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Q? evolution of chiral-odd twist-3 distribution e(x,Q?)
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We study theQ? dependence of the chiral-odd twist-3 distributiefx,Q?). The anomalous dimension
matrix for the corresponding twist-3 operators is calculated in the one-loop level. This study completes the
calculation of the anomalous dimension matrices for all the twist-3 distributions together with the known
results for the other twist-3 distributiorgs(x,Q?) and h, (x,Q?). We also have confirmed that in the large
N, limit the Q2 evolution ofe(x,Q?) is wholly governed by the lowest eigenvalue of the anomalous dimension
matrix which takes a very simple analytic form as in the casg,odndh, . [S0556-282(97)00605-X]

PACS numbgs): 12.38.Bx, 11.10.Hi, 11.15.Pg, 13.85.Qk

[. INTRODUCTION to theh, case is reminded. In Sec. Ill, we present the calcu-
lation of the one-loop anomalous dimension matrix for
Ongoing plans of high energy collider experiments aree(x,Q?). The method follows that of6]. In Sec. IV, the
going on their way toward more precision measurements an@? evolution ofe(x,Q?) in the largeN, limit is discussed.
more variety of spin-dependent observables in maeymi) This part is a recapitulation ¢¥] in our language. Section V
inclusive processes. Correspondingly, increasing attention i§ devoted to a brief summary of our results. The Appendix
paid to the power corrections due to the higher twist effectgontains the contributions from each one-loop Feynman dia-
which represent parton correlations in the target. Recerfiram.
measurement of the nucleonds structure function by the
E143 Collaboratior[l] anticipates a forthcoming Significant 1. TWIST-3 OPERATORS FOR e(x,QZ)
progress of the twist-3 physics. Under this circumstance,
QCD study on the scale dependence of various distribution The chiral-odd twist-3 distribution functioe(x,Q?) is
and fragmentation functions is of great interest. defined by the relatiofi]
The nucleon has three twist-3 distributiogs, h, , and
e [2]. g, is chiral even and the other two are chiral odds d\ o )
spin independent and the other two are spin dependent. Com- J 5 €V (Pl(0) (A |o|P)=2Me(x,Q%), (2.)
pared toe(x,Q?), g, andh, have more chance to be mea-
sured experimentally since they bepome Ieaqing Co.mrib”tioovherelP) is the nucleon(lmassM) state with momentum
to proper asymmetries in the polarized deep inelastic scatteps 14 jightlike vectorsp and n defined by the relation,
ing (DIS) and Drell-Yan processes, respectively. Theit p— 2 22— n— ;
) . , p+(M</2)n, p°=n“=0, p-n=1, specify the Lorentz
evolution has been studied [8-5] for g, and in[6,7] for  ame of the system. Gauge-link operators are implicit in Eq.
he . (2.1). Taking the moments of E@2.1) with respect to, one

_Slrgll?rly to the dlsftnbu'qon fu?](.:tfn;' thgk)re ﬁrz three can express the momentsei(fx,Q?) in terms of the nucleon
twist-3 fragmentation functions which describe hadroniza-, ,iriv elements of the twist-3 operatovéL #n:

tion processes of partons in semi-inclusive procegSés
0,(z,Q?), h (z,Q?), ande(z,Q?). (Their naming is parallel 21— 2
to the corresponding distribution functiopsn the inclusive Mile(Q)]=en(Q7), 2.2
pion production in the transversely polarized DIS, the chiral-
. o . ) (PYVHi#2  #n| PGSy =2e M (P#1PHz2. . . P#n—traces,

odd fragmentation functioa of the pion appears as a leading 2.3
contribution together witth; (twist-2) of the nucleon. Al- ’
though theQ? evolution of the twist-2 fragmentation func- — )
tions is known to be obtained from that of the corresponding VHz =S giD HiD#2. - - iD#nyp—traces, (2.4)
distributions in the one-loop levéGribov-Lipatov reciproc-
ity [9]), no such relation is known for the higher twist frag- where /\/ln[e(Qz)]Eff1 dx x'e(x,Q?%) and the covariant
mentation functions. derivativeD ,=d,,—igA,, restores the gauge invariance. As

