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We propose a lattice formulation of the chiral fermion which maximally respects the gauge symmetry and
simultaneously is free of the unwanted species doublers. The formulation is based on the lattice fermion
propagator and composite operators, rather than on the lattice fermion action. The fermionic determinant is
defined as a functional integral of an expectation value of the gauge current operator with respect to the
background gauge field: The gauge anomaly is characterized as the nonintegrability. We perform some per-
turbative tests to confirm the gauge covariance and an absence of the doublers. The formulation can be applied
rather straightforwardly to numerical simulations in the quenched approximation.@S0556-2821~97!03405-X#

PACS number~s!: 11.15.Ha, 11.30.Rd

The chiral fermion on the lattice has refused its manifestly
gauge-invariant treatment@1#. There even exists the no-go
theorem@2# for such an endeavor. In the continuum counter-
part, the chiral fermion develops a curious phenomenon,
called the quantum anomaly@3# or more definitely the gauge
anomaly@4#. It can be argued that the difficulty in the lattice
chiral gauge theory is a natural consequence of the gauge
anomaly.

Suppose that we start with a well-regularized fermionic
partition function defined by a manifestly gauge-invariant
lattice fermion action. In the continuum limit, the gauge
anomaly is a gauge variation of the partition function. There-
fore, if the fermion content is not free of the gauge anomaly,
the partition function should not be gauge invariant—this
contradicts the very gauge invariance of the formulation.
There are two possible resolutions: One is an appearance of
the species doublers which cancel the gauge anomaly@5#.
Another is a pathology in the continuum limit such as the
non-Lorentz covariance@6#. The ‘‘trouble’’ with the lattice
regularization is that it always regularizes ultraviolet diver-
gences, even when a gauge-invariant regularization should
be impossible due to the gauge anomaly.

The above reasoning suggests that the appearance of the
unwanted doublers is quite natural. However, the problem in
the conventional approach is, of course, that the doublers
appear even in the anomaly-free cases. Presumably, the ideal
lattice formulation of the chiral fermion will be the one
which distinguishes the anomaly-free gauge representations
from the anomalous ones. That unknown gauge-invariant lat-
tice action should have a structure that can be written down,
for example, for the spinor representation of so~4! but not for
the fundamental representation of su~3!, because the latter is
anomalous. Such an ideal formulation seems to require a
further deeper understanding on the origin of the quantum
anomaly.

In this work, we simply abandon a direct gauge-invariant
definition of the fermionic partition function. We take an

indirect route. Nevertheless, we attempt to respect the gauge
symmetry as much as possible within a range consistent with
the gauge anomaly.

Instead of directly defining the fermion action and the
partition function, we start with the propagator and the gauge
current operator on the lattice. This formulation may be re-
garded as a first quantization approach, compared to the con-
ventional ones. The important fact for us is that although the
partition function cannot be regularized gauge invariantly in
general, the gauge current can always be regularized gauge
covariantly even if the gauge representation is anomalous.
This type of regularization scheme in the continuum theory
is known as the covariant regularization@7#.

In the covariant regularization, fermion loop diagrams are
defined as an expectation value of the gauge currentJma(x),
in the presence of the background gauge field. The ultravio-
let divergence of the diagram is then regularized by inserting
a gauge-invariant dumping factor into the fermion propaga-
tor. In this way, the gauge invariance associated with all the
gauge verticesexceptthat ofJma(x), is preserved. The basic
idea is that a possible breaking of the gauge symmetry due to
the anomaly is forced on theJma(x) vertex as much as pos-
sible. The gauge anomalyDm^Jma(x)& thus defined has the
covariant form@8,9# because of the gauge invariance at ex-
ternal vertices. On the other hand, a gauge singlet-operator
such as the fermion number current is always regularized
gauge invariantly. The scheme thus spoils the Bose symme-
try in general but it is restored when the theory is free of the
gauge anomaly. The scheme is very powerful and applicable
to any chiral gauge theories including the Yukawa couplings.

