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The coupled cluster or exp(S! form of the eigenvalue problem for a lattice Hamiltonian QCD~without
quarks! is investigated. A new construction prescription is given for the calculation of the relevant coupled
cluster matrix elements with respect to an orthogonal and independent loop space basis. The method avoids the
explicit introduction of gauge group coupling coefficients by mapping the eigenvalue problem onto a suitable
set of character functions, which allows a simplified procedure. Using appropriate group theoretical methods,
we show that it is possible to set up the eigenvalue problem for eigenstates having arbitrary lattice momentum
and lattice angular momentum.@S0556-2821~97!02705-7#

PACS number~s!: 11.15.Ha, 12.38.Gc

I. INTRODUCTION AND OVERVIEW

The investigation of the eigenvalue problem for the lattice
QCD Hamiltonian is considered to be an alternative to stan-
dard Lagrangian lattice Monte Carlo QCD, possibly giving
new insight into the structure of such non-Abelian gauge
theories.

For pure SU~3! Yang-Mills theory@1# ~without fermions!
in particular, many attempts have been made to attack the
corresponding Kogut-Susskind Hamiltonian problem: For in-
stance, there exist the strong coupling expansion@2#, the
exp(2tH) method@3#, or variational techniques@4#. Up to
now, none of these approaches could obtain results for ex-
cited states~e.g., glueball masses! comparable in control and
accuracy to those within the Euclidean Monte Carlo method
~there has been, however, some progress for ground states
using the Green’s function Monte Carlo method@5#!.

This also holds for the coupled cluster@exp(S)# method
which attracted special attention in recent years@6–9#.
~Some encouraging results within this framework were ob-
tained recently@10#.! Here the basic idea is to incorporate
manifestly the correct volume dependences of observables
by writing the ground state in the formc05eS and putting
c5Fc0 for excited states. The ‘‘Schro¨dinger’’ equation for
the functionsS andF can be formulated rigorously@6# and it
is tempting to define approximations by a suitable truncation
of a loop space expansion of these quantities@6,7,10#.

It is the purpose of this paper to further elucidate the
structure of this coupled cluster method with the hope that
the resulting insights may lead to improved calculations of
the QCD spectrum.

We will concentrate our considerations on the treatment
of the Kogut-Susskind Hamiltonian as the lattice regulariza-
tion of a SU(n) Yang Mills theory. A discussion of the full
QCD and its treatment within a quenched approximation is
possible, but this will be deferred to a future publication.

We now give an outline of our paper which summarizes at
the same time our methods and our results.

Our basic tools will be group theoretical methods which
will be introduced in Sec. II. The group of the link variables,

the local lattice gauge group, and the lattice Euclidean group
will play a role.

As discussed in Sec. III, projection operators on represen-
tations of the lattice Euclidean group with given lattice mo-
mentum and lattice angular momentum allow one to intro-
duce the notion of an intrinsic wave function related to the
ground state functionS and to the ‘‘excitation operator’’F.

This structure has been used in Refs.@6,7,10# for the
trivial representation; here, we provide a systematic frame-
work for general representations of the lattice Euclidean
group.

The solution of the eigenvalue problem for the Kogut-
Susskind Hamiltonian is then reduced to the determination of
the intrinsic eigenfunctions.

For this purpose, a basis of suitable wave functions is
needed which may be used for an expansion and which al-
lows a computation of the relevant coupled cluster matrix
elements. Within the Kogut-Susskind theory these have to be
functions of the link variables which are invariant under the
action of the local lattice gauge group.

The problem of setting up and handling such a basis in an
effective way is addressed in the Secs. IV–VI. There exist
two strategies for the construction of such basis systems.

~1! Section IV. Choose first a basis for the functions of the
individual link variables given by the standardD functions.
General polynomials of these functions with different link
variables, combined with suitable SU(n) coupling coeffi-
cients, form then the desired basis for the intrinsic hadron~or
vacuum! wave functions. We call this set of functions the
D-loop basis.

Details of this construction have been worked out in Ref.
@11#. An application is the ‘‘exact linked cluster expansion’’
discussed in Ref.@12#.

This method is limited by the necessity to handle an in-
creasing number of SU(n) coupling coefficients.

A clear merit of the procedure is that it provides an inde-
pendent, orthogonal, and~in the limit of increasing polyno-
mial degree! complete basis of physical states.

~2! Section V. An alternative system of physical states is
provided by the set ofcharacter functionscorresponding to
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an expansion in terms of suitable group characters. This ap-
proach was used in the recent calculations within the coupled
cluster method@6,7#. The obvious advantage here is that each
term is manifestly locally gauge invariant, and no coupling
with SU(n) Clebsch-Gordon coefficients is needed. The
problem, however, is that the emerging system of wave func-
tions is in general nonorthogonal andovercomplete.

In Refs.@6–8# the problem of having linear dependences
was solved with the help of a special form of the Cayley-
Hamilton relation for SU(n) matrices. This method, how-
ever, does not appear to be very systematic, and only calcu-
lations with wave functions generated from up to fourth
order plaquette polynomials have been possible up to now.

In Sec. V we will introduce a new procedure for working
with the orthogonal and independentD-loop basis which
combines the above two alternatives by constructing a suit-
able mapping of the character functions on theD-loop basis
avoiding, however, the explicit handling of SU(n) coupling
coefficients. In this framework, the Cayley-Hamilton rela-
tionship in its general form is mainly used for systematically
computing certain norm relations.

Our procedure relies essentially on the following observa-
tions.

~1! TheD-loop functions can, up to a normalization fac-
tor, be uniquely characterized by the eigenvalue pattern of a
certain set of commuting Casimir operators.

