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QCD sum rules for heavy baryons at next-to-leading order inag
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We derive QCD sum rules for heavy baryons at leading orderrig, ldnd at next-to-leading order is.
The calculation involves the evaluation of four different perturbative three-loop diagrams which determine the
ag corrections to the Wilson coefficients of the leading term in the operator product expansion. From the sum
rules we obtain estimates for the masses and the residues of the heavy bisyandX, . The perturbative
O(ag) corrections to the leading order spectral function amount to about 100%, and they shift the calculated
values for the baryon masses slightly upward. The residues are shifted upward by about 20—-50%. For the
bound state energ given by the difference of the heavy baryon mass and the pole mass of the heavy quark
mg we obtalnmA —my=780 MeV andmz —mg=950 MeV. For the residues we firléf ,|=0.028 GeV
and|Fy|=0.039 Ge\? [S0556- 282(197)04405 q

PACS numbgs): 11.55.Hx, 12.38.Bx, 12.39.Hg, 12.40.Yx

[. INTRODUCTION QCD sum rule method we calculate the masses and residues
of the heavy baryons associated with the heavy baryon cur-
There has been a great deal of interest in the physics aknts. In its original form the QCD sum rule method was
heavy hadrons containing one heavy quark. The heavy quauggested by Shifmaet al. [6] as a tool to investigate the
effective theory(HQET) allows one to study the properties properties of light meson systems. Later on the method was
of the heavy hadrons in a systematien}/ expansion. The extended to the case of light baryons[ii-10]. The QCD
leading term of the expansion gives rise to the spin-flavosum rule approach has proven itself to be a very powerful
symmetry of heavy quark symmetfiQS). The corrections nonperturbative QCD-based tool which takes into account
to the leading HQS results are determined by the small exthe properties of the QCD vacuum. It allows one to obtain
pansion parametekocp/Mg, whereAqcp~300 MeV is the  reliable estimates for hadron masses, their residues and their
scale of low-energy physidgor a review of HQET se¢l], elastic as well as their transition form factors.
for a review of HQS and the sum rule approach for heavy In the heavy-light sector the first leading order analysis
mesons sef?]). (leading both in Ihy as well as inag) of heavy meson
Among the well-known predictions of HQS are, e.g., theproperties within the QCD sum rule approach was performed
relations between different heavy hadron transition form facin [11]. Later on the heavy meson sum rule calculation was
tors. Take, for example, the,— A electroweak transitions. extended to include next-to-leading order radiative correc-
The six form factors describing this transition are reduced taions. The next-to-leading order corrections proved to be
one universal Isgur-Wise function in the HQS lini8,4,5.  rather importanf12,13,14. QCD sum rules for baryons with
Even then one still remains with many nonperturbative paiarge but finite massasg were first studied ifi15,16. Later
rameters characterizing the process and the heavy baryons the methods of HQET were incorporated in the sum rule
participating in it. These concern the functional behavior ofanalysis. The leading order QCD sum rules for heavy bary-
the Isgur-Wise function itself, the masses and residues of thens were first considered {11,17,18, again to leading or-
heavy baryons and, at next-to-leading order in the heavger both in g as well as inag. Finite mass corrections to
mass expansion, the average kinetic and chromomagnetic ethese sum rules were discussed 18)].
ergy of the heavy quark in the heavy baryon. All these non- In order to improve on the accuracy of the existing QCD
perturbative parameters can be determined by using nonpesum rule analysis of heavy baryons one needs to avail of the
turbative methods as, e.g., lattice calculations, QCD sum rulaext-to-leading order radiative corrections to the sum rules.
methods[6] or, in a less fundamental approach, by usingThis forms the subject of the present paper. We calculate the
potential models. QCD radiative corrections to the leading perturbative term in
In the present paper we study the correlator of two heavyhe operator product expansig®PBE and, from these, we
baryon currents in the HQS limit whemg—-ec. Using the  derive next-to-leading order QCD sum rules for heavy bary-
ons in the HQS limit. We then go on to analyze the sum rules
and compute the values of the masses and the residues of the
*Electronic address: Groote@dipmza.physik.uni-mainz.de heavy baryons at next-to-leading order accuracy.
"Electronic address: Koerner@dipmza.physik.uni-mainz.de The paper is organized as follows. In Sec. Il we introduce
*On leave from Budker Institute of Nuclear Physi&NP), pr.  heavy baryon currents as interpolating fields for the heavy
Lavrenteva 11, Novosibirsk, 630090, Russia. Electronic addresgground state baryons. In Sec. lll we construct the correlator
O_Yakovlev@physik.uni-wuerzburg.de of two heavy baryon currents by means of the OPE and
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define the spectral density. In Sec. IV we present our results TABLE I. Specific values of the parameter pair,§) for par-
on the radiative corrections to the perturbative part of theicular cases of the light-side Dirac structure y5 refers to the
spectral density and construct renormalization group invarinaive ys-scheme with an anticommutings [20] and 5" to the
ant QCD sum rules by recapitulating some known results orys-scheme due to Breitenlohner, Maison, 't Hooft, and Veltman

the one- and two-loop anomalous dimensions of the current§21]:
Section V contains the results of our numerical analysis. Sec=

tion VI, finally, contains our summary and our conclusions. n S Particles
In Appendix A we provide a detailed collection of results on Ac 0 +1 A
the calculation of the two- and three-loop contributions to thej/gcyO 1 -1 A,
correlator of two heavy baryon currents. These results ar 1 " s,.3*
quite general in that they are given for general space-time . 5 1 s ,2’1‘
dimensions and for a general baryonic current structure. 22
v 4 -1 Ay
Il. BARYONIC CURRENTS %% 3 +1 Ay

