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We derive QCD sum rules for heavy baryons at leading order in 1/mQ and at next-to-leading order inaS .
The calculation involves the evaluation of four different perturbative three-loop diagrams which determine the
aS corrections to the Wilson coefficients of the leading term in the operator product expansion. From the sum
rules we obtain estimates for the masses and the residues of the heavy baryonsLQ andSQ . The perturbative
O(aS) corrections to the leading order spectral function amount to about 100%, and they shift the calculated
values for the baryon masses slightly upward. The residues are shifted upward by about 20–50%. For the
bound state energyL̄ given by the difference of the heavy baryon mass and the pole mass of the heavy quark
mQ we obtainmLQ

2mQ>780 MeV andmSQ
2mQ>950 MeV. For the residues we finduFLu>0.028 GeV3

and uFSu>0.039 GeV3. @S0556-2821~97!04405-6#

PACS number~s!: 11.55.Hx, 12.38.Bx, 12.39.Hg, 12.40.Yx

I. INTRODUCTION

There has been a great deal of interest in the physics of
heavy hadrons containing one heavy quark. The heavy quark
effective theory~HQET! allows one to study the properties
of the heavy hadrons in a systematic 1/mQ expansion. The
leading term of the expansion gives rise to the spin-flavor
symmetry of heavy quark symmetry~HQS!. The corrections
to the leading HQS results are determined by the small ex-
pansion parameterLQCD/mQ , whereLQCD'300 MeV is the
scale of low-energy physics~for a review of HQET see@1#,
for a review of HQS and the sum rule approach for heavy
mesons see@2#!.

Among the well-known predictions of HQS are, e.g., the
relations between different heavy hadron transition form fac-
tors. Take, for example, theLb→Lc electroweak transitions.
The six form factors describing this transition are reduced to
one universal Isgur-Wise function in the HQS limit@3,4,5#.
Even then one still remains with many nonperturbative pa-
rameters characterizing the process and the heavy baryons
participating in it. These concern the functional behavior of
the Isgur-Wise function itself, the masses and residues of the
heavy baryons and, at next-to-leading order in the heavy
mass expansion, the average kinetic and chromomagnetic en-
ergy of the heavy quark in the heavy baryon. All these non-
perturbative parameters can be determined by using nonper-
turbative methods as, e.g., lattice calculations, QCD sum rule
methods@6# or, in a less fundamental approach, by using
potential models.

In the present paper we study the correlator of two heavy
baryon currents in the HQS limit whenmQ→`. Using the

QCD sum rule method we calculate the masses and residues
of the heavy baryons associated with the heavy baryon cur-
rents. In its original form the QCD sum rule method was
suggested by Shifmanet al. @6# as a tool to investigate the
properties of light meson systems. Later on the method was
extended to the case of light baryons in@7–10#. The QCD
sum rule approach has proven itself to be a very powerful
nonperturbative QCD-based tool which takes into account
the properties of the QCD vacuum. It allows one to obtain
reliable estimates for hadron masses, their residues and their
elastic as well as their transition form factors.

In the heavy-light sector the first leading order analysis
~leading both in 1/mQ as well as inaS! of heavy meson
properties within the QCD sum rule approach was performed
in @11#. Later on the heavy meson sum rule calculation was
extended to include next-to-leading order radiative correc-
tions. The next-to-leading order corrections proved to be
rather important@12,13,14#. QCD sum rules for baryons with
large but finite massesmQ were first studied in@15,16#. Later
on the methods of HQET were incorporated in the sum rule
analysis. The leading order QCD sum rules for heavy bary-
ons were first considered in@11,17,18#, again to leading or-
der both in 1/mQ as well as inaS . Finite mass corrections to
these sum rules were discussed in@19#.

In order to improve on the accuracy of the existing QCD
sum rule analysis of heavy baryons one needs to avail of the
next-to-leading order radiative corrections to the sum rules.
This forms the subject of the present paper. We calculate the
QCD radiative corrections to the leading perturbative term in
the operator product expansion~OPE! and, from these, we
derive next-to-leading order QCD sum rules for heavy bary-
ons in the HQS limit. We then go on to analyze the sum rules
and compute the values of the masses and the residues of the
heavy baryons at next-to-leading order accuracy.

The paper is organized as follows. In Sec. II we introduce
heavy baryon currents as interpolating fields for the heavy
ground state baryons. In Sec. III we construct the correlator
of two heavy baryon currents by means of the OPE and
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define the spectral density. In Sec. IV we present our results
on the radiative corrections to the perturbative part of the
spectral density and construct renormalization group invari-
ant QCD sum rules by recapitulating some known results on
the one- and two-loop anomalous dimensions of the currents.
Section V contains the results of our numerical analysis. Sec-
tion VI, finally, contains our summary and our conclusions.
In Appendix A we provide a detailed collection of results on
the calculation of the two- and three-loop contributions to the
correlator of two heavy baryon currents. These results are
quite general in that they are given for general space-time
dimensions and for a general baryonic current structure.

II. BARYONIC CURRENTS

The currents of the heavy baryonLQ and the heavy quark
spin baryon doublet$SQ ,SQ* % are associated with the spin-
parity quantum numbersj P501 and j P511 for the light
diquark system with antisymmetric and symmetric flavor
structure, respectively. Adding the heavy quark to the light
quark system, one obtainsj P5 1

2
1 for theLQ baryon and the

pair of degenerate statesj P5 1
2

1 and j P5 3
2

1 for the baryons
SQ andSQ* . The general structure of the heavy baryon cur-
rents has the form~see, e.g.,@17#, and Refs. therein!