~2! The same Casimir operators may be used to generate
suitable subsets of character functions. Hereby, also the ma-
trix elements of these operators are determined.

Diagonalizing these~in general small! Casimir operator
matrices in the space of character functions yields then the
mapping on theD-loop states.

This solves the problem of linear dependences among the
character functions by using the eigenvalue patterns of the
Casimir operators and by computing the relative norms of
the dependent eigenstates with the Cayley-Hamilton relation.

~3! Section VI. The characteristic coupled cluster matrix
elements are easily computed within the~nonorthogonal and
overcomplete! character functions. Using the mapping to the
D-loop basis, the final calculation of the Kogut-Susskind ei-
genvalue problem can be done with respect to this orthogo-
nal basis.

Our procedure yields the usual ordering for the basis
functions@6–10# connected with a Lanczos idea. The prob-
lem of choosing a truncation based on this ordering is out-
lined in the last section, Sec. VII. Here, we also discuss the
general limitations of a truncated calculation in the sense of
a scaling window.

The Appendix contains a complete description of the con-
struction of the mapping between theD-loop functions and
the character functions for the example of the SU~2! Kogut-
Susskind theory in two dimensions up to the third order.
Also the corresponding ingredients for the computation of
the coupled cluster matrix elements are given. These ex-
amples are important for the clarification of our consider-
ations.

Numerical calculations within the presented framework
generalizing the previous attempts@6–10# are on the way and
will be published in the future@17#.

II. GROUP THEORETICAL STRUCTURES

We shall first give the definitions and notations for the
SU(n) lattice Yang-Mills theory, especially its group theo-
retical content.

The general framework was given by Kogut and Susskind
@1#. Accordingly, one has to define a Hilbert spaceH given
by the set of ‘‘top’’ wave functions depending onN link
variables

H5$C~U1 , . . .UN!%, ~1!

where the quantitiesUl ( l51, . . . ,N) are elements of the
gauge group SU(n) andN is the number of oriented links in
a D-dimensional lattice (D is the number of space dimen-
sions!.

As in thermodynamics we shall work with a finite vol-
ume, i.e., with a finite lattice, for definiteness. However, our
computational framework allows one to take an infinite vol-
ume limit (N→`) at any later stage.

The scalar product is given by anN-fold Haar measure
integral.

The group theoretical nature of the link variablesUl gives
as a natural orthogonal and complete basis ofH all N-fold
products of SU(n) D functions; e.g., for SU~2! we have the
functions

D
m1 ,m18

j 1 ~U1!Dm2 ,m28

j 2 ~U2!•••DmN ,mN8

j N ~UN!. ~2!

The group of~time-independent! local lattice gauge transfor-
mations is abstractly given by

Gloc5@SU~n!#M, ~3!

whereM is the number ofsitesof the lattice.
Elements ofGloc are written asg5g(x) wherex denotes

any lattice site. A unitary representation ofGloc onH is then
given by

@r~g!C#~U1 , . . . ,UN!5C~U1
g , . . . ,UN

g !, ~4!

where the link variables are transformed like parallel trans-
porters,

Ul
g5g~x!Ulg

21~x1eej !, ~5!

if the link l5(x,ej ) connects the sitesx andx1eej (e is the
lattice spacing, andej is a positive unit vector in thej direc-
tion!.

The physical Hilbert space is defined by the subspace of
H corresponding to the trivial part of the decomposition of
the representationr, i.e., by the gauge-invariant states

Hphys5$CPHur~g!C5C for all gPGloc%. ~6!

A systematic construction of a basis ofHphys generalizing
Refs. @11,7# will be the main topic of this paper and is de-
scribed in Sec. IV.

We want to impose on this basis the classification of be-
ing characterized by the irreducible representations of the
lattice Euclidean group, which is a strict symmetry group of
the lattice Kogut-Susskind Hamiltonian. The lattice Euclid-
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ean group is a discrete remnant of the standard continuum
Euclidean group and is defined as follows:

Let

Rlatt
D 5H x5e(

j51

D

njejUnj5 integerJ ~7!

be the set of lattice sites of an infinite lattice. The lattice
translation groupGlt is then isomorphic toRlatt

D and given by
the mapping ofRlatt

D :

x→x1a ~8!

for anyaPRlatt
D . The lattice rotation groupGLR is the restric-

tion of the groupO(D) leavingRlatt
D invariant. We callGLR

the cubic group@13#; it is discrete and has 8 elements for
D52 and 48 elements forD53. The structure of this cubic
group and its representations are well known@13#. The lat-
tice Euclidean groupGE is then the semidirect product
GE5GLR^ sGLT defined foru5(R,a)PGE by the mapping
of Rlatt

D :

x→ux5Rx1a. ~9!

Since the mappingsu may change the orientation@i.e., it may
be that det(R)521], the groupGE acts on the set of links
with both orientations. We use the notation
l5( l ,s),s561 for these generalized links:

( l ,1) stands for the links with the originally chosen orien-
tation; i.e. they have the structure (l ,1)5(x,ej ), connecting
x to x1eej (xPRlatt

D ) whereej is positive.
( l ,21)5(x1eej ,2ej ) connects thenx1eej to x.
Writing l5(x,cj ) for a general link,cj being a positive

or negative lattice unit vector, the action ofu5(R,a)PGE is
simply given by

l→ul5~ux,Rcj !. ~10!

This allows us to define a unitary representationT of the
lattice Euclidean groupGE on the Kogut-Susskind wave
functions as a combination of the corresponding permutation
of the link variables and the mappingU→U21 if the link in
question is reoriented: IfC depends on the variables
Ul1

, . . . ,Ulr
and if we put u( l a,1)5(na ,sa)

(a51, . . . ,r , sa561), thenT(u)C depends on the vari-
ablesUn1

, . . . ,Unr
and we have

@T~u!C#~Un1
, . . . ,Unr

!5C~Ul1

s1, . . . ,Ulr

sr !. ~11!