The currents of the heavy baryd, and the heavy quark

spin baryon dOUb|€£EQ,26} are associated with the spin- 1= y[ﬂl---yﬂn]_ When calculating the one- and two-loop
parity quantum number§"=0" and j°=1" for the light  vertex corrections one encountergontractions of the form

diguark system with antisymmetric and symmetric flavory I'y* and y,['y,. The ¥, contraction leads to an depen-
structure, respectively. Adding the heavy quark to the lightdence according to

quark system, one obtaif§=3" for the A baryon and the

pair of degenerate stat¢s=1" andj"=2" for the baryons v L y*=hI'=(—1)"D-2n)T. 3
3o and3 . The general structure of the heavy baryon cur-
rents has the forngsee, e.g.[17], and Refs. therein The 7y, contraction depends in addition on an additional pa-
, . rameters which takes the valués=+1) and(s=—1) for an
J=[q'TCr g/ I’ QXejjy . (1) even or odd number ofy’s in T, respectively. They, con-

. . ) traction reads
Here the indeXT means transpositiorf; is the charge con-

jugation matrix with the propertie€y,C *=—y, and vol yo=(—1)"sT". @)
CyiC =4y, i,j,k are color indices, and is a matrix in

flavor space. The effective static field of the heavy quark iSn order to facilitate the use of Eq€3) and (4) we have
denoted byQ. For each of the ground-state baryons there arompiled a table of ther(;s) values relevant for the heavy

two independent interpolating currer@gandJ, which both baryon currents treated in this pageee Table)l.
have the appropriate quantum numbers to interpolate to the

respective ground-state baryons. They are givenliyl7]
I1l. CORRELATOR OF TWO BARYONIC CURRENTS

—TraiT MoK =Iq'T MOXe .. . . .
Ja=[a"Crysd'1Q% k. Ja2=[0" C7ys00'1Q%ijk , In this section we describe the steps needed for the evalu-
N D P ation of baryonic QCD sum rules. One starts with the cor-
Is1=[a" Crya']- yysQ ik relator of two baryonic currents:

Js2=[0TCTy7a']- ¥¥5Q€ijx _
) H(w=k-u)=if d*xe*(0|T{I(x),J(0)}|0), (5
Js+1=[a"TC779' 1Q i+ 5 Yd Cryal]- ¥Q¥eij ,
. , _ , _ wherek,, andp,, are the residual and full momentum of the
Js2=[0TCryo¥a1Q e+ 3 A Cro¥a']- ¥Q eij , heavy quark and, is the four velocity using the momentum
(2)  expansiorp,=mqu ,+k, . As was mentioned before, there
. . . are two possible choices of interpolating currents for each of
whereJs«; andJs«, satisfy the spirg condition yJs+;=0  the heavy baryon states, given By andI',=I';4. Thus one
(i=1,2. The flavor matrixr is antisymmetric forAq and  may consider correlators of the same curreédtagonal cor-
symmetric for the heavy quark spin doub{@q,%5}. The  relators or of different currentgnondiagonal correlatoysin
currents written down in Eq2) are rest frame currents. The the general case, one may even consider correlators built
corresponding expressions in a general frame moving witirom a linear combinatiod=J, + bJ, of these currents with
velocity four-vectorv” can be obtained by the substitutions an arbitrary coefficienb. We mention that the choide=1
Yo—¥ and y— yt=y*—gv*. In the following analysis we corresponds to a constituent quark model current which has
shall be using both of these equivalent descriptions alternanaximal overlap with the ground state baryons in the con-
tively, i.e., we shall either use the static description withstituent quark model picture. In this paper we limit our at-
v#=(1,0,0,0 or a moving frame description withv#*  tention to diagonal correlators only.
=(1p) andv #0. The correlator in Eq(5) depends only on the energy vari-
For a general analysis it proves to be convenient to repable o=Kk-v because of the static nature of the heavy propa-
resent the general light-side Dirac structure of the currents igator. It can be factorized into a spinor dependent piece and
Eqg. (2) by an antisymmetrized product of Dirac matrices a scalar correlator functioR(w) according to
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1+ — 1 —
H(w)=T"' — T’ 2 THTT)2 Tr(r7")P(w).  (6)

Following the standard QCD sum rule methd, the corr-

elator is calculated in the regionw~1-2 GeV, including

perturbative and nonperturbative contributions, where the

nonperturbative contributions can in general be quite large.

The nonperturbative effects are taken into account by em-

ploying an operator product expansi@@PE) for the time- ©

ordered product of currents in E(). One then has

T{300.3(0)}=3 C40x3)0q, @ V%,
=)
where the operator®, are local operators with a given di- 993%)

mensiond, Oy=1, O3=gqq>, 0,=(GG), ..., and the ex-
) are the corresponding coefficient

pansion coefficient€ 4(x
functions or Wilson coefficients of the OPE.

