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We study theQ2 dependence of the chiral-odd twist-3 distributione(x,Q2). The anomalous dimension
matrix for the corresponding twist-3 operators is calculated in the one-loop level. This study completes the
calculation of the anomalous dimension matrices for all the twist-3 distributions together with the known
results for the other twist-3 distributionsg2(x,Q

2) andhL(x,Q
2). We also have confirmed that in the large

Nc limit theQ
2 evolution ofe(x,Q2) is wholly governed by the lowest eigenvalue of the anomalous dimension

matrix which takes a very simple analytic form as in the case ofg2 andhL . @S0556-2821~97!00605-X#

PACS number~s!: 12.38.Bx, 11.10.Hi, 11.15.Pg, 13.85.Qk

I. INTRODUCTION

Ongoing plans of high energy collider experiments are
going on their way toward more precision measurements and
more variety of spin-dependent observables in many~semi-!
inclusive processes. Correspondingly, increasing attention is
paid to the power corrections due to the higher twist effects
which represent parton correlations in the target. Recent
measurement of the nucleon’sg2 structure function by the
E143 Collaboration@1# anticipates a forthcoming significant
progress of the twist-3 physics. Under this circumstance,
QCD study on the scale dependence of various distribution
and fragmentation functions is of great interest.

The nucleon has three twist-3 distributionsg2, hL , and
e @2#. g2 is chiral even and the other two are chiral odd.e is
spin independent and the other two are spin dependent. Com-
pared toe(x,Q2), g2 andhL have more chance to be mea-
sured experimentally since they become leading contribution
to proper asymmetries in the polarized deep inelastic scatter-
ing ~DIS! and Drell-Yan processes, respectively. TheirQ2

evolution has been studied in@3–5# for g2 and in @6,7# for
hL .

Similarly to the distribution functions, there are three
twist-3 fragmentation functions which describe hadroniza-
tion processes of partons in semi-inclusive processes@8#,
ĝ2(z,Q

2), ĥL(z,Q
2), andê(z,Q2). ~Their naming is parallel

to the corresponding distribution functions.! In the inclusive
pion production in the transversely polarized DIS, the chiral-
odd fragmentation functionê of the pion appears as a leading
contribution together withh1 ~twist-2! of the nucleon. Al-
though theQ2 evolution of the twist-2 fragmentation func-
tions is known to be obtained from that of the corresponding
distributions in the one-loop level~Gribov-Lipatov reciproc-
ity @9#!, no such relation is known for the higher twist frag-
mentation functions.

In this paper we investigate theQ2 evolution of
e(x,Q2). Theoretically, this completes the calculation of the
anomalous dimension matrices of all the twist-3 distribu-
tions. Phenomenologically, we expect it will shed light on
theQ2 evolution ofê(z,Q2), anticipating the day when their
relation is clarified.

The outline of this paper is the following: In Sec. II, we
briefly recall the twist-3 operators fore(x,Q2) @2#. Similarity

to thehL case is reminded. In Sec. III, we present the calcu-
lation of the one-loop anomalous dimension matrix for
e(x,Q2). The method follows that of@6#. In Sec. IV, the
Q2 evolution ofe(x,Q2) in the largeNc limit is discussed.
This part is a recapitulation of@7# in our language. Section V
is devoted to a brief summary of our results. The Appendix
contains the contributions from each one-loop Feynman dia-
gram.

II. TWIST-3 OPERATORS FOR e„x,Q2
…

The chiral-odd twist-3 distribution functione(x,Q2) is
defined by the relation@2#

E dl

2p
eilx^Puc̄~0!c~ln!uQuP&52Me~x,Q2!, ~2.1!

where uP& is the nucleon~massM ) state with momentum
P. Two lightlike vectorsp and n defined by the relation,
P5p1(M2/2)n, p25n250, p•n51, specify the Lorentz
frame of the system. Gauge-link operators are implicit in Eq.
~2.1!. Taking the moments of Eq.~2.1! with respect tox, one
can express the moments ofe(x,Q2) in terms of the nucleon
matrix elements of the twist-3 operatorsVm1•••mn:

Mn@e~Q2!#5en~Q
2!, ~2.2!

^PSuVm1m2•••mnuPS&52enM ~Pm1Pm2
•••Pmn2traces!,

~2.3!