As in the formal continuum limit, the operatorsT(u) com-
mute with the Kogut-Susskind Hamiltonian for alluPGE .

We now construct projection operators on subspaces of
H or Hphys corresponding to specific irreducible representa-
tions ofGE .

For translations we have a ‘‘lattice momentum projec-
tion’’

PLT~p!5 (
aPRlatt

D
e2 ia j pjT~R51,a!, ~12!

where pPRD is restricted to the first Brillouin zone
(2p<epj<p).

If dn,n8
G denote theD functions for the irreducible repre-

sentations~including inversions! of the cubic groupGLR
@13#, a projection on ‘‘lattice angular momentum’’G is given
by

PLR~G;n,n8!5 (
RPGLR

dnn8
G

~R!T~R,a50!. ~13!

By construction these definitions guarantee for anyCPH
the characteristic relations

T~1,a!PLT~p!C5eip jajPLT~p!C,

T~R,0!PLR~G;n,n8!C5(
n9

dn,n9
G

~R!PLR~G;n9,n8!C.

~14!

A combination of both projections yields states with ‘‘good’’
momentum and angular momentum in the sense that we
have, for

Cnn8
Gp

5PLT~p!PLR~G,nn8!C, ~15!

the relations

T~1,a!Cnn8
Gp

5eip jajCnn8
Gp ,

T~R,0!Cnn9
G,p

5(
n88

dnn9
G

~R!Cn9n8
G,Rp. ~16!

The basic problem of a ‘‘lattice Yang-Mills theory’’ is then
to find in Hphys ~approximate! eigenfunctions of the type
Cnn8

Gp of the Kogut-Susskind Hamiltonian @1#
HKS5(g2/2e)H with

H5ElaEla2xV, V5(
h

xh , x5
2

g4
, ~17!

where g is the coupling constant anda is a color index
(a51, . . . ,n221). Summation over repeated indices is al-
ways assumed;h labels the plaquettes, andxh is given by

xh :5trUl1

s1Ul2

s2Ul3

s3Ul4

s4, ~18!

whenh5( l 1 ,s1 , . . . ,l 4 ,s4). The ‘‘color-electric field op-
erators’’Ela generate, in analogy to the standard momentum
operator, a left multiplication of group elements in the argu-
ments of the wave functions. They are quantum operators
conjugate to the link operatorsUl obeying the commutation
relations

@Ela ,Ul 8#5d l l 8l
aUl , ~19!

where the SU(n) generatorsla are normalized according to
trlalb5dab/2.

III. EXP S METHOD AND INTRINSIC WAVE FUNCTIONS

A motivation for the introduction of the coupled cluster or
expSmethod is given by the following considerations.
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Given a HamiltonianH, a standard and often successful
method to get the approximate spectrum of the low-lying
energy states is provided by the Lanczos approach: Choose
some trial statef and diagonalizeH restricted to the finite-
dimensional space spanned by (f,Hf,H2f, . . . ,Hnf).
There are many cases where this gives reliable results ifn is
large enough.

However, for our lattice Yang Mills case, this procedure
is doomed to fail@14# because we have here a situation
analogous to nuclear matter, for instance. In the infinite vol-
ume limit (N→`), where we want to formulate our ap-
proach, the ground state energyE0 and excitation energies
E2E0 of HKS have the behavior

E0}N, E2E0}1. ~20!

Also the ground state wave function displays a characteristic
‘‘pathology’’ in sense that its norm~defined by theN-fold
Haar measure integral! has an essential singularity for
N→`. Its precise structure will be given below; within per-
turbation theory, it is related to the appearance of discon-
nected diagrams.

It has been known for a long time that this difficulty is
cured by rewriting the eigenvalue problem within the expS
framework~see Ref.@15# for the standard many-body theory
and Ref.@16# for the Kogut-Susskind theory!.

For our case, the method consists of introducing theAn-
sätze

C0~U !5exp@S~U !# ~21!

@U5(U1 ,..,UN)# for the ground state and

C~U !5F~U !exp@S~U !# ~22!

for excited states.
The mentioned ‘‘pathology’’ of the ground state consists

then in the fact that we have the norm relationuSu2}N for
the functionS(U) appearing in the exponent with respect to
C0.

The validity of these volume dependences is related to a
characteristic linked cluster structure ofS(U) and F(U),
which follows from rewriting the Schro¨dinger equation in
terms of these functions, resulting in the nonlinear equation

Smm1SmSm2xV5E0 ~23!

for S and in the linear equation

Fmm12SmFm5~E2E0!F ~24!

for the excitation operatorF.
Here, we use the abbreviation

m5~ l ,a! ~25!

for link-color quantum number and the notation

f m5@Ela , f #, f mm5@Ela ,@Ela , f ## ~26!

for any functionf (U).
Note that the ‘‘coupled cluster equations’’~23! and ~24!

are still rigorous.

The linked cluster structure of the functionsS(U) and
F(U) follows from the fact that they may be expressed with
the help of the projection operators~12! and ~13! as in Eq.
~15! in terms of ‘‘intrinsic’’ functions. These intrinsic func-
tions are given by linked clusters and are defined as follows.

Suppose thatFC0 describes a state with Euclidean quan-
tum numbers (p,G,n,n8) @see Eq.~15!#. We then writeF
andS in the form (S has to have trivial quantum numbers!

F~p,G,n,n8!5PLT~p!PLR~G;n,n8!F int~p,G,n,n8!,

S5P0Sint , P05PLT~0!PLR~0,0,0!. ~27!

