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We calculate near zero recoil the orderas corrections to the Bjorken and Voloshin sum rules that bound the
B→D (* )l n̄ form factors. These bounds are derived by relating the result of inserting a complete set of
physical states in a time-ordered product of weak currents to the operator product expansion. The sum rules
sum over physical states with excitation energies less than a scaleD. We find that the corrections to the
Bjorken bound are moderate, while the Voloshin bound receives sizable corrections enhanced byD/LQCD.
With some assumptions, we find that the slope parameter for the form factorhA1 in B→D* l n̄ decay satisfies
0.4&rA1
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PACS number~s!: 11.55.Hx, 12.39.Hg, 13.25.Hw

I. INTRODUCTION

It is possible to perform model-independent extractions of
some of the Cabibbo-Kobayashi-Maskawa~CKM! matrix el-
ements and quark masses from exclusive and inclusive semi-
leptonicB meson decays via a systematic expansion in in-
verse powers of the heavy bottom and charm quark masses.
The form factors inB→D (* )l n̄ decays are related by heavy
quark symmetry @1# to the Isgur-Wise function,
j(w5v•v8), wherev is the four-velocity of theB andv8 is
that of the D (* ). A model-independent determination of
uVcbu from the differential decay rate dG(B→D* l n̄)/dw is
made possible by the fact thatj is equal to unity at zero
recoil (w51) @1–4#. InclusiveB decay rates can be calcu-
lated by performing an operator product expansion for the
time-ordered product of two weak currents@5#, allowing for
a model-independent determination ofuVcbu from the inclu-
sive semileptonic decay rateG(B→Xcl n̄).

The major theoretical uncertainties in the determination of
uVcbu from inclusive decays are due to the questionable con-
vergence of the perturbative corrections to theb quark decay
rate @6#, and the uncertainties in theb andc quark masses.
Uncertainties in the determination ofuVcbu from B→D* l n̄
originate from orderLQCD

2 /mc,b
2 corrections at zero recoil,

and from extrapolating the form factors measured atw.1 to
w51 ~phase space vanishes atw51). The uncertainties in
this extrapolation would be reduced if the slope of the form
factor at zero recoil were known.

Sum rules have been derived that relate the exclusive de-
cay form factors to the inclusive decay rates. The Bjorken
sum rule@7,8# gives the boundr2.1/4, wherer2 is minus
the slope of the Isgur-Wise function. Voloshin derived the
upper bound r2,1/41(mM2mQ)/@2(mM1

2mM)#.0.75

@9#, wheremM2mQ5L̄ is the mass difference between the
ground state heavy meson and the heavy quark that it con-
tains ~up to corrections of orderLQCD

2 /mc,b
2 ), and

mM1
2mM is the mass of the first excited meson state above

the pseudoscalar-vector doublet.
The most recent experimental data from CLEO@10# is

rB→D*
2

50.8460.1260.08. This might violate the above up-
per bound when experimental uncertainties decrease. The
ALEPH @11# result rB→D*

2
50.2960.1860.12 is signifi-

cantly smaller, close to the above lower bound. The slope of
the form factorhA1, which occurs inB→D* l n̄ decay, has
also been studied by CLEO@12#. Central values for its slope
parameterrA1

2 ranging between 0.91 and 1.53 have been ob-

tained. Thus, it is interesting to calculate the corrections to
the Bjorken and Voloshin bounds.

II. REVIEW OF SUM RULES

To derive the sum rules, we follow Refs.@13–15#. Con-
sider the time-ordered product

Tmn5
i

2mB
E d4xe2 iq•x^BuT$Jm

† ~x!,Jn~0!%uB&, ~1!

whereJm is ab→c axial or vector current, theB states are at
rest, qW is fixed, and q05mB2EM2e. Here

EM5AmM
2 1uqW u2 is the minimal possible energy of the had-

ronic final state1 that can be created by the currentJm with
fixed uqW u. With this definition ofe in terms of the hadronic
variables, the cut ofTmn in the complexe plane correspond-
ing to physical states with a charm quark lies along
0,e,1`. It will be important that at the same value of
uqW u the cut at the parton level lies within the smaller region
e.L̄(w21)/w1O(LQCD

2 /mc,b). (Tmn has another cut cor-
responding to physical states with twob quarks and ac̄
quark that lies between22EM.e.2`. This cut will not
be important for our discussion.! To separate out specific
hadronic form factors, one contracts the currents in Eq.~1!
with a suitably chosen four-vectora, yielding

1The ground state doublet of mesons have light degrees of free-
dom with spin-paritysl

p l5
1
2

2. We consider situations when only
one member of this doublet contributes. It is this state that we
denote byM .
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a* mTmn~e!an5
1

2mB
(
X

~2p!3d3~qW 1pW X!

3
^BuJ†•a* uX&^XuJ•auB&

EX2EM2e
1•••, ~2!

where the ellipses denote the contribution from the cut cor-
responding to twob quarks and ac̄ quark. The sum overX
includes the usual phase space factors, i.e.,d3p/2EX for each
particle in the stateX.

While Tmn(e) cannot be computed for arbitrary values of
e, its integrals with appropriate weight functions are calcu-
lable in perturbative QCD. Consider integration of the prod-
uct of a weight functionWD(e) with Tmn(e) along the con-
tour C surrounding the physical cut, shown in Fig. 1.
AssumingW is analytic in the shaded region enclosed by this
contour, we get

1

2p i ECdeWD~e!@a* mTmn~e!an#

5(
X

WD~EX2EM !~2p!3d3~qW 1pW X!
u^XuJ•auB&u2

2mB
. ~3!