A straightforward dimensional analysis shows that the 1) )
OPE of the diagonal correlator contains only even-
dimensional terms. We take into account the perturbative 6@66‘6‘0‘@\
term for d=0, the gluon condensate term fde=4 and a S 2

condensate term with four quark fields fde=6. The four-
quark operator will be factorized into a product of two two-
quark operators{q(0)q(x))? [6]. Accordingly the Fourier

transform of the scalar correlator functifi{w) reads

cag(GG)

P(t)=Pope(t) =i 0(t)Nc!(

1
T ING <0I(0)Q(t)>2>,

wherec=1 for Ay, c=—3for {q,2&} andN, is the num-

7 T 3N (N— 1) 7t

8

ber of colors. For the nonlocal quark condensaf€0)q(t))
one may use the OPE aboigq): =(q(0)q(0)), namely

4

_ - t
(@(0)q(t))=(qa)| 1+ fsmit*+ 7ag(GG) g+ - -

96N,

where the parameten, is defined in Eq(11). Alternatively

one may use the Gaussian angd&2]

(a(0)a(t))=(qa) exp(fs mit?).

9

(10

®) 4)

FIG. 1. Two-loop and three-loop contributions to the correlator
of two heavy baryon current$0) two-loop lowest order contribu-
tion, (1)—(4) three-loopO(ag) contributions.

With these condensate values one sees that the OPE in Eq.
(8) with Euclidian time =it converges nicely for &>0.3
GeV. In this region one may thus safely truncate the OPE
series after the second term. Atr#0.3 GeV the contribu-
tion of the first term is two times larger than the last quark
condensate term. Its contribution grows rapidly withr.1/
When 1F is further increased we see that the correlator be-
comes dominated by the perturbative contribution. For ex-
ample, at 1/=0.6 GeV the perturbative term is two orders of
magnitude larger than the contribution of the condensate
terms. Note, however, that at70.4 GeV the contribution

of the ground state to the correlator is ten times smaller than

When expanding the Gaussian ansatz one sees that the W contribution of the excited states and the continuum. This
forms agree up to the term linear it Thus the two repre- \youid imply that if the theoretical and phenomenological
sentations of the nonlocal quark condensate are quite similgfontinuum contributions differ by about 10%and are not

to one another for small values tofin our sum rule analysis  equal to each other as assumed hettgs difference would
we shall make use of the Gaussian ansatz because it providggjuce a 100% change in the contribution of the ground

for better stability of the sum rules.

For the condensates we use the numerical values

(qq)=—(0.23 GeV?,
ag(GG)=0.04 GeVt,

9s(qo,,G*"q)=mj(qq) with mi=0.8 Ge\’.

11

state. Thus the sum rules can only be trusted at values 1/
<0.4 GeV(see also the discussions of the numerical results
of the sum rulep In the next section we will show that the
perturbative corrections become even more important at
small Euclidian distances in comparison to the nonperturba-
tive condensate contributions.

As a next step one determines the spectral density using
the coordinate space representati®ft) of the current cor-
relator. The simplest way to proceed is as follows. The scalar
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correlator functionPopg(w) satisfies a dispersion relation w® ag(GG)
po(w)=50—7 and pyw)=c —5 5 .
* plw)de’ i i
POPE(w)=P(w)=J S —w_io Ple) 12
0o w—w IV. RADIATIVE CORRECTION

. . . TO THE PERTURBATIVE TERM
wherep(w)=Im[P(w)]/7 is the spectral density arfl' (w) is

a polynomial inw, which takes into account possible sub- Next we consider radiative corrections to the leading or-
tractions in the dispersion representation. The Fourier trangler spectral density in E¢16). There are altogether four
form of the polynomialP’(w) consists of thes function &t) different three-loop graphs that contribute to the correlator of
and derivativess(")(t) of the & function. A comparison with  two baryonic currents, which are shown in Fig. 1. Contrary
Eq. (8) shows that one does not in fact need any subtractiond0 the experience in the two-loop case, the most convenient
We therefore seP’(w)=0. Taking the Fourier transform of Way to calculate the three-loop contributions is to evaluate

Eq. (12) according to them in momentum space. The fact that all graphs in Fig. 1
have two-point two-loop subgraphs greatly simplifies the cal-

P(t)=J d_“’ e 1“P(w) (13) culational task. One can first evaluate the respective sub-

2 ' graphs such that one remains with a one-loop integration.

we obtain The subgraph two-loop integration can be performed by us-

" ing the algebraic methods described23]. It is important to
p(t):ig(t)f p(w)e “do=i6(t)P(t). (14)  note that the results of the two-loop integration can be ex-
0 pressed in terms of a polynomial function of the external
Then we analytically continu®(t) from t>0 to imaginary ~Momentum that flows into the subgraph. Hence, the remain-
times by introducing the Euclidean time=it. After this INg integration is a one-loop-type integration, where the
transformation, Eq(14) becomes the well-known Laplace POWer of one of the propagators has become a noninteger
transformation. One may thus use an inverse Laplace tranfumber due to the use of dimensional integration. The up-

formation in order to obtain an Euclidean time representatiorg0t Of this is that all steps of the three-loop integration can
of the spectral density: be reduced to purely algebraic manipulations.

