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Corrections to the Bjorken and Voloshin sum rules
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We calculate near zero recoil the ordeycorrections to the Bjorken and Voloshin sum rules that bound the
B—D®™)/p form factors. These bounds are derived by relating the result of inserting a complete set of
physical states in a time-ordered product of weak currents to the operator product expansion. The sum rules
sum over physical states with excitation energies less than a Acalge find that the corrections to the
Bjorken bound are moderate, while the Voloshin bound receives sizable corrections enharicetiby .

With some assumptions, we find that the slope parameter for the form fa@:ltm B—D* /v decay satisfies
0.4< pf\lS 1.3.[S0556-282(97)06505-3

PACS numbeps): 11.55.Hx, 12.39.Hg, 13.25.Hw

. INTRODUCTION pZ_ o« =0.84+0.12+0.08. This might violate the above up-
per bound when experimental uncertainties decrease. The
It is possible to perform model-independent extractions ofp| EpH [11] result p2 =0.29+0.18+0.12 is signifi-
f the Cabibbo-Kobayashi-Maska(@KM) matrix el- il
SOme o Yy cantly smaller, close to the above lower bound. The slope of

ements and quark masses from exclusive and inclusive semhe form factorh, , which occurs inB—D* /v decay, has

leptonicB meson decays via a systematic expansion in 'Nalso been studied by CLE[22]. Central values for its slope

verse powers of the heavy bottom and charm quark masses, .y metep,2 ranging between 0.91 and 1.53 have been ob-
The form factors iB— D)/ decays are related by heavy 1

quark symmetry [1] to the Isgur-Wise function, tained. Thus, it is interesting to calculate the corrections to

((w=v-v’"), wherev is the four-velocity of theB andv’ is the Bjorken and Voloshin bounds.
that of the D*). A model-independent determination of
[V¢pl from the differential decay rateldB— D* /v)/dw is
made possible by the fact thgtis equal to unity at zero To derive the sum rules, we follow Refgl3-15. Con-
recoil (w=1) [1-4]. Inclusive B decay rates can be calcu- sider the time-ordered product

lated by performing an operator product expansion for the _

time-ordered product of two weak currefid, allowing for ! 4o —ig-x +

a model-independent determination|®f,| from the inclu- T’”_Z_mBJ dxe ™ <B|T{J#(X)'J”(0)}|B>’ @D
sive semileptonic decay ral&q(B— X,/ v).

The major theoretical uncertainties in the determination ofvhereJ,, is ab—c axial or vector current, thB states are at
|Vp| from inclusive decays are due to the questionable conrest, q is fixed, and go=mg—Ey—e. Here
vergence of the perturbative corrections to thguark decay  E, = +/m2,+ |q|2 is the minimal possible energy of the had-
rate[6], and the uncertainties in tHeandc quark masses. ronic final staté that can be created by the curreht with
Uncertainties in the determination Pfcy| from B—D*/v  fixed |g|. With this definition ofe in terms of the hadronic
originate from orderAdc/m¢ ,, corrections at zero recoil, variables, the cut of ,, in the complexe plane correspond-
and from extrapolating the form factors measured/atl to  ing to physical states with a charm quark lies along
w=1 (phase space vanishesvat1). The uncertainties in 0<e<+o. It will be important that at the same value of

';gicstoerxgtapgrlgtirzr;c\){\iou:adrebinrgdLrj108d if the slope of the form| g/ the cut at the parton level lies within the smaller region
z il w wn. -~ 2

. . > - . -
Sum rules have been derived that relate the exclusive dere'esAcExvdinl)/tvc;’ +ﬁ(é\iCQa(l:|D/ST;fg)S \(;{‘hV Ris aun;tlﬁsera%t accir
cay form factors to the inclusive decay rates. The Bjorken P 9 phy q

sum rule[7,8] gives the boung?>1/4, wherep? is minus qua_rk that lies betweelfrZEM?e>—w. This cut will not
the slope of the Isgur-Wise function. Voloshin derived thebe important for our discussignTo separate out specific

upper bound p2< 1/4+(mM—mQ)/[Z(li—mM)]:OJS hadronic form factors, one contracts the currents in &y.

. } with a suitably chosen four-vectar, yielding
[9], wheremy —mg= A is the mass difference between the
ground state heavy meson and the heavy quark that it cor————

- - 2 2
tains (up to corrections of orderAgcy/mcy), and 1The ground state doublet of mesons have light degrees of free-

My, — My is the mass of the first excited meson state abov@om with spin-paritys™=73". We consider situations when only

the pseudoscalar-vector doublet. one member of this doublet contributes. It is this state that we
The most recent experimental data from CLEQD] is  denote byM.
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3028 BOYD, LIGETI, ROTHSTEIN, AND WISE 55
This can be turned into an upper bound on the contribution
of excited statesX# M) to the right-hand side of E¢3) by

& assuming that the contribution of multihadron states is neg-
ligible below the first excited meson stalé;. This is true in
the largeN, limit, and experimental data available in the
future onB—D™) 7/, etc., decay rates can suppddr

C oppose the validity of this assumption.