The positivity ofu^XuJ•auB&u2 for all statesX gives an upper
bound on the magnitude of form factors mediatingB decays
into the ground state doubletM .

The integral of the correlator weighted witheWD(e)
eliminates the contribution from the ground state doublet
X5M , yielding

1

2p i ECedeWD~e!@a* mTmn~e!an#

5 (
XÞM

WD~EX2EM !~2p!3d3~qW 1pW X!

3~EX2EM !
u^XuJ•auB&u2

2mB
. ~4!

This can be turned into an upper bound on the contribution
of excited states (XÞM ) to the right-hand side of Eq.~3! by
assuming that the contribution of multihadron states is neg-
ligible below the first excited meson state,M1. This is true in
the largeNc limit, and experimental data available in the
future onB→D (* )pl n̄, etc., decay rates can support~or
oppose! the validity of this assumption.

Thus, there are upper and lower bounds

1

2p i ECdeWD~e!@a* mTmn~e!an#

.
u^M uJ•auB&u2

4mBEM

.
1

2p i ECdeWD~e!@a* mTmn~e!an#S 12
e

EM1
2EM

D ,
~5!

where EM1
5AmM1

2 1uqW u2. It should be emphasized that

while this upper bound~which yields the Bjorken bound! is
essentially model independent, the lower bound~which
yields the Voloshin bound! relies on the above assumptions
about the spectrum of the final state hadronsX.

Following @14#, we choose a set of weight functions

WD
~n!~e !5

D2n

e2n1D2n ~n52,3, . . .! ~6!

that satisfy the following properties:~i! WD is positive
semidefinite along the cut so that every term in the sum over
X on the hadron side of the sum rule is non-negative;~ii !
WD(0)51; ~iii ! WD is flat neare50; ~iv! andWD falls off
rapidly to zero fore.D. This choice of weight functions is
motivated by the fact that for values ofn of order unity all
the poles ofWD

(n) lie at a distance of orderD away from the
physical cut. As n→`, WD

(n) approachesu(D2e) for
e.0, which corresponds to summing over all hadronic reso-
nances up to excitation energyD with equal weight. In this
limit the poles ofWD

(n) approach the cut, and the contourC is
forced to lie within a distance of orderD/n from the cut at
e5D. In this case the evaluation of the contour integrals
using perturbative QCD relies on local duality@16# at the
scaleD. In the rest of this paper whenever the weight func-
tion is not specified explicitly, we meanu(D2e).

The bounds in Eq.~5! become weaker asD is increased.
However, the scaleD must be chosen large enough that the
contour integrals in Eq.~5! can be performed using pertur-
bative QCD, allowing the evaluation of the Wilson coeffi-
cients of the operators that occur in the operator product
expansion for the time ordered product of currents. In prac-
tice this means thatD must be greater than about 1 GeV.

III. BOUNDS ON THE ISGUR-WISE FUNCTION

The bounds stemming from Eq.~5! are simplest to evalu-
ate in the heavy quark effective theory~HQET! @17#. One
may consider the vector current in the effective theory,
Vm5h̄v8

(c)gmhv
(b) , and chooseam5vm , the four-velocity of

theB. Instead of calculating the correlator itself, it is simpler

FIG. 1. The integration contourC in the complexe plane. The
cuts extend to Ree→6`.
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to compute its imaginary part given by the diagrams in Fig.
2. In this paper we focus on the region near zero recoil, and
therefore we expand the perturbative corrections to linear
order in (w21).

The ground state contribution is ^M uVmvmuB&
5AmBmM(11w)j(w), wherej(w) is the Isgur-Wise func-
tion. ~Only the pseudoscalar member of the ground state
doublet contributes to this matrix element.! In the modified
minimal subtraction (MS) scheme, using dimensional regu-
larization and a finite gluon mass,mg , the inclusive expres-
sion for the correlator to orderas reads

1

p
Im@T~e!#5

11w

2w FdS e2L̄
w21

w D 1~w21!
8as

9p
ln
mg
2

m2d~e!

1~w21!
8as

9p

2e21mg
2

e4
Ae22mg

2u~e2mg!G
1•••. ~7!

In Eq. ~7! the terms proportional to delta functions come
from the charm quark final state, and the term proportional to
u(e2mg) arises from final states with a charm quark and a
single gluon. The gluon mass is used to regulate an infrared
divergence in the integral of Im@T(e)# overe, which cancels
~at orderas) between these two types of final states.

Using Eqs.~3! and ~4! this implies the sum rules

11w

2w F11~w21!
8as

9p S ln4D2

m2 2
5

3D G
5

~11w!2

4w
uj~w!u21•••,

11w

2w F12
L̄~w21!

mM1
2mM

S 11
16as

9p

D

L̄D
1~w21!

8as

9p S ln4D2

m2 2
5

3D G5
~11w!2

4w
uj~w!u22•••.

~8!

The ellipses in these equations denote positive terms whose
first derivatives atw51 are also positive. The reason for
positivity of the first derivative is that in the effective theory
all excited state contributions must vanish atw51, and may
therefore be written as (w21) times the square of some
form factor. @Equation~8! was previously obtained using a
Wilson line approach to heavy quark interactions in Ref.
@18#. See also@19#.#

In Eqs. ~8!, as is evaluated at the subtraction pointm.
This m-dependence on the left-hand side of Eq.~8! is can-

celed by them-dependence of the Isgur-Wise function,
which we define in theMS scheme. Differentiating with re-
spect tow, we find the following bounds on the slope pa-
rameter of the Isgur-Wise function,r252dj(w)/dwuw51,

1

4
1

L̄

2~mM1
2mM !

1
4as

9p S 2D

mM1
2mM

1
5

3
2 ln

4D2

m2 D
.r2~m!.

