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We discuss the general method of the calculation of the nucleon matrix elements of an operator associated
with nonvalence quarks. The method is based on the QCD sum rules and low energy theorems. As an
application of these considerations, we calculate the strange quark matrix element as well as the momentum
distribution of the strangeness in the nucleon. We also calculate the singlet axial constant associated with
h8 meson as well as an axial constant associated with heavy quarks.@S0556-2821~97!06205-X#

PACS number~s!: 11.55.Hx, 12.38.Lg

I. INTRODUCTION

For a long time it was widely believed that the admixture
of the pairs of strange quarks in the nucleons is small. The
main justification of this picture was the constituent quark
model where there is no room for strange quark in the
nucleon. It has been known for a while that this picture is not
quite true: In scalar and pseudoscalar channels one can ex-
pect a noticeable deviation from this naive prediction. This is
because these channels are very unique in a sense that they
are tightly connected to the QCD-vacuum fluctuations with
01,02 singlet quantum numbers. Manifestation of the
uniqueness can be seen, in particular, in the existence of the
axial anomaly (02 channel! and the trace anomaly (01

channel!. Nontrivial QCD vacuum structure tells us that one
could expect some unusual properties when we deal with
those quantum numbers.

As we now know, this is indeed the case. In particular, we
know that the strange quark matrix element^Nus̄suN& does
not vanish and has the same order of magnitude as

^Nud̄duN&. This information can be obtained from analysis
of the so-calleds term @1,2#. Similarly analysis of the ‘‘pro-
ton spin crisis’’ essentially teaches us that the spin which is
carried by the strange quark in the nucleon is not small as
naively one could expect; see, e.g., the recent review in@3#.

Another phenomenological manifestation of the same
kind is the very old observation that in the scalar and pseu-
doscalar channels the Zweig rule is badly broken and there is
substantial admixture ofs quarks in the scalar mesons
f 0(980) ~wasS* ), anda0(980) ~wasd), and f 0(1300) ~was
e), as well as in the pseudoscalar mesonsh andh8. At the
same time, in the vector channel the Zweig rule works well.
Phenomenologically it is evident in, e.g., the smallness of the
f-v mixing. In terms of QCD such a smallness corresponds
to the numerical suppression of the nondiagonal correlation
function *dx^0uT$s̄gms(x),ūgnu(0)%u0& in comparison
with the diagonal one*dx^0uT$ūgmu(x),ūgnu(0)%u0&. In
the scalar and pseudoscalar channels diagonal and nondiago-
nal channels have the same order of magnitude. We believe
that analysis of such kinds of correlation functions is an ap-
propriate method for a QCD-based explanation of the un-

usual hadronic properties mentioned above.
In this paper we present some general methods and ideas

for analysis of the nucleon matrix elements from a nonva-
lence operator. The ideology and methods~unitarity, disper-
sion relations, duality, low-energy theorems! we use are mo-
tivated by QCD sum rules. However, we do not use the QCD
sum rules in the common sense. Instead, we reduce one com-
plicated problem~the calculation of nonvalence nucleon ma-
trix elements! to another one~the behavior of some vacuum
correlation functions at low momentum transfer!. One could
think that such a reducing of one problem to another one
~which may be even more complicated! does not improve
our understanding of the phenomenon. However, this is not
quite true: Analysis of the vacuum correlation functions with
vacuum quantum numbers, certainly, is a very difficult prob-
lem. However, some nonperturbative information based on
low energy theorems is available for such a correlation func-
tion. This gives some chance to estimate some interesting
quantities.

II. STRANGENESS IN THE NUCLEON 0 1 CHANNEL

A. First estimations

We start by calculating the strange scalar matrix elements
over the nucleon, assuming an octet nature of SU~3! symme-
try breaking. We follow Ref.@4# ~see also@5# for a review! in
our calculations@6#, but with a small difference in details.
We present these results for completeness of the paper.

The results of the fit to the data onpN scattering pre-
sented in@2# lead to the following estimates for the so-called
s term @7#:

mu1md

2
^puūu1d̄dup&.45 MeV. ~1!

~Here and in what follows we omit kinematical structures
such asp̄p in expressions for matrix elements.! Taking the
values of the quark masses to bemu55.160.9 MeV,
md59.361.4 MeV, andms5175625 MeV @8#, from Eq.
~1! we have

^puūu1d̄dup&.6.2. ~2!

Further, assuming octet-type SU~3! breaking to be respon-
sible for the mass splitting in the baryon octet, we find*Electronic address: arz@physics.ubc.ca
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^puūu2d̄dup&5
mJ2mS

ms
50.7, ~3!

^puūu1d̄d22s̄sup&53
mJ2mL

ms
53.4. ~4!

HeremJ , mS , andmL are masses ofJ, S, andL hyperons,
respectively. The values~3! and~4! are quite reasonable: The
former is close to the difference of the number ofu andd
quarks in a proton~should be 1), and the latter is close to the
total number of valence quarksu andd in a nucleon~should
be 3). From Eqs.~2!–~4! one obtains

^puūuup&.3.5, ~5!

^pud̄dup&.2.8, ~6!

^pus̄sup&.1.4. ~7!

We should mention that the accuracy of these equations is
not very high. For example, the error in the value of thes
term already leads to a large error in each matrix element
discussed above. In addition to that, chiral perturbation cor-
rections also give a noticeable contribution the matrix ele-
ments ~5!–~7!; see @7#. However, the analysis of possible
errors in Eqs.~5!–~7! is not the goal of this paper. Rather, we
wanted to demonstrate that these very simple calculations
explicitly show that the strange matrix element is not small.
Recent lattice calculations@9# also support a large magnitude
for the strange matrix element.