K Thus, there are upper and lower bounds

1 * v
o | dewsorarT, (9

[(M|J-a|B)|?
4mgEy,

1 ou ) €
> g | gewse T 1 g L)

®

FIG. 1. The integration contou® in the complexe plane. The 2 > .
9 plexe p where EM1=\/mM1+|q|2. It should be emphasized that

cuts extend to Re— *= o,
while this upper boundwhich yields the Bjorken bounds
1 essentially model independent, the lower bougwhich
a* T, ( 6)3”22—2 (27)383(q+ px) yields the Voloshin bour‘bdreﬁes on the above assumptions
Mp"X about the spectrum of the final state hadréns
Following [14], we choose a set of weight functions

(2) AZn
WY (€)= A

B|JT-a*|X)(X|J-a|B
B PO
x o (n=23,...) 6)
where the ellipses denote the contribution from the cut cor-
responding to twd quarks and & quark. The sum oveX  that satisfy the following propertiesii) W, is positive
includes the usual phase space factors,d/2Ey for each  semidefinite along the cut so that every term in the sum over
particle in the stat. _ X on the hadron side of the sum rule is non-negatii@;
.\Nhllle T,.(€) cannot be c.ompute'd for arblltrary values of w, (0)=1; (iii) W, is flat neare=0; (iv) and W, falls off
€, its integrals with appropriate weight functions are calcu-rapidly to zero fore>A. This choice of weight functions is
lable in perturbative QCD. Consider integration of the prod-motivated by the fact that for values ofof order unity all
uct of a weight functionW,(e) with T,,,(¢) along the con-  {he poles oM™ lie at a distance of ordek away from the
tour C. surr(_)undlng .the physical cut, .shown in Fig. 1.. physical cut. Asn—cs, \N(An) approachesf(A—e¢) for
AssumingW is analytic in the shaded region enclosed by thlSe>0’ which corresponds to summing over all hadronic reso-
contour, we get nances up to excitation energy with equal weight. In this

1 limit the poles ofW{™ approach the cut, and the contdiis
| dew,(e)[a*#T,,(e)a"] P A~ app

27 Jc forced to lie within a distance of ordéx/n from the cut at
(X|3-alB)? e=A. In thisb case the eva}luation Iof t?% colr[nom]Jr intﬁgrals

- - -a using perturbative QCD relies on local duality6] at the
:; Wa(Ex—En)(2m)°6%(q+px) 2mg C) scaleA. In the rest of this paper whenever the weight func-

tion is not specified explicitly, we meaf(A —¢).

The positivity of|(X|J- a|B)|? for all statesX gives an upper The bounds in Eq(5) become weaker a4 is increased.

bound on the magnitude of form factors mediatBiglecays However, the scald must be chosen large enough that the
into the ground state doubléd. contour integrals in Eq(5) can be performed using pertur-

The integral of the correlator weighted witlW, (€) bative QCD, allowing the evaluation of the Wilson coeffi-
eliminates the contribution from the ground state doubletients of the operators that occur in the operator product
X=M, yielding expansion for the time ordered product of currents. In prac-

tice this means thak must be greater than about 1 GeV.

i edeW,(e)[a*#T ,,(e)a"]

2miJc Ill. BOUNDS ON THE ISGUR-WISE FUNCTION
_ . 33,7, 2 The bounds stemming from E¢p) are simplest to evalu-
_x;M Wa(Ex—Em)(2m)°6%(a+px) ate in the heavy quark effective theoffQET) [17]. One
) may consider the vector current in the effective theory,
X(EX—EM)KX'J.a'BM . @ v#=h©y#h® and choose,=v,, the four-velocity of

2mg the B. Instead of calculating the correlator itself, it is simpler
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B 1) B celed by theu-dependence of the Isgur-Wise function,
2 L L which we define in théVS scheme. Differentiating with re-
\ﬁ(i spect tow, we find the following bounds on the slope pa-
rameter of the Isgur-Wise functiop?= —dé&(w)/dw|,,—1,
(5) (8) (b) _
h R o 1 A 4as< 2A 5 | 4A2)
275 —m T oM —m T3 I
FIG. 2. Feynman diagrams that contribute to the ordgror- 4 Z(li My) 9 M, ™ M 3 K
rections to the sum rules. The heavy quark fields in the effective 1 4a 5 4AA2
theory are denoted Hy®?). The black square indicates insertion of >p2(,u)>— + —S( =—In— (9)
the b—c axial or vector current. 4 9m\3

to compute its imaginary part given by the diagrams in Fig. ) ) )
2. In this paper we focus on the region near zero recoil, an@Neglecting the ordees corrections, these are precisely the

therefore we expand the perturbative corrections to lineaBjorken and Voloshin bounds discussed in the introduction.
order in w—1). The upper bound op? receives a perturbative correction of
The ground state contribution iS<M|VMUM|B> orderasA/Agcp, which is very large in tha>AQCDIimit.2
= Jmgmy (1+w)&(w), where&(w) is the Isgur-Wise func- Note, however, that higher orders in perturbation theory do
tion. (Only the pseudoscalar member of the ground statéot produce additional powers @df/Aqcp. Similarly, sum
doublet contributes to this matrix elemgnin the modified rules involving higher moments of [rii(e)] [20,13 will
minimal subtraction 1S) scheme, using dimensional regu- receive perturbative strong interaction corrections enhanced
larization and a finite gluon massy,, the inclusive expres- by more powers ofA/A ocp.
sion for the correlator to ordetg reads The bounds on the slope of the Isgur-Wise function in Eq.
(9) will have a perturbative series without large logarithms in
its coefficients if the subtraction point is chosen to be
equal toA. Note that the second term in the upper bound,