In this paper we investigate th&? evolution of in Egs.(2.3) and(2.4), we often suppress the explicit scale
e(x,Q?). Theoretically, this completes the calculation of the dependence. Following a common wisdom we introduce a
anomalous dimension matrices of all the twist-3 distribu-null vector A , (A?=0) to kill the trace terms of/#1 " #n
tions. Phenomenologically, we expect it will shed light onand introduce the notatioN,- A=V#1#nA  ..-A ,  for

Hn
the Q2 evolution ofe(z,Q?), anticipating the day when their convenience, and similarly for other operators in the follow-
relation is clarified. ing. Using the relation D#=3{D,y*} and [D,.,D,]
The outline of this paper is the following: In Sec. I, we =—igG,, with the gluon field strengtis,,,, V,-A can be

briefly recall the twist-3 operators fe(x,Q?) [2]. Similarity ~ recast into the form
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FIG. 1. (& Three-point basic vertex foR,,, E, andN. (b)
Four-point basic vertex foR, | necessary for the calculation of the
diagrams shown in Fig. 2.

>
E

n

vn-AZIZZ UniA+Ny-A+E,-A, (2.5 © &

where

UrtAn= ES %auliD,ug,,, GHM ...iDMn¢—traceS
| 2¢n 9% '
(2.6)

>
Pa

B © (®)
N#1* En= S myhy*tiD #2. . .iD#ny—traces, (2.7)

1 -
B tin= SSY(iD —mg) y*1iD#2- - -iD nyy

>
2

+ ryP1iDH2. . . iDHn(iD — mg) /] —traces.

2.9 (8 (h)
U, containsG,,, explicitly, which indicates thag(x) repre- FIG. 2. One-particle-irreducible diagrams for the one-loop cor-
sents the quark-gluon correlations in the nuclelinis the ~ "ection toF,(p.q.k).

guark mass times the twist-2 operator which contributes to 5 )
the moments off; structure function familiar in the spin- ll. Q% EVOLUTION OF e(x,Q%)

averaged DISE is the equation of motioEOM) operator For the renormalization o&(x), we closely follow the
which vanishes by use of the QCD equation of motion. Al-method of(6] which discussed the renormalizationtgf. So
though the physical matrix elements of EOM operators vanye omit the detail in the following. Owing to the chiral-odd
ish, one needs to take into account the mixing Vi@tto carry  patyre e(x) does not mix with the gluon distribution. We
out the renormalization o) andN, as is discussed if6,6]  chooseR,, (I=2,...[n/2]+1), E, N as a basis of the
in the context of the renormalization gf andh, . From EQ.  gperators. For the renormalization Bf,,, we calculate the
(2.5 one sees that, appears in the form of one-loop correction to the three-point  function

F.(p,a,p—q) defined by

FL(p,a.k)(2m)*8*(p+k—0q)G(p)G(q)D(k)

RI{:‘JI_..-M”: U,:ElJr,tZLn_l_ UiU«l-..Mn (' :27 . ,[g} + 1 )
(2.9) :f d4xd4yd4zépxeriqyeikz<-|—{ol)0(X)ﬁy)AM(Z)}>

By this combinationR,, has a definite charge conjugation
(—=1)". Readers may recall the similarity between the

presenfU,, R, } and{6,, R} which appeared ih_[2,6].
In fact presence ofys in 6, is the mere difference from
U,. R, of h, is defined asf,_,,.,— 6, and has a charge
(a) (b) (©)