We would like to rewrite relations~5!–~7! to separate the
vacuum contribution to the nucleon matrix element from the
valence contribution. In order to do so, let us define

^puq̄qup&[^puq̄qup&01^puq̄qup&1 , ~8!

where index 0 labels a~sea! vacuum contribution and index
1 a valence contribution for a quarkq. We assume that the
vacuum contribution which is related to the sea quarks is the
same for all light quarksu, d, and s. Thus, the nonzero
magnitude for the strange matrix elements comes exclusively
from the vacuum fluctuations. At the same time, the matrix
elements related to the valence contributions are equal to

^puūuup&1.~3.521.4!.2.1, ~9!

^pud̄dup&1.~2.821.4!.1.4. ~10!

These values are in remarkable agreement with the numbers
2 and 1, which one could expect from the naive picture of a
nonrelativistic constituent quark model. In spite of the very
rough estimations presented above, we believe we have pre-
sented arguments that should convince the reader that~a! the
magnitude of the nucleon matrix element fors̄s is not small,
~b! the large magnitude for this matrix element is due to the
nontrivial QCD vacuum structure where vacuum expectation
values ofu, d, and s quarks are developed and they are
almost the same in magnitude:̂0ud̄du0&.^0uūuu0&
.^0us̄su0&.

Once we realize that the phenomenon under discussion is
related to the nontrivial vacuum structure, it is clear that the
best way to understand such a phenomenon is to use some

method where QCD vacuum fluctuations and hadronic prop-
erties are strongly interrelated. We believe that the most
powerful analytical nonperturbative method which exhibits
these features is the QCD sum rule approach@10,11#.

In what follows we use the QCD sum rule method in
order to relate hadronic matrix elements and vacuum charac-
teristics. Let me emphasize from the very beginning that we
do not use the QCD sum rules in the standard way: We do
not fit them to extract any information about lowest reso-
nance~as is usually done in this approach!, and we do not
use any numerical approximation or implicit assumptions
about higher states. Instead, we concentrate on the qualita-
tive relations between hadronic properties and QCD vacuum
structure. We try to explain in a qualitative way some mag-
nitudes for the nucleon matrix elements which may look very
unexpected from the naive point of view. At the same time
those matrix elements can be easily understood in terms of
the QCD vacuum structure.

We close this section with the formulation of the follow-
ing question:What is the QCD explanation of the unusual
properties mentioned above~in particular, the large magni-
tude for the strange nucleon matrix element, the special role
of the scalar and pseudoscalar channels, etc.!?

Our answer on this question is as follows:Hadronic ma-
trix elements with06 quantum numbers are singled out be-
cause of the special role they play in the QCD vacuum struc-
ture.The next section changes this answer from a qualitative
remark to a quantitative description.

B. Strangeness in the nucleon and vacuum structure

To study the problem of calculation̂Nus̄suN& using the
QCD sum rule approach, we consider the vacuum correlation
function @6#

T~q2!5E eiqxdxdŷ 0uT$h~x!,s̄s~y!,h̄~0!%u0& ~11!

at 2q2→`. Here h is an arbitrary current with nucleon
quantum numbers. In particular, this current may be chosen
in the standard formh5eabcgmd

a(ubCgmu
c). Note, how-

ever, that the results obtained below do not imply such a
concretization. For future convenience we consider the unit
matrix kinematical structure in Eq.~11!.

This is the standard first step of any calculation of such a
kind: Instead of a direct calculation of a matrix element, we
reduce the problem to the computation of some correlation
function. As the next step, we use the duality and dispersion
relations to relate a physical matrix element to the QCD-
based formula for the corresponding correlation function.
This is essentially the basic idea of the QCD sum rules.

In our specific case~11!, as a result of the absence of the
s-quark field in the nucleon currenth, any substantial con-
tribution to T(q2) is connected only to nonperturbative, so-
called induced vacuum condensates; see Fig. 1. Such a con-
tribution arises from the region when some distances are
large: (y20)2;(y2x)2@(x20)2. Thus, it cannot be di-
rectly calculated in perturbative theory; instead, we code the
corresponding large-distance information in the form of a
bilocal operator
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K5 i E dy^0uT$s̄s~y!,ūu~0!%u0&. ~12!

see Fig. 1. Similar contributions were considered for the first
time in Ref.@13#, but in quite different context. Besides that,
the corresponding discussions were based on the specific in-
stanton calculations as an example of nonperturbative fluc-
tuations. In a more general framework similar contributions
were discussed in Ref.@14#. For different applications of this
approach when bilocal operators play essential role, see also
Ref. @15#.

Along with consideration of the three-point correlation
function ~11!, we would like to consider the standard two-
point correlator

P~q2!5E eiqxdx^0uT$h~x!,h̄~0!%u0&, ~13!

see Fig. 2. The correlator~13! is determined by the nucleon
residueŝ 0uhuN& and some duality intervalS0. At the same
time the correlator~11! includes the information on the
nucleon matrix element̂Nus̄suN& also. Comparing Eq.~11!
with Eq. ~13! at 2q2→`, we arrive at the relation

^Nus̄suN&.
2m

^q̄q&
K, ~14!

wherem is the nucleon mass. We would like to note here
that the relation between the matrix element of nonvalence
quark bilinears in the nucleon and the corresponding vacuum
structure is not new. Such a relation has been discussed
many times. In the context of the present paper this connec-
tion was discussed in@16# and @6#.

The main assumptions which have been made in the deri-
vation of this relation are the following. First, we made the
standard assumption about local duality for the nucleon. In
other words, we assumed that a nucleon saturates both cor-
relation functions with duality intervalS0. The second as-
sumption is that typical scales~or, what is the same, duality
intervals! in the limit 2q2→` in the corresponding sum
rules Eqs.~11! and ~13! are not much different in magni-

tude from each other. In this case the dependence on residues
^0uhuN& is canceled out in the ratio and we are left with the
matrix element̂ Nus̄suN&, Eq. ~14!, we are interested in.