2
ag mg
+(w—1) glnﬁé( 6)

1I - _1+W s /—\W—l
;m[ (O]=—, | 0 e~ A——

8. 2€2+ m2 proportional toA, has a renormalon ambiguity of order unity
+(w— 1)_5 —49 /ez—méﬂ(e—mg)} (since the heavy quark pole mass has a renormalon ambigu-

9m € ity of order Aqcp). This is canceled by the ambiguity in the
. ) perturbative series i that muItipIiesA/(li—mM), the

) ] first term of which is presented in E¢P).
In Eq. (7) the terms proportional to delta functions come Using a weight function W(n)(e) other than
from the charm quark final state, and the term proportional th(w)( )=6(A—¢) does not affectAthe lowexBjorken)
f(e—my) arises from final states with a charm quark and a & ‘&= 728~ ¢€ ) ) )
single gluon. The gluon mass is used to regulate an infrareound onp” given on the rlght-zhand side of E(P). There-
divergence in the integral of Ifif(¢)] overe, which cancels fore. for the lower bound omp® (at order as), using the

(at orderas) between these two types of final states. weight functionW{”)(e) does not rely on the assumption of
Using Eqgs.(3) and(4) this implies the sum rules local duality at the scaled. Such corrections, however,
) weaken the uppeiVoloshin) bound by adding
1 14 ( 1)8as(| 4A 5)
2 9wl ut 3 4oy A / T
2 o= - -2, (10
(1+w) ) 9 My, — Myl nsin7/(2n)]
=gl P
14w Aw—1) / 160, A to the left-hand side of Ed9). Numerical estimates of these
_ 1 corrections will be given later.
2w My, — mM\ 97 A So far we have focused on the perturbative corrections to
8 4A2 5 1+w)2 the coefficient of the lowest dimension operatbf”’h(*
+(w— 1)is In——=||= ﬂ|§(w)|2— . that occurs in the operator product expansion for the time
97 3 4w ordered product. Higher dimension operators are of the form

® h(P(y".D)Ph(? . These vyield corrections suppressed by
powers of Aqgcp/A for weight functions other than
The ellipses in these equations denote positive terms Whosg(*)(¢) = (A — ¢).
first derivatives atw=1 are also positive. The reason for " |ower bound onp? including order e perturbative

positivity of the first derivative is that in the effective theory QCD corrections was derived in R§21]. It corresponds to

all excited state contributions must vanishaat 1, and may ; ; ;
. ) ’ a weight function given by the phase-space ofdecay,
therefore be written asw(—1) times the square of some 9 9 y P P y

form factor.[Equation(8) was previously obtained using a

Wilson line approach to heavy quark interactions in Ref. , . . L )
[18]. See alsd19].] One is free to absorb all or part of this correction into a redefi-

In Egs. (8), as is evaluated at the subtraction point nition of A, A—A(A), provided one consistently reexpresses other
This u-dependence on the left-hand side of E8).is can-  formulas involvingA in terms of this new quantity.
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which is different from those considered here. The bound inThe functionsFg_ p+ and Fg_,p are given in terms of the
[21] appears stronger than that in E8) because the weight form factors of the vector and axial currents defined in Eq.
function given by the phase-space falls off faster with (11) as

To zeroth order invg and A gcp/me ,, the constraints in
the effective theory are identical with bounds on the slope of
the measured shape of tBe~D*) /v decay spectra. How-
ever, at first order inw, one has to combine the above  |Fs—px(W)[*=
results with corrections that originate from matching the full

Aw 1-2wr* +r*2]1

YW T @y

theory onto the heavy quark effective thedryhis will also 1—2wr* +r*? ) w—1 ,
eliminate theu dependence from the bounds in E).] X\ =z 2| MWt G hvw)
IV. DIFFERENTIAL DECAY RATES w—1 z
. . . _ + | ha, (W) + F(hAl(W)—hAs(W)—r*hAZ(W))} ]
We are interested in the form factors of semileptonic
B—D®) /v decays, defined as
D(v')|V¥|B 1-r
(Dw)v] ©)) (W) (o0 b (W) (o —0) Fop(W)=h. (W)= To—h_(w). (13
VMpMg
(D*(v")|V¥B(v)) . vaB k1 . . 2
=ihy(w)e*"*FPejv vz, (1) we define the “physical” slope parametersy . and
VMp+ Mg pé 5 via

(D*(v")|A¥[B(v)) .
e W D (w 2
Mo Mg | Fo e (W) =| Fapr (DI[1=p3 _pu(w—1)+ ... ],

X (€* -v)v“—hA3(W)(e* -v)v'H,

Here V#¥=cy*b and A*=cy*ysb are the vector and axial | Fa—.o(W)|=]Fa_p(DI[1-ps p(Ww—1)+ ...].
currents. The kinematic variables is related tog? via (14
w:(méwL sz(*)—qz)/(ZmBmD(*)). Up to corrections sup-
pressed by powers ofag(mgp) and Agcp/Mep,
h_(w)=h,,(w)=0, and  h (w)=hy(w)=h, (W) 5 5 _
=ha (W) =£(W), where the Isgur-Wise functiorg(w), is (1= 7aTOAoed/Mep), — while — Fap(1)=nv
evaluated at a subtraction point aroumg,, . +O(Aqcp/Me p)- The. guantitiesp, and »y, relate the axial _