If FC0 corresponds in the continuum limit to abound state,
we expect thatF int may be chosen to describe alocalized
state. This is analogous to nonrelativistic many-body theory
where bound states can be separated into square integrable
functions of the relative coordinates and an overall center-of-
mass motion, described here with projection operators.

In analogy to nuclear matter, for instance, the same local-
ization holds true for the vacuum functionSint because cor-
relations have a finite range.

The validity of these properties of the intrinsic functions
is seen below through the structure of the expansion of these
functions in terms of a localized basis, i.e., a basis oflinked
clusters.

We shall first characterize this basis through its general
properties and then describe the concrete construction in
Secs. IV and V.

We call the basis

xa~Ul1
, . . . ,Ulma

!, a51,2,3,. . . , ~28!

and impose the following conditions:~1! xa should be gauge
invariant; ~2! xa should be ‘‘linked’’ ~see Sec. V for the
precise definition!; a main consequence is thatma is finite
for any a, though not limited;~3! xa should be ‘‘standard-
ized’’; i.e., the equation

T~u!xa5lxb~uPGE! ~29!

should only have solutions fora5b; ~4! xa should be a
strong coupling eigenfunction, i.e.,

(
a

El ,aEl ,ax
a5ea,lx

a. ~30!

It will be convenient to specifyx1 as the ‘‘plaquette func-
tion’’ by putting @see Eq.~17!#

P0x
154~D21!V ~31!

and to distinguish the constant function via

x051 . ~32!

x0 fulfills the relation

P0x
05s0Nx0, ~33!

where the symmetry factors05uGLRu is equal to 8 and 48 for
D52 and 3, respectively.
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Simplifying Eq.~27! by writing F5PF int and introducing
the functionsS̃(S) and F̃(S,F) by

~P0Sint!m~P0Sint!m5P0S̃, ~PF int!m~P0Sint!m5PF̃,
~34!

the coupled cluster equations~23! and ~24! can be rewritten
as

~Sint!mm1S̃2
x

4~D21!
x15

E0

s0N
,

~F int!mm12F̃5~E2E0!F int . ~35!

The ‘‘linked cluster theorem’’ for our lattice Yang-Mills
theory consists then in the statement that, if~for N→`) we
have the norm relationuSintu,uF intu}1, we have alsouS̃u,uF̃u
}1.

The norm relations forSint andF int are fulfilled because of
their localized nature; those forS̃,F̃ follow, then, as a result
of the fact that the ‘‘derivative’’SmFm selects only linked
clusters. We shall prove this structure by suitable expansions
in terms of the linked cluster basis~28!.

Introducing the summation conventions

(
a

5 (
a51,2, . . .

, (
a

8 5 (
a50,1,2, . . .

, ~36!

the expansions of the intrinsic wave functions read~specify-
ing again the Euclidean quantum numbers!

Sint~U !5(
a

Saxa~U !,

F int~p,G,n,n8;U !5(
a

8 Fa~p,G,n,n8!xa~U !. ~37!

The coupled cluster equations~23! and ~24! may then
equivalently be formulated as equations for the coefficients
Sa andFa(p,G,n,n8):

eaSa1(
b,g

Ca
bgSbSg5

x

4~D21!
da11

E0

s0N
da0 , ~38!

eaFa~p,G,n,n8!

12 (
b,g,n1

8 Ca
bg~p,G,n1 ,n8!SbFg~p,G,n,n1!

5~E2E0!Fa~p,G,n,n8!,

ea5(
l

ea,l . ~39!

The crucial quantities in these equations are the coupled
cluster matrix elementsCa

bg andCa
bg(p,G,n1 ,n8) defining

the expansion of the functionsS̃ and F̃, respectively, which
are obtained as follows.

Determine first the set of numberscau
bg (uPGE) defined

by

(
uPGE

xbT~u!xg5(
a,u

8 ca,u
bg T~u!xa ~b,gÞ0! ~40!

for all cases where the functionsxb and T(u)xg have a
common link variable. This yields, then,

Cg
ab~p,G,n,n8!5 1

2 ~eg2ea2eb!

3 (
u5~R,a!

cg,R,a
ab dnn8

G
~R21!e2 ip jaj ,

Cg
ab5Cg

ab~0,0,0,0!. ~41!

A proof hereof is given in the Appendix~subsection 1!. The
linked cluster theorem guaranteeing the correct volume de-
pendences of the relevant quantities discussed above is now
given by the fact that, due to the localized nature of the
functionsxa, the right-hand side~RHS! sums in Eqs.~40!
and ~41! run only over a finite number of terms.

The coupled cluster equations~38! also have the property
that approximate solutions generated by truncations~see,
e.g., Refs.@6,7#! display correctly all relevant volume depen-
dences.

The important task is now to compute the matrix elements
cau

bg, for which one needs an efficient and systematic way to
set up and handle the basis elementsxa.

IV. D-LOOP BASIS

An orthogonal basis of functionsxa has been constructed
in Ref. @11#: For simplicity, we will formulate the method for
SU~2! andD52, but the generalization is obvious, though
technically more difficult.

Supposexa (a fixed! depends on the link variables
(Ul1

, . . . ,Ulr
). This basis function is then, up to a normal-

ization factor,uniquelycharacterized by the following set of
angular momenta.

~1! We have a set (J1 , . . . ,Jr), i.e., one~half integer!
angular momentum for each link.

~2! We have an angular momentumJab5Jcd for each
quadruplet of linksl a , . . . ,l d forming a four-point vertex in
the link pattern (l 1 , . . . ,l r). Here the convention is that the
links (l a ,l b) are oriented such that they are going into, and
( l c ,l d) are leaving, the common site.