Note that both these assumptions are very likely to be
satisfied because we know that in most cases the lowest state
~nucleon! does saturate the sum rules. If it does, then the
typical scale~which in variety of sum rules is one and the
same and of order of 1 GeV2) guarantees that the duality
intervals are likely to be very close to each other. Anyway,
quantitative analysis of the corresponding sum rules is pos-
sible; however, it is not our main goal. Rather, we want to
demonstrate the relation between matrix elements such as
^Nus̄suN& and the corresponding vacuum properties which
are hidden in the correlatorK, Eq. ~12!. In principle one
could analyze the sensitivity of the corresponding QCD sum
rules to the lowest state nucleon. Once it is demonstrated, we
believe that the accuracy of our formula~14! is of order
20%230% which is a typical error for the sum rule ap-
proach.

Thus, the calculation of̂Nus̄suN& reduces to the evalua-
tion of the vacuum correlatorK. Fortunately, sufficient infor-
mation about the latter comes from the low energy theorems.
We note also that this method of reducing the nucleon matrix
elements to that of the vacuum correlator is directly general-
ized to cover the arbitrary scalarOS or pseudoscalarOP
operator1:

^NuOSuN&.
2mN̄N

^q̄q&
i E dy^0uT$OS ,ūu~0!%u0&, ~15!

^NuOPuN&.
2mN̄ig5N

^q̄q&
i E dy^0uT$OP ,ūig5u~0!%u0&.

~16!

The estimation of the nonperturbative correlatorK can be
done by using some low energy theorems. In this caseK is
expressed in terms of some vacuum condensates@6#:

K5 i E dy^0uT$s̄s~y!,ūu~0!%u0&.
18

b

^q̄q&2

^~as/p!Gmn
2 &

.0.04 GeV2, ~17!

whereb5 11
3Nc2

2
3Nf59 and we use the standard values for

the vacuum condensates@10#:

K as

p
Gmn
2 L .1.231022 GeV4, ^q̄q&.2~250 MeV!3.

With the estimation~17! for K, our formula~14! gives the
following expression for the nucleon expectation value for
s̄s:

^pus̄sup&.2m
18

b

^q̄q&

^~as /p!Gmn
2 &

.2.4, ~18!

1We assume of course that these operators do not containu and
d quarks. Otherwise, an additional contribution which comes from
the small distances must be also included.

FIG. 1. Bilocal contribution~12! into the correlator~11!.

FIG. 2. Condensate contribution into the correlator~13!.
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which is not far away from the naive estimation~7!.
We believe that the main uncertainty in the formula~18!

is related to our lack of knowledge of the nonperturbative
correlation functionK, Eq. ~17!. Therefore, for our estimates
which follow we prefer to use formula~14! in order to ex-
tract the corresponding value forK from the experimental
data instead of using our rough estimation~17!. In this case
K is a little smaller:

K.2
1

m
^pus̄sup&^0uūuu0&;0.025 GeV2. ~19!

Let us stress that we are not pretending to have made a
reliable calculation of the matrix element^pus̄sup& here.
Rather, we wanted to emphasize the qualitative picture
which demonstrates the close relation between nonvalence
matrix elements and QCD vacuum structure.

We close this section by noting that the method presented
above gives a very simple physical explanation of why the
Zweig rule in the scalar and pseudoscalar channels is badly
broken and, at the same time, in the vector channel the
Zweig rule works well. In particular, the matrix element
^Nus̄gmsuN& is expected to be very small as well as the cor-
responding coupling constantgfNN . In terms of QCD such a
smallness corresponds to the numerical suppression (1022–
1023) of the nondiagonal correlation function
*dx^0uT$s̄gms(x),ūgnu(0)%u0& in comparison with the di-
agonal one*dx^0uT$ūgmu(x),ūgnu(0)%u0&; see the QCD
estimation in@10#. In the scalar and pseudoscalar channels
the diagonal and nondiagonal correlators have the same or-
der of magnitude; therefore, no suppression occurs. This is
the fundamental explanation of the phenomenon we are dis-
cussing in this paper. Specifically, the magnitude of correla-
tor K is not changing much if we replace ans quark with a
u quark in formula~12!. Of course, it is in contradiction with
the large-Nc ~number of colors! counting rule where a non-
diagonal correlator should be suppressed. The fact that the
naive counting of powers ofNc fails in channels with total
spin 0 is well known: Quantities small in the limitNc→`
turn out to be large and vice versa. This is a manifestation of
the phenomenon discovered in Ref.@12#: Not all hadrons in
the real world are equal to each other.

One may ask the same question regarding the axial matrix
element as measured in polarized deep inelastic scattering.
As is known, the corresponding measurement shows a large
mixing. We believe that this phenomenon is related to the
divergence part of the axial vector current. Therefore one can
treat the corresponding large mixing as if it were a pseudo-
scalar matrix element~with an anomaly piece included in the
singlet case!. See Sec. III for details. We have nothing like
that for the vector current. Therefore one could expect a
small nonvalence matrix elements in the vector case.

In the next few sections we discuss some applications of
the obtained results.

C. In the world where s quark is massless

We would like to look at formula~12! from a different
side. Namely, we note thatK not only enters expression~14!,
but also determines the variation of the condensate^ūu& with
s-quark mass:

d

dms
^ūu&52 i E dy^0uT$s̄s~y!,ūu%u0&

52K.20.025 GeV2. ~20!

To understand how large this number is and in order to make
some rough estimations, we assume that this behavior can be
extrapolated from the physical valuems.175 MeV until
ms50. In this case we estimate that

U ^ūu&ms51752^ūu&ms50

^ūu&ms5175
U.0.3. ~21!