J5@qiTCGtqj #G8Qke i jk . ~1!

Here the indexT means transposition,C is the charge con-
jugation matrix with the propertiesCg m

TC2152gm and
Cg 5

TC215g5 , i , j ,k are color indices, andt is a matrix in
flavor space. The effective static field of the heavy quark is
denoted byQ. For each of the ground-state baryons there are
two independent interpolating currentsJ1 andJ2 which both
have the appropriate quantum numbers to interpolate to the
respective ground-state baryons. They are given by@11,17#

JL15@qiTCtg5q
j #Qk« i jk , JL25@qiTCtg5g0q

j #Qk« i jk ,

JS15@qiTCtgWqj #•gW g5Q
k« i jk ,

JS25@qiTCtg0gWq
j #•gW g5Q

ke i jk ,

JWS* 15@qiTCtgWqj #Qk« i jk1 1
3 gW @qiTCtgWqj #•gWQk« i jk ,

JWS* 25@qiTCtg0gWq
j #Qk« i jk1 1

3 gW @qiTCg0gWq
j #•gWQk« i jk ,

~2!

whereJWS* 1 andJ
W

S* 2 satisfy the spin-32 conditiongW JWS* i50
~i51,2!. The flavor matrixt is antisymmetric forLQ and
symmetric for the heavy quark spin doublet$SQ ,SQ* %. The
currents written down in Eq.~2! are rest frame currents. The
corresponding expressions in a general frame moving with
velocity four-vectorvm can be obtained by the substitutions
g0→v” andgW→g'

m5gm2v” vm. In the following analysis we
shall be using both of these equivalent descriptions alterna-
tively, i.e., we shall either use the static description with
vm5~1,0,0,0! or a moving frame description withvm

5(1,vW ) andvW Þ0.
For a general analysis it proves to be convenient to rep-

resent the general light-side Dirac structure of the currents in
Eq. ~2! by an antisymmetrized product ofn Dirac matrices

G5g@m1 ...gmn#. When calculating the one- and two-loop
vertex corrections one encountersg contractions of the form
gaGga andg0Gg0. The ga contraction leads to ann depen-
dence according to

gaGga5hG5~21!n~D22n!G. ~3!

The g0 contraction depends in addition on an additional pa-
rameters which takes the value~s511! and~s521! for an
even or odd number ofg0’s in G, respectively. Theg0 con-
traction reads

g0Gg05~21!nsG. ~4!

In order to facilitate the use of Eqs.~3! and ~4! we have
compiled a table of the (n,s) values relevant for the heavy
baryon currents treated in this paper~see Table I!.

III. CORRELATOR OF TWO BARYONIC CURRENTS

In this section we describe the steps needed for the evalu-
ation of baryonic QCD sum rules. One starts with the cor-
relator of two baryonic currents:

P~v5k•v !5 i E d4xeikx^0uT$J~x!,J̄~0!%u0&, ~5!

wherekm andpm are the residual and full momentum of the
heavy quark andvm is the four velocity using the momentum
expansionpm5mQvm1km . As was mentioned before, there
are two possible choices of interpolating currents for each of
the heavy baryon states, given byG1 andG25G1v” . Thus one
may consider correlators of the same currents~diagonal cor-
relators! or of different currents~nondiagonal correlators!. In
the general case, one may even consider correlators built
from a linear combinationJ5J11bJ2 of these currents with
an arbitrary coefficientb. We mention that the choiceb51
corresponds to a constituent quark model current which has
maximal overlap with the ground state baryons in the con-
stituent quark model picture. In this paper we limit our at-
tention to diagonal correlators only.

The correlator in Eq.~5! depends only on the energy vari-
ablev5k•v because of the static nature of the heavy propa-
gator. It can be factorized into a spinor dependent piece and
a scalar correlator functionP~v! according to

TABLE I. Specific values of the parameter pair (n,s) for par-
ticular cases of the light-side Dirac structureG. g5

AC refers to the
naive g5-scheme with an anticommutingg5 @20# and g5

HV to the
g5-scheme due to Breitenlohner, Maison, ’t Hooft, and Veltman
@21#.

G n s Particles

g5
AC 0 11 L1

g5
ACg0 1 21 L2

gW 1 11 S1 ,S1*
g0gW 2 21 S2 ,S2*

g5
HV 4 21 L1

g5
HVg0 3 11 L2
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P~v!5G8
11v”
2

Ḡ8
1

4
Tr~GḠ!2 Tr~tt†!P~v!. ~6!

Following the standard QCD sum rule method@6#, the corr-
elator is calculated in the region2v'122 GeV, including
perturbative and nonperturbative contributions, where the
nonperturbative contributions can in general be quite large.
The nonperturbative effects are taken into account by em-
ploying an operator product expansion~OPE! for the time-
ordered product of currents in Eq.~5!. One then has

T$J~x!,J̄~0!%5(
d

Cd~x
2!Od , ~7!

where the operatorsOd are local operators with a given di-
mensiond, O051̂, O35^q̄q&, O45^GG&, . . . , and the ex-
pansion coefficientsCd(x

2) are the corresponding coefficient
functions or Wilson coefficients of the OPE.

