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Strange and charmed quarks in the nucleon
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We discuss the general method of the calculation of the nucleon matrix elements of an operator associated
with nonvalence quarks. The method is based on the QCD sum rules and low energy theorems. As an
application of these considerations, we calculate the strange quark matrix element as well as the momentum
distribution of the strangeness in the nucleon. We also calculate the singlet axial constant associated with
7' meson as well as an axial constant associated with heavy qiSfs56-282(197)06205-X]

PACS numbss): 11.55.Hx, 12.38.Lg

I. INTRODUCTION usual hadronic properties mentioned above.
In this paper we present some general methods and ideas

For a long time it was widely believed that the admixture for analysis of the nucleon matrix elements from a nonva-
of the pairs of strange quarks in the nucleons is small. Théence operator. The ideology and meth@dsitarity, disper-
main justification of this picture was the constituent quarksion relations, duality, low-energy theoreywee use are mo-
model where there is no room for strange quark in thelivated by QCD sum rules. However, we do not use the QCD
nucleon. It has been known for a while that this picture is noUm rules in the common sense. Instead, we reduce one com-
quite true: In scalar and pseudoscalar channels one can eRlicated problenithe calculation of nonvalence nucleon ma-
pect a noticeable deviation from this naive prediction. This is"X €lements to another onéthe behavior of some vacuum
because these channels are very unique in a sense that tHgJrelation functions at low momentum trangfeédne could

are tightly connected to the QCD-vacuum fluctuations with! n!< that such a reducing of one problem to a_nother one
0*,0" singlet quantum numbers. Manifestation of the (which may be even more complicajedoes not improve

uniqueness can be seen, in particular, in the existence of tha - understanding of the phenomenon. However, this is not
q /NP ' ktﬁjite true: Analysis of the vacuum correlation functions with

axial anomaly'(_O channe and the trace anomaly (0 vacuum quantum numbers, certainly, is a very difficult prob-
channe). Nontrivial QCD vacuum structure tells us that one |o, However, some nonperturbative information based on
could expect some unusual properties when we deal with,y energy theorems is available for such a correlation func-

those quantum numbers. _ tion. This gives some chance to estimate some interesting
As we now know, this is indeed the case. In particular, Weguantities.

know that the strange quark matrix eleméntss|N) does

not vanish and has the same order of magnitude as || STRANGENESS IN THE NUCLEON 0 + CHANNEL
(N|dd|N). This information can be obtained from analysis
of the so-calledr term[1,2]. Similarly analysis of the “pro-
ton spin crisis” essentially teaches us that the spin which is  We start by calculating the strange scalar matrix elements
carried by the strange quark in the nucleon is not small agver the nucleon, assuming an octet nature of38ymme-
naively one could expect; see, e.g., the recent reviel@jin  try breaking. We follow Ref{4] (see alsd5] for a review in
Another phenomenological manifestation of the samepur calculationg6], but with a small difference in details.
kind is the very old observation that in the scalar and pseuwe present these results for completeness of the paper.
doscalar channels the Zweig rule is badly broken and there is The results of the fit to the data omN scattering pre-
substantial admixture of quarks in the scalar mesons sented irf2] lead to the following estimates for the so-called
f0(980) (wasS*), anday(980) (was 6), andfy(1300) (was o term[7]:
€), as well as in the pseudoscalar mesanand . At the
same time, in the vector channel the Zweig rule works well. my+my
Phenomenologically it is evident in, e.g., the smallness of the 2
¢-w mixing. In terms of QCD such a smallness corresponds
to the numerical suppression of the nondiagonal correlatioiHere and in what follows we omit kinematical structures
function [dx(0|T{sy,s(x),uy,u(0)}|0) in comparison such aspp in expressions for matrix element.aking the
with the diagonal onefdx(0|T{uy,u(x),uy,u(0)}[0). In  values of the quark masses to lme,=5.1+0.9 MeV,
the scalar and pseudoscalar channels diagonal and nondiagnz=9.3+ 1.4 MeV, andm,=175+25 MeV [8], from Eq.
nal channels have the same order of magnitude. We believg) we have
that analysis of such kinds of correlation functions is an ap- L
propriate method for a QCD-based explanation of the un- (pluu+dd|p)=6.2. 2)

A. First estimations

(p[uu+dd|p)=45 MeV. (1)

Further, assuming octet-type 8) breaking to be respon-
*Electronic address: arz@physics.ubc.ca sible for the mass splitting in the baryon octet, we find
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55 STRANGE AND CHARMED QUARKS IN THE NUCLEON 3007

— Mz — Mg method where QCD vacuum fluctuations and hadronic prop-
(pluu—dd|p)= ———=07, (3)  erties are strongly interrelated. We believe that the most
s powerful analytical nonperturbative method which exhibits
o m=—m, these features is the QCD sum rule approjdh11].
(pluu+dd—2ss|p)=3——=3.4. 4) In what follows we use the QCD sum rule method in
Ms order to relate hadronic matrix elements and vacuum charac-
teristics. Let me emphasize from the very beginning that we
do not use the QCD sum rules in the standard way: We do
not fit them to extract any information about lowest reso-
nance(as is usually done in this approactand we do not
use any numerical approximation or implicit assumptions
about higher states. Instead, we concentrate on the qualita-
tive relations between hadronic properties and QCD vacuum

Heremz, my, andm, are masses &, 3, andA hyperons,
respectively. The valug8) and(4) are quite reasonable: The
former is close to the difference of the numberwfndd
quarks in a protorishould be 1), and the latter is close to the
total number of valence quarksandd in a nucleon(should
be 3). From Eqs(2)—(4) one obtains

(pluulp)=3.5, (5)  structure. We try to explain in a qualitative way some mag-
nitudes for the nucleon matrix elements which may look very
<p|ai|p)22.8, (6)  unexpected from the naive point of view. At the same time
those matrix elements can be easily understood in terms of
(p[ss|p)=1.4. (7) the QCD vacuum structure.