1

4
1
4as

9p S 532 ln
4D2

m2 D . ~9!

Neglecting the orderas corrections, these are precisely the
Bjorken and Voloshin bounds discussed in the introduction.
The upper bound onr2 receives a perturbative correction of
orderasD/LQCD, which is very large in theD@LQCD limit.

2

Note, however, that higher orders in perturbation theory do
not produce additional powers ofD/LQCD. Similarly, sum
rules involving higher moments of Im@T(e)# @20,13# will
receive perturbative strong interaction corrections enhanced
by more powers ofD/LQCD.

The bounds on the slope of the Isgur-Wise function in Eq.
~9! will have a perturbative series without large logarithms in
its coefficients if the subtraction pointm is chosen to be
equal toD. Note that the second term in the upper bound,
proportional toL̄, has a renormalon ambiguity of order unity
~since the heavy quark pole mass has a renormalon ambigu-
ity of orderLQCD). This is canceled by the ambiguity in the
perturbative series inas that multipliesD/(mM1

2mM), the
first term of which is presented in Eq.~9!.

Using a weight function WD
(n)(e) other than

WD
(`)(e)5u(D2e) does not affect the lower~Bjorken!

bound onr2 given on the right-hand side of Eq.~9!. There-
fore, for the lower bound onr2 ~at orderas), using the
weight functionWD

(`)(e) does not rely on the assumption of
local duality at the scaleD. Such corrections, however,
weaken the upper~Voloshin! bound by adding

4as

9p

D

mM1
2mM

S p

nsin@p/~2n!#
22D , ~10!

to the left-hand side of Eq.~9!. Numerical estimates of these
corrections will be given later.

So far we have focused on the perturbative corrections to
the coefficient of the lowest dimension operator,h̄v

(b)hv
(b) ,

that occurs in the operator product expansion for the time
ordered product. Higher dimension operators are of the form
h̄v
(b)(v8•D)phv

(b) . These yield corrections suppressed by
powers of LQCD/D for weight functions other than
WD

(`)(e)5u(D2e).
A lower bound onr2 including orderas perturbative

QCD corrections was derived in Ref.@21#. It corresponds to
a weight function given by the phase-space ofb decay,

2One is free to absorb all or part of this correction into a redefi-
nition of L̄, L̄→L̄(D), provided one consistently reexpresses other
formulas involvingL̄ in terms of this new quantity.

FIG. 2. Feynman diagrams that contribute to the orderas cor-
rections to the sum rules. The heavy quark fields in the effective
theory are denoted byh(c,b). The black square indicates insertion of
theb→c axial or vector current.
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which is different from those considered here. The bound in
@21# appears stronger than that in Eq.~9! because the weight
function given by the phase-space falls off faster withe.

To zeroth order inas andLQCD/mc,b , the constraints in
the effective theory are identical with bounds on the slope of
the measured shape of theB→D (* )l n̄ decay spectra. How-
ever, at first order inas , one has to combine the above
results with corrections that originate from matching the full
theory onto the heavy quark effective theory.@This will also
eliminate them dependence from the bounds in Eq.~9!.#

IV. DIFFERENTIAL DECAY RATES

We are interested in the form factors of semileptonic
B→D (* )l n̄ decays, defined as

^D~v8!uVmuB~v !&

AmDmB

5h1~w!~v1v8!m1h2~w!~v2v8!m,

^D* ~v8!uVmuB~v !&

AmD*mB

5 ihV~w!«mnaben* va8vb , ~11!

^D* ~v8!uAmuB~v !&

AmD*mB

5hA1~w!~w11!e* m2hA2~w!

3~e* •v !vm2hA3~w!~e* •v !v8m.

HereVm5 c̄gmb andAm5 c̄gmg5b are the vector and axial
currents. The kinematic variablew is related toq2 via
w5(mB

21mD(* )
2

2q2)/(2mBmD(* )). Up to corrections sup-
pressed by powers ofas(mc,b) and LQCD/mc,b ,
h2(w)5hA2(w)50, and h1(w)5hV(w)5hA1(w)

5hA3(w)5j(w), where the Isgur-Wise function,j(w), is

evaluated at a subtraction point aroundmc,b .
Experimentally the differential decay rates are measured,

and are usually quoted in terms of the functions
FB→D(* )(w), defined below. At tree level, and without
LQCD/mc,b corrections, these functions are identical to the
Isgur-Wise function, so their slopes are equal to that of
j(w). However, at orderas additional corrections beyond
those calculated in Eq.~9! using the effective theory arise
from matching the full QCD onto the HQET. Corrections
suppressed by powers ofLQCD/mc,b arise from higher di-
mension operators in the HQET Lagrangian, and from higher
dimension current operators in the effective theory.

With the above definitions of the form factors, and
r (* )5mD(* ) /mB , the differential decay rates are

dG~B→D* l n̄ !

dw
5
GF
2mB

5

48p3 r *
3~12r * !2~w221!1/2~w11!2

3F11
4w

w11

122wr*1r * 2

~12r * !2 G
3uVcbu2uFB→D* ~w!u2,

dG~B→Dl n̄ !

dw
5
GF
2mB

5

48p3 r
3~11r !2~w221!3/2

3uVcbu2uFB→D~w!u2. ~12!

The functionsFB→D* andFB→D are given in terms of the
form factors of the vector and axial currents defined in Eq.
~11! as

uFB→D* ~w!u25F11
4w

w11

122wr*1r * 2

~12r * !2 G21

3H 122wr*1r * 2

~12r * !2
2 FhA12 ~w!1

w21

w11
hV
2~w!G

1FhA1~w!1
w21

12r *
„hA1~w!2hA3~w!2r * hA2~w!…G2J ,

FB→D~w!5h1~w!2
12r

11r
h2~w!. ~13!