Vm1m2•••mn5Snc̄ iDm1iDm2
••• iDmnc2traces, ~2.4!

whereMn@e(Q
2)#[*21

1 dx xne(x,Q2) and the covariant
derivativeDm5]m2 igAm restores the gauge invariance. As
in Eqs. ~2.3! and ~2.4!, we often suppress the explicit scale
dependence. Following a common wisdom we introduce a
null vectorDm (D250) to kill the trace terms ofVm1•••mn

and introduce the notationVn•D[Vm1•••mnDm1
•••Dmn

for
convenience, and similarly for other operators in the follow-
ing. Using the relation Dm5 1

2$D” ,g
m% and @Dm ,Dn#

52 igGmn with the gluon field strengthGmn , Vn•D can be
recast into the form
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Vn•D5(
l52

n

Un,l•D1Nn•D1En•D, ~2.5!

where

Ul
m1•••mn5

1

2
Snc̄sam1iDm2

•••gG a
m l
••• iDmnc2traces,

~2.6!

Nm1•••mn5Snmqc̄gm1iDm2
••• iDmnc2traces, ~2.7!

Em1•••mn5
1

2
Sn@c̄~ iD” 2mq!g

m1iDm2
••• iDmnc

1c̄gm1iDm2
••• iDmn~ iD” 2mq!c#2traces.

~2.8!

Ul containsGmn explicitly, which indicates thate(x) repre-
sents the quark-gluon correlations in the nucleon.N is the
quark mass times the twist-2 operator which contributes to
the moments off 1 structure function familiar in the spin-
averaged DIS.E is the equation of motion~EOM! operator
which vanishes by use of the QCD equation of motion. Al-
though the physical matrix elements of EOM operators van-
ish, one needs to take into account the mixing withE to carry
out the renormalization ofU andN, as is discussed in@5,6#
in the context of the renormalization ofg2 andhL . From Eq.
~2.5! one sees thatUl appears in the form of

Rn,l
m1•••mn5Un2 l12

m1•••mn1Ul
m1•••mn S l52, . . . ,Fn2G11D .

~2.9!

By this combination,Rn,l has a definite charge conjugation
(21)n. Readers may recall the similarity between the
present$Ul , Rn,l% and$u l , Rn,l% which appeared inhL @2,6#.
In fact presence ofg5 in u l is the mere difference from
Ul . Rn,l of hL is defined asun2 l122u l and has a charge
conjugation (21)n11 which is opposite to the aboveRn,l in
Eq. ~2.9!. We will see the similarity in the renormalization
constants betweenhL ande in the following.

III. Q2 EVOLUTION OF e„x,Q2
…

For the renormalization ofe(x), we closely follow the
method of@6# which discussed the renormalization ofhL . So
we omit the detail in the following. Owing to the chiral-odd
nature,e(x) does not mix with the gluon distribution. We
chooseRn,l ( l52, . . . ,@n/2#11), E, N as a basis of the
operators. For the renormalization ofRn,l , we calculate the
one-loop correction to the three-point function
Fm(p,q,p2q) defined by

Fm~p,q,k!~2p!4d4~p1k2q!G~p!G~q!D~k!

5E d4xd4yd4zeipxe2 iqyeikz^T$Oc~x!c̄~y!Am~z!%&

FIG. 1. ~a! Three-point basic vertex forRn,l , E, andN. ~b!
Four-point basic vertex forRn,l necessary for the calculation of the
diagrams shown in Fig. 2.

FIG. 2. One-particle-irreducible diagrams for the one-loop cor-
rection toFm(p,q,k).

FIG. 3. One-loop corrections to the two-point functions.
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~O5Rn,l , N, E!, ~3.1!

whereG andD are, respectively, the quark and gluon propa-
gators.~We suppressed the Lorentz and spinor indices for
simplicity.! In order to take into account the mixing with the
EOM operator properly, we use off-shell kinematics for the
external lines. The calculation is done with the Feynman
gauge for the gluon propagator~of course the result should
be independent of the gauge! and the minimal subtraction
~MS! scheme is adopted with the dimensional regularization.
The three-point basic vertices shown in Fig. 1~a! for
Rn,l•D, En•D, Nn•D are calculated to be

Rn,l ,m
~3! 52 i

g

2
salDl~ p̂n2 l q̂l221 p̂l22q̂n2 l !

3~2 k̂gam1kaDm!ta, ~3.2!

En,m~3! 5
g

2 FgmD” q̂n211D” p̂n21gm1Dm(
j52

n

~p”2mq!D” p̂
j22q̂n2 j

1Dm(
j52

n

D” ~q”2mq! p̂
j22q̂n2 j G ta, ~3.3!