We close this section with the formulation of the follow-
We should mention that the accuracy of these equations isig question:What is the QCD explanation of the unusual
not very high. For example, the error in the value of the properties mentioned abov@ particular, the large magni-
term already leads to a large error in each matrix elemeniude for the strange nucleon matrix element, the special role
discussed above. In addition to that, chiral perturbation coref the scalar and pseudoscalar channels)tc.
rections also give a noticeable contribution the matrix ele- Our answer on this question is as followsadronic ma-
ments (5)—(7); see[7]. However, the analysis of possible trix elements wittD* quantum numbers are singled out be-
errors in Eqs(5)—(7) is not the goal of this paper. Rather, we cause of the special role they play in the QCD vacuum struc-
wanted to demonstrate that these very simple calculationgire. The next section changes this answer from a qualitative
explicitly show that the strange matrix element is not small.remark to a quantitative description.
Recent lattice calculatiorj9] also support a large magnitude
for the strange matrix element.

We would like to rewrite relationgs)—(7) to separate the B. Strangeness in the nucleon and vacuum structure

vacuum contribution to the nucleon matrix element from the study the problem of calculatiofN[ss|N) using the

valence contribution. In order to do so, let us define QCD sum rule approach, we consider the vacuum correlation

(p[qalpy=(plaalp)o+(plaqlp):, @  function[6]

where index 0 labels esed vacuum contribution and index T(qz)zf e *dxdy(0|T{ 7(x),ss(y), 7(0)}|0) (11)
1 a valence contribution for a quatk We assume that the

vacuum contribution which is related to the sea quarks is the

same for all light quarkss, d, ands. Thus, the nonzero

magnitude for the strange matrix elements comes exclusivelgt —d°—. Here 7 is an arbitrary current with nucleon
from the vacuum fluctuations. At the same time, the matrixuantum numbers. In particular, this current may be chosen

elements related to the valence contributions are equal to in the standard formy= €*"°y,d*(u’Cy,u®). Note, how-
ever, that the results obtamed below do not imply such a

(pluulp);=(3.5—-1.4=2.1, 9 concretization. For future convenience we consider the unit
_ matrix kinematical structure in Eq11).
(p|dd|p),=(2.8—1.4)=1.4. (10) This is the standard first step of any calculation of such a

kind: Instead of a direct calculation of a matrix element, we

These values are in remarkable agreement with the numbergduce the problem to the computation of some correlation
2 and 1, which one could expect from the naive picture of &unction. As the next step, we use the duality and dispersion
nonrelativistic constituent quark model. In spite of the veryrelations to relate a physical matrix element to the QCD-
rough estimations presented above, we believe we have preased formula for the corresponding correlation function.
sented arguments that should convince the readefdhtite  This is essentially the basic idea of the QCD sum rules.
magnitude of the nucleon matrix element &xris not small, In our specific cas€ll), as a result of the absence of the
(b) the large magnitude for this matrix element is due to thes-quark field in the nucleon curreng, any substantial con-
nontrivial QCD vacuum structure where vacuum expectationribution to T(g?) is connected only to nonperturbative, so-
values ofu, d, ands quarks are developed and they arecalled induced vacuum condensates; see Fig. 1. Such a con-
almost the same in magnitude(0|dd|0)=(0[uu|0) tribution arises from the region when some distances are
=(0[ss|0). large: (/—0)%~(y—x)?>(x—0)2. Thus, it cannot be di-

Once we realize that the phenomenon under discussion iectly calculated in perturbative theory; instead, we code the
related to the nontrivial vacuum structure, it is clear that thecorresponding large-distance information in the form of a
best way to understand such a phenomenon is to use sorhdocal operator
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s tude from each other. In this case the dependence on residues
(0] #|N) is canceled out in the ratio and we are left with the
matrix element{N[ss|N), Eq. (14), we are interested in.

Note that both these assumptions are very likely to be
satisfied because we know that in most cases the lowest state
(nucleon does saturate the sum rules. If it does, then the

- typical scale(which in variety of sum rules is one and the
\/ same and of order of 1 G&Y guarantees that the duality
intervals are likely to be very close to each other. Anyway,
FIG. 1. Bilocal contribution(12) into the correlator11). quantitative analysis of the corresponding sum rules is pos-

sible; however, it is not our main goal. Rather, we want to
demonstrate the relation between matrix elements such as
Kzif dy(0|T{ss(y),uu(0)}|0). (12 (N[ss|N) and the corresponding vacuum properties which
are hidden in the correlatdk, Eq. (12). In principle one
see Fig. 1. Similar contributions were considered for the firs0Uld analyze the sensitivity of the corresponding QCD sum
time in Ref.[13], but in quite different context. Besides that, fules to the lowest state nucleon. Once it is demonstrated, we
the corresponding discussions were based on the specific iR€lieve that the accuracy of our formu(a4) is of order
stanton calculations as an example of nonperturbative fluc20%—30% which is a typical error for the sum rule ap-
tuations. In a more general framework similar contributionsProach. _
were discussed in ReffL4]. For different applications of this  Thus, the calculation ofN[ss|N) reduces to the evalua-

approach when bilocal operators play essential role, see aldton of the vacuum correlatdt. Fortunately, sufficient infor-
Ref.[15]. mation about the latter comes from the low energy theorems.