We present the results of calculating the two-loop and
three-loop contributions to the correlator in the form

4
—ToP(w)=N\oCoBo+ )‘1;1 CB;, (17)

1 ctio
plo)=5— Lim P(—ir)e“dr, (15)

wherec is to be chosen as a real constant to the right of all
singularities ofP(t). It is then easy to check that the form
P(t)=if(t)/t""? gives the spectral density p(w)
=i""19(w)w"/n!, whereas P(t)=if(t)t" results in
p(w)=(—i)"8M"(w+0) for n=0. Following the argumenta-
tion in [8] we do not include forms of the second kind into
the spectral density. So the leading order perturbative con-
tribution and the next-to-leading order contribution of the
gluon condensate to the spectral density are given by

where we have used the abbreviatiogs=(—2w/w)?° %),
AM=0%(4m)P(—2w/u)BP~ 7, and whereD =4—2¢ is the
space-time dimension. Concerning the color structure we
have defined the color factof3; (i=0, ..., according to
the labeling of the graphs in Fig. 1. Their values are given by
Co=N,!, C;=C,=—N_/Cg and C3=C,=N_!Cg, where
Ce=(N2—1)/2N, and Cg=(N,+1)/2N,. Values for the
scalar coefficient8,; defined in Eq(17) are listed in Appen-

p(©)=po(®)+ pa(®), (16 dix A. .
Putting everything together, the two-loop and three-loop
where scalar correlation factdP(w) defined in Eq(17) is given by
J
320° [[—2w\ 7% 1 (1 107, as(—2w)\ ®(n°—4n+6 40/(2)+61n°—234n+396 (n—2)s
Plw)=———3||—— — =+ —=|+= —+ +
(47) " 40\e 15 4w\ pu 45¢ 225¢ 90
5(195n%— 780+ 1946 {(2) — 220Q(3) + 49072 — 18 4081+ 34 35
* 2250 : (18)

The scalar correlation functioR(w) is renormalized by the asCg )
square of the renormalization factdy of the baryonic cur- Z;=1+ 5 —— (n"~4n+6). (19
rent derived i 17]. Accordingly one has

The multiplication ofP(w) in Eq. (18) with Z§ results in the
cancellation of the second power inelThe remaining ¥
singularity is purely real and hence does not contribute to the
with spectral density. Since the renormalized spectral density

P(w)=ZiP™(w)
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p"(w)=Im[P"w)]/7 has to be finite, this provides a check dag
on our calculation. The spectral density can be read off from Zy=1- P
Eq. (18) and is given by
ag and
PN @, ) =po(@)| 1+ ;—r(w/u)|,
o
2a5
where =1-_>
Zyo=1- 3. (23
w5
po(®)= 53 . i o
20m Using these finite renormalization factors one may convert
the results in the naively anticommuting scheme given in
and Eg. (21) to the corresponding results in the 't Hooft—
Veltman scheme. Least the reader worry that we do not list
r(w/,u)zrlln(i i, the corresponding.-type conversion factors we remind him
2w that theys in the 2-type currents act on the heavy quark line

and thus there are ngs; ambiguities. Nevertheless, the 't

with Hooft—Velmany; scheme needs some counter terms to sat-
o 2 isfy some kind of Ward identities. To avoid this complica-

ri:=3(n“—4n+6) tion, we will henceforth concentrate on the naively anticom-

- muting y; scheme, where such counterterms are not

necessary at all. We only mention that the finite renormal-
. 5 ization in Eq. (22) will bring the results of the twoys
I‘2:= 5 (605(2)"‘38'1 _137h+273) (20) Schemes in |ine.
o o ) ) In order to allow for a quick appraisal of the importance
The coefficientr; of the logarithmic term in Eq(20) coin-  f the perturbative corrections we have exhibited the numeri-
cides with twice the one-loop anomalous dimension given in.g| values of the second terms in EB1). For s we use the
Eq. (36), as expected. The reason is that the evolution of,nning coupling constant, which we normalized to the value

p(w,u) is controlled by thg reno.rmaliz_ation group eqpationof ag(m,)=0.118 at the mass of th& boson forN,=5
a_nd that the anomalous dimension(dfl) and p(w,u) COIN-  getive flavors. By doing so one hag(x)=0.333 atu=1
cide. , _ GeV for N;=3 active flavors. Using this value fars(u=1

The as correction can be seen to depend on the propertiegey), the above results show that the perturbativeorrec-
of the light-side Dirac matrid” in the heavy baryon current, tions to the spectral density amount to about 100%. This
as specified in Table 1. As an explicit result we list represenighjights the importance of perturbative QCD radiative cor-
tations of ther(g)/,u) func_'uons of the four baryon currents in ractions in QCD sum rule applications. The same observa-
the naively anticommutingAC) ys scheme. They read tion was made in the heavy meson sedt®,13,14. As in

the heavy meson sector on remains with several unsettled

@ 8(20¢(2) +91) questions:(1) Are there any special reasons for such big
raw/p) = 161“(%) TtV 15 ’ QCD *“corrections? (2) Can we trust the QCD sum rule
A predictions and theg expansion when theg corrections are
so big?(3) How big are then2 corrections? Is it possible to
estimate them? These questions should be clarified in the
16(10¢(2) + 29 future.
ranm(w/p) = 81n(%> + ( C(15) ), near future
w4848 21) A. Residues and QCD sum rules
To proceed with the usual QCD sum rules analysis, we
rea(w/p) = §1n(i) n 8(60¢(2) + 151) evaluate the scalar correlator functi®fw) using the theo-
3 \2w 45 retical resultPqpgt) given in Eq.(8) and equate this to the
~44.40 dispersion integral over the contributions of hadron states.