Such a decrease ofu^ūu&u by a 30% asms varies from
ms.175 MeV toms50 is a very important consequence of
the previous discussions: Once we accept the relatively large
magnitude for the nucleon matrix element^pus̄sup&.1.4, we
are forced to accept the relatively large variation of the light
quark condensate as well. This statement is the direct conse-
quence of QCD; see Eq.~21!.

We note that this result does not seem very surprising
since other vacuum condensates, e.g.,^(as /p)Gmn

2 &, possess
analogous properties@12#. From the microscopic point of
view, a decrease of the absolute values of the vacuum matrix
elements with a decrease of thes-quark mass is expected
since any topologically nontrivial vacuum configurations,
e.g., instantons, are suppressed by light quarks. The corre-
sponding numerical calculation is very difficult to perform;
however, a qualitative picture of the QCD vacuum structure
definitely supports this idea@17#.

D. s-quark and nucleon mass

We would like to discuss here one more fundamental
characteristic of the hadron world: the nucleon mass and its
dependence on the strange quark. We start our discussion
from the following well-known result: The nucleon mass is
determined by the trace of the energy-momentum tensor
umm and in the chiral limitmu5md5ms50 the nonzero re-
sult comes exclusively from the strong interacting gluon
fields:

m52
b

8 KNU as

p
Gmn
2 UNL , mu5md5ms50. ~22!

However, as we know, in our world the strange quark is not
massless, but rather it requires some~large enough! mass
(;175 MeV!. As we have seen, Eq.~21!, the nonzero mass
of ans quark considerably changes the vacuum properties of
the world. Thus, we would expect that it might have a strong
influence on the nucleon mass as well. The main argument
which supports this point of view is the same as before and is
based on our general philosophy that the nucleon matrix el-
ements and vacuum properties are tightly related. So, if the
strange quark has a strong influence on the vacuum proper-
ties, then its impact on the nucleon mass should also be
strong.

In order to check these reasons it would be useful to cal-
culate the strange quark contribution to the nucleon mass
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directly and independently from the gluon contribution~22!.
Fortunately, it can be easily done by using our previous es-
timation ~18! for the nucleon matrix element and exact ex-
pression for the trace of the energy-momentum tensor taking
into account nonzero quark masses:

m51KNU(
q

mqq̄qUNL 2
b

8 KNU as

p
Gmn
2 UNL , ~23!

where the sum overq is the sum over all light quarksu, d,
ands. One can easily see from Eq.~1! that theu,d contri-
bution into the nucleon mass does not exceed 7%; thus, we
can safely neglect this. At the same time, adopting the values
~7! and ~18! for ^pus̄sup& andms.175 MeV @8#, one can
conclude that a noticeable part of the nucleon mass~about
20%) is due to the strange quark. In this case the gluon
contribution into the nucleon mass is far away from the chi-
ral SU~3! prediction~22! and approximately equals

2
b

8 KNU as

p
Gmn
2 UNL ;700 MeV. ~24!

This rough estimation confirms our argument that a variation
of the strange quark mass from its physical value to zero may
considerably change some vacuum characteristics as well as
nucleon matrix elements.

The simple consequence of this result is the observation
that thequenched approximationin the lattice calculations is
not justified simply because such a calculation clearly does
not account for the fluctuations of the strange~nonvalence!
quark as well as vacuum fluctuations ofu andd quarks. As
we argued above, the nucleon mass undergoes some influ-
ence from thes quark.

How one can understand these results within the frame-
work of the QCD sum rules? Let us recall that in the QCD
sum rule approach information about any dimensional pa-
rameter is contained in the vacuum condensates
^ūu&,^Gmn

2 &, . . . . As we discussed previously all these con-
densates varying withms considerably. It is important that
this variation certainly proceed in the right direction: Abso-
lute values of condensates decrease with decreasingms . This
leads to a smaller scale in the sum rules, and finally, to the
decrease of all dimensional parameters such asm. However,
it is difficult to make any reliable calculations because of a
large number of factors playing an essential role in such a
calculation.

E. Momentum distribution of the strangeness in the nucleon

We continue our study of the role of the strange quark in
the nucleon with the following remark. We found out earlier
that the matrix element^Nus̄suN& is not small; we interpreted
this result as a result of strong vacuum fluctuations which
penetrate into the nucleon matrix element. Now, we would
like to ask the following question: What is the mean value of
the momentum~denoted aŝk'

2 &s) of thes quark inside of a
nucleon? Let us note that this question is not a purely aca-
demic one. Rather, the answer on the question might be im-
portant for the construction of a more sophisticated quark
model which would incorporate the strange context into the
nucleon wave function.

First of all, let us try to formulate this question in terms of
QCD. We define the mean valuêk'

2 &s of the momentum
carried by the strange quark in a nucleon by the matrix ele-
ment

^k'
2 &s^Nus̄suN&[^uNs̄~ iDW '!2suN&, ~25!

where iDW m[ i ]Wm1gAm
ala/2 is the covariant derivative and

Am
a is a gluon field. The arrow shows the quark whose mo-

mentum is under discussion.
We assume the nucleon to be moving rapidly in thez

direction. We are interested in the momentum distribution in
the direction which is perpendicular to its motion. Precisely
this characteristic has a dynamical origin. Indeed, as we shall
see in a moment, while we are studying a nucleon matrix
element^k'

2 &s , we are actually probing the QCD vacuum
properties. The nucleon motion as a whole system with arbi-
trary velocity does not affect this characteristic. Thus, essen-
tially, what we discuss is the so-called light cone wave func-
tion. Apart from the reasons mentioned above, there are a
few more motives to do so: First of all, the light cone wave
function ~WF! with a minimal number of constituents is a
good starting point. As is known such a function gives para-
metrically leading contributions to hard exclusive processes.
Higher Fock states are also well defined in this approach and
can be considered separately. The second reason to work
with a light cone wave function is the existence of the nice
relation between that WF and the structure function mea-
sured in the deep inelastic scattering. We refer to the review
paper of@18# for the introduction into the subject. The rela-
tion to the standard quark model wave functions~see, e.g.,
@19#! is also worked out. The relevant discussions can be
found in Ref.@20#. In addition to these, we have one more
reason to work with the light cone WF: We believe that this
is the direction where a valence quark model can be under-
stood and formulated in QCD terms@21#.