Along with consideration of the three-point correlation We note also that this method of reducing the nucleon matrix
function (11), we would like to consider the standard two- €lements to that of the vacuum correlator is directly general-
point correlator ized to cover the arbitrary scal@®g or pseudoscalaOp

operatot:

P(q?)= [ evaxolT{n00 00, (19 - B
(NIOIN) = =i [ dy(o| {06, T(0)]0), (15

see Fig. 2. The correlatdfd3) is determined by the nucleon (qa)

residueg 0| 7|N) and some duality interveh,. At the same NN

time the correlator(11) includes the information on the - YsIN. —

nucleon matrix elerr(ler(ﬂ\l|§|N) also. Comparing Eq(11) (N|Op|N)=—— 'f dy(0[T{Op, Ui y5u(0)}[0).

with Eq. (13) at —g°—, we arrive at the relation (16)

_ -m The estimation of the nonperturbative correlakorcan be
(N[ss|N)= _<—> K, (14 done by using some low energy theorems. In this ¢ass
aq expressed in terms of some vacuum condengéies

wherem is the nucleon mass. We would like to note here 18 (qa)?
that the relation between the matrix element of nonvalence K:iJ dy(0|T{§(y),ﬁ(0)}|0>:—Lz
quark bilinears in the nucleon and the corresponding vacuum b ((adm)GS,)
structure is not new. Such a relation has been discussed ~0.04 GeV 17
many times. In the context of the present paper this connec- ' '
tion was discussed ifiL6] and[6]. . whereb=%N.— 2N;=9 and we use the standard values for
The main assumptions which have been made in the de”{he vacuum condensatfs];
vation of this relation are the following. First, we made the '
standard assumption about local duality for the nucleon. In ; ,
other words, we assumed that a nucleon saturates both cor<—Swa> =1.2x10"2 GeV*, (qg)=—(250 MeV)>.
relation functions with duality intervab,. The second as- m
sumption is that typical scaldésr, what is the same, duality
intervalg in the limit —g?—o in the corresponding sum
rules Egs.(11) and (13) are not much different in magni-

With the estimation(17) for K, our formula(14) gives the
following expression for the nucleon expectation value for
SS:

(qa)

RN (plsslpy=—m= =24, (19
=—Mm— =24,
/ b <(aS/7T)GM)
Nemm ---7
\/ we assume of course that these operators do not coataimd

d quarks. Otherwise, an additional contribution which comes from
FIG. 2. Condensate contribution into the correlatbs). the small distances must be also included.
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which is not far away from the naive estimatir). d __ L
We believe that the main uncertainty in the form(l®) d—m<UU>= —iJ dy(0|T{ss(y),uu}|0)
is related to our lack of knowledge of the nonperturbative s
correlation functiorK, Eq.(17). Therefore, for our estimates =—K=-0.025 GeV. (20)

which follow we prefer to use formulél4) in order to ex- . . _
tract the corresponding value fét from the experimental To understand how large this number is and in order to make

data instead of using our rough estimatid’). In this case Some rough estimations, we assume that this behavior can be
K is a little smaller: extrapolated from the physical value;=175 MeV until
m,=0. In this case we estimate that

1 _
K:—a(p|ss|p)<0|uu|0)~0.025 GeV. (19 (U0}~ 175~ (U0} 0

(uu) mg=175

~0.3. (22)

Let us stress that we are not pretending to have made a
reliable calculation of the matrix elemexip[ss|p) here. -
Rather, we wanted to emphasize the qualitative picturéuch a decrease dfuu)| by a 30% asmg varies from
which demonstrates the close relation between nonvalend®s=175 MeV toms=0 is a very important consequence of
matrix elements and QCD vacuum structure. the previous discussions: Once we accept the relatively large

We close this section by noting that the method presentethagnitude for the nucleon matrix elemépfss|p)=1.4, we
above gives a very simple physical explanation of why theare forced to accept the relatively large variation of the light
Zweig rule in the scalar and pseudoscalar channels is badiguark condensate as well. This statement is the direct conse-
broken and, at the same time, in the vector channel thguence of QCD; see E@21).

Zweig rule works well. In particular, the matrix element ~We note that this result does not seem very surprising
(N[sy,s|N) is expected to be very small as well as the cor-since other vacuum condensates, Q(gxslqr)GiV>, possess
responding coupling constagy . In terms of QCD such a analogous propertiegl2]. From the microscopic point of
smallness corresponds to the numerical suppression?10 View, a decrease of the absolute values of the vacuum matrix
10°% of the nondiagonal correlation function elements with a decrease of tequark mass is expected
Jdx(0|T{sy,s(x),uy,u(0)}/0) in comparison with the di- since any topologically nontrivial vacuum configurations,
agonal onefdx<0|T{FyMu(x) ,uy,u(0)}/0); see the QCD e.g., instantons, are suppressed by light quarks. The corre-
estimation in[10]. In the scalar and pseudoscalar channelssponding numerical calculation is very difficult to perform;
the diagonal and nondiagonal correlators have the same opowever, a qualitative picture of the QCD vacuum structure
der of magnitude; therefore, no suppression occurs. This idefinitely supports this idefl 7].