) These consist of the lowest-lying ground state with bound
The results for the two different baryon currertg and  state energy\ plus the excited states and the continuum. To

A in the 't Hooft—Veltman(HV) ys scheme differ from |eading order in Th, the bound state energy of the ground
those presented above. It is well known that currents in difgiate is defined by

ferent ys schemes are connected by a finite renormalization o
factor Z such that Mparyor= Mo+ A, (24)

‘]AC: ZJHV . (22) .
wheremg, is the pole mass of the heavy quark. Note that the
These finite factors also appear in the calculation of two-loogeading order sum rules do not dependrog at all since the
anomalous dimensions of baryonic curref2d]. From the heavy mass dependence has been eliminated by employing
results of{24] one has the heavy mass expansion.
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We assume that the continuum is given by the OPE exfrom the sum rule in Eq(31) by taking the logarithmic de-
pression above a certain threshold eneEgy [6]. For the rivative with respect to the inverse Borel parameter accord-
hadron-sidgHS) contribution to the spectral density we thus ing to
write

—  dInN[K(Ec,T,u)]
prs(@) = ped @) + peonf @), (25 A=— a7 1 - (32)

where the contribution of the lowest-lying ground steEsS)
baryon is contained ipgs and is given by

Returning to the sum rule in E¢31), one has

pes(®)= sF28(w—A). 26) 3FA(we MNT
. . . : N,! a
In this expressiort is the absolute value of one of the resi- __¢c T6(f x)+ —2 L lin ﬂ)f %) — fL(x
duesF; (i=A,X,3*) of the baryonic currents defined by mt s(Xc) 4 [N 2T s(Xe) ~ T5(xc)
- = 2E3
(OFAQ)=Fau,  (Olf%q)=Fsu +raf5(Xe) +CEéT2f1(XC)+Eg eX[{ - T_ZO)
and
(33
1 . . .
(0]3,]2%)= 5 FyxU,, (27)  with the polynomials ; andr, presented in Eq20) and the
3 functions
whereu andu, are the usual spig-and spin3 spinors. Note o~ noom
that Fy+ coincides withFy in the lowest order of the heavy fa):=| — e Xdx' =1—-e* —
guark mass expansion that we are working in. o m m=0 M:
As is usual we assume hadron-parton duality for the con-
tribution of excited states and continuum contributions and Lo Xt
take peond @)= w—Ec)p(w), Where p is the result of the fn(x):= N Inx"e " dx’. (34)

OPE calculations given in Eq$3) and (16). With these as-

sumptions we arrive at the sum rule In order to simplify the notation we have introduced the

abbreviations

(1/2)F? = plw)do’
Pord )=+ [ LS (o )
A—w—i0 Ec w' —w—i0 __Ec L A
Xci= EO'_T’ (EQ).——m<qq>
or ¢
and
(1/2)F2 Ec p(w)dw’
/T—w—iozfo w’—w—i0+PPC(w), 9 7TaS<GG>
(o= g N— D) 39
C (o3

where the power counting paP-(w) is defined as the Fou-

rier transform of that part of the correlator functi®?(t)  The numerical analysis of the Borel sum rule is the subject of
which contains non-negative powetg)" (n=0). Finally we  Sec. V.

apply the Borel transformation

n B. Anomalous dimensions

- 1) d\"
BT:“mW(_d_w) n,—w— (T=-o/n fixed) The one-loop renormalization of the effective heavy
(300  baryon currents was considered [ib7], the two-loop case
) was studied in[24]. In general they differ from those in
to the sum rule in Eq.(29. Using B{l/(w—w')] conventional QCD. The one-loop anomalous dimension of
=exp(—w'/T)/T we obtain the Borel sum rule baryonic currents, namely the first coefficient in the expan-
sion y=2k(a5/47r)kyk, only depends om and is given by
12 v (Fe o' ITH, ' 1 R (17,24
sF(n)e —f plo',pn)e do’+BPpdT)
° y1=—4[(n-2)?+2]. (36)
=:K(E¢,T,u), (31
The general 1f,s)-dependent formula for the two-loop
where we reintroduced the dependence of the spectral den- anomalous dimension case is rather lengthy and can be found
sity, which causes au. dependence for the residue. The in [24]. As an illustration we list explicit values for the two-
Borel-transformedBP,{T) can be obtained directly from loop anomalous dimensions as calculated in the minimal
Ppdt) by the substitutiort— —i/T (see_the discussion in subtractionMS) scheme using the naivg scheme. One has
[17]). Note that the bound state energycan be obtained (with explicit values given folN;=3)
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« 1 2
yar = —8(=2) 4 Z(16¢(2) + 40N — 796) (=2,
T 9 47
- (37)
~-72.19
o 1 ag\?
e = —4 (—S>+—(16<( ) + 20N, — 322) (—S>
T 9 T
(38)
~-26.19
2
(8]
T —4<—S) L16¢(2) + 20N, — 200) (%)
T 9 T
(39)
~—22.63
8 /a 1 ag)?
yp2 = —= (=) + —(48¢(2) + 8N, + 324) (=2
3 \4r 27 T (40)