A straightforward dimensional analysis shows that the
OPE of the diagonal correlator contains only even-
dimensional terms. We take into account the perturbative
term for d50, the gluon condensate term ford54 and a
condensate term with four quark fields ford56. The four-
quark operator will be factorized into a product of two two-
quark operators,̂ q̄(0)q(x)&2 @6#. Accordingly the Fourier
transform of the scalar correlator functionP~v! reads

P~ t !5POPE~ t !5 iu~ t !Nc! S 1

p4t6
1

caS^GG&
32Nc~Nc21!p3t2

2
1

4Nc
2 ^q̄~0!q~ t !&2D , ~8!

wherec51 for LQ , c521
3 for $SQ ,SQ* % andNc is the num-

ber of colors. For the nonlocal quark condensate^q̄(0)q(t)&
one may use the OPE about^q̄q&:5^q̄(0)q(0)&, namely

^q̄~0!q~ t !&5^q̄q&S 11 1
16m0

2t21paS^GG&
t4

96Nc
1 • • • D ,

~9!

where the parameterm0 is defined in Eq.~11!. Alternatively
one may use the Gaussian ansatz@22#

^q̄~0!q~ t !&5^q̄q& exp~ 1
16 m0

2t2!. ~10!

When expanding the Gaussian ansatz one sees that the two
forms agree up to the term linear int2. Thus the two repre-
sentations of the nonlocal quark condensate are quite similar
to one another for small values oft. In our sum rule analysis
we shall make use of the Gaussian ansatz because it provides
for better stability of the sum rules.

For the condensates we use the numerical values

^q̄q&52~0.23 GeV!3,

aS^GG&50.04 GeV4,

gS^q̄smnG
mnq&5m0

2^q̄q& with m0
250.8 GeV2.

~11!

With these condensate values one sees that the OPE in Eq.
~8! with Euclidian timet5i t converges nicely for 1/t.0.3
GeV. In this region one may thus safely truncate the OPE
series after the second term. At 1/t50.3 GeV the contribu-
tion of the first term is two times larger than the last quark
condensate term. Its contribution grows rapidly with 1/t.
When 1/t is further increased we see that the correlator be-
comes dominated by the perturbative contribution. For ex-
ample, at 1/t50.6 GeV the perturbative term is two orders of
magnitude larger than the contribution of the condensate
terms. Note, however, that at 1/t50.4 GeV the contribution
of the ground state to the correlator is ten times smaller than
the contribution of the excited states and the continuum. This
would imply that if the theoretical and phenomenological
continuum contributions differ by about 10%~and are not
equal to each other as assumed here!, this difference would
induce a 100% change in the contribution of the ground
state. Thus the sum rules can only be trusted at values 1/t
,0.4 GeV~see also the discussions of the numerical results
of the sum rules!. In the next section we will show that the
perturbative corrections become even more important at
small Euclidian distances in comparison to the nonperturba-
tive condensate contributions.

As a next step one determines the spectral density using
the coordinate space representationP(t) of the current cor-
relator. The simplest way to proceed is as follows. The scalar

FIG. 1. Two-loop and three-loop contributions to the correlator
of two heavy baryon currents.~0! two-loop lowest order contribu-
tion, ~1!–~4! three-loopO(aS) contributions.
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correlator functionPOPE~v! satisfies a dispersion relation

POPE~v!5P~v!5E
0

` r~v8!dv8

v82v2 i0
1P8~v!, ~12!

wherer~v!5Im@P~v!#/p is the spectral density andP8~v! is
a polynomial inv, which takes into account possible sub-
tractions in the dispersion representation. The Fourier trans-
form of the polynomialP8~v! consists of thed functiond(t)
and derivativesd (n)(t) of thed function. A comparison with
Eq. ~8! shows that one does not in fact need any subtractions.
We therefore setP8~v!50. Taking the Fourier transform of
Eq. ~12! according to

P~ t !5E dv

2p
e2 ivtP~v!, ~13!

we obtain

P~ t !5 iu~ t !E
0

`

r~v!e2 ivtdv5 iu~ t !P̃~ t !. ~14!

Then we analytically continueP(t) from t.0 to imaginary
times by introducing the Euclidean timet5i t . After this
transformation, Eq.~14! becomes the well-known Laplace
transformation. One may thus use an inverse Laplace trans-
formation in order to obtain an Euclidean time representation
of the spectral density:

r~v!5
1

2p i Ec2 i`

c1 i`

P̃~2 i t!evtdt, ~15!

wherec is to be chosen as a real constant to the right of all
singularities ofP(t). It is then easy to check that the form
P(t)5 iu(t)/tn11 gives the spectral density r~v!
5i n11u(v)vn/n!, whereas P(t)5 iu(t)tn results in
r~v!5(2 i )nd (n)(v10) for n>0. Following the argumenta-
tion in @8# we do not include forms of the second kind into
the spectral densityr. So the leading order perturbative con-
tribution and the next-to-leading order contribution of the
gluon condensate to the spectral density are given by

r~v!5r0~v!1r4~v!, ~16!

where

r0~v!5
v5

20p4 and r4~v!5c
aS^GG&
32p3 v.