conjugation 1)"** which is opposite to the abowe, | in
Eqg. (2.9. We will see the similarity in the renormalization
constants betweelm, ande in the following. FIG. 3. One-loop corrections to the two-point functions.
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(O=Rn;. N. E), 3.1 3 _9 -1, xan—1 : Sj-20n-]
, Eon= 5| Yuba" APy, A, D (p-mg) AP 7"
whereG andD are, respectively, the quark and gluon propa- =2
gators.(We suppressed the Lorentz and spinor indices for n
simplicity.) In order to take into account the mixing with the +A, > Ad—my)p ~2g"|[t8 (3.3
EOM operator properly, we use off-shell kinematics for the Hi=2 a
external lines. The calculation is done with the Feynman
gauge for the gluon propagat@f course the result should
be independent of the gaugand the minimal subtraction noo
(MS) scheme is adopted with the dimensional regularization. J\/§]3L= mquﬂAE pl~2q"t3 (3.9
The three-point basic vertices shown in Fig(a)l for =2
Rni-A, Eq-A, Np-A are calculated to be R
wherek=q—p, p=p-A for an arbitrary four-vectop and
t? is the color matrix normalized as T#")=316%". One-

g N Al Ay oA loop diagrams for the abovE, are shown in Fig. 2. In
3 __i2 Inl—-2 212501 3 . u
Rotu=—"150 AP d " "+pq") calculating these diagrams, we need a Feynman rule for the
A four-point basic vertex oR,,-A shown in Fig. 1b). It is
X (—KQgg,t KA )8, (3.2 given by
|
n—I+1

N[]

fabctco.a)\A}\AMgavﬁnflaI72_ia_a}\A)\tatb E bj*ZA#(ﬁ_FR)nflJrlfj(_Rrgay+ k;Ay)al—z
=
n

—io™AR Y p A (PRI T3 (— kg, t KA )G F (pe v kesk @ b) [+(1-n—1+2). (3.5

j=n—1+3

For the actual calculation of the one-loop diagrams, we introduce a vectowith the condition()-A=0, and consider
F.Q* [6]. This way mixing with the gauge noninvariant EOM operators can be avoided and the calculation is greatly
simplified. (See[6] for the detail) The contraction oR{} , and£F), with Q, leads to

ig a s ania g Al gan
Rl Q=2 Q0 A\(a-p)(p" g2+ p' 2" R, (3.6
[ - -
g(ns).Q:_?gﬂaa.axAA(qnfl_pn—l)ta_ 3.7)

The mixing coefficients betweeR, | and{N, E}, Z,z andZy, can also be obtained from the one-loop correction to the two
point function shown in Figs.(8) and 3c), giving a consistency check. The two point basic verticesfF@ndN are

1.
£ =5p"H(Ap+pA—2myh), (3.9

NP =mgp" 4. (3.9

Using these Feynman rules for the vertices, one can calculate the one-loop diagrams shown in Figs. 2 and 3. Actual
calculation is very tedious and will be described in the Appendix in detail. Taking into account the wave function renormal-
ization for the fields and the renormalization foy, andg which explicitly appear in the verticd$], we eventually obtained
the renormalization constanZ; amongR,;, N, andE in the matrix form

R Zin(w) Zig(w)  Zin(w) \ [ Rom(p)
EP |=| 0 Zee(n) O En(n) |, (I,m=2,---,§+1). (3.10
NP 0 0 Zyn(p) Nn(w)

Zj; can be expressed as

g° . n
Zij= 8+ 1525 Yii hi=2,...45

+1,E,N>, (3.12)
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with e=(4—d)/2 (d is the space-time dimension in the dimensional regularizatmal the constant¥;; given below. To
write downY;; we define a symbo{n/2) as(n/2)=[n/2]=n/2 for an evemn and(n/2)=[n/2]+1=(n+1)/2 for an odd
n. ThenY;; is given as
(m— 1)(m+|) (m=1)(m+n—1+4+2) 1 1 (I—3)(I+1 m) [+2
2(1— m)[l—1]2 2(n—1-m+2)[n—1+1], | —I+2 2[1-1]5 " 2[1-11,

(_1)n7|7m n,|Cm,2 (_l)lim |,2C|,m
(n=1+2-m) n_m1C—y (I=M) n_me1Cip

Yim=Cg

(n=I-1)(n—=1-m+3) n—-1+4
In—1+1]s 2[n—1+1],

+(2C:—Cg)