~15.81

C. Renormalization group invariant sum rules

It is clear that the current3(u) depend on the renormal-

ization scaleu. This dependence can be expressed by the

renormalization group equation

din 2z,

ane W

J(u)=0, y:=

d+
Pt

arising from the scale independence of the bare current

Jo=2Z;(n)I(w), wherevy is the anomalous dimension of the

current discussed in the preceding subsection. To construc

renormalization group invariant quantifl,, , the renormal-
ized current)(u) has to be multiplied with the appropriate
Wilson coefficient Clag(n)], i.€., Jin=J(u)C[ag(u)].

Accordingly the Wilson coefficients satisfy the renormaliza-

tion group equatiorisee alsd14,16|)
d
P du Clag(n)]=0

d
< | agB(ag) _’)’(as) C(ag)=0, (42

da

where 8:=d In ag/d In u=3(ag/4m) B, is the B function
of QCD with

B1=—2(11-5Ny)
and
Bo=—4(51— FNy). (43
The formal solution of Eq(42) is given by
agw) da y(a)
C[as(m1=exp( f — M)' (44)

Finally, when the perturbative expansion of tBefunction
and the anomalous dimension is inserted to second order
ag one arrives at

ag(pm) 1 (

(2 &)
4’7T Bl )

Clas(p)]=ag(p) 7P 1+ v B

(49)

The first factor in Eq.45) is the result of resumming the
leading logarithmic termgagIn u)", where the result is
valid only in the logarithmic approximation. As E@45)
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shows, one needs to know also the two-loop anomalous di-
mension of the baryon current in order to obtain the evolu-
tion at next-to-leading log accuracy, e.g., in the order
ag(agIn w)".

The usage of the invariance propertyJyf, also provides

a connection between currents at different renormalization
scales:

J(2)Clag(pmz) 1=I(pm1) Clas(ul)],

thus

J(m2)=I (1) Clag(p) ICLag(ua)]™ 1= W)U (g, 12),

(46)
B ag(ny) da y(a)
U(Ml,ﬂz)—ex%J o B(a))
_ ag(u)| /A 1+ ag(pmr) — as(uo)
ag(uo) 4
Yi[v2 B2
Bi\mn ,31”' 4

tWahere U (uq,u0) is perturbatively evaluated up to next-to-

leading order inag (see also the discussion [i#,25,26).

As is evident from Eq(27), also the residues are func-
tions of the renormalization scale parameter The func-
tional form of this dependence is the same as for the currents.
Thus one can construct the renormalization group invariant
quantityF;,,=F(u)C[ ag(u)] by means of the same Wilson
coefficient. A renormalization group invariant sum rule can
then be written down by considering the expression

|nvexq A/T) K(Ec,T, ,LL)C[a/S(,u,)]Z Kin(Ec,T).

(48)

The theoretical part of the sum rulg E,T,u) depends on
the renormalization scalg through the QCD perturbative
corrections which contain the logarithmic factor(dn. On

the other hand, the left-hand side of E48) is independent

of the renormalization scalg by construction, and thus the
right-hand side must also be renormalization scale indepen-
dent. It is easy to check this to first orderdag by introduc-

ing a second scalg’ such that one has

s(M) 8in (M2>

Remembering thai(w,u) in Eq. (20) appears as an integrand
of K(E¢,T,u), one obtains cancellation$o first order of
as) of the logarithmic factors Ifw) in p(w,u)C[ as(x)]? and
thereby inK(E¢,T,u)C[as(u)]2 The cancellation occurs
because of the relatian =—2v;,. In this paper we will make
no use of the renormalization group invariant sum rule in Eq.
(48). Instead we analyze the sum rui@l) at some fixed

as(um)
C“s(#')

: (49
in
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FIG. 2. Sum rule results on the nonperturbative parameters of

the Ag as functions of the Borel paramefer Shown are five curves FIG. 3. Sum rule results on the nonperturbative parameters of

for five different values of the threshold enerBy. spaced by 100 the2q as functions of the Borel paramefBr Shown are five curves

MeV around the central valug.=EX®'. E grows from bottom to ~ for five different values of the threshold enerBy spaced by 100

top. These are in_deta{b) lowest order sum rule results for the MeV around the central vaIlEC:Ekées‘. Ec grows from bottom to

bound state energi (A); (b) lowest order sum rule results for the top. These are in_detaig) lowest order sum rule results for the

absolute value of the residig, ; () O(ag) sum rule results for the bound state energg (3); (b) lowest order sum rule results for the

bound state energy\(A); for the currentsd,; (solid) and J,, absolute value of the residig; ; (c) O(as) sum rule results for the