These angular momentum quantum numbers are con-
strained byJa5Jb if ( l a ,l b) form a two-point vertex and by
the condition that the couplingJa1Jb→Jc should be pos-
sible if (l a ,l b ,l c) form a three-point vertex.

For instance, puttingr57 and choosing the link pattern
of Fig. 1, one has just three angular momenta

FIG. 1. Link pattern of theD-loop functions~42!. The numbers
indicate the enumeration of the link angular momenta
(J1 , . . . ,J7).
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@J1(5J25J3),J4(5J55J6),J7# yielding the basis elements
@a5(J1 ,J4 ,J7)#

xa5 (
M1 , . . . ,M10

DM1 ,M2

J1 ~U1!DM2 ,M3

J1 ~U2!DM3 ,M8

J1 ~U3
21!

3S J1 ,J7 ,J4
M8 ,M10,M4

DDM7 ,M10

J7 ~U7!S J1 ,J7 ,J4
M1 ,M7 ,M9

D
3DM4 ,M5

J4 ~U4
21!DM5 ,M6

J4 ~U5
21!DM6 ,M9

J4 ~U6!. ~42!

We call this orthogonal set of functions the ‘‘D-loop basis.’’
In view of the construction of a mapping between this

basis and the character functions~see below!, it is convenient
to rephrase the characterization of these states in the follow-
ing way. For anyxa5xa(Ul1

, . . . ,Ulra
) (a fixed! there ex-

ists a characteristic~finite! set of commuting operators
(A1 , . . . ,AMa

) with the property that

Alxa5alxa ~43!

and such that the statexa is uniquelycharacterized by the
eigenvalues (a1 , . . . ,aMa

).

In the case SU~2! andD52, these operators are given by
a combination of the two sets

(
a

ElaEla , l5 l 1 , . . . ,l ra
, ~44!

and all operators

(
a

~Eba1Eca!~Eba1Eca!, ~45!

which fulfill the condition that (b,c) are ingoing links of a
four-point vertex in the link set related toxa.

The more general case may be extracted from Refs.
@11,12#. Important for our purpose is that eachAl is a Ca-
simir operator of the local lattice gauge groupGloc , i.e., it is
a certain polynomial in the operatorsEl ,a of the type given
above. For SU~3!, two generalizations have to be taken into
account: The third order Casimir operators have to be added
to the set~43!. In addition, suitable permutation operators
have to be included if the SU~3! Clebsch-Gordan decompo-
sitions generalizing Eq.~42! have the property that the same
irreducible representations occur several times.@For SU~2!,
an example for the definition of such a permutation operator
is given in the Appendix~subsection 3!.#

In Ref. @12# this framework was used for estimating ob-
servables within the ELCE method, but higher order calcu-
lations were limited by the necessity to handle an increasing
number of SU(n) couplings. Also it should be mentioned
that in Refs.@11,12# the linked cluster form of the lattice
Yang-Mills many-body problem was taken into account
within a different computational framework.

V. THE SET OF CHARACTER FUNCTIONS

An alternative for the construction of a basis avoiding the
explicit handling of SU(n) couplings and allowing an easy
computation of the coupled cluster matrix elements is related

to an expS generalization of the Lanczos idea and was pur-
sued in Refs.@6–10# for trivial representations of the Euclid-
ean group. We think that this is indeed the most convenient
starting point for defining the basis and we will pursue this
idea in detail in this paper.

We will define this method here systematically in such a
way that it allows the computation of arbitrary Euclidean
representations and also a transition to the independent, or-
thogonalD-loop basis. This yields especially a simple way
of eliminating linear dependences.

The basic idea of Refs.@6–10# is to work with the general
set of loop space functions given by the algebra of all char-
acters related to closed lattice loops, i.e., to work with linear
combinations of functions of the type

)
j51

r

tr~Ul j1

s j1
•••U

l jmj

s jmj!, ~46!

which are defined in terms of loopsL1 , . . . ,Lr given by
certain sets of generalized connected links:

L j5~ l j1 ,s j1 , . . . ,l jmj
,s jmj

!. ~47!

The simplest example is the plaquette function~18!; more
examples will be given below, especially also in Figs. 2 and
4 and in the Appendix~subsection 2!.

The clear merit of these functions is that they are mani-
festly gauge invariant and that a product decomposition of
the type~40! can be easily worked out; their deficiency is
that they are neither orthogonal nor linear independent.

In Refs. @6–10# linear-independent subsets were selected
by using the Cayley-Hamilton relationship which yielded
nonorthogonal basis elements which were no strong coupling
eigenstates@i.e., Eq.~30! was not fulfilled which invalidates
the possibility of leaving out in Eq.~40! the derivatives
present in the original coupled cluster equations~23! and
~24!; see the Appendix~subsection 1!#.

Here we will follow a new and hopefully more systematic
strategy by relating the character functions~46! to the
D-loop basis of Sec. IV~which are strong coupling eigen-

FIG. 2. Loop structure of the generic character functionsLG
d,k

@see Eq.~49!# up to orderd53 for SU~2!.
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states! by diagonalizing simultaneously the commuting op-
eratorsAl @Eq. ~43!#. This is possible because the matrix
elements of these operators, being of the type of second~or
perhaps third! order derivative@see Eqs.~44! and~45!#, may
be computed with respect to the character functions using the
commutation rules~19!, the product rule of differentiation,
and the standard property of the SU(n) generatorsla:

(
a

l i j
al i 8 j 8

a
5
1

2 S d i j 8d j i 82
1

n
d i jd i 8 j 8D . ~48!

We describe now this construction of theD-loop basis in
terms of the character functions in detail and start with the
introduction of a systematicordering of the character func-
tions ~46! related to a Lanczos iteration of the product de-
composition in Eq.~40! ~see@6–8#!.