Once the expectation value of the gauge current is ob-
tained in the covariant regularization, the fermionic determi-
nant may be defined as a functional integral of^Jma(x)& with
respect to the background gauge field. However, it is obvious
that the integration is possible only when there exists a Bose
symmetry among all the gauge vertices. In other words, the
gauge anomaly should satisfy the Wess-Zumino condition
@10# which is a consequence of the integrability. Since the
covariant anomaly breaks the Bose symmetry and the Wess-
Zumino condition@8,9#, we cannot define the fermionic de-
terminant from the integration of̂Jma(x)&, provided that it*Electronic address: hsuzuki@mito.ipc.ibaraki.ac.jp
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has the covariant gauge anomaly.1 Therefore, following the
covariant regularization, the gauge anomaly is characterized
as the nonintegrability of this integration process. This is a
consistent picture because the fermionic determinant cannot
be gauge invariant when the gauge anomaly is present. Our
proposal in this work in spirit can be regarded as a lattice
version of the covariant regularization. We notice that the
covariant regularization itself does not require the action
level realization@11#.

We proceed as follows: In the continuum theory, the
propagator of a masslessDirac fermion is expressed as

^Tc~x!c̄~y!&5
21

iD”
d~x2y!

5 iD”
1

gmnDmDn1 i @gm,gn#Fmn/4
d~x2y!,

~1!

whereD” [gm(]m1 iAm) is the vector type, i.e., nonchiral,
covariant derivative, andFmn is the field strength. In the
second line, the denominator has been rewritten as asecond
derivative, that may allow a lattice propagator free of the
doubler’s massless pole. As the propagator on the lattice,
therefore, we take

^Tc~x!c̄~y!&5G~x,y!

5 iD” ~x!
1

h~x!1@gm,gn#@Umn~x!21#/~4a2!

3d~x,y!, ~2!

whered(x,y)[dx,y/a
4 andD” (x) is the standard lattice co-

variant derivative

D” ~x!5(
m

gm
1

2a
@Um~x!ea]m2e2a]mUm

† ~x!# ~3!

@Um(x) is the link variable@12# anda is the lattice spacing#.
To avoid the unwanted massless pole, we define the covar-
iant lattice d’Alembertian by

h~x![2(
m

1

a2
@Um~x!ea]m1e2a]mUm

† ~x!22#. ~4!

For the free theory, this is 2(m~12cosakm!/a2 in the mo-
mentum space and does not have the doubler’s zero at
km5p/a. Equation ~4! is nothing but the Wilson term
@13# apart from one extra 1/a. In Eq. ~2!, Umn(x) is
the standard plaquette variable@12# Umn(x)[Um(x)Un(x
1am)Um

† (x1an)Un
†(x). With the parametrizationUm(x)

5exp[iaAm(x)], the lattice propagator~2! obviously reduces

to the continuum one~1! in the naive continuum limit. The
choice ~2! is by no means unique and another definition
would work as well.

Using the lattice propagator~2!, we define a fermion bi-
linear operator as2

^c̄~x!Mc~x!&[2trMG~x,y!ux5y , ~5!

where the minus sign is due to the Fermi statistics. The
gauge current of a right-handedchiral fermion is simply
definedby takingM5TagmPR , wherePR[~11g5!/2 is the
chirality projection operator. This is possible because noth-
ing flips the chirality along the fermion line. When the
Yukawa coupling is involved, this simple recipe using the
Dirac propagator does not work and we will comment on
later the generalization.

An important property of definition~5! is the manifest
gauge covariance. Namely, under the gauge transformation
on the link variableUm(x)→V(x)Um(x)V

†(x1am), the
propagator ~2! is transformed asG(x,y)→V(x)G(x,y)
3V†(y). Consequently, the bilinear operator~5! transforms

^c̄~x!Mc~x!&→^c̄~x!V†~x!MV~x!c~x!&, ~6!

which means that the composite operator has a definite trans-
formation property under the gauge transformation on the
external gauge field. Note that the covariance holds for a
finite lattice spacing as well as the continuum limita→0. In
particular, a gaugesingletoperator, for whichM commutes
with the gauge generator, is regularizedgauge invariantly. In
the continuum limit, the gauge anomaly should have the
gauge covariant form provided that the limit is not pathologi-
cal.