Anyhow, formula ~25! with the derivatives taken in the
direction perpendicular to the nucleon momentum,
pm5(E,0' ,pz), is a very natural definition for the mean
square of the quark transverse momentum. Of course it is
different from a naive, gauge-dependent definition such as
^Nus̄]'

2suN&, because the physical transverse gluon is a par-
ticipant of this definition. However, expression~25! is the
only possible way to define thêk'

2 &s in a gauge theory such
as QCD. We believe that such a definition is a useful gener-
alization of the transverse momentum conception for the in-
teractive quark system. Let us note that the Lorentz transfor-
mation in the z direction does not affect the transverse
directions. Thus, the transverse momentum^k'

2 &s as calcu-
lated from Eq.~25! remains unchanged while we pass from
the light cone system to the rest frame system where a quark
model is supposed to be formulated.

Now, let us come back to our definition~25! for ^k'
2 &s . In

order to calculate this matrix element, we use the same trick
as before: We reduce our original problem of calculating the
nucleon matrix element to the problem of computing the
corresponding vacuum correlation function~15!:
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^Nus̄~ iDW '!2suN&

.
2mN̄N

^q̄q&
i E dy^0uT$s̄~ iDW '!2s,ūu~0!%u0&.

~26!

To estimate the right-hand side of Eq.~26! we introduce an
auxiliary vacuum correlation function

i E dy^0uT$s̄~ iDW miDW n!s,ūu~0!%u0&5Cgmn , ~27!

whereC is a constant. From the definition~26! it is clear that
the correlator we are interested in can be expressed in terms
of the constantC:

i E dy^0uT$s̄~ iDW '!2s,ūu~0!%u0&522C. ~28!

At the same time the constantC is given by the correlation
function which containsGmn

a and not a covariant derivative
Dm :

C5
1

4
i E dy^0uT$s̄~ iDW miDW m!s,ūu~0!%u0&52

1

8
i E dy^0uT$s̄igGmn

a ~la/2!smns,ūu~0!%u0&, ~29!

where we have used the equation of motion and identity2:

DmDngmns5gmgnDmDns2smn
1
2 @Dm ,Dn#s52ms

2s1
ig

2
smnGmn

a la

2
s. ~30!

Now we can estimate the unknown vacuum correlator~29! exactly in the same way as we have done before for the correlation
functionK; see Eq.~17!. Collecting all formulas~25!–~30! together, we arrive at the following final result for the mean value
of the momentum carried by the strange quark in a nucleon:

^k'
2 &s[

^Nus̄~ iDW '!2suN&

^Nus̄suN&
.

^Nus̄igsmnGmn
a ~la/2! suN&

4^Nus̄suN&
.

^s̄igsmnGmn
a ~la/2!s&

4^ s̄s&

d s̄igsmnGmn
a

~la/2! s

d s̄s
.
1

4
~0.8 GeV2!

5

3

;0.33 GeV2, ~31!

wheredO denotes the dimension of the operatorO. For a
numerical estimation we use the standard magnitude for the
mixed vacuum condensate ^ s̄igsmnGmn

a (la/2)s&
50.8 GeV2 ^s̄s&. The obtained numerical value~31! for
^k'

2 &s looks very reasonable from the phenomenological
point of view. We believe that the main uncertainty in our
estimation of the nonperturbative correlation function~29! is
canceled out when we consider the ratio~31! of similar ob-
jects. Therefore, we believe that the accuracy in formula~31!
is much better than in formula~17! where we estimated an
absolute value of the corresponding correlator.

We close this section with a few remarks. First, the non-
valence nucleon matrix elements can be expressed in terms
of vacuum condensates in a very nice way. All numerical
results obtained in such a way look very reasonable. As the
second remark, we emphasize that a study of nonvalence
nucleon matrix elements and an analysis of the QCD vacuum
structure is one and the same problem. We would like to
note, also, that the nucleon matrix element~31! might be
very important in the analysis of neutron dipole moments.
This observation is based on the fact that the so-called chro-
moelectric dipole moment of thes quark, related to the op-

erator s̄gg5smnGmn
a (la/2)s, in many models gets a large

factor ;ms /mq;20 in comparison with a similard quark
contribution@22,6,23#. At the same time, as we can see from
Eq. ~31! there is no any suppression due to the presence of
the s quark in the corresponding nucleon matrix elements.

III. STRANGENESS IN THE NUCLEON 0 2 CHANNEL

A. Singlet axial constantgA
0

In this section we discuss the contribution of the strange
quarks to nucleon matrix elements similar to Eq.~23!, with
the only difference that we switch the scalar channels̄s into
the pseudoscalar ones̄ig5s. In our previous study of the
scalar channel we concluded that a considerable part of the
nucleon mass~about 40%) is due to the strange quark.3 We
made this estimation by using the two following facts: First,
we knew the mass of the nucleon@left-hand side of Eq.~23!#,
which is considered as experimental data. Second, we calcu-
lated independently the matrix element^Nus̄suN&. Compar-
ing this theoretical result~18! with the ~23!, we have made
the aforementioned conclusion about a serious deviation
from the chiral SU~3! limit.

