of the We now see complete agreement between the dispersive
|=0 S-wave scattering lengtta9=0.20 in Eq.(49). If we  results and the explicit evaluatiofexcept forF(fg which

fold in the real uncertainties from the Geneva-Sadkqy,  appears to be due to a poorer convergence in the dispersive
results[9] on the near threshold phase shifts, then one woul@valuation. The fact that the discriminatory coefficients in
readily see that for these coefficients the present experimersyPT and GPT differ by a factor 2 aD(p*) just reflects

tal uncertainties are more than 100%j (compare the two  the fact that the imaginary parts of the near threshold ampli-
curves in Fig. 1 encompassing boty®T and what we call ' t,des are very nearly proportional toa3? and
GxPT in Table I. Thus experiment cannot presently distin-(0_23/0_163~2_1_ Moreover, the large change in tidks-
guish between these differing versions T and so test  criminatorycoefficients in PT between their values in col-

A is inconclusive. Nonetheless, the Chell-Olsson test in form,,y 2 of Table 11l and column 2 of Table | means that the
B does tell us_that th©(p®) corrections in $PT must be O(p®) corrections must be large—since inputti@(p®)
large, as we discuss next. phases in Table | generat€(p®) coefficients. The recent
two-loop calculation of therm amplitude by Bijnenset al.

V. WHEN IS THE CHELL-OLSSON TEST AN IDENTITY [10] bears this out, as Moussallam has checkedTable IV

(TEST B)?

For the discriminatory coefficients, the dispersive inte-
grals are controlled by the near threshold region where we “B. Moussallam(private communication
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TABLE IV. Comparison between the x®T evaluation at we have calleddiscriminatory all have no polynomial
O(p*), O(p®) and the dispersive calculation faf=0.20 of two of O(p*) corrections in terms of the;’s of SyPT. Curiously
the discriminatorycoefficients. TheD(p®) SyPT computation was enough we have shown that these same coefficients have
made by Moussallartsee footnote 4 ~100% corrections a®(p®) and the recent explicit calcu-
lation of Bijnenset al. [10] of the two-loops 7 amplitude
shows that is, in fact, so. Indeed, these same calculations and
F(fc)yx 108 1.08 251 (2.50.4) our study alloyv an estimate of 17% to be ma_de_z for the
uPF X 1063 —051 —0.95 —(1.1£0.2) O(p®) corrections to these subthre;holq coefficients. .Thus

: the Chell-Olsson test becomes an identity when applied to

the amplitudes ofyPT. This is because they have the cross-

we give examples of the change @(p®), for F{} and ing and analytic properties of the full amplitude provided we

0 . . . L. .
F(lll) The self-consistency is now clear after these 10004 €cognize that unitarity is only satisfied perturbatively—

corrections. order by order.
The fact that theO(p®) =0 S-wave scattering length

Coefficient §PTO(p* SxPTO(p® Dispersive &5=0.20)

differs by 8% from itsO(p*) value in S¢PT[10], allows us ACKNOWLEDGMENTS
to estimate that thdiscriminatorycoefficients will have just This collaboration was made possible by the support of
a 17% correction a®(p®) and so the Standard perturbative the EC Human Capital and Mobility Programme which
expansion is improving. funds the EURODANE network under Grant No. CHRX-
CT920026. J.P. wishes to thank the Particle Physics Depart-
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work was started, for their kind hospitality. We are grateful

The Chell-Olsson test is indeed stringent. However, usingo Gilberto Colangelo, Jg Gasser, Marc Knecht, and Jan
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distinguish between @T and G(PT. This reflects the large for his evaluation of the coefficients in two-loop/BT. We
uncertainties in the near threshcdewave phases that hope- are also grateful to Hans Bijnens and UIf-G. Meissner for the
fully measurements oK, decays with higher statistics and opportunity to present this work at the ECTWorkshop on
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