IV. RADIATIVE CORRECTION
TO THE PERTURBATIVE TERM

Next we consider radiative corrections to the leading or-
der spectral density in Eq.~16!. There are altogether four
different three-loop graphs that contribute to the correlator of
two baryonic currents, which are shown in Fig. 1. Contrary
to the experience in the two-loop case, the most convenient
way to calculate the three-loop contributions is to evaluate
them in momentum space. The fact that all graphs in Fig. 1
have two-point two-loop subgraphs greatly simplifies the cal-
culational task. One can first evaluate the respective sub-
graphs such that one remains with a one-loop integration.
The subgraph two-loop integration can be performed by us-
ing the algebraic methods described in@23#. It is important to
note that the results of the two-loop integration can be ex-
pressed in terms of a polynomial function of the external
momentum that flows into the subgraph. Hence, the remain-
ing integration is a one-loop-type integration, where the
power of one of the propagators has become a noninteger
number due to the use of dimensional integration. The up-
shot of this is that all steps of the three-loop integration can
be reduced to purely algebraic manipulations.

We present the results of calculating the two-loop and
three-loop contributions to the correlator in the form

2G̃0P~v!5l0C0B01l1(
i51

4

CiBi , ~17!

where we have used the abbreviationsl05~22v/m!(2D23),
l15g S

2/(4p)D/2(22v/m)(3D27), and whereD5422e is the
space-time dimension. Concerning the color structure we
have defined the color factorsCi ~i50, . . . ,4! according to
the labeling of the graphs in Fig. 1. Their values are given by
C05Nc!, C15C252Nc!CB and C35C45Nc!CF , where
CF5(Nc

221)/2Nc and CB5(Nc11)/2Nc . Values for the
scalar coefficientsBi defined in Eq.~17! are listed in Appen-
dix A.

Putting everything together, the two-loop and three-loop
scalar correlation factorP~v! defined in Eq.~17! is given by

P~v!52
32v5

~4p!4 F S 22v

m D 24e 1

40 S 1e 1
107

15 D1
aS

4p S 22v

m D 26eS n224n16

45e2
1
40z~2!161n22234n1396

225e
1

~n22!s

90

1
5~195n22780n11946!z~2!22200z~3!14907n2218 408n134 352

2250 D G . ~18!

The scalar correlation functionP~v! is renormalized by the
square of the renormalization factorZJ of the baryonic cur-
rent derived in@17#. Accordingly one has

P~v!5ZJ
2Pren~v!

with

ZJ511
aSCB

4pe
~n224n16!. ~19!

The multiplication ofP~v! in Eq. ~18! with Z J
2 results in the

cancellation of the second power in 1/e. The remaining 1/e
singularity is purely real and hence does not contribute to the
spectral density. Since the renormalized spectral density
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rren~v!5Im@Pren~v!#/p has to be finite, this provides a check
on our calculation. The spectral density can be read off from
Eq. ~18! and is given by

r ren~v,m!5r0~v!F11
aS

4p
r ~v/m!G ,

where

r0~v!5
v5

20p4

and

r ~v/m!5r 1lnS m

2v D1r 2

with

r 1 :5
8
3 ~n224n16!

and

r 2 :5
8
45 „60z~2!138n22137n1273…. ~20!

The coefficientr 1 of the logarithmic term in Eq.~20! coin-
cides with twice the one-loop anomalous dimension given in
Eq. ~36!, as expected. The reason is that the evolution of
r~v,m! is controlled by the renormalization group equation
and that the anomalous dimension of^JJ̄& andr~v,m! coin-
cide.

TheaS correction can be seen to depend on the properties
of the light-side Dirac matrixG in the heavy baryon current,
as specified in Table I. As an explicit result we list represen-
tations of ther ~v/m! functions of the four baryon currents in
the naively anticommuting~AC! g5 scheme. They read

~21!

The results for the two different baryon currentsL1 and
L2 in the ’t Hooft–Veltman~HV! g5 scheme differ from
those presented above. It is well known that currents in dif-
ferentg5 schemes are connected by a finite renormalization
factorZ such that

JAC5ZJHV . ~22!

These finite factors also appear in the calculation of two-loop
anomalous dimensions of baryonic currents@24#. From the
results of@24# one has

ZL1512
4aS

3p

and

ZL2512
2aS

3p
. ~23!

Using these finite renormalization factors one may convert
the results in the naively anticommutingg5 scheme given in
Eq. ~21! to the corresponding results in the ’t Hooft–
Veltman scheme. Least the reader worry that we do not list
the correspondingS-type conversion factors we remind him
that theg5 in theS-type currents act on the heavy quark line
and thus there are nog5 ambiguities. Nevertheless, the ’t
Hooft–Velmang5 scheme needs some counter terms to sat-
isfy some kind of Ward identities. To avoid this complica-
tion, we will henceforth concentrate on the naively anticom-
muting g5 scheme, where such counterterms are not
necessary at all. We only mention that the finite renormal-
ization in Eq. ~22! will bring the results of the twog5
schemes in line.