Nn,m
~3! 5mqgDmD”(

j52

n

p̂j22q̂n2 j ta, ~3.4!

wherek5q2p, p̂5p•D for an arbitrary four-vectorp and
ta is the color matrix normalized as Tr(tatb)5 1

2d
ab. One-

loop diagrams for the aboveFm are shown in Fig. 2. In
calculating these diagrams, we need a Feynman rule for the
four-point basic vertex ofRn,l•D shown in Fig. 1~b!. It is
given by

g2

2 F f abctcsalDlDmganp̂
n2 l q̂l222 isalDlt

atb (
j52

n2 l11

p̂ j22Dm~ p̂1 k̂!n2 l112 j~2 k̂8gan1ka8Dn!q̂l22

2 isalDlt
atb (

j5n2 l13

n

p̂n2 lDn~ p̂1 k̂! j2n1 l23~2 k̂gam1kaDm!q̂n2 j1~m↔n,k↔k8,a↔b!G1~ l→n2 l12!. ~3.5!

For the actual calculation of the one-loop diagrams, we introduce a vectorVm with the conditionV•D50, and consider
FmVm @6#. This way mixing with the gauge noninvariant EOM operators can be avoided and the calculation is greatly
simplified. ~See@6# for the detail.! The contraction ofRn,l ,m

(3) andEn,m(3) with Vm leads to

Rn,l
~3!
•V5

ig

2
VasalDl~ q̂2 p̂!~ p̂n2 l q̂l221 p̂l22q̂n2 l !ta, ~3.6!

En~3!
•V52

ig

2
VasalDl~ q̂n212 p̂n21!ta. ~3.7!

The mixing coefficients betweenRn,l and$N, E%, ZlE andZlN , can also be obtained from the one-loop correction to the two
point function shown in Figs. 3~b! and 3~c!, giving a consistency check. The two point basic vertices forE andN are

En~2!5
1

2
p̂n21~D” p”1p”D”22mqD” !, ~3.8!

Nn
~2!5mqp̂

n21D” . ~3.9!

Using these Feynman rules for the vertices, one can calculate the one-loop diagrams shown in Figs. 2 and 3. Actual
calculation is very tedious and will be described in the Appendix in detail. Taking into account the wave function renormal-
ization for the fields and the renormalization formq andg which explicitly appear in the vertices@6#, we eventually obtained
the renormalization constantsZi j amongRn,l , N, andE in the matrix form

S Rn,l
B

En
B

Nn
B
D 5S Zlm~m! ZlE~m! ZlN~m!

0 ZEE~m! 0

0 0 ZNN~m!
D S Rn,m~m!

En~m!

Nn~m!
D , S l ,m52,•••,Fn2G11D . ~3.10!

Zi j can be expressed as

Zi j5d i j1
g2

16p2«
Yi j S i , j52, . . . ,Fn2G11,E,ND , ~3.11!
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with «5(42d)/2 (d is the space-time dimension in the dimensional regularization! and the constantsYi j given below. To
write downYi j we define a symbol̂n/2& as ^n/2&[@n/2#5n/2 for an evenn and ^n/2&[@n/2#115(n11)/2 for an odd
n. ThenYi j is given as

Ylm5CGF ~m21!~m1 l !

2~ l2m!@ l21#2
1

~m21!~m1n2 l12!

2~n2 l2m12!@n2 l11#2
2
1

l
2

1

n2 l12
1

~ l23!~ l112m!

2@ l21#3
1

l12

2@ l21#2

1
~n2 l21!~n2 l2m13!

2@n2 l11#3
1

n2 l14

2@n2 l11#2
G1~2CF2CG!F ~21!n2 l2m

n2 lCm22

~n2 l122m! n2m11Cl21
1

~21! l2m
l22Cl2m

~ l2m! n2m11Cl2m

22~21!mS l21Cm21

@ l21#3
1

n2 l11Cm21

@n2 l11#3
D G S 2< l<Fn2G11, 2<m< l21D , ~3.12!

Yll5CGF2Sl212Sn2 l112
1

2l
2

1

2~n2 l12!
1

~ l21!~n12!

2~n22l12!@n2 l11#2
2

2

n2 l12
2
1

l
1

l23

2@ l21#3
1

l12

2@ l21#2

1
~n2 l21!~n22l14!

2@n2 l11#3
1

n2 l14

@n2 l11#2
G12~CG22CF!F ~21! l S 1

@ l21#3
1

~21!n1 n2 l11Cl21

@n2 l11#3
D

2~21!n
l21

2~n2 l11!~n22l12!G2CF~2Sl2112Sn2 l1123! S 2< l< K n2 L D , ~3.13!