Experimentally the differential decay’ rates are measure ,nd vector currents in the full theory of QCD to those in
and are usually quoted in terms of the functions QET at zero recoil. . . .
Fa_pw(W), defined below. At tree level, and without The order a4 correct_lons to _the relationship between
Aqcp/Me, corrections, these functions are identical to thePs—p®) and the Isgur-Wise function can be computed model
Isgur-Wise function, so their slopes are equal to that ofndependently. We combine the results of the previous sec-
£(w). However, at ordem additional corrections beyond tion with the orderas matching correctionf22] taken from
those calculated in Eq9) using the effective theory arise Ref.[23] to derive bounds on the slope parameters. Denoting
from matching the full QCD onto the HQET. Corrections Z=M./M,, and approximating™*)=z in the orderas cor-
suppressed by powers dfocp/M, arise from higher di- rections, the slope of the Isgur-Wise function is related to
mension operators in the HQET Lagrangian, and from highethat of 7g_.p(x) via
dimension current operators in the effective theory.

With the above definitions of the form factors, and
r*)=mpw«)/mg, the differential decay rates are

Note thatFg_.p«(1)=ha (1). Due toLuke's theorem[4]

B =p*( )+4a In—+
dl'(B—D*/v) Gémg Pe_ptx) =P (M) T o Al
— r*3(1_r*)2(w2_1)1/2(W+1)2 e

= 2 A
dw 48 4+ 5§31fg(*) . (15)
X 4w 1—2wr* +r*?2 2me
T (1—r*)?
XV p|? Fo o (W) |2 Using Eq.(9) this implies the bounds
C —D* ’

dr(B—D/v) GEmg | ) _
= Fr3(1+1)2(w?—1)3%? 1 das M as (a4, A
aw a8 0 )+2_mc5(s_r>nc)><*>,

2
Pao)”7 " g Mgpzt 7 % oo
X|Vepl?| Fa_p(wW)|?. (12) (16)



CORRECTIONS TO THE BJORKEN AND VOLOSHIN SUM RULES 3031

TABLE |. Upper and lower bounds opéﬂD(*), the slopes of the functiongs_,p+) (W) at zero recoil,
that describe the shape of the semileptoBie-D*)/v decay spectrum. The orders corrections are
included, while orden\ ocp/mc , corrections are neglected. To zeroth ordewirthe Bjorken bound is 0.25,

while the Voloshin bound is 0.75.

Bjorken bound p5_ 5>+ - -)

Voloshin bound (;EHD(*)<- )

B—D* B—D B—D* B—D
A=1GeV 0.24 0.33 0.95 1.05
A=2GeV 0.18 0.27 111 1.20
5 1 A 16as A\ 4dag mg matching ofpé_@(*) onto the slope of the Isgur-Wise func-
Pe-.D*) <7 + 2(my,—my) 1+ 9r A Ry 97 "2A2 tion at a scale arounah, ;, (e.g.,\m.m,), then one scales the
o Isgur-Wise function down from this subtraction point 40
s (ay A using the anomalous dimension for the operator
t % T 2m, S5_p) h{?y#h®) . Finally one applies the bound on the slope of the

The A- independent part of the order; corrections is con-
tained in 5( o) While éélf%(*) contains the order

Agcp/Mmg , corrections t(p;HD(*). We find

2(1-2)(11+2z+112%) + 24(2—z+ %) zInz

(as)
%5 ~ox = 27(1-2)° ’
sa) _ 2(1—2)(23-34z+232%)+12(3—-3z+ 222)zlnz
B—D 27(1—2)3
7
The corrections mS‘ng(*) depend on the four subleading

Isgur-Wise functiong4] that parametrize all first order de-

Isgur-Wise function in Eq.(9) at the subtraction point
wm=A.However, since\ must be greater than 1 GeV, for the
physical values of the charm and bottom quark masses
mc /A is not very large. Consequently, we did not sum the
leading logarithms of this ratio using this renormalization
group procedure in Eq$16).

To evaluate the bounds in E({.6) WeElké as=0.3(cor-
responding to a scale of about 2 G)e\Azli—mM=0.4

GeV, m;=1.4 GeV, andm,=4.8 GeV. However, since we
neglect corrections of ordess(Aqcp/Mep), other values
for the heavy quark masses, e.gm.=mp=(mp
+3mps)/4=1.97GeV  and my=mg=(Mg+ 3mMgx)/
4=5.31 GeV, would be equally valid. In Table | we show the
Bjorken and Voloshin bounds at ordet usingA=1 GeV

viations from the infinite mass limit. These can only be esti-agngA =2 Gev, for the weight functioW{") = g(A_ €). To

mated at present using model predictions. Using the notatio

of [23] we find

S

B+ =~ 2X1(1) +4x3(1) —Z[2x1(1) —4x»(1)

5 4
+12x3(1)]— 5 (1+2) = g x2(1)

1-27+572

—Wﬂ(l),

S5 = —(1+2)[2x1(1) —4x(1) + 12x5(1)]
2(1-2)?

1+z (18

7' (1).

Here prime denoted/dw.