We define the ‘‘physical’’ slope parameters,rB→D*
2 and

rB→D
2 , via

uFB→D* ~w!u5uFB→D* ~1!u@12rB→D*
2

~w21!1 . . . #,

uFB→D~w!u5uFB→D~1!u@12rB→D
2 ~w21!1 . . . #.

~14!

Note thatFB→D* (1)5hA1(1). Due toLuke’s theorem@4#

hA1(1)5hA1O(LQCD
2 /mc,b

2 ), while FB→D(1)5hV

1O(LQCD/mc,b). The quantitieshA andhV relate the axial
and vector currents in the full theory of QCD to those in
HQET at zero recoil.

The order as corrections to the relationship between
rB→D(* )
2 and the Isgur-Wise function can be computed model
independently. We combine the results of the previous sec-
tion with the orderas matching corrections@22# taken from
Ref. @23# to derive bounds on the slope parameters. Denoting
z5mc /mb , and approximatingr (* ).z in the orderas cor-
rections, the slope of the Isgur-Wise function is related to
that ofFB→D(* ) via

rB→D~* !
2

5r2~m!1
4as

9p
ln
mc
2

m21
as

p S d
B→D~* !

~as! 2
20

27D
1

L̄

2mc
dB→D~* !

~1/m! . ~15!

Using Eq.~9! this implies the bounds

rB→D~* !
2

.
1

4
1
4as

9p
ln
mc
2

4D21
as

p
d
B→D~* !

~as! 1
L̄

2mc
dB→D~* !

~1/m! ,

~16!
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rB→D~* !
2

,
1

4
1

L̄

2~mM1
2mM ! S 11

16as

9p

D

L̄
D 1

4as

9p
ln
mc
2

4D2

1
as

p
d
B→D~* !

~as! 1
L̄

2mc
dB→D~* !

~1/m! .

The D-independent part of the orderas corrections is con-

tained in d
B→D(* )
(as) , while dB→D(* )

(1/m) contains the order

LQCD/mc,b corrections torB→D(* )
2 . We find

d
B→D*
~as! 5

2 ~12z!~1112z111z2!124 ~22z1z2!zlnz

27 ~12z!3
,

dB→D
~as! 5

2 ~12z!~23234z123z2!112 ~323z12z2!zlnz

27 ~12z!3
.

~17!

The corrections indB→D(* )
(1/m) depend on the four subleading

Isgur-Wise functions@4# that parametrize all first order de-
viations from the infinite mass limit. These can only be esti-
mated at present using model predictions. Using the notation
of @23# we find

dB→D*
~1/m!

522x18~1!14x38~1!2z@2x18~1!24x2~1!

112x38~1!#2
5

6
~11z!2

4

3
x2~1!

2
122z15z2

3~12z!
h~1!,

dB→D
~1/m! 52~11z!@2x18~1!24x2~1!112x38~1!#

1
2~12z!2

11z
h8~1!. ~18!

Here prime denotesd/dw.
Note that the bounds in Eqs.~16! do not rely on the as-

sumption thatmc,b@D. The bounds on the slope of the
Isgur-Wise function in HQET~wheremc,b→`) hold as long
asD is large enough for perturbative QCD to be a valid way
to calculate the contour integrals in Eq.~5!. The values for
the charm and bottom quark masses only arise in matching
rB→D(* )
2 onto the slope of the Isgur-Wise function.
There are several scales that occur in the bounds on

rB→D(* )
2 . In the limitmc,b@D we know how to sum the large
logarithms of the ratio of scalesmc,b /D that occur in the
perturbative corrections to the bounds. First one performs the

matching ofrB→D(* )
2 onto the slope of the Isgur-Wise func-

tion at a scale aroundmc,b ~e.g.,Amcmb), then one scales the
Isgur-Wise function down from this subtraction point toD
using the anomalous dimension for the operator
h̄v8
(c)gmhv

(b) . Finally one applies the bound on the slope of the
Isgur-Wise function in Eq.~9! at the subtraction point
m5D. However, sinceD must be greater than 1 GeV, for the
physical values of the charm and bottom quark masses
mc,b /D is not very large. Consequently, we did not sum the
leading logarithms of this ratio using this renormalization
group procedure in Eqs.~16!.

To evaluate the bounds in Eq.~16! we take3 as50.3 ~cor-
responding to a scale of about 2 GeV!, L̄5mM1

2mM50.4

GeV,mc51.4 GeV, andmb54.8 GeV. However, since we
neglect corrections of orderas(LQCD/mc,b), other values
for the heavy quark masses, e.g.,mc.m̄D5(mD

13mD* )/451.97 GeV and mb.m̄B5(mB13mB* )/
455.31 GeV, would be equally valid. In Table I we show the
Bjorken and Voloshin bounds at orderas usingD51 GeV
andD52 GeV, for the weight functionWD

(`)5u(D2e). To

obtain these numerical results we neglecteddB→D(* )
(1/m) . Using

WD
(2) instead ofWD

(`) does not affect the Bjorken bound, but
weakens the Voloshin bound by 0.02 forD51 GeV, and by
0.05 forD52 GeV. While the Bjorken bound only receives
moderate corrections to its tree-level value of 0.25, the cor-
rections to the tree-level value of the Voloshin bound, 0.75,
are more sizable and stronglyD dependent.