the fundamental explanation of the phenomenon we are dis-

cussing in this paper. Specifically, the magnitude of correla- D. s-quark and nucleon mass

tor K is not changing much if we replace armguark with a . .
. L L. . We would like to discuss here one more fundamental
u quark in formula(12). Of course, it is in contradiction with e ) ;
characteristic of the hadron world: the nucleon mass and its

the largeN (number of colorscounting rule where a non- dependence on the strange quark. We start our discussion
d@gonal co_rrelator should be sgpp.ressed. The ffiCt that thf‘l';‘om the following well-known result: The nucleon mass is
naive counting of powers dfl. fails in channels with total '

. ) c . L rmin he tr f the energy-momentum tensor
spin 0 is well known: Quantities small in the limN.— oo dete ed by the trace of the energy-momentum tenso

turn out to be large and vice versa. This is a manifestation ogf“‘ and in the chiral limitm,=my=m,=0 the nonzero re-
9 y ult comes exclusively from the strong interacting gluon

the phenomenon discovered in REEZ]: Not all hadrons in . .
fields:
the real world are equal to each other.
One may ask the same question regarding the axial matrix
element as measured in polarized deep inelastic scattering. m= b<N ﬁez
T M

As is known, the corresponding measurement shows a large 8
mixing. We believe that this phenomenon is related to the

divergence part of the axial vector current. Therefore one ca
treat the corresponding large mixing as if it were a pseudo
scalar matrix elemerith an anomaly piece included in the

e s o biors e ot AR §1 NS GUar coniderably hanges e vacuu properes of
small nonvalence matrix eléments in the vector case "i_lhe world. Thus, we would expect that it might ha_ve astrong
In the next few sections we discuss some applicaﬁons Opflpence on the nuclepn mass as well. The main argument
the obtained results which supports this point _of view is the same as before a_nd is
' based on our general philosophy that the nucleon matrix el-
ements and vacuum properties are tightly related. So, if the
strange quark has a strong influence on the vacuum proper-
We would like to look at formulg12) from a different ties, then its impact on the nucleon mass should also be
side. Namely, we note th&t not only enters expressidf4), strong.
but also determines the variation of the condenéatg with In order to check these reasons it would be useful to cal-

s-quark mass: culate the strange quark contribution to the nucleon mass

N>, m,=myg=ms=0. (22

Powever, as we know, in our world the strange quark is not
massless, but rather it requires soffferge enough mass
(~175 MeV). As we have seen, E§21), the nonzero mass

C. In the world where s quark is massless
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directly and independently from the gluon contributi@?2). First of all, let us try to formulate this question in terms of

Fortunately, it can be easily done by using our previous esQCD. We definethe mean valudk?), of the momentum

timation (18) for the nucleon matrix element and exact ex- carried by the strange quark in a nucleon by the matrix ele-
pression for the trace of the energy-momentum tensor takinghent

into account nonzero quark masses:

|\ b fas (k?)s(N[ss|N)=(|Ns(iD)?s|N), (25
m= +<NE mqqq’N> —§< N’ —G2,
q o

N>, (23

where the sum oven is the sum over all ||ght quarkﬂi d, WhereiDMEiﬁﬂ‘f‘ gAZ)\a/Z is the covariant derivative and
ands. One can easily see from E€{) that theu,d contri- A, is a gluon field. The arrow shows the quark whose mo-
bution into the nucleon mass does not exceed 7%; thus, waentum is under discussion.
can safely neglect this. At the same time, adopting the values We assume the nucleon to be moving rapidly in the
(7) and (18) for (p[ss|p) and m¢=175 MeV [8], one can direction. We are interested in the momentum distribution in
conclude that a noticeable part of the nucleon nmag®ut  the direction which is perpendicular to its motion. Precisely
20%) is due to the strange quark. In this case the gluothis characteristic has a dynamical origin. Indeed, as we shall
contribution into the nucleon mass is far away from the Chi-see in a moment, while we are Studying a nucleon matrix
ral SU3) prediction(22) and approximately equals element(k?)s, we are actually probing the QCD vacuum
properties. The nucleon motion as a whole system with arbi-
N> ~700 MeV. (24)  trary velocity does not affect this characteristic. Thus, essen-
tially, what we discuss is the so-called light cone wave func-

. L . .. tion. Apart from the reasons mentioned above, there are a
This rough estimation confirms our argument that a variation, . more motives to do so: First of all. the light cone wave

of th(_a strange quark mass from its physical val_ue_to ZE10 May 1 etion (WF) with a minimal number of constituents is a
considerably change some vacuum characteristics as well as . . . ; .

. good starting point. As is known such a function gives para-
nucleon matrix elements.

The simple consequence of this result is the observation . . -
that thequenched approximatioim the lattice calculations is ﬁ:lgher Fock states are also well defined in this approach and