Note that the bounds in Eq&l6) do not rely on the as-
sumption thatm; ,>A. The bounds on the slope of the
Isgur-Wise function in HQETwherem, ,— <) hold as long

Botain these numerical results we negleoﬁé o) - Using

W instead ofW{") does not affect the Bjorken bound, but
weakens the Voloshin bound by 0.02 fbe=1 GeV, and by
0.05 forA=2 GeV. While the Bjorken bound only receives
moderate corrections to its tree-level value of 0.25, the cor-
rections to the tree-level value of the Voloshin bound, 0.75,
are more sizable and strongly dependent.

To estimate the possible size of the ordggcp/m. , cor-
rections in Eq.(18), we use the QCD sum rule predictions
for the four subleading universal functiof24]. These give
approximately x1(1)=0.3, x»(1)=-0.04, x3(1)=0.02,
7(1)=0.6, and 7'(1)=0. Note that the results for
5(1"“) o) depend sensitively o;(1), which is only calcu-

Iated to ordera? in the framework of QCD sum rules; the
other subleading form factofg,(w), x3(w), and»(w)] are
computed to ordetrg. We find that these corrections reduce
péHD* by 0.3 andpéﬂD by 0.2. However, these values are
model dependent, and the uncertainties are large.

asA is large enough for perturbative QCD to be a valid way  Using Eq.(15) we find that the ordew, perturbative cor-

to calculate the contour integrals in E&). The values for

the charm and bottom quark masses only arise in match|n92

pBHD(*) onto the slope of the Isgur-Wise function.

rections predict thathﬂD is about 0.09 larger than
. This prediction is affected by ordé&gcp/mc p, COI-
recuons[see Eq(18)], and therefore it is not model indepen-

There are several scales that occur in the bounds on

péHD(*). In the limitm, ,> A we know how to sum the large
logarithms of the ratio of scales ,/A that occur in the

SUnless explicitly stated otherwise, we use these values through-

perturbative corrections to the bounds. First one performs theut this paper.
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dent. However, the QCD sum rule results for the subleading (1+w) 2|hA (w)|? 1+w[ (w 1) A}
2

Isgur-Wise functions predict thatBHD pBHD* is further
increased. Therefore, an enhancemerﬁéojD compared to
péHD* by about 0.1-0.2 seems quite likely, and a precise
measurement of this difference would test the predictions of
Ref.[24]. (Similar results were obtained [125].)

As the above model estimates for the ordescp/m (L+w)?[ha (W)]* 14w
corrections are fairly sizable, one should investigate whether >
more reliable bounds can be derived in the full theory. The
motivation is that in the full theory one can bound the mag- a
nitude of the physical form factor@qual to the Isgur-Wise + —S[B+(W—1)Y].
function plus orde\ 5cp/m , corrections in HQET. In the ™
next section we derive bounds on thgl(w) form factorin  HereA, B, X, andY are functions ofm,, my,, andA. The
the full theory. For comparison, we give here the bounds orierm V arises from the difference in the start of the parton
this form factor in the effective theory approach. The slopeand hadron cuts, and from matrix elements of dimension-5
of hy (W) atw=1, PA . satisfies a bound of the same form terms in the operator product expansion. It is simple to ex-

as that in Eq(16). The orderas corrections to the bounds on tract, from([13,19),

4w 2w | w2 mg
ds
+ ?[A-t-(w—l)X], (22

(w—1) A v
W2 FC EM _EM

4w 2w
1

p,z_\1 are A A2 3—w N 3+w A;+3N, 1
V=(W—1)| =+ o gt gt~ —
W 2m, w 6m. w am, w
slas)_ 2(1-2)(17-4z+172°)+ 6 (9—3z+47%)zInz
Ay 27(1 2)3 ) + ..., (23)
(19 where

while the orderA ocp/Mm. , terms are 1 ‘(D)
qcp/ Mg, )\122_mB<B(U)|h<vb>(|D)2h5}b>|B(v)>,
a*Alfm): —2x1 (1) +4x5(1)—2[2x1(1) —4xa(1)
+12x4(1 1+Z+ 1 (20) M= <B(U)|h(“b)20’”GWh B(v))-
——+tz .

Neglectmg the corrections of ordeXqocp/mcp, this gives SinceEy, —Ey is of orderAqcp, all terms inV contribute
0. 28<PA <0.99 for A=1GeV and ozgpf\ <1.15 for at Ieast2 of orderAgcp/m;, to the lower bound on
A=2 GeV |hA (w)|%. We cannot neglect these terms, as the main mo-
tivation for considering the bounds in the full theory was to
eliminate the order\ ocp/Mc, uncertainties related to the
subleading Isgur-Wise functions in the HQET approach.
The functionA was computed if14],* and B was com-
puted in[15]. Denotingd=A/m., the result is

V. SUM RULES IN THE FULL THEORY

In the full theory, bounds on the form factbﬁl(w) in
Eqg. (11) can be obtained from Ed5) by taking the axial

current and choosing the four-vectoa such that 1+z 8
a-v=a-q=0. These bounds are expected to be less model A=-2 Elnz+ 5)
dependent at present than those derived in the effective
theory, as there is no uncertainty associated with the sublead- d(2+ d)[2Z%(1+d)*~(3+2z+7%)]
ing Isgur-Wise functions (they contribute at order 18(1+d)?
Aqcp/me, in the effective theory approaghOn the other )
hand, the bounds derived in the full theory receive calculable " 3+2z-z In(1+d)
corrections proportional to powers df/m. ,, at order as, 9 '
which do not arise in the HQET approach.