(dashegt (d) O(ag) sum rule results for the absolute value of the bound state energy (3); for the current doubletdJsq,Js«1}

residueF , for the currents] 4 (solid) andJ,, (dashed (solid) and{Js,,Js«,} (dashegt (d) O(as) sum rule results for the
absolute value of the residu&s for the corrent doublets
{JIs1,Js1} (solid) and{Js,,Js«,} (dashed

point u'=1 GeV in order to estimate the bound state energy

A and the residué (). The value of the residuE(u) at

other scales can then be obtained by using the evolutio(g(0)q(x)) [see Eq.(10)]. The stability region lies in the

functionU(u',u), while the u-independent functiofr;,, can  acceptable range 0.3 GeM <0.4 GeV[see discussion after

be immediately obtained by multiplying witG[ ag(u)]. Eg. (8)]. We mention that the range of acceptable values for

T extends down tar >0.2 GeV when radiative corrections

are included, since these enlarge the perturbative contribu-

tions. This, however, does not bring in a new region of sta-

Let us present the sum rule analysis in some detail. W&ility. _ _

start by discussing the sum rules without radiative correc- Returning to the analysis of the lowest order sum rules for

tions and perform the analysis in consecutive steps. As EqN€ Aq baryon, we find areas of stability arourtep=1.2

(33) shows, the analysis of the lowest order sum rules doeS€V in the window 0.3 Ge¥.T<0.4 GeV. Acceptable sta-

not depend on which of the two different current cases ar&ility is found in the range 1.0 GeVE;<1.4 GeV. There-

being discussed. First, we analyze the dependence of tﬁ@bret'_” Fig. 4a) we show plots foLﬂ:/e valuet;s d around

bound state energy on the threshold parametEg and the Ec=1.2 GeV, namely foEc=E¢&™, Ec=E&*+0.1 GeV

Borel parametefl in a large window of parameter space. and E¢®£0.2 GeV. From these curves we then read off

The aim is to try and find regions of stability h andEc.. values forE: and A with good sum rule stability, namely

By looking at three-dimensional plots fdr as functions off

andE. we found a stability region for the sum rules only in _

the case of the exponential ansatz for the nonlocal operator A(Ag)=0.78+0.05 GeV

V. NUMERICAL RESULTS
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TABLE Il. Sum rule results on nonperturbative and sum rule parameters of heavy ground state baryons. The continuum threshold
parameteEc, the bound state energy, and the difference between the two bound state energies are given in GeV, whereas the residues
are listed in units of 10° Ge\®. The value of the Borel parameterTs=0.35 GeV.

[17] [19] [28] L.O. N.L.O.
Ec(A) 1.20 1.20:0.15 1.2-0.1 1.2£0.1 1.1+0.1
Ec(2) 1.46 1.30:0.15 1.4-0.1 1.3:0.1 1.3t0.1
&A) 0.78 0.79:0.05 0.9:0.1 0.78-0.05 0.78£0.05
s A) 0.99 0.96:0.05 0.9G:0.05 0.95-0.05
A(Z)—A(A) 0.21 0.17 0.12 0.17
|F Al 2.3x0.5 1.70.6 2.5:0.5 2.3:0.1 2.8:0.2
|Fyl 3.5+0.6 4.1+0.6 4.0:0.5 2.6:0.2 3.9:0.3
in the range /T(EQ)=0.90i 0.05 GeV, Ec(2q)=1.3%0.1 GeV
Ec(Ag)=1.2£0.1 GeV, 500  and
where the quoted errors present rough error estimates taken |Fs|=0.026-0.002 GeV. (54
from Fig. 2a) according to the range fd& . specified in Eqg.
(50). Including theag radiative corrections we have
Next we estimate the value of the residue. The sum rules —
now depend on the three parametArsE., andT. In Fig. A(2q)=0.95-0.05 GeV, Ec(2q)=1.3+0.1 GeV

2(b) we plot |[F,| for a fixed bound state energy

A(Ag)=0.78 GeV in the indicated window for the Borel and

parameterT. The five different curves again correspond to E<|=0.039+0.003 GeV 55
the above five different values &. Sum rule stability is IFs|=0. ' eV ®9
found at where again the results for different currents are combined
into single values. The results are displayed graphically in
IF,|=0.023-0.002 GeV, (51) g played graphically

Figs. 3a) and 3b) and in Figs. &) and 3d), respectively.

where the errors again represent rough error estimates taken OUr predictions for the bound state ener§ycombined
from Fig. 2Ab). with the experimental charm and bottom baryon masses may

Next we take into account thes correction to the spectral P€ taken to calculate the charm and bottom quark pole
density. As is evident from E¢20), the sum rule analysis Massesng. Taking into account the experimental results as
now depends on which of the two types of baryonic currentdiven by the Particle Data Group[27], namely
are used. The results for the bound state energy for botM(Ac) =2284.9:0.6 MeV, m(EC)=2_453.5t0.9 MeV,
cases are displayed in Fig(c2 However, as this figure @nd M(Ap)=5641£50 MeV, we obtain the pole masses
shows, both diagonal sum rules lead to compatible values fdfle™1500 MeV andm,~4860 MeV for the heavy quarks.
A(Ag) andEc. We therefore combine the two results to a 'he experimental difference afi(A.)—m(Z.)~167 MeV

single value, since the differences lie within the error rangel27] 1S quite close to our predictiom(A o) —m(Xq)~170
Using the same analysis as for Figagwe obtain MeV. Here we present only central values. As was discussed