2We neglect the term proportional toms
2 in Eq. ~29!. It can be

justified by using the estimation~17!.

3In the chiral limitms→0, the corresponding contribution is zero,
of course.
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We want to repeat all these steps for the pseudoscalar
channel also. In this case an equation analogous to Eq.~23!
looks as follows:

2mgA
0 p̄ig5p51KNU(

q
2mqq̄ig5qUNL

1
3

4 KNU as

p
GmnG̃mnUNL , ~32!

where the sum overq is the sum over all light quarksu, d,
and s and gA

0 is the nucleon axial constant in the flavor-
singlet channel. The world average isgA

050.2760.04 @3#.
Now, we would like to repeat all steps which would bring

us to a conclusion similar to Eq.~23! for the pseudoscalar
case. We shall try to answer the following question: What is
the strange quark contribution in formula~32!? Let us recall
that in the chiral limitmu5md5ms50 the nonzero contri-
bution comes exclusively from the gluon term, in close anal-
ogy to formula~22!:

2mgA
0 p̄ig5p5

3

4 KNU as

p
GmnG̃mnUNL , mu5md5ms50.

~33!

Thus, in order to answer the question formulated above, we
have to estimate the matrix element

^pu2mss̄ig5sup& ~34!

in a somewhat independent way.4 First of all, the relevant
contribution with octet quantum numbers (h) can be easily
evaluated by standard technics. One should take the deriva-
tive from the octet, anomaly-free, current
;ūgmg5u1d̄gmg5d22s̄gmg5s. The result is

^pu2mss̄ig5sup&h52m~3F2D ! p̄ig5p, ~35!

where D.0.63gA and F.0.37gA are the standard SU~3!
parameters. One could expect that a similar contribution with
singlet quantum numbers (h8) is also large, although it is
zero in the chiral limit wherems50.

We shall estimate the corresponding contribution with
h8 quantum numbers by using our previous trick Eq.~16!.
Namely, we reduce our original problem of the calculation of
the nucleon matrix element to the problem of the computa-
tion of certain vacuum correlation functions where we
should limit ourselves by calculating the contribution with
singlet quantum numbers only:

^pu2mss̄ig5sup&

.
2mp̄ig5p

^q̄q&
i E dy^0uT$2mss̄ig5s,ūig5u~0!%u0&.

~36!

In order to make the corresponding estimations we need to
know the h8-matrix elements ^0us̄ig5suh8& and

^0uūig5uuh8&. The PCAC does not provide us with the cor-
responding information; however, a quark model prejudice
suggests that

K 0U 1

A2
~ ūig5u2d̄ig5d!UpL

.K 0U 1

A6
~ ūig5u1d̄ig5d22s̄ig5s!UhL .^0uūig5suK&

.K 0U 1

A3
~ ūig5u1d̄ig5d1 s̄ig5s!Uh8L .2

2^q̄q&
f p

.

~37!

Strong support in favor that relations~37! are correct comes
from the analysis of the two-photon decays ofp,h, and
h8; see, e.g.,@5#. All of these decay amplitudes have the
same Lorentz structure and are determined by the matrix
elements~37!; therefore, the quark model prediction is found
to work surprisingly well in this particular case. Combining
formulas~35!–~37! we arrive at the estimation

^pu2mss̄ig5sup&52mp̄ig5pH 2
1

2
~3F2D !2

4ms^q̄q&

3 f p
2mh8

2 J
.~20.310.16!2mp̄ig5p

.~20.14!2mp̄ig5p, ~38!

where we used 3F2D.0.6 for the numerical estimation.
The two terms in this formula are the octet and singlet con-
tributions correspondingly. One should note that in spite of
the fact that the singlet term is parametrically suppressed in
the limitms50, this contribution numerically is not small. It
is only by a factor of 2 less than the parametrically leading
term.

Now, let us come back to Eq.~32!. We would like to
answer the previously formulated question: What is the
s-quark contribution to formula~32!? From our estimation
~38! we suggest the following pattern of saturation of the
experimental data forgA

050.2760.04:

2mp̄ig5p~0.2760.04!

51^pu2mss̄ig5sup&1
3

4 K pU as

p
GmnG̃mnUpL

.~20.14!2mp̄ig5p1~10.41!2mp̄ig5p. ~39!

Here the first term is due to the strange quark contribution
which we calculated directly. It equals (20.14); see Eq.
~38!. The second part is due to the gluon contribution. We
assign an average number 0.4150.272(20.14) for this con-
tribution in order to match the experimental data forgA

0 .
We would like to comment here that the gluon contribu-

tion in this formula and a gluon contribution in the standard
expression for the axial-vector matrix element are very dif-
ferent in nature. Therefore, the interpretation is also differ-
ent. In particular, the standard contribution to the axial vector
current fromu and d quarks is large. In our formula the
corresponding large contribution is hidden in the gluon term,

4We neglectu andd quark contributions to formula~32! for the
obvious reasons.
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because the corresponding pseudoscalar current comes with
a small factormu or md . Indeed, in the standard analysis of
the light quark contribution intogA

0 one deals with the matrix
elements of the axial vector currents such as
^puq̄gmg5qup&, which are not small. However, we prefer to
present the same formula using the operator identity:

]m~ q̄gmg5q!52mqq̄ig5q1
as

4p
GmnG̃mn . ~40!

In this case the large contribution of the light quarkq is not
related to the light quark operator 2mqq̄ig5q ~which is zero
in the chiral limitmq50), but rather is related to the gluon
operator (as/4p)GmnG̃mn .