Yn/211 n/2115CGF22Sn/22
6

n12
1

~n/2! 22

@n/2#3
1

~n/2! 13

@n/2#2
G1~2CF2CG!4

~21!n/2

@n/2#3
1CF~324Sn/2! ~ for even n!, ~3.14!

Ylm5CGF ~2n2 l2m14!~n2m11!

2~m2 l !@n2 l11#2
1

~m21!~m1n2 l12!

2~n2m2 l12!@n2 l11#2
2

2

n2 l12
1

~n2 l21!~n22l14!

2@n2 l11#3
1

n2 l14

@n2 l11#2
G

1~CG22CF!F2~21!m$n2 l11Cm211~21!n n2 l11Cm2 l%

@n2 l11#3

2~21!m2 l S n2 lCm2 l

~m2 l ! m21Cm2 l
1

~21!n n2 lCm22

~n2 l122m! n2m11Cl21
D G S 3< l11<m< K n2 L D , ~3.15!

Yl n/2115CGF14 1

@n2 l11#2

n~3n22l16!

n22l12
2

1

n2 l12
1
1

2 S ~n2 l21!~n/2 !2 l12

@n2 l11#3
1

n2 l14

@n2 l11#2
D G

1~2CF2CG!S 2~21!n/2

@n2 l11#3
n2 l11Cn/21

~21!~n/2!2 l11

~n/2! 2 l11
n2 lC~n/2!2 l11

n/2Cl21
D S for even n, 2< l<

n

2D ,
~3.16!

YlE522CFS 1

@ l #2
1

1

@n2 l12#2
D S 2< l<Fn2G11D ,

~3.17!

YlN54CFS 1

@ l21#3
1

1

@n2 l11#3
D S 2< l<Fn2G11D ,

~3.18!

YEE52~12Sn!CF , ~3.19!

YNN5CFS 2

n~n11!
24SnD , ~3.20!

whereCF5(Nc
221)/2Nc andCG5Nc are the Casimir op-

erators of the gauge group SU(Nc), Sn5( j51
n 1/j ,

@ j #k5 j ( j11)•••( j1k21), and nCl is the binomial coeffi-
cient defined asnCl5n!/ l !(n2 l )!. Note that Eq.~3.16! is
one-half of Eq.~3.15! with m5(n/2)11 for evenn. With
theseYi j ( i , j52,3, . . . ,@n/2#11, E, N), the anomalous
dimension matrix for the twist-3 operatorsRn,l , E, andN
take the form of the upper triangular matrix as

g i j52
g2

8p2Yi j . ~3.21!

The above results forY can be compared with the mixing
matrix X for hL given in Eqs.~3.14!–~3.20! of @6#. Their
difference comes from the opposite charge conjugation sym-
metry ofRn,l . Solving the renormalization group equation,
theQ2 evolution ofRn,l andN is given by
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an,l~Q
2!5 (

m52

[n/2]11 F S a~Q2!

a~m2! D
2Y/b0G

lm

an,m~m2!

1F S a~Q2!

a~m2! D
2Y/b0G

lN

dn~m2!, ~3.22!

dn~Q
2!5S a~Q2!

a~m2! D
2YNN /b0

dn~m2!, ~3.23!

wherean,l anddn are defined by

^PuRn,l
m1•••mn~m2!uP&52an,l~m2!MSn~Pm1

•••Pmn2traces!,
~3.24!

^PuNm1•••mn~m2!uP&52dn~m2!MSn~Pm1
•••Pmn2traces!,

~3.25!

andb05
11
3Nc2

2
3Nf .

The complete spectrum of the eigenvalues of the anoma-
lous dimension matrix~3.21! ~ignoring the factorg2/8p2) is
shown in Fig. 4~a! together with those for the twist-2 distri-
bution h1. One sees from the figure that the anomalous di-

mensions ofe are significantly larger than those ofh1, ex-
cept for the first several moments.

Before closing this section, we compare theQ2 evolution
among the twist-2 and -3 distributions~atmq50), using the
first few moments. Forn52 and 3, only one operator con-
tributes toe(x). The values ofY can be read from Eqs.
~3.13! and ~3.14! asYn525255/9 andYn535273/9. Thus
theQ2 evolution becomes

M2@e~Q2!#5L6.11/b0M2@e~m2!#,

M3@e~Q2!#5L8.11/b0M3@e~m2!#, ~3.26!

where L5a(Q2)/a(m2). In Table I, we summarize the
anomalous dimensions of the twist-2 and -3 distributions for
n52, 3, ignoring the common factorg2/8p2. One sees that
these moments ofe evolve slower than those of the other
twist-3 distributions and are close to the twist-2 distributions.