In order to allow for a quick appraisal of the importance
of the perturbative corrections we have exhibited the numeri-
cal values of the second terms in Eq.~21!. ForaS we use the
running coupling constant, which we normalized to the value
of aS(mZ)50.118 at the mass of theZ boson forNf55
active flavors. By doing so one hasaS~m!50.333 atm51
GeV for Nf53 active flavors. Using this value foraS~m51
GeV!, the above results show that the perturbativeaS correc-
tions to the spectral density amount to about 100%. This
highlights the importance of perturbative QCD radiative cor-
rections in QCD sum rule applications. The same observa-
tion was made in the heavy meson sector@12,13,14#. As in
the heavy meson sector on remains with several unsettled
questions:~1! Are there any special reasons for such big
QCD ‘‘corrections’’? ~2! Can we trust the QCD sum rule
predictions and theaS expansion when theaS corrections are
so big?~3! How big are theaS

2 corrections? Is it possible to
estimate them? These questions should be clarified in the
near future.

A. Residues and QCD sum rules

To proceed with the usual QCD sum rules analysis, we
evaluate the scalar correlator functionP~v! using the theo-
retical resultPOPE(t) given in Eq.~8! and equate this to the
dispersion integral over the contributions of hadron states.
These consist of the lowest-lying ground state with bound
state energyL̄ plus the excited states and the continuum. To
leading order in 1/mQ the bound state energy of the ground
state is defined by

mbaryon5mQ1L̄, ~24!

wheremQ is the pole mass of the heavy quark. Note that the
leading order sum rules do not depend onmQ at all since the
heavy mass dependence has been eliminated by employing
the heavy mass expansion.
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We assume that the continuum is given by the OPE ex-
pression above a certain threshold energyEC @6#. For the
hadron-side~HS! contribution to the spectral density we thus
write

rHS~v!5rGS~v!1rcont~v!, ~25!

where the contribution of the lowest-lying ground state~GS!
baryon is contained inrGS and is given by

rGS~v!5 1
2F

2d~v2L̄!. ~26!

In this expressionF is the absolute value of one of the resi-
duesFi ~i5L,S,S* ! of the baryonic currents defined by

^0uJuLQ&5FLu, ^0uJuSQ&5FSu

and

^0uJnuSQ* &5
1

)
FS*un , ~27!

whereu andun are the usual spin-
1
2 and spin-

3
2 spinors. Note

thatFS* coincides withFS in the lowest order of the heavy
quark mass expansion that we are working in.

As is usual we assume hadron-parton duality for the con-
tribution of excited states and continuum contributions and
take rcont~v!5u~v2EC!r~v!, where r is the result of the
OPE calculations given in Eqs.~8! and ~16!. With these as-
sumptions we arrive at the sum rule

POPE~v!5
~1/2!F2

L̄2v2 i0
1E

EC

` r~v8!dv8

v82v2 i0
~28!

or

~1/2!F2

L̄2v2 i0
5E

0

EC r~v8!dv8

v82v2 i0
1PPC~v!, ~29!

where the power counting partPPC~v! is defined as the Fou-
rier transform of that part of the correlator functionP(t)
which contains non-negative powers (t2)n ~n>0!. Finally we
apply the Borel transformation

B̂T5 lim
vn

G~n! S 2
d

dv D n n,2v→` ~T52v/n fixed!

~30!

to the sum rule in Eq. ~29!. Using B̂T@1/~v2v8!#
5exp(2v8/T)/T we obtain the Borel sum rule

1
2F

2~m!e2L̄/T5E
0

EC
r~v8,m!e2v8/Tdv81B̂PPC~T!

5:K~EC ,T,m!, ~31!

where we reintroduced them dependence of the spectral den-
sity, which causes am dependence for the residue. The
Borel-transformedB̂PPC(T) can be obtained directly from
PPC(t) by the substitutiont→2 i /T ~see the discussion in
@17#!. Note that the bound state energyL̄ can be obtained

from the sum rule in Eq.~31! by taking the logarithmic de-
rivative with respect to the inverse Borel parameter accord-
ing to

L̄52
d ln@K~EC ,T,m!#

dT21 . ~32!

Returning to the sum rule in Eq.~31!, one has

1
2F

2~m!e2L̄/T

5
Nc!

p4 FT6S f 5~xC!1
aS

4p H r 1F lnS m

2TD f 5~xC!2 f 5
l ~xC!G

1r 2f 5~xc!J D 1cEG
4T2f 1~xC!1EQ

6 expS 2
2E0

2

T2 D G
~33!

with the polynomialsr 1 andr 2 presented in Eq.~20! and the
functions

f n~x!:5E
0

x x8n

n!
e2x8dx8512e2x (

m50

n
xm

m!
,

f n
l ~x!:5E

0

x x8n

n!
lnx8e2x8dx8. ~34!

In order to simplify the notation we have introduced the
abbreviations

xC :5
EC

T
, E0 :5

m0

4
, ~EQ!3:52

p2

2Nc
^q̄q&

and

~EG!4:5
paS^GG&

32Nc~Nc21!
. ~35!

The numerical analysis of the Borel sum rule is the subject of
Sec. V.

B. Anomalous dimensions

The one-loop renormalization of the effective heavy
baryon currents was considered in@17#, the two-loop case
was studied in@24#. In general they differ from those in
conventional QCD. The one-loop anomalous dimension of
baryonic currents, namely the first coefficient in the expan-
sion g5Sk(aS/4p)kgk , only depends onn and is given by
@17,24#

g152 4
3 @~n22!212#. ~36!

The general (n,s)-dependent formula for the two-loop
anomalous dimension case is rather lengthy and can be found
in @24#. As an illustration we list explicit values for the two-
loop anomalous dimensions as calculated in the minimal
subtraction~MS! scheme using the naiveg5 scheme. One has
~with explicit values given forNf53!
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~37!