Therefore, we understand theu andd quark contribution
in formula ~39! as a contribution ofu andd quarkstogether
with their anomaly parts:

gA
u1d2mp̄ig5p5 K pU2muūig5u12mdd̄ig5d

1
2as

4p
GmnG̃mnUpL

.~ 2
3 0.41!2mp̄ig5p. ~41!

The same interpretation is also true fors quarks. In this case
gA
s is compatible with zero as can be seen from similar esti-
mations:

gA
s2mp̄ig5p5 K pU2mss̄ig5s1

as

4p
GmnG̃mnUpL

.~20.141 1
3 0.41!2mp̄ig5p, gA

s.0.

~42!

Such an interpretation is in very good agreement with the
valence quark model philosophy, where thes quark does not
play any essential role. Let us note that this interpretation is
very different from the old simplest assumption of the spin
of the strange quark in the nucleon; see, e.g.,@3,5#. In our
interpretation we understand the strange quark contribution
as a joined contribution ofs fields as well as its regulator
field ~or, what is the same, its anomalous contribution!.

Two remarks are in order. First, the strange quark and
gluon terms contribute with opposite signs togA

0 . In the
formula for mass, Eq.~23!, similar terms interfere construc-
tively with the same signs. It is very easy to understand the
difference: In the pseudoscalar channel we have the Gold-
stone bosonh whose total contribution is zero to the sum
~32! because of the octet origin of theh meson. However,
the h-meson contributions to the matrix elements
^pu2mss̄ig5sup& and to the gluon operator, taken separately,
are not zero. Moreover, its contribution to the
^pu2mss̄ig5sup& has the opposite sign to theh8 contribution
@because of the difference in the quark context; see Eq.~37!#.
Even more, it has a parametrical enhancement. We have
nothing like that in the scalar channel~23!, where the flavor-
singlet states dominate.

The second remark is the observation that, like in the
scalar channel, the strange quark operator gives a noticeable

contribution into the final formula~39! in spite of the fact
that in the chiral limit the corresponding contribution is zero
as we mentioned earlier Eq.~33!.

B. Singlet axial constant of heavy particles

In this section we try to answer the following question:
How one can check the estimation~39! about a noticeable
contribution of the strange quark? A more specific question
we would like to know is, is it possible to measure a nucleon
matrix element where some independent combination of
those operators enters? If the answer were ‘‘yes,’’ we would
be able to find the contribution of each term separately.

To answer this question we suggest considering the weak
neutral current containing an isoscalar axial component as-
sociated with nonvalence quarks@24#:

^puc̄gmg5c2 s̄gmg5s1 t̄gmg5t2b̄gmg5bup&

[gA
heavyp̄gmg5p. ~43!

Before going into details, let us mention that on the quantum
level the current divergence of the massive quark field has
the form

]mQ̄gmg5Q52mQQ̄ig5Q1
as

4p
GmnG̃mn , ~44!

where the first term is the standard one and the second term
is due to the anomaly. There are many ways to understand
the origin of the anomaly; basically, it arises from the neces-
sity of the ultraviolet regularization of the theory. In the
heavy quark mass limit, one can expand the 2mQQ̄ig5Q
term in Eq.~44! with the result@10,11#:

2mQQ̄ig5QumQ→`52
as

4p
GmnG̃mn1c

GG̃G

mQ
2 1OS 1

mQ
4 D

1 . . . , ~45!

where all coefficients, in principle, can be calculated. We are
interested, however, in the leading term;GmnG̃mn only.

One can easily note that the leading term in the expansion
~45! has the same structure as an anomaly term~44! and it
goes with the opposite sign.5 Thus, the terms which do not
depend on mass are canceled out and we are left with a term
;GG̃G/mQ

2 which vanishes in the limitmQ→`. Such a
vanishing of the heavy quark contribution to the nucleon
matrix element is in perfect agreement with the physical in-

5The opposite signs of those contributions can be easily under-
stood in terms of the Pauli-Villars regulator fields with mass
MPV→`. As is known these fields are introduced into the theory
for regularization purposes and they play a crucial role in the cal-
culation of the anomaly~44!. A regulator contribution is obtained,
by definition, by a replacementmQ→MPV in the corresponding
formula. It goes, by definition, with a relative sign minus. From
such a calculation it is clear that the leading terms which do not
depend on mass, are canceled out, in full agreement with the ex-
plicit formulas ~44! and ~45!.
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tuition that a nucleon does not contain any heavy quark
fields, at least in the limitmQ→`.

The situation with stranges quarks in formula~43! is
much more complicated. This quark is not heavy enough to
apply the arguments given above. Thus, we should keep all
operators in formula~44! for the current divergence in the
original form:

K pU2mss̄ig5s1
as

4p
GmnG̃mnUpL 52gA

heavy2mp̄ig5p,

~46!

where we have neglected the terms;1/mQ
2 for c, b, and t

quarks in accordance with our previous discussion.6

As we already mentioned, the measurement of the con-
stantgA

heavy, Eq. ~46! gives independent information comple-
mentary to the singlet axial constant measurementgA

0 , Eq.
~39!. If we knew those constants with high enough precision,
we would be able to find out both nucleon matrix elements
^pu2mss̄ig5sup& and^pu(as/4p)GmnG̃mnup&. At the moment
the experimental errors forgA

heavy50.1560.09@25# are large:
The result is only two standard deviations from zero.

The best we can do at the moment is to estimategA
heavy

from our previous calculations~39!. If we literally take the
values20.14 and 0.41 from the formula~39!, we get the
result forgA

heavy which is compatible with zero in the same
way as in Eq.~42!:

2gA
heavy2mp̄ig5p5 K pU2mss̄ig5s1

as

4p
GmnG̃mnUpL

.~20.141 1
3 0.41!2mp̄ig5p, gA

heavy.0.

~47!