To estimate the possible size of the orderLQCD/mc,b cor-
rections in Eq.~18!, we use the QCD sum rule predictions
for the four subleading universal functions@24#. These give
approximately x18(1)50.3, x2(1)520.04, x38(1)50.02,
h(1)50.6, and h8(1)50. Note that the results for
dB→D(* )
(1/m) depend sensitively onx18(1), which is only calcu-
lated to orderas

0 in the framework of QCD sum rules; the
other subleading form factors@x2(w), x3(w), andh(w)# are
computed to orderas . We find that these corrections reduce
rB→D*
2 by 0.3 andrB→D

2 by 0.2. However, these values are
model dependent, and the uncertainties are large.

Using Eq.~15! we find that the orderas perturbative cor-
rections predict thatrB→D

2 is about 0.09 larger than
rB→D*
2 . This prediction is affected by orderLQCD/mc,b cor-
rections@see Eq.~18!#, and therefore it is not model indepen-

3Unless explicitly stated otherwise, we use these values through-
out this paper.

TABLE I. Upper and lower bounds onrB→D(* )
2 , the slopes of the functionsFB→D(* )(w) at zero recoil,

that describe the shape of the semileptonicB→D (* )l n̄ decay spectrum. The orderas corrections are
included, while orderLQCD/mc,b corrections are neglected. To zeroth order inas the Bjorken bound is 0.25,
while the Voloshin bound is 0.75.

Bjorken bound (rB→D(* )
2

.•••) Voloshin bound (rB→D(* )
2

,•••)
B→D* B→D B→D* B→D

D51 GeV 0.24 0.33 0.95 1.05
D52 GeV 0.18 0.27 1.11 1.20
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dent. However, the QCD sum rule results for the subleading
Isgur-Wise functions predict thatrB→D

2 2rB→D*
2 is further

increased. Therefore, an enhancement ofrB→D
2 compared to

rB→D*
2 by about 0.1–0.2 seems quite likely, and a precise
measurement of this difference would test the predictions of
Ref. @24#. ~Similar results were obtained in@25#.!

As the above model estimates for the orderLQCD/mc,b
corrections are fairly sizable, one should investigate whether
more reliable bounds can be derived in the full theory. The
motivation is that in the full theory one can bound the mag-
nitude of the physical form factors~equal to the Isgur-Wise
function plus orderLQCD/mc,b corrections in HQET!. In the
next section we derive bounds on thehA1(w) form factor in
the full theory. For comparison, we give here the bounds on
this form factor in the effective theory approach. The slope
of hA1(w) at w51, rA1

2 , satisfies a bound of the same form

as that in Eq.~16!. The orderas corrections to the bounds on
rA1
2 are

dA1
~as!5

2 ~12z!~1724z117z2!16 ~923z14z2!zlnz

27 ~12z!3
,

~19!

while the orderLQCD/mc,b terms are

dA1
~1/m!522x18~1!14x38~1!2z@2x18~1!24x2~1!

112x38~1!#2
11z

2
1zh~1!. ~20!

Neglecting the corrections of orderLQCD/mc,b this gives
0.28,rA1

2 ,0.99 for D51 GeV and 0.22,rA1
2 ,1.15 for

D52 GeV.

V. SUM RULES IN THE FULL THEORY

In the full theory, bounds on the form factorhA1(w) in
Eq. ~11! can be obtained from Eq.~5! by taking the axial
current and choosing the four-vectora such that
a•v5a•q50. These bounds are expected to be less model
dependent at present than those derived in the effective
theory, as there is no uncertainty associated with the sublead-
ing Isgur-Wise functions ~they contribute at order
LQCD/mc,b in the effective theory approach!. On the other
hand, the bounds derived in the full theory receive calculable
corrections proportional to powers ofD/mc,b at orderas ,
which do not arise in the HQET approach.

TheD-dependent part of the corrections away from zero
recoil are straightforward to compute by considering the~fi-
nite! difference between the bremsstrahlung graphs in the
full theory and in HQET. Since we want to keep the fullw
dependence at orderLQCD/mc,b , we need to include

S 11w

2w D
parton

5S 11w

2w D
hadron

F12
~w21!

w2

L̄

mc
1 . . . G .

~21!

Neglecting terms of order as
2 , LQCD

2 /mc,b
2 ,

as(LQCD/mc,b), andas(w21)2, we obtain the bounds

~11w!2uhA1~w!u2

4w
,
11w

2w F12
~w21!

w2

L̄

mc
G

1
as

p
@A1~w21!X#, ~22!

~11w!2uhA1~w!u2

4w
.
11w

2w F12
~w21!

w2

L̄

mc
2

V

EM1
2EM

G
1

as

p
@B1~w21!Y#.

HereA, B, X, andY are functions ofmc , mb , andD. The
term V arises from the difference in the start of the parton
and hadron cuts, and from matrix elements of dimension-5
terms in the operator product expansion. It is simple to ex-
tract, from@13,15#,

V5~w21!S L̄

w
1

L̄2

2mc

32w

w3 1
l1

6mc

31w

w3 1
l113l2

3mb

1

wD
1 . . . , ~23!

where

l15
1

2mB
^B~v !uh̄v

~b!~ iD !2hv
~b!uB~v !&,

l25
1

6mB
^B~v !uh̄v

~b!
g

2
smnG

mnhv
~b!uB~v !&.

~24!

SinceEM1
2EM is of orderLQCD, all terms inV contribute

at least of orderLQCD/mc,b to the lower bound on
uhA1(w)u

2. We cannot neglect these terms, as the main mo-
tivation for considering the bounds in the full theory was to
eliminate the orderLQCD/mc,b uncertainties related to the
subleading Isgur-Wise functions in the HQET approach.