not justified simply because such a calculation clearly doe§an b€ considered separately. The second reason to work
not account for the fluctuations of the strargenvalencg with a light cone wave function is the existence of_the nice
quark as well as vacuum fluctuationswiandd quarks. As ~ relation between that WF and the structure function mea-
we argued above, the nucleon mass undergoes some inflgured in the deep inelastic scattering. We refer to the review
ence from thes quark. paper of{18] for the introduction into the subject. The rela-
How one can understand these results within the frametion to the standard quark model wave functidsee, e.g.,
work of the QCD sum rules? Let us recall that in the QCD[19)) is also worked out. The relevant discussions can be
sum rule approach information about any dimensional pafound in Ref.[20]. In addition to these, we have one more
rameter is contained in the vacuum condensateseason to work with the light cone WF: We believe that this
<ﬁ>,(wa>, ... . As we discussed previously all these con-is the direction where a valence quark model can be under-
densates varying witimg considerably. It is important that stood and formulated in QCD terni21].
this variation certainly proceed in the right direction: Abso- Anyhow, formula(25) with the derivatives taken in the
lute values of condensates decrease with decreagindhis  direction perpendicular to the nucleon momentum,
leads to a smaller scale in the sum rules, and finally, to the ,=(E,0, ,p,), is a very natural definition for the mean
decrease of all dimensional parameters sucmallowever, square of the quark transverse momentum. Of course it is
it is difficult to make any reliable calculations because of adifferent from a naive, gauge-dependent definition such as
large ngmber of factors playing an essential role in such §N|§fs|N>, because the physical transverse gluon is a par-
calculation. ticipant of this definition. However, expressid@s) is the
only possible way to define thé? ) in a gauge theory such
E. Momentum distribution of the strangeness in the nucleon as QCD. We believe that such a definition is a useful gener-
We continue our study of the role of the strange quark inalization of the transverse momentum conception for the in-
the nucleon with the following remark. We found out earlier teractive quark system. Let us note that the Lorentz transfor-
that the matrix elemeriN[ss|N) is not small; we interpreted mation in thez direction does not affect the transverse
this result as a result of strong vacuum fluctuations whictdirections. Thus, the transverse moment(kfi)s as calcu-
penetrate into the nucleon matrix element. Now, we wouldated from Eq.(25 remains unchanged while we pass from
like to ask the following question: What is the mean value ofthe light cone system to the rest frame system where a quark
the momentunidenoted agk?),) of thes quark inside of a model is supposed to be formulated.
nucleon? Let us note that this question is not a purely aca- Now, let us come back to our definitid@5) for (k?). In
demic one. Rather, the answer on the question might be inerder to calculate this matrix element, we use the same trick
portant for the construction of a more sophisticated quarlas before: We reduce our original problem of calculating the
model which would incorporate the strange context into thenucleon matrix element to the problem of computing the
nucleon wave function. corresponding vacuum correlation functi¢ib):

b as _,
gz,

etrically leading contributions to hard exclusive processes.
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(N[s(iD , )?s|N) whereC is a constant. From the definitig26) it is clear that
o the correlator we are interested in can be expressed in terms
—mNN . _ of the constanC:
ﬁif dy(0|T{s(iD ,)?s,uu(0)}|0).
aq

(26) || avolT(iD, o0 - —2c. (@28

To estimate the right-hand side of E@6) we introduce an

auxiliary vacuum correlation function
At the same time the consta@tis given by the correlation
. — e — function which contain?, and not a covariant derivative
i [ dy(0[T{s(iD,iD,)s,uu(0)}|0)=Cg,,, (27 D -

we

C=%if dy<0|T{s_(i5,Li5,L)sE(0>}IO>=—%if dy(0|T{SigG2,(A\¥/2)5,,,5,ut(0)}|0), (29)

where we have used the equation of motion and idéentity

ig a
D,D.9,,5=7,v,D,D,s—0,,3[D,,D,]s=— m§s+§aﬂyezy7s. (30)

Now we can estimate the unknown vacuum correlé28f exactly in the same way as we have done before for the correlation
functionK; see Eq(17). Collecting all formulag25)—(30) together, we arrive at the following final result for the mean value
of the momentum carried by the strange quark in a nucleon:

(N[S(iD,)?s|N) _(N[sigo,,,Gj,,(\¥2)s|N) _(sigo,,,G},(\¥2)s) dag”MvGEu()‘a/Z)s
(N[ss|N) 4(N[ss|N) 4(ss) dss
~0.33 GeV, (31

(ki)e= ~7(08 Ge\f)g

where d® denotes the dimension of the opera®r For a erators_gysaWsz()\a/Z)s, in many models gets a large
numerical estimation we use the standard magnitude for thfactor ~ms/my~20 in comparison with a similad quark
mixed vacuum condensate (sigo,,Gj,(\%2)s)  contribution[22,6,23. At the same time, as we can see from
=0.8 GeV* (ss). The obtained numerical valu@l) for Eq. (31) there is no any suppression due to the presence of
(k?)s looks very reasonable from the phenomenologicathes quark in the corresponding nucleon matrix elements.
point of view. We believe that the main uncertainty in our

estimation of the nonperturbative correlation funct{@e) is

canceled out when we consider the rat®d) of similar ob- ll. STRANGENESS IN THE NUCLEON 0 = CHANNEL

jects. Therefore, we believe that the accuracy in fornigia

is much better than in formulél?7) where we estimated an ) ) ) o
absolute value of the corresponding correlator. In this section we discuss the contribution of the strange

We close this section with a few remarks. First, the non-duarks to nucleon matrix elements similar to E2@3), with

valence nucleon matrix elements can be expressed in ternﬁ%e only c(ijlffereTce thit we SIW'tCh the sc_:alar C?%ml?t?h
of vacuum condensates in a very nice way. All numerical € pseudoscalar ong yss. In our previous study ot the

: : scalar channel we concluded that a considerable part of the
results obtained in such a way look very reasonable. As the .