A. Generic functions

First, we introduce the set of ‘‘generic’’ functions

LG
d,kd51,2, . . .k51,..,nd , ~49!

of d-fold linked, standardized plaquette products.
d is the ‘‘order’’ of the functionLG

d,k . In first order we
haven151 and the character~49! is the plaquette function
LG
1,15x1.
Generally, we have the structure that for each

(d,k), d>2, there exist Euclidean group elements
u2 , . . . ,ud @depending on (d,k)# such that
LG

d,k5x1T(u2)x
1 . . .T(ud)x

1.
For SU~2!, all occurring plaquettesT(ur)x

1 should have
the same orientationbecause we have trg5tr(g†) in this
case.

For D52, we have, for SU~2!, nd51,2,4 and for SU~3!,
nd51,4,12 up to third order. Figure 2 gives the correspond-
ing loop patterns of the functions~49! for SU~2!.

The relevance of this set of functions is twofold.
~i! They determine, using just combinatorics, the possible

elements of theD-loop basis occurring at orderd. They are
given by the geometry of the link patterns of the generic set
and by the condition that the eigenvalues of the ‘‘link’’ Ca-
simir operators~44! should be consistent with the coupling
rules of as many fundamental representations~and its ad-
joint! as there exist common links. Hereby, a double count-
ing with lower order states has to be avoided.

Figure 3 exemplifies the related elements of theD-loop
basis for SU~2! and D52 up to d53. Hereby, the basis
elements are characterized by their link patterns~in analogy
to Fig. 1! and by the eigenvalue patterns of the relevant
Casimir operators~43!.

Note that this gives theD-loop basis functions the natural
quantum numbers (d,k,n) where n counts different states
related to the same generic functionLG

d,k .
~ii ! The functions ~49! are generic in analogy to the

‘‘maximum weights’’ occurring in the representation theory
of compact Lie groups in the following sense.

B. Casimir subspaces

The application of the relevant Casimir operators gener-
ates from the statesLG

d,k (d,k fixed! characteristic ‘‘Casimir

subspaces’’ of finite~in general small! dimensionM (d,k);
i.e., one can find character functions

Ld,k,n, n51, . . . ,M ~d,k!, ~50!

with Ld,k,15LG
d,k , spanning subspaces such that the evalua-

tion of the relevant Casimir operators on these states mixes
only the states with fixed (d,k). ~In principle, this is true for
all Casimir operators of the local lattice gauge group, but
only a finite set is relevant.! Consequently, with respect to
the states~50! the relevant Casimir operators are reduced to
M3M matrices

AlLd,k,n5 (
n851

M ~d,k!

An8
n

~l,d,k!Ld,k,n8. ~51!

Invoking the product rule and eliminating the resulting
SU(n) generators with the help of Eq.~48! yields for the

FIG. 3. SU~2! D-loop basis functionsxd,k,n characterized by the
link patterns and the related relevant Casimir eigenvalue patterns
which are generated up the orderd53. If more than one unequal
angular momentum occurs, the related links are enumerated in the
link patterns and indicated in that order in the eigenvalue patterns.
Angular momenta which correspond to unmarked links are placed
behind the marked ones. Upper indices stand for the degeneracy of
the angular momenta. Ford53, k53 or 4 all angular momenta
which are not specified are equal to12. For (d,k)5(3,4), the third
angular momentum is given by the ‘‘intermediate’’ coupling
j11 j2 @Eq. ~45!#. The last column gives the linear-dependent
D-loop functions emerging up to this order. The orientation of the
links is not marked; it may be taken analogously to Fig. 1.
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loop structure of the subspaces~50! (d,k fixed! the simple
geometrical condition that they are generated from the
plaquette systems of the generic functions~49! by ‘‘cutting
and gluing’’ doubly occurring links. Up to third order, the
related SU~2! loop structures forD52 are given in Fig. 4. In
the Appendix ~subsection 2!, the validity of the asserted
property of the spaces~50! is demonstrated for these ex-
amples by working out the Casimir matrices~51!.

Note that the sets~50! may also contain elements of lower
order if they occur during the cutting and gluing procedure.
Also a standardization is not introduced. This is convenient
since this makes the ‘‘Casimir matrices’’~51! especially
simple. Note also that the rangeM (d,k) of the quantum
numbern in Eq. ~51! is in generallarger than the corre-
sponding range of theD-loop basis statesxd,k,n.

C. D mapping

In order to relate the loop space functions~50! to the
D-loop basis, one has to diagonalize the Casimir matrices
~51!, giving the eigenfunctions

wn~d,k!5(
n8

Cn8
n

~d,k!Ld,k,n8, ~52!

obeying

Alwn~d,k!5al~n,d,k!wn~d,k!. ~53!

For the SU~2!, D52 cases up to third order, this diagonal-
ization is worked out in the Appendix~subsection 2!. This
yields examples for the following general structure of the
mapping to the basis functionxa.

With a suitable enumerationā(n,d,k) one may identify

wn~d,k!5N~n,d,k!T„ū~n,d,k!…xā~n,d,k!. ~54!

Hereby, linear dependences are eliminated by the identifica-
tion prescription

ā~n,d,k!5ā~n8,d8,k8!⇔al~n,d,k!

5al~n8,d8,k8! for all l. ~55!

Also, one has to putwn(d,k)50 if one of the eigenvalues
al(n,d,k) is incompatible with the known possible eigenval-
ues of the Casimir operators@see the Appendix~subsection
2! for examples#.

Of course, the equality of the eigenvalue patterns as in Eq.
~55! guarantees the equality of the corresponding eigenfunc-
tions only up to a~nonzero! factor N(n,d,k) and up to a
Euclidean transformationT„ū(n,d,k)….