The functionA was computed in@14#,4 andB was com-
puted in@15#. Denotingd5D/mc , the result is

A522 S 11z

12z
lnz1

8

3D
1
d~21d!@2z2~11d!22~312z1z2!#

18 ~11d!2

1
312z2z2

9
ln~11d!,

B5A2
D

mM1
2mM

3F ~213d12d2!~916z23z2!12d2z2~817d12d2!

54 ~11d!2

2
312z2z2

9

ln~11d!

d G . ~25!

We find that the coefficientsX andY are

4It was first computed to orderD2/mc,b
2 in @13#.
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X5S 11z

12z
lnz1

8

3D1
8

9
ln~4d2!22 dA1

~as!

2
d~16142d145d2116d3!

9 ~11d!4

2
2dz~20152d153d2118d3!

45 ~11d!4

1
dz2~12152d171d2144d3110d4!

45 ~11d!4

2
80112z2

45
ln~11d!,

Y5X2
L̄A

mM1
2mM

2
D

mM1
2mM

3H 169 1
6211d262d2283d3232d4

18 ~11d!4

1
z~381113d1122d2141d3!

45 ~11d!4

2
z2~341119d1134d2149d3216d4210d5!

90~11d!4

2
15138z217z2

45

ln~11d!

d J . ~26!

In Fig. 3 we plot the upper and lower bounds on
(11w)2uhA1(w)u

2/(4w) over the region 1,w,1.25, using

Eq. ~22!. Over this region ofw, corrections of order
as(w21)2 that we have not computed are expected to be
negligible. The thin and thick solid curves correspond to the
choices D51 GeV and 2 GeV, respectively. The dashed

curves show the upper and lower bounds neglecting the order
as andLQCD/mc,b corrections. The dotted curves show the
upper and lower bounds neglecting the orderas corrections,
but keeping the orderLQCD/mc,b terms. The enhancement of
the difference between the upper and lower bounds, which is
seen to increase withw, is dominated by the perturbative
corrections. The reason for the somewhat larger than usual
deviation of

uhA1~1!u25hA
25122

as

p S 11z

12z
lnz1

8

3D1•••, ~27!

from unity in Fig. 3 is due to our choice ofas50.3, which
gives at orderas , hA50.96.

In plotting Fig. 3, we usedl1520.2 GeV2 and
l250.12 GeV2. While l2 is well-determined by the
B*2B mass splitting, the value ofl1 is more uncertain.
Changingl1 by 60.2 GeV2 changes the lower bound at
w51.25 by70.04. ~At order LQCD/mc,b the value ofl1
does not affect the upper bound for allw, nor the lower
bound at zero recoil.! We neglected the nonperturbative cor-
rections of orderLQCD

2 /mc,b
2 . Such corrections to the lower

bound involve matrix elements of dimension-6 operators in
the operator product expansion. The orderLQCD

2 /mc,b
2 correc-

tions to the upper bound@on the right-hand side of the first
inequality in Eq.~22!# are given by@13,15#

w221

2w

~l12l2!w
22L̄2~322w2!

2mc
2w4 1

l12l2w
2

4mc
2w5

1
l113l2

12mc
2w3 ~3w2z212z!. ~28!

For the central values ofL̄ andl1 used throughout this pa-
per, these corrections affect the upper bounds by only about
2~0.02–0.03!. The size of this correction is sensitive to the
value ofl1, while it is largely independent ofL̄. In Fig. 4 we
plot the upper~Bjorken! bound onuhA1(w)u

2 including the

FIG. 3. Upper and lower bounds on (11w)2uhA1(w)u
2/(4w).

The thin and thick solid curves are the bounds including effects of
order as and LQCD/mc,b , and correspond toD51 GeV and
2 GeV, respectively. The dashed curves are the bounds neglecting
order as and LQCD/mc,b corrections. The dotted curves are the
bounds neglecting orderas but keepingLQCD/mc,b corrections.

FIG. 4. Upper bound on (11w)2uhA1(w)u
2/(4w) including or-

der LQCD
2 /mc,b

2 corrections for different values ofl1. The curves
from above to below correspond tol150, 20.2 GeV2, and
20.4 GeV2, respectively.
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orderLQCD
2 /mc,b

2 corrections in Eq.~28! for D51 GeV and
three different values ofl1, l150, 20.2 GeV2, and
20.4 GeV2. ChangingL̄ by 60.1 GeV from the value we
used~i.e., 0.4 GeV! affects the curves plotted in Fig. 4 by
about70.01. If l1 is known more accurately in the future,
this upper bound may constrainhA1(1) to be somewhat be-

low hA .
A larger value ofD increases our confidence in the valid-

ity of using perturbative QCD to evaluate the time ordered
product of weak currents. In going fromD52 GeV to
D53 GeV the upper bound~the upper thick solid curve in
Fig. 3! is increased by about 0.01 fairly independently ofw
over the region 1,w,1.25, while the lower bound~the
lower thick solid curve in Fig. 3! is decreased by 0.06 at
w51 and by 0.07 atw51.25. Clearly, the lower bound is
considerably more sensitive to the choice ofD than the upper
bound.

Converting the bounds in Eq.~22! into constraints on the
slope parameter of thehA1 form factor at zero recoil,rA1

2 , is

not straightforward. The upper and lower bounds on
uhA1(w)u

2 do not meet at zero recoil, and therefore a bound

on rA1
2 can only be derived with some smoothness assump-

tion. We boundrA1
2 by assuming thathA1(w) is linear over

the region 1,w,1.25. Then the plots in Fig. 3~which ne-
glect terms of orderLQCD

2 /mc,b
2 ) imply the bounds

0.4414@hA1(1)2hA#,rA1
2 ,1.1914@hA1(1)2hA# and

0.3914@hA1(1)2hA#,rA1
2 ,1.3614@hA1(1)2hA# for

D51 GeV and 2 GeV, respectively. Recall that
hA1(1)2hA is of order LQCD

2 /mc,b
2 . The increase in the

lower bound compared to the 1/4 at zeroth order is mostly
due to the terms proportional toL̄/mc in Eqs. ~22!, and
hence it is sensitive to the value ofL̄ we choose. It is inter-
esting that this correction has the opposite sign than the QCD
sum rule results in the effective theory, which predicted that
orderLQCD/mc,b corrections lower the values of the bounds.