above, the accuracy of our predictions is connected with the
/T(AQ)=0.78t 0.05 GeV internal accuracy of the QCD sum rules methamhinly be-
cause of the dependence on the energy threshold of the con-
in the range tinuum, E) and is probably not better than 20%.
All the results are summarized in Table Il, where we com-
Ec(Ag)=1.1£0.1 GeV. (52 pare our leading order and next-to-leading order results with
the leading order results obtained [ib7,19,28. This con-
As Figs. Za) and 4c) show, the ag-corrected sum rules cludes our analysis.
show more stability, albeit at the lower valeg=1.1 GeV.
However, the prediction for the bound state energyre- VI. CONCLUSIONS
mains the same as in the leading order analysis. ) )
Using the central valud (Ao)=0.78 GeV one can then We have considered the operator product expansion of the

obtain values for the residue looking at FigdR which give ~ correlator of two static heavy baryon currents at small Eu-
rise to clidian distances and determined thgradiative corrections

to the first Wilson coefficient in the expansion. Based on this
|F | =0.028+0.002 GeV. (53 expansion we formulated and analyzed heavy baryon sum
rules for theA-type andX-type heavy baryons using two
Doing the same leading order analysis for thévaryon, different types of interpolating fields for the baryons in each
we obtain case. We have discussed in some detail the scale indepen-
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dence of thexg sum rules which requires the consideration For the three-loop contributioris=1, 2, and 4 depicted in
of the anomalous dimensions of the heavy baryon currents d&ig. 1 one has

the two-loop level. 8(D—2)(2D—-7)E;

Similar to the case of heavy mesons the QCD radiative Bi= — — — —
correction to the first term in the OPE is quite large and 9(3D—11)(3D~10)(3D~8)(3D~7)E,
amounts to a 100% change in the perturbative contribution. xBiTr(l"_z/;Fﬁ)

The radiative correction to the perturbative term increase the

calculated sum rule values for the baryon masses by abowith

10% and the residues by about 20-50 % relative to the cor-

responding lowest order values. The sum rule results do not ~ 4(D—2)Ef 2(D—-2)(3D—-10)E,
depend very much on which of the two possible interpolating bl=(D —2)3D—3)2 (D-4)3D-3)%(2D-7)"
fields is used in each case. The sum rule analysis is, however,

quite sensitive to changes in the assumed threshold energy of _ (D—2)E,

the continuum. This sensitivity is the main source of uncer- bSI(D_4)2(D_3)(2D_7) ,

tainty in our results and is partly due to the use of diagonal
correlators in the sum rules for the following reason. QCD _ _(D-2)E
sum rules based on the diagonal correlators feature a leading b,= 5 5 2

order spectral density which grows rapidly @)~ «®. This (D-4)%(D—-3)%(2D~-7)
rapid growth introduces a strong dependence of the sum ru

results on the assumed continuum threshold. r43)]. The contribution of diagrani2) in Fig. 1 is the most

We have not considered nondiagonal sum rules whic involved one. In order to be able to write the results in a
come in when one considers correlators between two differ- )

ent currents with the same quantum numbers. These nono‘i:—c’mpaCt form we introduce the abbreviations

agonal sum ruIe; bring in some new featqres such as g\ more Q,=T(1- )T (1+ €)/T(1—2¢)

“normal” behavior of the spectral densitp(w)~{(qQ)w

which reduces the dependence of the sum rule analysis qghd

the continuum thresholB. . One can therefore expect more

moderate QCD corrections to the spectral density. On the Q,=T(1—¢€)°I'(1+2€)/T(1— 3e). (A3)
other hand, the leading term for nondiagonal sum rules is .

proportional to the quark condensate, whose vajgg)  In terms of the basic structure terms

=(—0.23+0.02 GeVj®is known only with an accuracy of ~ — ~ —

10%. This is an additional source of uncertainty for the non- Lo=Tr(I4T%), Ti=Tr(Ty,I'y*),

diagonal sum rules. The analysis of the nondiagonal sum
rules forms the subject of a subsequent paper. and

(A2)

lﬁwte the combinatorical factor of 2 for the diagrathsand

T,=Tr(Ty,y,6T6 " y*), A4
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- 12(D—2)2Q?
APPENDIX: DIAGRAMMATIC CONTRIBUTIONS bz,(): (D= 4)3( D 3)2(D — l)

In this Appendix we collect together results on the calcu-

lation of the two-loop and three-loop contributions to the _ 24D(D—-2)*Q,
diagonal correlators of the two heavy baryon currents. We (D—4)%(D-1)(3D—-10)(3D—8)’
start with the two-loop contribution depicted in Fig(iZ=0),
where one has B (D*~7D+16)Q}
5 (D—2)E, B Tr(r) > (D-4)D-3)%(D-1)
= r
° 4(2D-7)(2D-5)(2D-3)E; ° 4(D2-4D+8)Q,
with (D—4)>(D—-1)(3D—10)(3D-8)’
~ E
L (A1) 3Q}

bo:(D—4)(D—3)'

We have introduced the abbreviatidg,=T"(1—¢€)"T'(1
+ne) (with natural numbersn=1,2,3...) which is also _ 4Q;
used in the subsequent presentation of the three-loop results. (D—4)(D—-1)(3D—-10)(3D—-8) "

D22~ (5= 4)7(D-3)(D-1)

(A5)
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