~1Cm- 1+1Cm-
o _qym| 171¥m-1  n-l+1vm-1 o o
2(—1) ( =11, + [n—I+1]3) (2<|< +1, 2=sm<l| 1), (3.12
1 1 N (I-1)(n+2) 2 1 1-3 | +2

Y =Cg| —

ST ST T a(no142) T 2(n—21+2)[n—1+1], n—1+2 1 2[-1], 2[I-1]
(n=I-1)(n—=21+4) n-1+4

+ +2(Ce—2Ce)| (- 1) +(—1)“+ ”'”C'l)
2[n—1+1], [n—1+1], ¢ F [1-1]3 [n—1+1],
-1 n
—(=1) =T+ D) (n=21+2) —Cr(25_-1+2S,-111—3) (2<I$<5>), (3.13
6 (n/2)—2 (n/2) +3 ( 1)"2
Yn/2+1 n/2+l:CG 25!’1/2 n+2 [n/2]3 + [n/2]2 (ZCF ) [ /2] +CF(3 4SI"I/2) (for even n) (314)
3 (2n—=1—-m+4)(n—m+1) (m=1)(m+n—14+2) 2 (n—I—l)(n—2I+4)i n—1+4
Ym=Cel T m-Din—1+1], | 2(-m—1+2)[n-1+1], n—1+2 2n-1+1l,  [n—1+1]
2(- )™ 141Cmo1+ (=)™ 1 11Cme
+(CG_2CF)[ (—D™n- 1[n_1|+(1]3) 1+1Cm-1}

, (3.19

|

. _1)ml( n—1Cm-1 i (_1)n n—1Cm-2 ) (3<|+1<m< E
( (m=1) m—-1Cm-1 (n_|+2_m) n-m+1Ci-1 - 2

Yinr+1=Cog

1 1 n(3n—2l+6) 1 Ll (n=1=1)(n/2)—1+2 n—1+4
Z[n—1+1], n-21v2 n-1+2 2 n—1+1, __ [n-1+1],

(—1)n2 (=12 Clu—i+1 n
+(2Cg— CG)(m n—1+1Cnp2t 2 —1+1 —Ci for evenn, Zslsz ,
(3.16
|
1 1 n [ilk=i(j+21)---(j+k—1), and ,C, is the binomial coeffi-
Yie=—2C¢ Eer 2<Is|5|+1), cient defined as,C,=n!/I!'(n—1)!. Note that Eq.(3.16) is

(3.17) one-half of Eq.(3.15 with m=(n/2)+ 1 for evenn. With
theseY;; (i,j=2,3,...,[n/2]+1, E, N), the anomalous

1 n dimension matrix for the twist-3 operatoR;,,, E, and N
Y,N=4CF([I ~17 + n=1+11, (Zsls 3 +1], take the form of the upper triangular matrix as
(3.18
9 (3.2
Yee=2(1-$,)Ck, (3.19 NiT T g il '
_ The above results fo¥ can be compared with the mixing
Yuww=Cgl =—=—-4 3.2
NNT=Fln(n+1) S’) (3.29 matrix X for h_ given in Egs.(3.14—(3.20 of [6]. Their

difference comes from the opposite charge conjugation sym-
where CF:(NE—l)/ZNc and Cg=N, are the Casimir op- metry of R,,. Solving the renormalization group equation,
erators of the gauge group SN, 31=E?:11/j, the Q2 evolution of R, andN is given by



3072 YUJI KOIKE AND N. NISHIYAMA 55

Exact
40_ T T T T T T
w 30
[}
=
S 2
> L
[]
1))
o
ML ok
O 1 1 1 1 1 ]
0 5 10 15 20 25 30

n

Leading N,

Eigenvalues

FIG. 4. (a) Complete spectrum of the exact eigenvalues of the anomalous dimension matef@?) together with those foh,
(squares (b) Complete spectrum of the leadifd, eigenvalues of the anomalous dimension matrixdipr,Q?). Solid line is the analytic

solution in Eq.(4.1).