~38!

~39!

~40!

C. Renormalization group invariant sum rules

It is clear that the currentsJ~m! depend on the renormal-
ization scalem. This dependence can be expressed by the
renormalization group equation

S m
d

dm
1g D J~m!50, g:5

d ln ZJ
d ln m

, ~41!

arising from the scale independence of the bare current
J05ZJ(m)J(m), whereg is the anomalous dimension of the
current discussed in the preceding subsection. To construct a
renormalization group invariant quantityJinv , the renormal-
ized currentJ~m! has to be multiplied with the appropriate
Wilson coefficient C[aS(m)], i.e., Jinv5J(m)C[aS(m)].
Accordingly the Wilson coefficients satisfy the renormaliza-
tion group equation~see also@14,16#!

S m
d

dm
2g DC@aS~m!#50

⇔ FaSb~aS!
]

]aS
2g~aS!GC~aS!50, ~42!

whereb:5d ln aS/d ln m5Sk(aS/4p)kbk is theb function
of QCD with

b1522~112 2
3Nf !

and

b2524~512 19
3 Nf !. ~43!

The formal solution of Eq.~42! is given by

C@aS~m!#5expS EaS~m! da

a

g~a!

b~a! D . ~44!

Finally, when the perturbative expansion of theb function
and the anomalous dimension is inserted to second order in
aS one arrives at

C@aS~m!#5aS~m!g1 /b1F11
aS~m!

4p

g1

b1
S g2

g1
2

b2

b1
D G .

~45!

The first factor in Eq.~45! is the result of resumming the
leading logarithmic terms~aS ln m!n, where the result is
valid only in the logarithmic approximation. As Eq.~45!

shows, one needs to know also the two-loop anomalous di-
mension of the baryon current in order to obtain the evolu-
tion at next-to-leading log accuracy, e.g., in the order
aS~aS ln m!n.

The usage of the invariance property ofJinv also provides
a connection between currents at different renormalization
scales:

J~m2!C@aS~m2!#5J~m1!C@aS~m1!#,

thus

J~m2!5J~m1!C@aS~m1!#C@aS~m2!#
215:J~m1!U~m1 ,m2!,

~46!

U~m1 ,m2!5expS E
aS~m2!

aS~m1! da

a

g~a!

b~a! D
5S aS~m1!

aS~m2!
D g1 /b1F11

aS~m1!2aS~m2!

4p

3
g1

b1
S g2

g1
2

b2

b1
D G , ~47!

whereU~m1,m2! is perturbatively evaluated up to next-to-
leading order inaS ~see also the discussion in@2,25,26#!.

As is evident from Eq.~27!, also the residues are func-
tions of the renormalization scale parameterm. The func-
tional form of this dependence is the same as for the currents.
Thus one can construct the renormalization group invariant
quantityF inv5F(m)C[aS(m)] by means of the same Wilson
coefficient. A renormalization group invariant sum rule can
then be written down by considering the expression

1
2F inv

2 exp~2L̄/T!5K~EC ,T,m!C@aS~m!#25:K inv~EC ,T!.
~48!

The theoretical part of the sum ruleK(EC ,T,m) depends on
the renormalization scalem through the QCD perturbative
corrections which contain the logarithmic factor ln~m!. On
the other hand, the left-hand side of Eq.~48! is independent
of the renormalization scalem by construction, and thus the
right-hand side must also be renormalization scale indepen-
dent. It is easy to check this to first order inaS by introduc-
ing a second scalem8 such that one has

aS~m!

aS~m8!
512

aS~m!

8p
b1lnS m82

m2 D . ~49!

Remembering thatr~v,m! in Eq. ~20! appears as an integrand
of K(EC ,T,m), one obtains cancellations~to first order of
aS! of the logarithmic factors ln~m! in r~v,m!C[aS(m)]

2 and
thereby inK(EC ,T,m)C[aS(m)]

2. The cancellation occurs
because of the relationr 1522g1. In this paper we will make
no use of the renormalization group invariant sum rule in Eq.
~48!. Instead we analyze the sum rule~31! at some fixed
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pointm851 GeV in order to estimate the bound state energy
L̄ and the residueF~m8!. The value of the residueF~m! at
other scales can then be obtained by using the evolution
functionU~m8,m!, while them-independent functionF inv can
be immediately obtained by multiplying withC[aS(m)].

V. NUMERICAL RESULTS

Let us present the sum rule analysis in some detail. We
start by discussing the sum rules without radiative correc-
tions and perform the analysis in consecutive steps. As Eq.
~33! shows, the analysis of the lowest order sum rules does
not depend on which of the two different current cases are
being discussed. First, we analyze the dependence of the
bound state energyL̄ on the threshold parameterEC and the
Borel parameterT in a large window of parameter space.
The aim is to try and find regions of stability inT andEC .
By looking at three-dimensional plots forL̄ as functions ofT
andEC we found a stability region for the sum rules only in
the case of the exponential ansatz for the nonlocal operator

^q̄(0)q(x)& @see Eq.~10!#. The stability region lies in the
acceptable range 0.3 GeV,T,0.4 GeV@see discussion after
Eq. ~8!#. We mention that the range of acceptable values for
T extends down toT.0.2 GeV when radiative corrections
are included, since these enlarge the perturbative contribu-
tions. This, however, does not bring in a new region of sta-
bility.