IV. LARGE Nc LIMIT

In @4,7#, it has been proved that all the~nonsinglet! twist-3
distributionsg2, hL , ande obey a simple Gribov-Lipatov-
Altarelli-Parisi ~GLAP! equation@10# similarly to the twist-2
distributions in theNc→` limit. In this limit, Q2 evolution

FIG. 4. ~a! Complete spectrum of the exact eigenvalues of the anomalous dimension matrix fore(x,Q2) together with those forh1
~squares!. ~b! Complete spectrum of the leadingNc eigenvalues of the anomalous dimension matrix fore(x,Q2). Solid line is the analytic
solution in Eq.~4.1!.

TABLE I. The anomalous dimensions for the second and third moments of the nonsinglet twist-2 and
twist-3 distributions. For these moments, the twist-3 distributions receive the contribution from only one
operator.h̃L and g̃2 denote the twist-3 parts ofhL and g2, respectively. Forh̃L , the third moment is the
lowest one, and the result is taken from@6#. For g2, the result is taken from@3#, and the anomalous
dimensions for odd moments are not available because they have been discussed in the context of DIS.

n f1, g1 h1 e g̃2 h̃L

2 50
9

52
9

55
9

77
9

3 314
45

64
9

73
9

104
9
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of these distributions is completely determined by the lowest
eigenvalue of the anomalous dimension matrix which has a
simple analytic form. Fore, this can be checked using the
results in the previous section. AtNc→`, i.e., CF→Nc/2,
the lowest eigenvalue ofg in Eq. ~3.21! is given by~ignoring
the factorg2/8p2)

gn
e52NcSSn2 1

4
2

1

2~n11! D . ~4.1!

As was shown in Sec. II, thenth moment ofe(x) can be
expressed in terms ofan,l as

Mn@e#5 (
l52

^n/2&

an,l H 1
1

2
an,[n/2]11 n: evenJ , ~4.2!

where $••• n: even% means this term is only for evenn.
We can directly check that the coefficients ofan,l in Eq. ~4.2!
constitute theleft eigenvector of the mixing matrixY with
the eigenvalue2gn

e , i.e.,

(
l52

[n/2]11

Ylm52gn
e Sm52, . . . ,Fn2G11D ~4.3!

for oddn and

(
l52

[n/2]

Ylm1
1

2
Y~n/2!11m52gn

e Sm52, . . . ,Fn2G D ,

(
l52

[n/2]

Yl ~n/2!111
1

2
Y~n/2!11 ~n/2!1152

1

2
gn
e ~4.4!

for evenn. This means all theright eigenvectors except the
one which corresponds togn

e are orthogonal to the above
vector consisting of the coefficients ofan,l in Eq. ~4.2!. This
proves that theQ2 evolution ofe is exactly given by

Mn@e~Q2!#5Lgn
e/b0Mn@e~m2!#, ~4.5!

as is found in@7# by a different method. The complete spec-
trum of the eigenvalues of the anomalous dimension matrix
at largeNc is given in Fig. 4~b! together with the analytic
result in Eq. ~4.1!. One sees that Eq.~4.1! indeed corre-
sponds to the lowest eigenvalue.

To see how the approximation by theNc→` result
works, we compare the two results forn54 as an example.
The exact mixing matrix is

Y5S 2
511

45

21

10

10

3

2122

9

D , ~4.6!

and the one atNc→` is

Y5S 2
119

10

9

5

3 214
D . ~4.7!

From theseY’s one gets

M4@e~Q2!#5„0.983a4,2~m!10.520a4,3~m!…S a~Q2!

a~m2! D
9.59/b0

1„0.017a4,2~m!

20.020a4,3~m!…S a~Q2!

a~m2! D
15.3/b0

~4.8!

for the exactQ2 evolution and

M4@e~Q2!#5@a4,2~m!1 1
2a4,3~m!#S a~Q2!

a~m2! D
10.4/b0

~4.9!

at Nc→`. Equations~4.8! and ~4.9! can be compared with
Eqs.~20! and~21! of @7# for hL . One sees here again that the
coefficients in the second term of Eq.~4.8! are small~i.e.,
1/Nc

2 suppressed! and the anomalous dimension in Eq.~4.9!
is close to the smaller one in Eq.~4.8!.