[n/2]+1 20\ ~Yib
o a(Q )) 0 )
an,I(Q )= =~ (a(,uz) Iman,m(ﬂ )
a(QZ))Y/bO )
(a(MZ) INdn(/'L )v (322
2y\ —Ynn/bg
dn(@F(%) dn(?), (3.23

wherea, | andd, are defined by

(PIRET 0 u?)|P) =225 (1*) M Sp(PH1- - - P#n—traces,
(3.29

(P|NH2 i 42)|P)=2d(u?)MS,(PA1- - - PEn—traces,
(3.25

andby=5N,— 3N;.

mensions ofe are significantly larger than those bf, ex-
cept for the first several moments.

Before closing this section, we compare Q& evolution
among the twist-2 and -3 distributioriat my=0), using the
first few moments. Fon=2 and 3, only one operator con-
tributes toe(x). The values ofY can be read from Egs.
(3.13 and(3.14 asY"=?= —55/9 andY"=3= —73/9. Thus
the Q? evolution becomes

Ma[e(Q?)]=L oM, e(u?)],

Ma[e(Q?)]=L oMy e(u?)], (3.2

where L=a(Q?)/a(u?). In Table I, we summarize the
anomalous dimensions of the twist-2 and -3 distributions for
n=2, 3, ignoring the common fact@?/8=2. One sees that
these moments of evolve slower than those of the other
twist-3 distributions and are close to the twist-2 distributions.

IV. LARGE N, LIMIT

The complete spectrum of the eigenvalues of the anoma- In[4,7], it has been proved that all tlieonsingle}l twist-3

lous dimension matrix3.21) (ignoring the factoig?/8x?) is

distributionsg,, h,, ande obey a simple Gribov-Lipatov-

shown in Fig. 4a) together with those for the twist-2 distri- Altarelli-Parisi (GLAP) equation10] similarly to the twist-2
bution h,. One sees from the figure that the anomalous didistributions in theN.— < limit. In this limit, Q2 evolution

TABLE |. The anomalous dimensions for the second and third moments of the nonsinglet twist-2 and
twist-3 d[§tributions. For these moments, the twist-3 distributions recei\Le the contribution from only one
operator.h, andg, denote the twist-3 parts df, andg,, respectively. Foh, , the third moment is the
lowest one, and the result is taken frd®]. For g,, the result is taken froni3], and the anomalous
dimensions for odd moments are not available because they have been discussed in the context of DIS.

n f1, 01 hy e (o7} h,
2 50 52 55 77
9 9 9 9
3 314 64 73 104
45 9 9 9
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of these distributions is completely determined by the lowest 511 21
eigenvalue of the anomalous dimension matrix which has a 25 10
simple analytic form. Foe, this can be checked using the Y= , (4.6)
results in the previous section. At,—, i.e., Ck—N/2, 0 -122
the lowest eigenvalue of in Eq. (3.21) is given by(ignoring 3 9
the factorg?/8?)
and the one alN,—x is
. 1 119 9
¥n=2N¢ S”_Z_m : (4.) _= 2
Y= 10 5 (4.7
. 3 -14
As was shown in Sec. Il, thath moment ofe(x) can be
expressed in terms @f, | as From theseY’s one gets
a(QZ) 9.59b¢
(n/2) 1 M,[e(Q*)]=(0.983, A u) + 0-52(34,3(#«))( m)
M,[e]= a, | +=a n: ever}, 4.2
n[ ] I:EZ n,l 2 n,[n/2]+1 +(O.017a4,2(,u)
a(QZ) 15.3bg
where{--- n: ever} means this term is only for evem. _O-OZCHA,iM))(m) (4.9
We can directly check that the coefficientsagf; in Eq. (4.2
constitute theleft eigenvector of the mixing matri¥ with  for the exactQ? evolution and
the eigenvalue- y;, i.e.,
a’(QZ) 10.4hb
My[e(Q)]=[agdp)+ 7854 1)] a(1?)
[n/2]+1 n (4.9
Yim=—7c (m=2,...|z|+1 4.3 . .
,22 m n ( 2 4.3 at N.—o. Equations(4.8) and(4.9) can be compared with
Egs.(20) and(21) of [7] for h; . One sees here again that the
for odd d coefficients in the second term of EQ@L.8) are small(i.e.,
or-oddn an 1/N? suppressedand the anomalous dimension in Hg.9)
is close to the smaller one in E@.8).
s n V. SUMMARY