Since we are not assuming the underlying fermion action
in the present formulation, various symmetric properties are
unfortunately not manifest. Nevertheless the gauge covari-
ance~6! is powerful enough to derive the Ward identity as-
sociated with external gauge vertices. The vertex function,
being a gauge current type operatorM5TagmN inserted, is
defined by

^c̄~x!TagmNc~x!&[ (
n51

`
1

n! )
j51

n Fa4 (
xj ,m j ,aj

Am j

aj ~xj !

3E
2p/a

p/a d4pj
~2p!4

eip j ~x2xj !eiapjm j
/2G

3GN
mm1•••mnaa1•••an~p1 ,p2 ,...,pn!,

~7!

where the term independent of the gauge field~n50! identi-
cally vanishes. For example, when the constant matrixN in
Eq. ~7! commutes with the gauge generator, we find1When the gauge group is Abelian, the Wess-Zumino condition is

trivial and gives no constraint. The existence of the covariant
anomaly implies the nonintegrability also in this case because,
0Þd]m

x ^Jm(x)&/(dAn(y))Þ] m
x d^Jn(y)&/(dAm(x))50, where the

left-hand side is the U~1! gauge anomaly and the right-hand side
means the current is covariantly regularized.

2It is equally easy to define, say, the two-point function of baryon-
type composite operators. Note that the present formulation is also
applicable to the vector gauge theory such as QCD.
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pn lim
a→0

GN
mnab~p!50,

2 ipn lim
a→0

GN
mnrabc~p,q!2 f badlim

a→0
GN

mrdc~p!50, ~8!

and higher point identities, by examining a variation of both
sides of Eq.~7! under an infinitesimal gauge transformation.
The second relation is nothing but the covariant convergence
of the gauge current at one of external vertices in the three-
point function. Note, however, that the gauge covariance~6!
itself doesnot imply

i ~pm1qm! lim
a→0

GN
mnrabc~p,q!2 f abdlim

a→0
GN

nrdc~p!50.

~9!

If this relation would hold, it implies the covariant conver-
gence of arbitrary current operators and contradicts with pos-
sible anomalies. The crucial point in this formulation is that
vertices associated with the external gauge field and the ver-
tex of the composite current operator are treated differently.
Thus, in general, lima→0GN

mnrabc is not symmetric under an
exchangem↔n and a↔b. It is this breaking of the Bose
symmetry which allows the manifest gauge covariance of the
formulation. However, as was already noted, the Bose sym-
metry will be restored in the continuum limit when the
theory is free of the gauge anomaly.

To verify the above properties and that the unwanted dou-
blers are really absent in the present formulation, we explic-
itly evaluated some of the vertex functions in the continuum
limit. After a somewhat lengthly calculation using the tech-
nique in@14#, we find that the two-point function is given by

lim
a→0

GN
mnab~p!52

1

48p2 tr T
aTbgmN~p” pn2gnp2!

3F ln 4p

2a2p2
2g1

5

3
14p2S J2

5

24
K D G ,

~10!

whereJ50.0465 . . . andK50.309 . . . arenumerical con-
stants@14#. The Lorentz covariance is restored and there is
no nonlocal divergence in Eq.~10!. Also the quadratically
divergent terms, which are proportional togmn/a2, are can-
celed out, as the Ward identity~8! and the hypercubic sym-
metry indicate. By takingN5PR , Eq. ~10! gives the vacuum
polarization tensor of a right-handed chiral fermion:

Pmnab~p!52
1

24p2 tr T
aTb~pmpn2gmnp2!

3F ln 4p

2a2p2
2g1

5

3
14p2S J2

5

24
K D G .

~11!

It is transverse, as is constrained by the Ward identity~8! and
the logarithmic divergence has the correct coefficient as a
single chiral fermion. Thus we see that the formulation, in
fact, respects the gauge covariance and simultaneously is
free of the species doublers at least in the perturbative treat-
ment.

For the three-point function, we computed the divergence
of the vector and the axial gauge currents:

i ~pm1qm! lim
a→0

G1
mnrabc~p,q!50,

i ~pm1qm! lim
a→0

Gg5
mnrabc~p,q!

5
i

4p2 tr T
a$Tb,Tc%«nrabpaqb . ~12!