The A-dependent part of the corrections away from zero B=A_ A
recoil are straightforward to compute by considering (e My, — My

nite) difference between the bremsstrahlung graphs in the
full theory and in HQET. Since we want to keep the ful
dependence at ordéocp/Mp, We need to include

l (w—1) A
1- —2——+
hadro Me

(2+3d+2d2)(9+6z 37%)+2d%22(8+ 7d+2d?)
54(1+d)?

3+2z—7%In(1+d)
9 d '

(22) We find that the coefficientX andY are

1+w

1+w

2w

(25

parton

Neglecting terms  of order af, Adcymiy,

as(Agep/Mep), andag(w—1)2, we obtain the bounds “It was first computed to ordek?/mZ in [13].
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FIG. 3. Upper and lower bounds on iw)?|h, (w)|?/(4w). FIG. 4. Upper bound on (£w)?/h, (W)|?/(4w) including or-

The thin and thick solid curves are the bounds |nclud|ng effects ofder A CD/méb corrections for different values of;. The curves

order ag and Agcp/Mcy, and correspond taA=1GeV and from above to below correspond tv;=0, —0.2 GeV?, and

2 GeV, respectively. The dashed curves are the bounds neglecting0.4 Ge\?, respectively.

order g and Agcp/mc, corrections. The dotted curves are the

bounds neglecting ordet but keepingA ocp/m; p, corrections. curves show the upper and lower bounds neglecting the order
as and Aqcp/Mc , corrections. The dotted curves show the

1+2z 8\ 8 , (@0 upper and lower bounds neglecting the ordgrcorrections,
=757+ §) +gIn(4d9)—25,° but keeping the ordek gcp/me j, terms. The enhancement of
the difference between the upper and lower bounds, which is
d(16+42d+ 45d°+ 16d°) seen to increase witv, is dominated by the perturbative
- 9(1+d)? corrections. The reason for the somewhat larger than usual
deviation of
2dz(20+52d + 53d2+ 18d%)
45(1+d)* Iha,(1)]?=73=1- 2— Fmﬁi +o., @2
dZ%(12+52d+ 71d?+ 44d3+ 10d%)
45(1+d)* from unity in Fig. 3 is due to our choice af;=0.3, which
gives at orderrg, 7,=0.96.
80+ 1222| 1+d In plotting Fig. 3, we used\;=-0.2Ge\? and
45 n( ), A,=0.12 GeVf. While N, is well-determined by the
B* —B mass splitting, the value af; is more uncertain.
AA A Changing\; by =0.2 GeV? changes the lower bound at
Y=X- — - — w=1.25 by +0.04. (At order Agcp/mp, the value ofh;
M, =My M, ™ M does not affect the upper bound for a, nor the lower

bound at zero reco)lWe neglected the nonperturbative cor-

16 6—11d—62d>—83d*—32d* , S, h
— rections of orderA 5c/mg . Such corrections to the lower

9 18(1+d)* ; ; ; ; ;
bound involve matrix elements of dimension-6 operators in
7(38+ 113+ 12202+ 41d3) the operator product expansion. The ordéjc,)/m p, correc-
45(1+d)° tions to the upper bounfbn the right-hand side of the first
inequality in Eq.(22)] are given by[13,15
7%(34+ 1190+ 134d%+ 49d3— 16d*— 10d°) _
- 9011 d)? —1 (A=A )WP—A2(3—2W?) A=A, W?
2w 2mzw? 4mzw®
15+38z— 1722 In(1+d) 26
- A1+ 3\
45 d + 112mz 2 (3w22%+22). (28)

In Fig. 3 we plot the upper and lower bounds on _
(1+w)2|hAl(w)|2/(4w) over the region ¥w<1.25, using For the central values of and\; used throughout this pa-
Eq. (22). Over this region ofw, corrections of order Per, these corrections affect the upper bounds by only about
ag(w—1)? that we have not computed are expected to be~ (0.02—0.03. The size of this correction is sensitive to the
negligible. The thin and thick solid curves correspond to thevalue of\ 4, while it is largely independent of. In Fig. 4 we
choicesA=1 GeV and 2 GeV, respectively. The dashedplot the uppenBjorken bound on|hA1(w)|2 including the
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order Ajcp/mz, corrections in Eq(28) for A=1GeV and  \y(Ap)=\y(B)+2m(m,, —mg)—(my —mp)]/(1-2),
three different values ofn,, \;=0, —0.2 Ge\?, and _ _ o

—0.4 Ge\?. ChangingA by +0.1 GeV from the value we ~ A(Ap)=A(B)+my —mg+[N1(Ap) =Ny (B)]/(2mp).
used(i.e., 0.4 GeV affects the curves plotted in Fig. 4 by (30
about+0.01. If A4 is known more accurately in the future,

this upper bound may constraim, (1) to be somewhat be- VI. ORDER @B, CORRECTIONS AT ZERO RECOIL

low 74 . At zero recoil we can rewrite the upper and lower bounds
A larger value ofA increases our confidence in the valid- on theh, form factor in Eq.(22) as

ity of using perturbative QCD to evaluate the time ordered

product of weak currents. In going fromd=2 GeV to s o as(A) ai(A)