Cnucleon massgabout 40%) is due to the strange quankle

fhade this estimation by using the two following facts: First,
. d th bl W d lik We knew the mass of the nuclefleft-hand side of Eq(23)],
structure Is one and the same problem. We would lIke tQupicp, js considered as experimental data. Second, we calcu-
note,_also, that_ the nucleon.matrlx eleméa.ll) might be lated independently the matrix elemeiM[ss|N). Compar-
very important in the analysis of neutron dipole moments.mg this theoretical resultL8) with the (23), we have made

This observation is based on the fact that the so-called chrqpe afgrementioned conclusion about a serious deviation
moelectric dipole moment of the quark, related to the op-  fom the chiral Su3) limit.

A. Singlet axial constantgX

2We neglect the term proportional m§ in Eqg. (29). It can be 3In the chiral limitms— 0, the corresponding contribution is zero,
justified by using the estimatiofi7). of course.
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We want to repeat all these steps for the pseudoscald0|uiysu|7'). The PCAC does not provide us with the cor-
channel also. In this case an equation analogous tdZ). responding information; however, a quark model prejudice
looks as follows: suggests that

71->

y (o
N>, (32 :<0

2mgpi ysp= +<N§ 2m,i vs

1 _
— (Ui ysu—diy:d
\/5( Vs vsd)

3N %s. B ! di
P e = (m'ysu +di ')/5d - 2§'}’55)

4 G 71> =(0[ui yss|K)
where the sum ovey is the sum over all light quarks, d, _
and s and gf\ is the nucleon axial constant in the flavor- ~(0 i(m u+dived+si o)|n ) =- 2(qq)
singlet channel. The world averageg=0.27+0.04[3]. N ”s [k fr
Now, we would like to repeat all steps which would bring 37)

us to a conclusion similar to Eq23) for the pseudoscalar
case. We shall try to answer th_e following question: What iSStrong support in favor that relatioid7) are correct comes
the strange quark contribution in formuld2)? Let us recall  from the analysis of the two-photon decays of», and
tha_t in the chiral Iimi'tmuzmd:mszo the nonzero contri- 7'; see, e.g.[5]. All of these decay amplitudes have the
bution comes exclusively from the gluon term, in close analsame Lorentz structure and are determined by the matrix

ogy to formula(22): elementg37); therefore, the quark model prediction is found
3 o to work surprisingly well in this particular case. Combining
2mg2pi y5p:Z< N’ quvGuv N>, m,=My=ms=0. formulas(35)—(37) we arrive at the estimation
(33 _ _ 1 amg(qq)
_ _ (pl2mgsiyss|p)=2mpiysp| — 5(3F=D)—— 5 >
Thus, in order to answer the question formulated above, we 3fzmi,

have to estimate the matrix element —(—0.3+ 0.16)2mﬁy5p

(p|2mgsi yss|p) (34 =(—0.142mpi ysp, (38)

in a somewhat independent whirst of all, the relevant
contribution with octet quantum numberg)( can be easily
evaluated by standard technics. One should take the deriv.
tive  from  the  octet, anomaly-free, current

~uy,ysu+dy,ysd—2sy,yss. The result is

where we used B—D=0.6 for the numerical estimation.
he two terms in this formula are the octet and singlet con-
ributions correspondingly. One should note that in spite of
the fact that the singlet term is parametrically suppressed in
the limit mg=0, this contribution numerically is not small. It

(p|2mgsi yss|p),,= —m(3F —D)pi ysp (35  is only by afactor of 2 less than the parametrically leading
K ’ term.
where D=0.63y, and F=0.37y, are the standard SB) Now, let us come back to Eq32). We would like to

parameters. One could expect that a similar contribution wittnswer the previously formulated question: What is the

singlet quantum numbersy() is also large, although it is s-quark contribution to formuld32)? From our estimation

zero in the chiral limit wherens=0. (38) we suggest the following pattern of saturation of the
We shall estimate the corresponding contribution withexperimental data fogh=0.27+0.04:

7' quantum numbers by using our previous trick EL6). .

Namely, we reduce our original problem of the calculation of2Mpi ysp(0.27+0.04)

the nucleon matrix element to the problem of the computa-

tion of certain vacuum correlation functions where we = +(p|2mgsi yss| p>+§< p 15(3 G p>
L . . . . 4 ar MV pv
should limit ourselves by calculating the contribution with
singlet quantum numbers only: ~(—0.142mpi ysp+ (+0.412mpi ysp. (39)
(pl2mgsiyss|p) Here the first term is due to the strange quark contribution
—mpiysp which we calculated directly. It equals—(0.14); see Eg.
szif dy(0|T{2mgsi yss,ui ysu(0)}|0). (38). The second part is due to the gluon contribution. We
(qq) assign an average number 0=40.27— (—0.14) for this con-

(36)  tribution in order to match the experimental data ar.

We would like to comment here that the gluon contribu-

In order to make the corresponding estimations we need ttion in this formula and a gluon contribution in the standard
know the #'-matrix elements (O[siyss|’) and expression for the axial-vector matrix element are very dif-
ferent in nature. Therefore, the interpretation is also differ-

ent. In particular, the standard contribution to the axial vector

“We neglectu andd quark contributions to formul&32) for the ~ current fromu and d quarks is large. In our formula the

obvious reasons. corresponding large contribution is hidden in the gluon term,
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because the corresponding pseudoscalar current comes withntribution into the final formuld39) in spite of the fact

a small factom,, or my. Indeed, in the standard analysis of that in the chiral limit the corresponding contribution is zero
the light quark contribution intgg one deals with the matrix as we mentioned earlier E(33).

elements of the axial vector currents such as

(play,ysalp), which are not small. However, we prefer to B. Singlet axial constant of heavy particles

resent the same formula using the operator identity: . . . .
P 9 P y In this section we try to answer the following question:

L L @ - How one can check the estimatid®9) about a noticeable
3,(dy,vsq)=2mgqi 75q+EG;wG;w- (40)  contribution of the strange quark? A more specific question
we would like to know is, is it possible to measure a nucleon
matrix element where some independent combination of
those operators enters? If the answer were “yes,” we would
be able to find the contribution of each term separately.