Returning to the analysis of the lowest order sum rules for
the LQ baryon, we find areas of stability aroundEC51.2
GeV in the window 0.3 GeV,T,0.4 GeV. Acceptable sta-
bility is found in the range 1.0 GeV,EC,1.4 GeV. There-
fore in Fig. 2~a! we show plots for five values ofEC around
EC
best51.2 GeV, namely forEC5EC

best, EC5EC
best60.1 GeV

and EC
best60.2 GeV. From these curves we then read off

values forEC and L̄ with good sum rule stability, namely

L̄~LQ!50.7860.05 GeV

FIG. 2. Sum rule results on the nonperturbative parameters of
theLQ as functions of the Borel parameterT. Shown are five curves
for five different values of the threshold energyEC spaced by 100
MeV around the central valueEC5EC

best. EC grows from bottom to
top. These are in detail~a! lowest order sum rule results for the
bound state energyL̄~L!; ~b! lowest order sum rule results for the
absolute value of the residueFL ; ~c! O(aS) sum rule results for the
bound state energyL̄~L!; for the currentsJL1 ~solid! and JL2
~dashed!; ~d! O(aS) sum rule results for the absolute value of the
residueFL for the currentsJL1 ~solid! andJL2 ~dashed!.

FIG. 3. Sum rule results on the nonperturbative parameters of
theSQ as functions of the Borel parameterT. Shown are five curves
for five different values of the threshold energyEC spaced by 100
MeV around the central valueEC5EC

best. EC grows from bottom to
top. These are in detail~a! lowest order sum rule results for the
bound state energyL̄~S!; ~b! lowest order sum rule results for the
absolute value of the residueFS ; ~c! O(aS) sum rule results for the
bound state energyL̄~S!; for the current doublets$JS1,JS* 1%
~solid! and$JS2,JS* 2% ~dashed!; ~d! O(aS) sum rule results for the
absolute value of the residueFS for the corrent doublets
$JS1,JS* 1% ~solid! and$JS2,JS* 2% ~dashed!.
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in the range

EC~LQ!51.260.1 GeV, ~50!

where the quoted errors present rough error estimates taken
from Fig. 2~a! according to the range forEC specified in Eq.
~50!.

Next we estimate the value of the residue. The sum rules
now depend on the three parametersL̄, EC , andT. In Fig.
2~b! we plot uFLu for a fixed bound state energy
L̄(LQ)50.78 GeV in the indicated window for the Borel
parameterT. The five different curves again correspond to
the above five different values ofEC . Sum rule stability is
found at

uFLu50.02360.002 GeV3, ~51!

where the errors again represent rough error estimates taken
from Fig. 2~b!.

Next we take into account theaS correction to the spectral
density. As is evident from Eq.~20!, the sum rule analysis
now depends on which of the two types of baryonic currents
are used. The results for the bound state energy for both
cases are displayed in Fig. 2~c!. However, as this figure
shows, both diagonal sum rules lead to compatible values for
L̄(LQ) andEC . We therefore combine the two results to a
single value, since the differences lie within the error range.
Using the same analysis as for Fig. 2~a! we obtain

L̄~LQ!50.7860.05 GeV

in the range

EC~LQ!51.160.1 GeV. ~52!

As Figs. 2~a! and 2~c! show, theaS-corrected sum rules
show more stability, albeit at the lower valueEC51.1 GeV.
However, the prediction for the bound state energyL̄ re-
mains the same as in the leading order analysis.

Using the central valueL̄(LQ)50.78 GeV one can then
obtain values for the residue looking at Fig. 2~d!, which give
rise to

uFLu50.02860.002 GeV3. ~53!

Doing the same leading order analysis for theS baryon,
we obtain

L̄~SQ!50.9060.05 GeV, EC~SQ!51.360.1 GeV

and

uFSu50.02660.002 GeV3. ~54!

Including theaS radiative corrections we have

L̄~SQ!50.9560.05 GeV, EC~SQ!51.360.1 GeV

and

uFSu50.03960.003 GeV3, ~55!

where again the results for different currents are combined
into single values. The results are displayed graphically in
Figs. 3~a! and 3~b! and in Figs. 3~c! and 3~d!, respectively.

Our predictions for the bound state energyL̄ combined
with the experimental charm and bottom baryon masses may
be taken to calculate the charm and bottom quark pole
massesmQ . Taking into account the experimental results as
given by the Particle Data Group@27#, namely
m(Lc)52284.960.6 MeV, m(S c

1)52453.560.9 MeV,
and m(Lb)55641650 MeV, we obtain the pole masses
mc'1500 MeV andmb'4860 MeV for the heavy quarks.
The experimental difference ofm(Lc)2m(Sc)'167 MeV
@27# is quite close to our predictionm(LQ)2m(SQ)'170
MeV. Here we present only central values. As was discussed
above, the accuracy of our predictions is connected with the
internal accuracy of the QCD sum rules method~mainly be-
cause of the dependence on the energy threshold of the con-
tinuum,EC! and is probably not better than 20%.

All the results are summarized in Table II, where we com-
pare our leading order and next-to-leading order results with
the leading order results obtained in@17,19,28#. This con-
cludes our analysis.