The smoothness assumption used to derive bounds on the
slope parameterrA1

2 from Fig. 3 can be justified model inde-

pendently using the parametrization of Ref.@26#. This work
also lets us extend the bounds at smallw presented in Fig. 3
to larger values ofw. The D52 GeV bounds imply upper
and lower bounds atw51.5 of 0.86.hA1(1.5).0.36.

The bounds presented in this section can also be used for
unpolarizedLb→Lcl n̄ decay if certain replacements are
made. The form factors for the matrix element of the axial
current,Gi , are defined by

^Lc~v8!uAmuLb~v !&

5ū~v8![G1g
m1G2v

m1G3v8m]g5u~v !. ~29!

Bounds onG1 are obtained by replacing the left-hand side of
Eqs. ~22! by G1

2(w11)/(2w). The quantitiesL̄, l1, and
l2 that appear on the right-hand side must now be inter-
preted as arising fromLb matrix elements. They are simply
related to the corresponding quantities in theB meson case
@27#, l2(Lb)50,

l1~Lb!5l1~B!12mc@~mLb
2m̄B!2~mLc

2m̄D!#/~12z!,

L̄~Lb!5L̄~B!1mLb
2m̄B1@l1~Lb!2l1~B!#/~2mb!.

~30!

VI. ORDER as
2b0 CORRECTIONS AT ZERO RECOIL

At zero recoil we can rewrite the upper and lower bounds
on thehA1 form factor in Eq.~22! as

uhA1~1!u2,hA
21

as~D!

p
A11

as
2~D!

p2 b0A2 , ~31!

uhA1~1!u2.hA
21

as~D!

p
A11

as
2~D!

p2 b0A2

2
D

mM1
2mM

Fas~D!

p
B11

as
2~D!

p2 b0B2G .
These bounds also receive nonperturbative corrections of or-
der LQCD

2 /mc,b
2 . Such corrections to the upper bound are

given by

2
l2

mc
2 1

l113l2

4mc
2 S 11

2

3
z1z2D . ~32!

The orderLQCD
2 /mc,b

2 corrections to the lower bound on
uhA1(1)u

2 depend on additional quantities~besidesl1 and

l2) that parametrize matrix elements of dimension-6 opera-
tors in the operator product expansion.

The corrections inhA in Eq. ~31! arise, at the parton level,
from the final stateX5c. Except for an infrared renormalon
ambiguity,hA only depends on physics associated with the
scalesmc,b . It has been calculated to orderas

2b0 @28#. Ex-
plicitly,

hA512
as~Ambmc!

p S 11z

12z
lnz1

8

3D
2

as
2~Ambmc!

p2 b0

5

24S 11z

12z
lnz1

44

15D . ~33!

The full orderas
2 expressions forhA andhV are also known

approximately@29#. For hA the orderas
2b0 terms dominate

theas
2 correction, while forhV they do not.

The corrections inAi andBi originate from final states
X that contain a charm quark plus additional partons, e.g.,
cg, cq̄q, etc. These corrections are suppressed by powers of
D/mc,b . For convenience, we evaluated the arguments of the
strong couplings in Eqs.~31! and~33! at two different scales
(Amcmb for the series inhA andD for the other terms!. Of
course, it is possible to evaluate both series at the same scale
using the QCDb function @30#. The functionsA1 andB1 are
given in Sec. V,A2 was computed in Ref.@14#, our result for
B2 is given below. These orderas

2b0 corrections are rela-
tively simple to compute due to a relation between thenf
dependent part of the orderas

2 terms and the orderas result
with a finite gluon mass@31#. The calculation is simplest in
the so-calledV scheme, but we present the results in the
usualMS scheme. To leading order ind5D/mc
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A15
d2

3 S 11
2

3
z1z2D ,

A25
1

2 S 136 2 ln2DA11
d2

15S 11
4

3
z1z2D ,

B15
2

3
A1 , B25

2

3
A22

d2

54S 11
2

3
z1z2D . ~34!

To all orders ind, A1, andB1 are given in Eq.~25!, and
A2 andB2 are computed numerically. In Fig. 5 we plot the
functionsA1, B1, A2, andB2 as functions ofD. The dotted
curve isA1, the dash-dotted curve isB1, the dashed curve is
A2, and the solid curve isB2.

On the right-hand sides of Eqs.~31! the renormalon am-
biguity of orderLQCD

2 /mc,b
2 in hA

2 is cancelled by that in the
seriesAi . Therefore, in considering the size of theas

2 cor-
rections relative to those of orderas , it seems reasonable for
the upper bound to take all terms on the right-hand side of
Eqs.~31! together@32#. AlthoughA2 is approximately as big
as A1 ~over the regionD,2 GeV!, since the orderas

2b0

term inhA
2 partially cancels againstA2, the perturbative ex-

pansion for the upper bound seems reasonably
well-behaved.5 For example, withLQCD5200 MeV and
D51 GeV, one finds neglecting terms of orderLQCD

2 /mc,b
2

that

uhA1~1!u2,120.07320.019

10.01310.017

5120.06020.002. ~35!