IZZ Yim+ EY(n/2)+1m:_7ﬁ (m=2, 15 ) '

- In this paper, we presented the covariant calculation of the
anomalous dimension matrix for the chiral-odd twist-3 dis-
tribution e(x,Q?). The operator mixing with the EOM op-

(2] 1 1 erator is taken into account. This study completes the whole
22 Y (241t §Y(n/2)+1<n/2)+1= - Eyf;‘ (4.9 list of the anomalous dimensions of all the twist-3 distribu-

for evenn. This means all theight eigenvectors except the
one which corresponds tg¢ are orthogonal to the above

vector consisting of the coefficients af | in Eq. (4.2). This
proves that theQ? evolution ofe is exactly given by

M [e(Q?)]=L""Po M [e(u?)], (4.5

as is found il 7] by a different method. The complete spec-

tions in the one-loop level together with the known results
for g, and h_ . At large N;, we have confirmed that the
lowest eigenvalues of the anomalous dimension matrix take
a simple analytic form shown in E¢4.1) and it governs the
whole Q? evolution of e(x,Q?) as was found if[7] by a
different method.
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APPENDIX

trum of the eigenvalues of the anomalous dimension matrix

at largeN, is given in Fig. 4b) together with the analytic
result in Eqg.(4.1). One sees that Eq4.1) indeed corre-

sponds to the lowest eigenvalue.
To see how the approximation by th€.—o result

works, we compare the two results for=4 as an example.

The exact mixing matrix is

In this appendix we present the contribution from each
one-loop Feynman diagram shown in Figs. 2 and 3.

First we consider the three-point functién,(2* with the
insertion of R,;-A. We setm;=0 to getZ,,, and Z;g
(I,m=2,...[n/2]+1). Figure Za) gives 0. Figure &)
gives
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1-1

g° — [ (I+m)(m—1) (n=1+2+m)(m—1) 3 1 1
16m% © mE=2 20— —1],  2(n—T+2—m)[n—1+1], Rom* 1_5"1_5”"“_5_2(n—l+2)
(n+2)(1-1) _— <n2/2> ((zn—l—m+4)(n—m+1) (n—1+2+m)(m—1) R
2(n=21+2)[n—1+1],) ™ 541 2(m—=D[n—=1+1], 2(n—=1+2-m)[n—1+1],/ ™M
1 1 n(3n—2l+6) 3 ' _[n
X +Z[n—|+1]2 T Rnniz+1 N eve 2<l|=< 5/ (A1)

where{--- n: ever} means this term is only for an evenand its coefficient is one-half of that of the third term with
m=[n/2]+ 1 [the same i(A3), (A5), and(A7) below]|, and

2 [n/2]

g _¢ > 2 _nemed R +(1—Spp— Snas ) RE) for 1=| |+ 1with evenn
EZ; G =, (n/2)—m+1 [n/2]2 n,m /2 /2+1 n,n/2+1 2 '

(A2)

In Eq. (A2), the terms withm=2, . .. [ n/2] are the same as the first line of E&1) with | =[n/2]+ 1. This rule also applies
to the results for other diagrams. Figurgs)2+ Fig. 2(d) give

2 -1 n
g B Comenf n1+2Cm-1 1-1Cmea | (s ] nm1+1Ci-it (1) 1 3)
o7 (2CF~ Ce)| 2, 2(-1) <[n_|+1]3+ [—1J, ) *nm*2(=1) n—1+1, [i—1];) ™
(n/2) m—1
2(-1)
+m=EI+l m(n,,ﬂcm,ﬁ—(—l)” n—1+1Cm- DR,
2(—1)"? 1 1 n
7 (3) . I 3) _
X{+[n—l+1]3 n—1+1Cn2 R i+ 1 n: eve [I]2+[n—l+2]2 S 2<|< 51 (A3)
and
[n/2]+1
g2 m—1 n/ZCm—l (3) 2 o(3) _ n .
167T28(2CF Ce) mE:Z 4(—-1) [n/2l, Ram [(n/2) + 15,57 for |= 5 +1 with evenn|. (A4)