To answer this question we suggest considering the weak
neutral current containing an isoscalar axial component as-
sociated with nonvalence quarka4]:

In this case the large contribution of the light quarks not
related to the light quark operaton%a%q (which is zero
in the chiral limitmy=0), but rather is related to the gluon
operator @g/4m)G,,G,,

Therefore, we understand tleandd quark contribution
in formula (39) as a contribution ofi andd quarkstogether

with their anomaly parts: <p|C_yM sC —S_yﬂ y5s+t_y# yit —b—ﬁ’,ﬂsb| p)

N _ — _ ~heav
gat92mpi ysp= < p’ 2m,ui ysu+2mydi ysd =92 Py, ysp. (43)
5 Before going into details, let us mention that on the quantum
+5%g B p> level the current divergence of the massive quark field has
Ao —HTTHY the form

=(30.4)2mpi ysp. (41 _ — . _
The same interpretation is also true foquarks. In this case

s . ! . .
is compatible with zero as can be seen from similar esti- , .
?nAationS' P where the first term is the standard one and the second term

is due to the anomaly. There are many ways to understand
a _ the origin of the anomaly; basically, it arises from the neces-
S
as p>

ngmﬁy5p=<p2mss_iy5s+47TGWGW sity of the ultraviolet regularization of the theory. In the

heavy quark mass limit, one can expand th@yRiysQ

=(—0.14+ £0.41)2mpi ysp, g5=0. term in Eq.(44) with the resulf10,11:
(42 o o _ = GGG ol L
Such an interpretation is in very good agreement with the mQQI75Q|mQ*°°__ Qo RV € sz * m_g

valence quark model philosophy, where thguark does not

play any essential role. Let us note that this interpretation is T (45

very different from the old simplest assumption of the spin

of the strange quark in the nucleon; see, €8,5]. In our ~ Where all coefficients, in principle, can be calculated. We are

interpretation we understand the strange quark contributiomterested, however, in the leading terrG ,,G,,, only.

as a joined contribution o$ fields as well as its regulator One can easily note that the leading term in the expansion

field (or, what is the same, its anomalous contribution (45) has the same structure as an anomaly tet# and it
Two remarks are in order. First, the strange quark andgjoes with the opposite sighThus, the terms which do not

gluon terms contribute with opposite signs g& In the  depend on mass are canceled out and we are left with a term

formula for mass, Eq23), similar terms interfere construc- ~GGG/mé which vanishes in the limimg—o. Such a

tively with the same signs. It is very easy to understand theranishing of the heavy quark contribution to the nucleon

difference: In the pseudoscalar channel we have the Goldnatrix element is in perfect agreement with the physical in-

stone bosory whose total contribution is zero to the sum

(32) because of the octet origin of the meson. However,

the z-meson contributions to the matrix elements °The opposite signs of those contributions can be easily under-

(p|2mssi yss|p) and to the gluon operator, taken separately stood in terms of the Pauli-Villars regulator fields with mass

are not zero. Moreover, its contribution to the Mp,—=. Asis known these fields are introduced into the theory

(p|2mssi yss|p) has the opposite sign to thg contribution  for regularization purposes and they play a crucial role in the cal-

[because of the difference in the quark context; se€Ef|].  culation of the anomaly44). A regulator contribution is obtained,

Even more, it has a parametrical enhancement. We haugy definition, by a replacementy—Mpy in the corresponding

nothing like that in the scalar chann@3), where the flavor-  formula. It goes, by definition, with a relative sign minus. From

singlet states dominate. such a calculation it is clear that the leading terms which do not
The second remark is the observation that, like in thedepend on mass, are canceled out, in full agreement with the ex-

scalar channel, the strange quark operator gives a noticealpécit formulas (44) and (45).
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tuition that a nucleon does not contain any heavy quark _ ag -
fields, at least in the limitng— . (plciysclp)=— < p’ am7 CurCur p>
The situation with strangs quarks in formula(43) is ¢
much more complicated. This quark is not heavy enough to -041 __ _
apply the arguments given above. Thus, we should keep all ~ 6m, 2mpi ysp~—0.1piysp, (48
operators in formulg44) for the current divergence in the
original form: where, for the numerical estimate, we use the v&B8 for

the gluon matrix element over the nucleon ang=1.3 GeV
> heav  — for the charmed quark maéghis value should be compared
p)=—ga""2mpiysp, to a similar matrix element of the strange quark over the
(46) nucleon:

as

< p‘ 2mss_iy5s+EGWGW

_ -0.14 __ _
where we have neglected the termﬁ/mé for ¢, b, andt (p[siyss|p)~ WZm pi ysp~ —0.8pi ysp, (49
quarks in accordance with our previous discus$ion. s

As we already mentioned, the measurement of the conynere we use formul§38) for the numerical estimation of
stantga™", Eq.(46) gives independent information comple- the matrix elemen¢p[si yss|p). The ratio of these values is
mentary to the singlet axial constant measurengnt Eq.  in remarkable agreement with the ratio of their mass:
(39). If we knew those constants with high enough precisionm,/ms~1.3 GeV/0.175 GeV-7.5.
we would be able to find out both nucleon matrix elements  Our next example is the scalar matrix element. In this
(p|2mssi yss|p) and(p|(as/4m)G,,G,,|p). At the moment case one can use a heavy quark expansion similar to formula
the experimental errors f@h®®¥=0.15+0.09[25] are large:  (45), but for the scalar channgl1]:

The result is only two standard deviations from zero.