V. SUMMARY

In this paper, we presented the covariant calculation of the
anomalous dimension matrix for the chiral-odd twist-3 dis-
tribution e(x,Q2). The operator mixing with the EOM op-
erator is taken into account. This study completes the whole
list of the anomalous dimensions of all the twist-3 distribu-
tions in the one-loop level together with the known results
for g2 and hL . At large Nc , we have confirmed that the
lowest eigenvalues of the anomalous dimension matrix take
a simple analytic form shown in Eq.~4.1! and it governs the
whole Q2 evolution of e(x,Q2) as was found in@7# by a
different method.
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APPENDIX

In this appendix we present the contribution from each
one-loop Feynman diagram shown in Figs. 2 and 3.

First we consider the three-point functionFmVm with the
insertion of Rn,l•D. We setmq50 to get Zlm and ZlE
( l ,m52, . . . ,@n/2#11). Figure 2~a! gives 0. Figure 2~b!
gives
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g2

16p2«
CGF (

m52

l21 S ~ l1m!~m21!

2~ l2m!@ l21#2
1

~n2 l121m!~m21!

2~n2 l122m!@n2 l11#2
DRn,m

~3! 1S 12Sl212Sn2 l112
1

2l
2

1

2~n2 l12!

1
~n12!~ l21!

2~n22l12!@n2 l11#2
DRn,l

~3!1 (
m5 l11

^n/2& S ~2n2 l2m14!~n2m11!

2~m2 l !@n2 l11#2
1

~n2 l121m!~m21!

2~n2 l122m!@n2 l11#2
DRn,m

~3!

3H 1
1

4

1

@n2 l11#2

n~3n22l16!

n22l12
Rn,~n/2!11

~3! n: evenJ G S 2< l<K n2 L D , ~A1!

where $••• n: even% means this term is only for an evenn and its coefficient is one-half of that of the third term with
m5@n/2#11 @the same in~A3!, ~A5!, and~A7! below#, and

g2

16p2«
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m52

[n/2] S 2
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2
n1m11
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~3! G S for l5Fn2G11with even nD .

~A2!

In Eq. ~A2!, the terms withm52, . . . ,@n/2# are the same as the first line of Eq.~A1! with l5@n/2#11. This rule also applies
to the results for other diagrams. Figures 2~c! 1 Fig. 2~d! give
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Figure 2~e! 1 Fig. 2~f! gives
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and

3074 55YUJI KOIKE AND N. NISHIYAMA



g2

16p2« F (
m52

n/2 H ~2CF2CG!
2~21!n/2112m

n/221Cm22

@~n/2! 112m# n2m11Cn/2
2CG

2

~n/2!11 JRn,m
~3!

1H 4CF~12S~n/2!!2CG

2

~n/2! 11 JRn,n/211
~3! 2CG

2

~n/2! 11
En~3!G S for l5

n

2
11with even nD . ~A6!

Figure 2~g! 1 Fig. 2~h! gives
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2
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~A8!

Next we calculateZlE , ZlN , ZEE , andZNN from the one-
loop two-point functions shown in Fig. 3 with a nonzero
quark mass.

The one-loop correction to the two-point function with
Rn,l•D comes from Figs. 3~b! and 3~c!. It gives

g2

16p2«
CFF2S 2

@ l #2
1

2

@n2 l12#2
D En~2!

1S 4

@ l21#3
1

4

@n2 l11#3
DNn

~2!G . ~A9!

For the one-loop correction to the two-point function with
En•D, Fig. 3~a! gives

g2

16p2«
CFF 4

n11
En~2!12

n21

@n#2
Nn

~2!G ~A10!

and Fig. 3~b! 1 Fig. 3~c! gives

g2

16p2«
CFF S 32

4

n11
22SnD En~2!2S 31

2~n21!

@n#2
DNn

~2!G .
~A11!

Although each contribution from Figs. 3~a! and 3~b! is dif-
ferent from the one forhL , the sum of Eqs.~A10! and~A11!
are the same as the one forhL .

Finally, for the one-loop correction to the two-point func-
tion with Nn•D, Fig. 3~a! gives

g2

16p2«
CF

2

n~n11!
Nn

~2! , ~A12!

and each of Figs. 3~b! and 3~c! gives the same contribution:

g2

16p2«
CFS 22(

j52

n
1

j DNn
~2! . ~A13!

These are the same as the ones forhL .
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