From our point of view this is an interesting observation
which essentially says that a heavy quark operatortogether
with its anomalous partgives nearlyvanishingcontribution
into the nucleon matrix element. As we discussed earlier, this
is certainly true for a really heavy quark. What is a less
trivial fact is the observation, Eqs.~42! and ~47!, which ap-
perently says that this is true fors quarks also~which by no
means can be considered as a heavy quark!. If we accept this
point, we should interpret a nonzero magnitude ofgA

0, Eq.
~39!, as a contribution coming exclusively from the lightu
andd quarks and their anomalous parts.

IV. CHARMED QUARK IN THE NUCLEON

In this section we would like to extend our analysis for
thec quark. The reason to do so is twofold: First, thec quark
is heavy enough to use the standard 1/mc expansion similar
to Eq.~45!. Second, the charmed quark is light enough to get
a reasonably large effect from this expansion.

We start from the pseudoscalar channel and keep only the
first term in the heavy quark expansion~45!:

^puc̄ig5cup&.2 K pU as

8mcp
GmnG̃mnUpL

;
20.41

6mc
2mp̄ig5p;20.1p̄ig5p, ~48!

where, for the numerical estimate, we use the value~39! for
the gluon matrix element over the nucleon andmc.1.3 GeV
for the charmed quark mass.7 This value should be compared
to a similar matrix element of the strange quark over the
nucleon:

^pus̄ig5sup&;
20.14

2ms
2mp̄ig5p;20.8p̄ig5p, ~49!

where we use formula~38! for the numerical estimation of
the matrix element̂pus̄ig5sup&. The ratio of these values is
in remarkable agreement with the ratio of their mass:
mc /ms;1.3 GeV/0.175 GeV;7.5.

Our next example is the scalar matrix element. In this
case one can use a heavy quark expansion similar to formula
~45!, but for the scalar channel@11#:

^puc̄cup&.2 K pU as

12mcp
Gmn
a Gmn

a UpL
;
23700 MeV

27mc
;0.04. ~50!

For the numerical estimation in this formula we adopted the
value ~24! for the gluon matrix element over the nucleon.
The magnitude~50! for the charmed quark is approximately
30 times less than the corresponding matrix element for the
strange quark~7!:

^pus̄sup&.1.4. ~51!

This is in large contrast with the pseudoscalar channel, where
the corresponding ratio was about a factor of 4 larger.

We conclude this section with a few remarks. First of all,
the matrix elements~48! and~50! for the charmed quark are
expressed in terms of the gluon operators. For the heavy
quark this is an exact consequence of QCD. Corrections to
these formulas can be easily estimated. One can show that
they are small for thec quark. The problem of the evaluation
of the gluon matrix elements over the nucleon is a different
problem. However, we believe that from the measurements
of gA

0, Eq. ~32!, and frompN scattering, Eq.~1!, we know
those matrix elements with a reasonable accuracy. Thus, we
expect the same accuracy for the matrix elements^puc̄cup&
and ^puc̄ig5cup&.

Our next remark is the observation that the results~48!
and ~50! essentially give a normalization for the intrinsic
charm quark component in the proton. This is a very impor-
tant characteristic of the nucleon. It might play an essential
role in the explanation of a discrepancy between charm ha-

6The corresponding estimations even for the lightest heavyc
quark support this viewpoint; see the next section.

7Let us note that this value for mass corresponds to the high
enough normalization point of order ofmc . In principle, one should
renormalize this value to the low normalization point. We neglect
this small logarithmic effect in this paper.
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droproduction and perturbative QCD calculations. We refer
to the original paper8 @27# on this subject where the hypoth-
esis of intrinsic charm quarks in the proton was introduced.
The experimental fit in the framework of this paper@27#
suggests that the probability to have an intrinsic charm in the
proton is about;0.3% @28# and (0.8660.60)% @29#. These
numbers cannot be related directly to the matrix element~50!
we calculated. However, they give some general scale of this
phenomenon. We hope that in the future some more sophis-
ticated, QCD-based methods, will lead us to a deeper under-
standing of the effects related to the intrinsic charm compo-
nent in the nucleon.

V. CONCLUSION

We believe that the main result of the present analysis is
the observation that nonvalence quarks play an important
role in the physics of nucleons. However, we should stress
that such an interpretation does not contradict the bag model
@5#, where the nucleon matrix element

^Nus̄suN&.2^ s̄s&V ~52!

is related to some vacuum characteristics~such as the vol-
ume of the bagV) of the model. It is clear that the chiral

vacuum condensate of the strange quark is large. So there is
no reason to expect that the corresponding nucleon matrix
element is small. The same argument can be applied for ar-
bitrary mixed vacuum condensates also~they are presumably
not zero@21#!. This information can be translated, in accord-
ing to Eq.~31!, into knowledge about the transverse momen-
tum distribution of the strange quark in a nucleon.

In our approach this relation, vacuum⇔ nucleon, is
clearly seen. Thus, by studying the vacuum properties of
QCD, we essentially study some interesting nucleon matrix
elements which can be experimentally measured.

We also note that thes-quark contribution by itself to the
nucleon matrix element is not small. However, if we inter-
pret thes-quark contribution together with its anomaly part,

gA
s2mp̄ig5p5 K pU2mss̄ig5s1

as

4p
GmnG̃mnUpL

.~20.141 1
3 0.41!2mp̄ig5p, gA

s.0.

~53!

Such an interpretation is in very good agreement with the
valence quark model philosophy, where thes quark does not
play any essential role. Let us note that this interpretation is
very different from the old simplest assumption of the spin
of the strange quark in the nucleon; see, e.g.,@3,5#. In our
interpretation we understand the strange quark contribution
as a joined contribution ofs fields as well as its regulator
field ~or, what is the same, its anomalous contribution!.
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