A=3GeV the upper boun¢the upper thick solid curve in [ha, (DI <7a+ At —BoA, (3D
Fig. 3 is increased by about 0.01 fairly independentlynof
over the region ¥w<1.25, while the lower boundthe

ag(A) a?(A)
+

2
lower thick solid curve in Fig. Bis decreased by 0.06 at |hA1(1)|2> At p A 2 0A2
w=1 and by 0.07 atv=1.25. Clearly, the lower bound is

considerably more sensitive to the choice\othan the upper A ag(A) aﬁ(A)

bound. -
Converting the bounds in Eg22) into constraints on the
slope parameter of thie, form factor at zero recoilpZ ,is  These bounds also receive nonperturbative corrections of or-
not straightforward. The upper and lower bounds onder AZQCD/mgyb. Such corrections to the upper bound are
|hA1(W)|2 do not meet at zero recoil, and therefore a boundyiven by
on pf\l can only be derived with some smoothness assump- Ao AN +3),
tion. We boundpf\l by assuming thaInAl(w) is linear over T m2
C
the region KXw<1.25. Then the plots in Fig. 8vhich ne- ) ) )
glect terms of order Ajcy/mZp) imply the bounds ~The orderAgey/m;,, corrections to the lower bound on
0.44+4[h, (1)— 7]A]<p/2\1< 1.19+ 4[hy (1)~ 7] and |ha,(1)]* depend .on addl-tlonal quanﬂﬂe@emde;kl and
0.39+4Ths (1)— mal<p2 <1.36+4Th, (1)— for  \2) that parametrize matrix elements of dimension-6 opera-
A Lha,(1) dnA]Z Pay [ A.l( I) 7] I th tors in the operator product expansion.
=1 GeV an GeV, respectively. Recall - that  rpe corrections ing, in Eq. (31) arise, at the parton level,
ha,(1)= 74 is of order Agey/mzp. The increase n the  from the final state&X=c. Except for an infrared renormalon
lower bound compared to the 1/4 at zeroth order is mostlyambiguity, 7, only depends on physics associated with the
due to the terms proportional td/m; in Egs. (22), and  scalesm, . It has been calculated to orde€g, [28]. Ex-

hence it is sensitive to the value Afwe choose. It is inter-  plicitly,
esting that this correction has the opposite sign than the QCD

+ .
B, . BoB2

li_mM a

2
1+ zz+72°

3 . (32

2
C

4m

sum rule results in the effective theory, which predicted that ag(\ymymy) (1+z 8
orderA gcp/m |, corrections lower the values of the bounds. na=1— - 1— + 3
The smoothness assumption used to derive bounds on the
slope paramete)mf\l from Fig. 3 can be justified model inde- a?(ymymy) 5 (1+z 4
pendently using the parametrization of Rig#6]. This work B ? 024 1_Zlnz+ 15)° (33

also lets us extend the bounds at smalpresented in Fig. 3
to larger values ofv. The A=2 GeV bounds imply upper The full ordera? expressions for, and 7y are also known

and lower bounds av=1.5 of 0.86>h, (1.5)>0.36. approximately[29]. For 7, the ordera?s, terms dominate
The bounds presented in this section can also be used f@he 2 correction, while forz, they do not.

unpolarizedA,— A/ v decay if certain replacements are  The corrections inA; and B; originate from final states
made. The form faptors for the matrix element of the axialx that contain a charm quark plus additional partons, e.g.,
current,G;, are defined by cg, cqq, etc These corrections are suppressed by powers of
A/m. . For convenience, we evaluated the arguments of the
strong couplings in Eq$31) and(33) at two different scales
(Ac(v)|A¥|Ap(v)) (Vmem, for the series inp, andA for the other terms Of
T “ u ' course, it is possible to evaluate both series at the same scale
UG+ GavH Gav ] y5U(v). (29) using the QCDB function[30]. The functionsA; andB, are
given in Sec. VA, was computed in Refl14], our result for
Bounds onG; are obtained by replacing the left-hand side ofB, is given below. These order?3, corrections are rela-
Egs. (22) by G2(w+1)/(2w). The quantitiesA, A;, and tively simple to compute due to a relation between the
X\, that appear on the right-hand side must now be interdependent part of the ordef terms and the ordet, result
preted as arising fromh, matrix elements. They are simply with a finite gluon mas$31]. The calculation is simplest in
related to the corresponding quantities in Bieneson case the so-calledv scheme, but we present the results in the
[27], No(Ap) =0, usualMS scheme. To leading order ih=A/m,
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To all orders ind, A;, and B, are given in Eq.25), and
A, andB, are computed numerically. In Fig. 5 we plot the
functionsA,, B4, A,, andB, as functions ofA. The dotted
curve isA;, the dash-dotted curve B, the dashed curve is
A,, and the solid curve iB,.