Both relations are consistent with the Ward identity and ac-
tually the first of Eq.~12! may be derived solely from Eq.~8!
and a general argument. The second relation should be inter-
preted as the covariant anomaly because of the underlying
gauge covariance: It has the unique covariantized form

Dm lim
a→0

^c̄~x!Tagmc~x!&50,

Dm lim
a→0

^c̄~x!Tagmg5c~x!&5
i

16p2 «mnrs tr TaFmnFrs .

~13!

Therefore, the gauge anomaly of a chiral fermion~note that
PR is inserted in the gauge current! has the covariant form
with the correct coefficient. We also find the correct fermion
number anomaly@15# of a single chiral fermion by substitut-
ing Ta→1 in Eq. ~13!.

We have observed that, besides the manifest gauge cova-
riance ~6!, the present formulation possesses many desired
features at least in the perturbative treatment. At this point
the reader might be wondering if the present formulation is
equivalent to a nonlocal fermion action

S5a4(
x

c̄~x!$h~x!1@gm,gn#

3@Umn~x!21#/~4a2!%
21

iD” ~x!
PRc~x!, ~14!

because it obviously corresponds to the propagator~2!;
hence, the nonlocality leads to some pathology. This inter-
pretation isnot correct. If our formulation is simply based
on the action ~14!, the gauge current would be de-
fined by ^c̄(x)Tagmc(x)&BS[2d ln *Pydc(y)dc(y)eS/
[dA m

a (x)] and the definition obviously respects the Bose
symmetry among all the gauge vertices. As a consequence,
we have the consistent form of gauge anomaly in the con-
tinuum limit which contradicts with the manifest gauge in-
variance of Eq.~14!. As was already argued, we then expect
the doublers or a pathology such as a breaking of the Lorentz
covariance. Our formulation based on the prescription~5!
with M5TagmPR , on the other hand, explicitly spoils the
Bose symmetry but instead respects the maximal background
gauge covariance. The possible gauge anomaly has the co-
variant form. Therefore, two approaches are completely dif-
ferenteven in the continuum limit.

For simplicity of the presentation, we have neglected the
possible Yukawa couplings up to now, which is important in
realistic chiral gauge theories. The generalization of Eqs.~2!
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and~5! is however straightforward. In the continuum theory,
the covariant derivative is generalized asD”[D” RPR
1D” LPL2 iGfRPR2 iGfLPL , with obvious notations. Ex-
pression~1! is therefore replaced by21/~iD” !5iD” †/~D”D” †!
and the following steps are almost identical. The lattice
d’Alembertian~4! may be used for the right-handed and the
left-handed components, respectively.

From the above analyses, the present proposal seems to
provide a gauge covariant~or invariant for a gauge singlet
operator! definition of composite operators without the un-
wanted doublers. We then have to integrate the gauge current
expectation value to construct the fermionic determinant. A
cancellation of the gauge anomaly is the integrability condi-
tion in the continuum limit, as was already noted. However,
this fact is not so useful practically because the analytical
integration is a formidable task and, the continuum limit is
never reached in numerical simulations. Clearly we ought to
study the integrability with afinite lattice spacing@and asso-
ciated modifications of Eqs.~2! and ~5!, if necessary# for
setting up a nonperturbative framework. This analysis is in
progress and will be reported elsewhere. Here, we simply
note that what is needed in the Metropolis simulation is not
the fermionic determinant itself but thedifferenceof the de-

terminant between two gauge field configurations. This is the
lattice analogue of the gauge current expectation value.

However, the integration is not necessary at all if one is
contented with thequenchedapproximation. The application
to numerical simulations is straightforward once having the
lattice fermion propagator such as Eq.~2!. We therefore be-
lieve that our proposal, even in the present form, has a range
of practical application at least within the quenched approxi-
mation.

Note added. After this paper was accepted for publication,
the author was aware that a similar proposal had already
been made@16#. However, the point that we do not assume
the underlying nonlocal action is the crucial difference.
Our consideration also explains why the correct axial
anomaly evaluated from a composite current operator defini-
tion @16# and the correct vacuum polarization tensor are not
reproduced in the corresponding nonlocal action calculations
@17#.
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