The last two terms in the first line are the orderas and
as
2b0 corrections tohA

2 , while the second line contains the
terms proportional toA1 andA2. For values ofD between
1 GeV and 5 GeV the cancellation of orderas

2b0 terms per-
sists.

For the lower bound, the orderas
2b0 term in the pertur-

bative expansion of the term proportional to
D/(mM1

2mM), which originates from the first moment of
the time ordered product of weak currents, is about as large
as the orderas term over the regionD,5 GeV. With
LQCD5200 MeV andD51 GeV, the lower bound in Eq.
~22! is

uhA1~1!u2.120.06020.002

20.01920.022

5120.07920.024. ~36!

The terms in the first line arise fromhA
2 and the seriesAi ,

while the second line contains the terms proportional toB1
andB2. Note that the coefficient of theBi terms depend on
the mass of the first excited state.

VII. CONCLUSIONS

In this paper we studied corrections to the Bjorken and
Voloshin sum rules on form factors of semileptonic
B→D (* )l n̄ decays. In the heavy quark effective theory we
derived upper and lower bounds on the Isgur-Wise function,
and on its slope at zero recoil. Matching the full theory onto
HQET, we translated the bounds in the effective theory into
bounds onFB→D(* ), the shape of the measuredB→D (* )

spectrum. The results in Table I show that while the correc-
tions to the Bjorken bound~lower bound onrB→D(* )

2 ) are
small, the corrections to the Voloshin bound~upper bound
on rB→D(* )

2 ) are sizable. The reason is that perturbative cor-

rections to the Voloshin bound are enhanced byD/L̄. There-
fore, even if experimental data would settle around
rB→D(* ) slightly above unity, that would still not be a prob-
lem for the theory to accommodate.

The bounds derived in Sec. IV are affected at order
LQCD/mc,b by corrections that are parametrized by four sub-
leading universal functions, and are not known at present
model independently. Therefore, we also studied the sum
rule constraints on thehA1(w) form factor in the full theory.

In this approach, allLQCD/mcb corrections to the sum rules
are parametrized by the three matrix elements,L̄, l1, and
l2. Bounds on thehA1 form factor are shown in Fig. 3, and
with some assumptions we found that its slope parameter
satisfies 0.4&rA1

2 &1.3.

These bounds onhA1 in the full theory of QCD can also

be related to bounds onrB→D(* )
2 . Using Eqs.~17! and ~19!

we find that the orderas corrections imply rB→D*
2

5rA1
2 20.04 andrB→D

2 5rA1
2 10.05. These relations receive

orderLQCD/mc,b corrections. Due to heavy quark spin sym-
metry the orderLQCD/mc,b difference betweenrB→D(* )

2 and
rA1
2 is independent of the subleading Isgur-Wise function

x1. Then Eqs.~18! and~20!, together with the QCD sum rule
predictions for the subleading Isgur-Wise functions, imply

5Reference @14# was less certain that the upper bound on
uhA1(1)u

2 has a well-behaved perturbative expansion. This is mostly
due to the fact that in@14# the behavior of the perturbative series
arising from the termsAi ~which contain all theD dependence! was
discussed without combining it with that fromhA

2 .

FIG. 5. The functionsA1, B1, A2, andB2 defined in Eq.~31! as
a function ofD. The dotted curve isA1, the dash-dotted curve is
B1, the dashed curve isA2, and the solid curve isB2.
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that orderLQCD/mc,b terms reducerB→D*
2

2rA1
2 by 0.11 and

reducerB→D
2 2rA1

2 by 0.01.~The uncertainty in these predic-

tions will be reduced if the form factor ratioR2 can be mea-
sured precisely.!

One of the largest uncertainties in the sum rule predic-
tions ~especially in the Voloshin bound! is related to the
numerical values ofL̄ andmM1

2mM . In this paper we used

mM1
2mM5L̄50.4 GeV, motivated by the experimentally

measuredD12D* mass difference, and by the extraction of
L̄ in @33#. However, the uncertainties in this determination of
L̄ are sizable, and precise experimental data on other inclu-
sive processes is needed to extract the value of this quantity
more reliably@34#. TakingmM1

2mM5mD1
2mD* may also

be misleading. Besides the possibility of sizable decay rates
into nonresonant final states@35# ~discussed in Sec. II!, there
is probably a doublet lighter than the$D1 ,D2* % heavy quark
spin symmetry doublet, that is of order 100 MeV or more
broad. The spin-parity of the light degrees of freedom in the
$D1 ,D2* % doublet issl

p l5 3
2

1, and so theD1 is 1
1, while the

D2* is 21. However, light degrees of freedom withsl
p l5 1

2
1

yield a doublet of 01 and 11 states. These can decay into
D (* )p in an s wave, and so they should be much broader
than the$D1 ,D2* % that can only decay in ad wave. ~An
s-wave decay amplitude for theD1 is allowed by angular
momentum conservation, but it is forbidden by heavy quark

spin symmetry@36#.! A reduction inmM1
2mM would fur-

ther weaken the Voloshin bound.
Some improvements in this paper are possible. We fo-

cused on the region near zero recoil because it is important
for the extraction ofuVcbu. It would be straightforward to
calculate the terms in Eq.~22! of order as(w21)2. Then
Fig. 3 could be extended over the full kinematic range
1,w,1.5. Some uncertainty in the sum rules arises from
the orderas

2 corrections. The part of these corrections pro-
portional to the one-loopb function have been computed at
zero recoil. For the part of the lower bound involving the
first moment of the time ordered product of weak currents
these corrections are as big as the orderas corrections, un-
lessD is quite large. It should be possible to compute the
as
2b0 corrections away from zero recoil, and also to the

bounds onrB→D(* )
2 considered in Sec. III.
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