The best we can do at the moment is to estingff&" p>
from our previous calculation€9). If we literally take the
values —0.14 and 0.41 from the formulé89), we get the

a

—~ — S a ~a
<p|CC|p>— <p 12n']C7TGMVGMV

o . : . X
result forgﬂl‘*’“’y which is compatible with zero in the same ~ Zgﬂ/~o_o4_ (50)
mC

way as in Eq.(42):

For the numerical estimation in this formula we adopted the
D value (24) for the gluon matrix element over the nucleon.
The magnitudg50) for the charmed quark is approximately

L _ heavy 30 times less than the corresponding matrix element for the
=(—0.14+350.4D)2mpiysp, g =0. strange quark?):

hea s ~

—ga2mpiysp= < p‘ 2mgsi yss+ -GGy

47 (plsslp)=14. (51

From our point of view this is an interesting observationThis is in large contrast with the pseudoscalar channel, where
which essentially says that a heavy quark opertdgether  the corresponding ratio was about a factor of 4 larger.

with its anomalous pargives nearlyvanishingcontribution We conclude this section with a few remarks. First of all,
into the nucleon matrix element. As we discussed earlier, thithe matrix element&48) and (50) for the charmed quark are

is certainly true for a really heavy quark. What is a lessexpressed in terms of the gluon operators. For the heavy
trivial fact is the observation, Eq$42) and (47), which ap-  quark this is an exact consequence of QCD. Corrections to
perently says that this is true ferquarks alsdwhich by no  these formulas can be easily estimated. One can show that
means can be considered as a heavy quérive accept this  they are small for the quark. The problem of the evaluation
point, we should interpret a nonzero magnitudeg&f Eg.  of the gluon matrix elements over the nucleon is a different
(39), as a contribution coming exclusively from the light problem. However, we believe that from the measurements

andd quarks and their anomalous parts. of g%, Eq.(32), and frommN scattering, Eq(1), we know
those matrix elements with a reasonable accuracy. Thus, we
IV. CHARMED QUARK IN THE NUCLEON expect the same accuracy for the matrix eleméptsc|p)

and(plci ysc|p).

In this section we would like to extend our analysis for  Our next remark is the observation that the res(d®
thec quark. The reason to do so is twofold: First, thguark  and (50) essentially give a normalization for the intrinsic
is heavy enough to use the standarhléxpansion similar charm quark component in the proton. This is a very impor-
to Eq.(45). Second, the charmed quark is light enough to getant characteristic of the nucleon. It might play an essential
a reasonably large effect from this expansion. role in the explanation of a discrepancy between charm ha-

We start from the pseudoscalar channel and keep only the
first term in the heavy quark expansi¢46):

"Let us note that this value for mass corresponds to the high
enough normalization point of order of; . In principle, one should
5The corresponding estimations even for the lightest heavy renormalize this value to the low normalization point. We neglect
quark support this viewpoint; see the next section. this small logarithmic effect in this paper.
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droproduction and perturbative QCD calculations. We refewvacuum condensate of the strange quark is large. So there is
to the original papér[27] on this subject where the hypoth- no reason to expect that the corresponding nucleon matrix
esis of intrinsic charm quarks in the proton was introducedelement is small. The same argument can be applied for ar-
The experimental fit in the framework of this pap@7]  bitrary mixed vacuum condensates alieey are presumably
suggests that the probability to have an intrinsic charm in théot zero[21]). This information can be translated, in accord-

proton is about-0.3%[28] and (0.86-0.60)%[29]. These
numbers cannot be related directly to the matrix elenf&dt

ing to Eq.(31), into knowledge about the transverse momen-
tum distribution of the strange quark in a nucleon.

we calculated. However, they give some general scale of this, N our approach this relation, vacuurs nucleon, is

phenomenon. We hope that in the future some more sophi

Clearly seen. Thus, by studying the vacuum properties of

ticated, QCD-based methods, will lead us to a deeper undeRCD, we essentially study some interesting nucleon matrix

standing of the effects related to the intrinsic charm compo

nent in the nucleon.

V. CONCLUSION

We believe that the main result of the present analysis is
the observation that nonvalence quarks play an important
role in the physics of nucleons. However, we should stress

elements which can be experimentally measured.

We also note that the-quark contribution by itself to the
nucleon matrix element is not small. However, if we inter-
pret thes-quark contribution together with its anomaly part,

d

ga=0.

i e a =
gZZmpl YsP= < p‘ 2mSSI 75s+4_SG,u,VG,u,V

ks

~(—0.14+ 10.402mpi ysp,

that such an interpretation does not contradict the bag model

[5], where the nucleon matrix element
(N[ss|N)=—(ss)V (52

is related to some vacuum characteristisach as the vol-
ume of the bagv) of the model. It is clear that the chiral

8See also a recent paper[i26].

(53

Such an interpretation is in very good agreement with the
valence quark model philosophy, where thquark does not
play any essential role. Let us note that this interpretation is
very different from the old simplest assumption of the spin
of the strange quark in the nucleon; see, €.8,5]. In our
interpretation we understand the strange quark contribution
as a joined contribution of fields as well as its regulator
field (or, what is the same, its anomalous contribution
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