For the computation of the normalization factors
N(n,d,k) we observe that within our exp(S) framework~in-
cluding a possible truncation! it is not necessary to work
with basis states which are normalized to 1. Hence only the
relative factors are needed; i.e., we may putN(n,d,k)51 if
theD-loop functionxā (n,d,k) occurs for the first time when
increasing the orderd. Also we may set for this first case
ū(n,d,k)51. As a result we may find for each numbera an
eigenfunction~52! characterized by„d̄(a),n̄(a),k̄(a)… de-
fining an expansion of the elements of theD-loop basis in
terms of the character functions

xa5(
n8

Cn8
n̄ ~a!

„d̄~a!,k̄~a!…L d̄ ~a!, k̄ ~a!,n8. ~56!

For each (d,k), the matricesCn8
n (d,k) may be inverted,

yielding with Eq.~58! the inverse mapping

Ld,k,n5(
n8

Dn8
n

~d,k!N~n8,d,k!T„ū~n8,d,k!…xā~n8,d,k!.

~57!

See again the Appendix~subsection 2! for examples.
Equations~56! and~57! constitute a mapping between the

D-loop basis and the character functions, called ‘‘D map-
ping,’’ in a form which is sufficient for the computation of
the coupled cluster matrix elements~40!.

We still have to give a recipe to compute the~relative!
normalization factorsN(n,d,k). In principle, they could be
determined by evaluating Haar measure integrals. This can
be avoided, however, by rewriting the stateswn(d,k) in a ~up
to the normalization factors! unique form by using the usual
procedure of eliminating linear dependences via the Cayley-
Hamilton relations@6–10#

trg†5trg ~58!

g25gtrg21 @gPSU~2!# ~59!

FIG. 4. Loop structure of the functionsLd,k,n @see Eq.~50!# up
to orderd53.
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and

trg25~ trg!222trg†, ~60!

g35g2trg2gtrg†11 @gPSU~3!#. ~61!

This allows us to introduce a standardization of the functions
Ld,k,n by eliminating for SU~2! @SU~3!# all structures of the
type trgng8 with n>2 @n>3#. For this purpose, Eqs.~59!
and~61!, respectively, have to be iterated, yielding formulas
of the typegn5ag21bg1c wherea,b,c are polynomials in
trg and trg†. @For SU~2!, a50 andb,c become polynomials
in trg only.#

For SU~3! and n52, also terms of the type trg2 in Eq.
~46! may be standardized with the help of Eq.~60!. @See the
Appendix ~subsection 2! for examples.#

VI. COUPLED CLUSTER MATRIX ELEMENTS

The loop space character of the functionsLd,k,n allows us
to compute the coupled cluster matrix elementsca3 ,u

a1 ,a2 in Eq.

~40! in two steps.

A. Incorporation of the Euclidean group

The first step is to incorporate the Euclidean group in the
product decomposition of Eq.~40! on the level of the~non-
orthogonal and overcomplete! character functions~50! by
computing the coefficientshg3 ;u,v

g1 ,g2 (u,vPGE) given by

Lg1T~u!Lg25 (
g3 ,v

hg3 ;u,v
g1 ,g2 T~v !Lg3. ~62!

Here, we introduced the abbreviation (d,k,n)5g, and the
character functionsLg1 andT(u)Lg2 have to fulfill the re-
striction that they arelinked; i.e., they should have a com-
mon link variable. Also the trivial functionL0,1,15x0 should
be left out on the left-hand side.

The following structures resulting directly from the loop
space nature of the functionsLg simplify the determination
of theseh coefficients@see the Appendix~subsection 4! for
examples#.

~a! There is only one nonvanishing term on the RHS of
Eq. ~62!. If hg3 ;u,v

g1 ,g2 is nonvanishing, it is equal to 1. In this

case we call the corresponding statesLg1, Lg2, andLg3

nontrivially connected.
~b! For each tripleLg1, Lg2, and Lg3 of nontrivially

connected character functions we have a characteristic set of
Euclidean group elementsul andvl such that

Lg1T~ul!Lg25T~vl!Lg3, l51,..,n~g1 ,g2 ,g3!.
~63!

The determination of these elementsul andvl is now sim-
plified by the following structure.

Suppose we have found all solutionsul and vl for a
nontrivially connected triple ofgeneric functions

LG
d1 ,k1T~ul!LG

d2 ,k25T~vl!LG
d1 ,k1. ~64!

If vl is suitably chosen, we have then for eachLd1 ,k1 ,k1 and
Ld2 ,k2 ,k2 a functionLd3 ,k3 ,k3 so that they are nontrivially
connected with the same set of Euclidean group elements as
in Eq. ~63! and this exhausts all possibilities.

Given the generic functions of the RHS of Eq.~64! and
k1 andk2, the third character functionfd3 ,k3 ,k3 is then de-
termined by findingjust onepair (uv) solving Eq.~62!.

Up to third orderd353, a full computation of allh co-
efficients is presented in the Appendix~subsection 4!.

B. Computation of the c coefficients in Eq.„40…

Having solved the ‘‘combinatorial’’ problem of determin-
ing the coefficients of Eq.~62!, one may compute the quan-
tities ca,u

a1 ,a2 by writing Eq. ~62! in terms of the orthogonal
and independent basisxa with the help of Eqs.~56! and~57!.
Writing ḡ(a)5„d̄(a),k̄(a),n̄(a)… and recalling Eq.~54! for
the definition of the functionū(g) we obtain, as a final result
for the crucial coupled cluster matrix elements~40!,

ca3 ,u
a1 ,a25 (

vPGE
(

g1 ,g2 ,g3
(

g4 with ā ~g4!5a3

3Cg1

ḡ ~a1!Cg2

ḡ ~a2!N~g4!hg3 ;u,v ū~g4!21
g1 ,g2 Dg4

g3. ~65!