Figure Ze) + Fig. 2f) gives

- _ =
92 21 (26— Co) (D™ G, (DM Crp | (11 Vg
167°s | > Pl d-m) poms1Criom (N=14+2—m) 1_ms1Ci—1 S\I " n=1+2/)|mm
ilc-co— VDS e _2)—Co| £+ RE
F e (noirn) 2OHS T S C\ 1T n—1+2) ]
(n/2) m—1 n—l-m
(_1) n—ICm—I (_1) n—ICm—2
- 2Ce—C + -C R
m—2I+1|( F~Co) (M=1) m-1Cm—y (N=1+2=M)y_41C1 1 Cn—l+2)nm
(_1)(n/2)7l+1 n—lc(n/2)fl+l 1 (3) . ’_] 1 1 3)
x +[(2CF_CG)( (12) 141 mComror] CCn—1+2 | Rntzes  Nievey=Cel| 7+ ooy 2
2<l=( A5
s|s(=
3 (A5)

and
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2

n/2 /2+1—m
g (=1)" n2-1Cm—2 2 (3)
1672 [mZ_z [(ZCF_CG)[(n/z) +1-m] n_m+1Cn,2_CG(n/2)+ 1[Rnm
2 3) 2 3) n .
+14Cg(1- S(n/2))_CGm Rn n2+1 Cemgg for |= 5 +1with evenn|. (AB6)

Figure 2g) + Fig. 2(h) gives

2

g ' (1=3)(1+1—m) [+2  (n=I=-1)(n—=14+3—m) n—1+4 3 1 -3 [+2
——Cq| 2 = + + + RO+ +
167T € m=2 2 [|_1]3 [I_l]z [n_|+1]3 [n_|+1]2 2 [|_1]3 [I_l]z
(n/2)
n—1—-1)(n—21+4 n—I+4 1/(n=1-1)(n=-21+4) 2(n—1+4
( )( )+ RO+ S ( )( )+ ( )
[n=1+1]; [n=1+1],) ™ 5412 [n—1+1]; [n—=1+1],
1 (n—I—l)(n/2—I+2) n—1+4 (3) _ 1 1 e
3 [n—1+1]s  [n-l+1],) nmaez M Ve F o + ommg &
2<lI< n A7
<I=(3]]. (A7)
and
g2 (W21 (1(n12) —=2][(nf2) +2—m] (n/2) +3 n
2 (3> 3) - _ ;
6.2, Co mE:Z ( (2T TR R +(n/2)+2£( (for |=>+1 with evenn]|.
(A8)
|
Next we calculateZ g, Z\y, Zgg, andZyy from the one- g° 4 2 (n—1) 2
loop two-point functions shown in Fig. 3 with a nonzero 7=—-Cr||3— —= —2S,|&7—( 3+ NP
167°¢ n+1 [n]2
qguark mass. (A11)
The one-loop correction to the two-point function with
R, -A comes from Figs. ®) and 3c). It gives Although each contribution from Figs(8 and 3b) is dif-

ferent from the one foh,_, the sum of Eqs(A10) and(A11)

g° 2 2) are the same as the one for.
167m2¢ Ce| — [, [n— | _|_2]2 & Finally, for the one-loop correction to the two-point func-
tion with N,- A, Fig. 3a) gives
4
: o :
([|_1]3 [H—H—l] (A9) 9 C 2 A2 (A12)
. . . . 167%c "n(n+1)" "’
For the one-loop correction to the two-point function with
E,-A, Fig. 3a) gives and each of Figs.(8) and 3c) gives the same contribution:
g 4 ——2+ 2) g M2,
— Al
16m°¢ Cr n+1" M } (A10) 1672 Crl — JE_: (A13)
and Fig. 3b) + Fig. 3(c) gives These are the same as the oneshior
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