On the right-hand sides of Eq(i%l) the renormalon am-
biguity of orderAQCD/m » in 74 is cancelled by that in the
seriesA;. Therefore, in conS|der|ng the size of thé cor-
rections relative to those of ordex, it seems reasonable for

the upper bound to take all terms on the right-hand side o

Egs.(31) togethe32]. AlthoughA, is approximately as big
as A; (over the regionA<2 GeV), since the ordera§,30
term in nf\ partially cancels again#t,, the perturbative ex-
pansion for the upper bound seems
well-behaved®. For example, with Agcp=200 MeV and
A=1 GeV, one finds neglecting terms of ordAeéCD/mc b
that

|ha,(1)|2<1-0.073-0.019
+0.013+0.017

=1-0.060-0.002. (35

SReference[14] was less certain that the upper bound on
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The last two terms in the first line are the ordey and
a2, corrections ton3, while the second line contains the
terms proportional tcA; and A,. For values ofA between
1 GeV and 5 GeV the cancellation of ordef, terms per-
sists.

For the lower bound, the ordeﬁ[g’o term in the pertur-
bative expansion of the term proportional to
A/(li—mM), which originates from the first moment of
the time ordered product of weak currents, is about as large
as the orderag term over the regionA<5 GeV. With
Aocp=200 MeV andA=1 GeV, the lower bound in Eq.
(22) is

|ha,(1)[2>1-0.060-0.002

—0.019-0.022

=1-0.079-0.024. (36)

The terms in the first line arise fromi and the serieg\; ,
while the second line contains the terms proportionaBio
andB,. Note that the coefficient of thB; terms depend on
the mass of the first excited state.

VII. CONCLUSIONS

In this paper we studied corrections to the Bjorken and
Voloshin sum rules on form factors of semileptonic
B—D®) /v decays. In the heavy quark effective theory we
derived upper and lower bounds on the Isgur-Wise function,
and on its slope at zero recoil. Matching the full theory onto
HQET, we translated the bounds in the effective theory into
bounds onFg_.p«), the shape of the measurd@—D*)
spectrum. The results in Table | show that while the correc-
tions to the Bjorken boundlower bound onpéﬂD(*)) are
small, the corrections to the Voloshin boufupper bound
on péHD(*)) are sizable. The reason is that perturbative cor-

rections to the Voloshin bound are enhanced\byx. There-
fore, even if experimental data would settle around
pe_p) slightly above unity, that would still not be a prob-
lem for the theory to accommodate.

The bounds derived in Sec. IV are affected at order

ocn/ M p by corrections that are parametrized by four sub-
leading universal functions, and are not known at present
model independently. Therefore, we also studied the sum
rule constraints on thlaA (w) form factor in the full theory.

Y this approach, aU\QCD/mcb corrections to the sum rules

are parametrized by the three matrix elements),, and
\». Bounds on thehA1 form factor are shown in Fig. 3, and

with some assumptions we found that its slope parameter
satisfies 0.4 p3 <1.3.

These bounds ohAl in the full theory of QCD can also
be related to bounds o,méﬂD(*). Using Egs.(17) and (19)
we find that the orderag corrections imply péHD*
=pj,—0.04 andp3_p=p3 +0.05. These relations receive
orderAQCD/mC b correctlons Due to heavy quark spin sym-

|ha,(1)|? has a well-behaved perturbative expansion. This is mostl)fnetry the orden ocp/mp difference betweepBéD(*) and

due to the fact that ifi14] the behavior of the perturbative series
arising from the termg,; (which contain all the\ dependencewas
discussed without combining it with that from .

pi is independent of the subleading Isgur-Wise function

x1- Then Eqgs(18) and(20), together with the QCD sum rule
predictions for the subleading Isgur-Wise functions, imply
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that orderAQCD/mC » terms reducey px —Pa, by 0.11and  spin symmetry{36]) A reduction inmy,—my would fur-
reduceps p— pA by 0.01.(The uncertainty in these predic- ther weaken the Voloshin bound.

tions will be reduced if the form factor ratig, can be mea- Some improvements in this paper are possible. We fo-
sured precisely. cused on the region near zero recoil because it is important

One of the largest uncertainties in the sum rule predi icfor the extraction ofVy|. It would be straightforward to

2
tions (especially in the Voloshin bour)uds related to the I(;alcugate ”}s tberms t'” 50[52) of Otrr?erfaﬁ(vl\i 1) tThen
. — . ig. 3 could be extended over the full kinematic range
numerical values oA andmyy, —my . In this paperwe used ) =\~ 1'5 "g e uncertainty in the sum rules arises from

My, — My = A=0.4 GeV, mot|vated by the experimentally the ordera? corrections. The part of these corrections pro-
measured)l D* mass difference, and by the extraction of portional 0 the one- loopB function have been computed at
A in [33]. However, the uncertainties in this determination ofzero recoil. For the part of the lower bound involving the
A are sizable, and precise experimental data on other inclifirst moment of the time ordered product of weak currents
sive processes is needed to extract the value of this quantitf)ese corrections are as big as the ordgrcorrections, un-
more reliably[34]. TakmgmM — My =Mp_—Mpx mMay also lessA is quite large. It should be possible to compute the

be misleading. Besides the pOSSIbIIIty of sizable decay rate€2Bo correct|ons away from zero recoil, and also to the
into nonresonant final statgd5] (discussed in Sec.)lithere  bounds OHOBHD(*) considered in Sec. Ill.

is probably a doublet lighter than t§®,,D3} heavy quark

spin symmetry doublet, that is of order 100 MeV or more

broad. The spin-parity of the light degrees of freedom in the ACKNOWLEDGMENTS
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