VI. CONCLUSIONS

We have considered the operator product expansion of the
correlator of two static heavy baryon currents at small Eu-
clidian distances and determined theaS radiative corrections
to the first Wilson coefficient in the expansion. Based on this
expansion we formulated and analyzed heavy baryon sum
rules for theL-type andS-type heavy baryons using two
different types of interpolating fields for the baryons in each
case. We have discussed in some detail the scale indepen-

TABLE II. Sum rule results on nonperturbative and sum rule parameters of heavy ground state baryons. The continuum threshold
parameterEC , the bound state energyL̄, and the difference between the two bound state energies are given in GeV, whereas the residues
are listed in units of 1022 GeV3. The value of the Borel parameter isT50.35 GeV.

@17# @19# @28# L.O. N.L.O.

EC~L! 1.20 1.2060.15 1.260.1 1.260.1 1.160.1
EC~S! 1.46 1.3060.15 1.460.1 1.360.1 1.360.1

L̄~L! 0.78 0.7960.05 0.960.1 0.7860.05 0.7860.05
L̄~S! 0.99 0.9660.05 0.9060.05 0.9560.05

L̄(S)2L̄(L) 0.21 0.17 0.12 0.17

uFLu 2.360.5 1.760.6 2.560.5 2.360.1 2.860.2
uFSu 3.560.6 4.160.6 4.060.5 2.660.2 3.960.3
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dence of theaS sum rules which requires the consideration
of the anomalous dimensions of the heavy baryon currents at
the two-loop level.

Similar to the case of heavy mesons the QCD radiative
correction to the first term in the OPE is quite large and
amounts to a 100% change in the perturbative contribution.
The radiative correction to the perturbative term increase the
calculated sum rule values for the baryon masses by about
10% and the residues by about 20–50 % relative to the cor-
responding lowest order values. The sum rule results do not
depend very much on which of the two possible interpolating
fields is used in each case. The sum rule analysis is, however,
quite sensitive to changes in the assumed threshold energy of
the continuum. This sensitivity is the main source of uncer-
tainty in our results and is partly due to the use of diagonal
correlators in the sum rules for the following reason. QCD
sum rules based on the diagonal correlators feature a leading
order spectral density which grows rapidly asr~v!'v5. This
rapid growth introduces a strong dependence of the sum rule
results on the assumed continuum threshold.

We have not considered nondiagonal sum rules which
come in when one considers correlators between two differ-
ent currents with the same quantum numbers. These nondi-
agonal sum rules bring in some new features such as a more
‘‘normal’’ behavior of the spectral densityr~v!'^q̄q&v2

which reduces the dependence of the sum rule analysis on
the continuum thresholdEC . One can therefore expect more
moderate QCD corrections to the spectral density. On the
other hand, the leading term for nondiagonal sum rules is
proportional to the quark condensate, whose value^q̄q&
5(20.2360.02 GeV!3 is known only with an accuracy of
10%. This is an additional source of uncertainty for the non-
diagonal sum rules. The analysis of the nondiagonal sum
rules forms the subject of a subsequent paper.
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APPENDIX: DIAGRAMMATIC CONTRIBUTIONS

In this Appendix we collect together results on the calcu-
lation of the two-loop and three-loop contributions to the
diagonal correlators of the two heavy baryon currents. We
start with the two-loop contribution depicted in Fig. 1~i50!,
where one has

B05
~D22!E2

4~2D27!~2D25!~2D23!E1
b̃0Tr~ Ḡv”Gv” !

with

b̃05
E1

~D24!~D23!
. ~A1!

We have introduced the abbreviationEn5G(12e)nG(1
1ne) ~with natural numbersn51,2,3, . . . ! which is also
used in the subsequent presentation of the three-loop results.

For the three-loop contributionsi51, 2, and 4 depicted in
Fig. 1 one has

Bi5
8~D22!~2D27!E3

9~3D211!~3D210!~3D28!~3D27!E2

3b̃iTr~ Ḡv”Gv” !

with

b̃15
4~D22!E1

2

~D24!3~D23!2
2

2~D22!~3D210!E2

~D24!3~D23!2~2D27!
,

b̃35
~D22!E2

~D24!2~D23!~2D27!
,

b̃45
2~D22!E2

~D24!2~D23!2~2D27!
~A2!

@note the combinatorical factor of 2 for the diagrams~1! and
~3!#. The contribution of diagram~2! in Fig. 1 is the most
involved one. In order to be able to write the results in a
compact form we introduce the abbreviations

Q15G~12e!2G~11e!/G~122e!

and

Q25G~12e!3G~112e!/G~123e!. ~A3!

In terms of the basic structure terms

G̃05Tr~ Ḡv”Gv” !, G̃15Tr~ ḠgmGgm!,

and

G̃25Tr~ Ḡgmgnv”Gv”gngm!, ~A4!

one obtains

B25
E3

9~D23!~3D211!~3D27!Q2
(
j50

2

b̃2,j G̃j

with

b̃2,05
12~D22!2Q1

2

~D24!3~D23!2~D21!

2
24D~D22!2Q2

~D24!3~D21!~3D210!~3D28!
,

b̃2,15
~D227D116!Q1

2

~D24!2~D23!2~D21!

2
4~D224D18!Q2

~D24!2~D21!~3D210!~3D28!
,

b̃2,25
3Q1

2

~D24!2~D23!~D21!

2
4Q2

~D24!~D21!~3D210!~3D28!
. ~A5!
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