VII. DISCUSSION AND CONCLUSION

The coupled cluster formulation of Hamiltonian lattice
QCD needs an efficient method to deal with suitable basis
systems of loop space functions. Within this paper we have
demonstrated that it is possible to combine the merits of a
D-function basis, used within the ELCE framework@12#
with those of the character sets used within recent coupled
cluster attempts@7,6# without facing the respective deficien-
cies.

The merits are the orthogonality of the basis in the first
case, the close relation to the Lanczos method, and the easy
computability of the coupled cluster matrix elements in the
second case.

The deficiencies are the need of handling too many SU
(n) recoupling coefficients for the computation of the Hamil-
tonian matrix elements when usingD functions, and the non-
orthogonality and linear dependence of the states when using
the character functions.

Our combination is based upon the simple idea that the
D-function basis may be characterized by the quantum num-
bers of a complete set of commuting operators. These opera-
tors are the Casimir operators of the local lattice gauge group
@for the gauge group SU~3!, also certain permutation opera-
tor have to be included# and our method relies on the fact
that these commuting operators~where only a finite set is
relevant for any specific case! may be evaluated as finite
matrices with respect to the character functions. This allows
the construction of a systematic mapping between the two
frameworks.

Invoking the lattice Euclidean symmetry of the regular-
ized gauge field theory and systematizing the action of this
symmetry group, we were also able to formulate the coupled
cluster lattice Hamiltonian eigenvalue problem for eigen-
states with arbitrary lattice momentum and lattice angular
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momentum. The whole formulation may be done in the infi-
nite volume limit.

For any concrete calculation of the spectrum, a truncation
prescription has to be defined. This point has been much in
dispute previously@6–8,10#. Here we want to stress the fol-
lowing points in connection with this problem.

~1! In principle, several strategies have to be tried in order
to find the ‘‘best’’ truncation. The ultimate criterium for the
quality should be that higher orders become small. This
makes higher order calculations most important.

~2! The prescription of Guoet al. @10# seems very prom-
ising. In our notation this truncation is defined by putting, in
orderd,

ca3 ,u
a1 ,a250 for d11d2.d, ~66!

wherea j5ā(d j ,kj ,n j ) ( j51,2,3). This prescription limits
the expansions~37! to the orderd. In Ref. @10#, a rather
successful, up to fourth order calculation was done with this
truncation for aO1 glueball with zero momentum.

~3! In nonrelativistic many-body theory, the standard trun-
cation prescription is given byprojectingthe coupled cluster
form of the eigenvalue equation on a suitablefinite set of
orthogonalHilbert space states@15#. Hereby, the set of all
states has to be ordered and the finite set used in the projec-
tion becomes larger and larger with increasing order, ex-
hausting in the limit the whole Hilbert space.

This method is also well defined for the case of our
Kogut-Susskind theory@9#. Within our formulation a natural
choice for ordered sets of states would be theD-loop func-
tions. Because of their orthogonality and because our formu-
lation of the coupled cluster equations is in terms of an ex-
pansion in theseD-loop functions, the computation of the
projections~in terms of anN-fold Haar measure integral! is
trivial. As a result we obtain in this case the truncation pre-
scription, in orderd,

ca3 ,u
a1 ,a250 for d1 , d2 , or d3.d. ~67!

In Ref. @6# a similar method was introduced using, however,
a nonorthogonalloop space basis. The experience of stan-
dard many-body theory is that the orthogonality is essential
@15# so that Eq.~67!, defined in terms of theD-loop basis,
possibly improves the results of Ref.@6#.

We want to stress that any truncated coupled cluster cal-
culation ~which is formululated in the infinte volume limit!
will have the same limitations as any~finite volume! stan-
dard lattice Monte Carlo computation, namely, that at best
one has to hope for a scaling window indicating consistency
with respect to the predicted renormalization group structure
which has to be displayed by any observable when approach-
ing the continuum limit.~This structure is still unclear within
Ref. @10# which gives the ‘‘best’’ coupled cluster results up
to now.!

The reason for this expected scaling window is given by
the fact that the truncation, which has to be defined with
respect to an expansion of theintrinsicwave functions of the
vacuum and of the hadron, necessarily limits the possible
lattice volume over which the physical states may extend.
Consequently, when the physical lattice scale is set by
choosing the couplingg, the method has to break down

when the physical lattice volume, given by the truncation or
by the number of lattice points in the standard lattice Monte
Carlo case, becomes smaller than the size of the hadron@16#.

A systematic numerical analysis of these points is, of
course, needed. Concrete calculations in this direction are on
the way and will be reported in the future@17#.

Finally we want to mention that our computational frame-
work may, in principle, be easily extended to include fermi-
ons. Especially, a formulation for Wilson fermions within a
quenched approximation yields equations whose treatment
appears to be no more complicated than that for glueballs.
Details of this structure will be reported elsewhere.
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APPENDIX

1. Proof of Eq. „37…

Introducing the abbreviation

Dn,n8
p,G

~R,a!5dnn8
G

~R!eip jaj , ~A1!

the expansion ofFmSm according to Eqs.~27! and~34! yields
the relevant terms

@PLT~p!PLR~G;n,n8!xa#m~P0x
b!m

5 (
u1 ,u2PGE

Dn,n8
p,G

~u1!@T~u1!x
a#m@T~u2!x

b#m

5 (
u1 ,u2PGE

Dn,n8
p,G

~u1!@T~u1!x
a#m@T~u1!T~u1

21u2!x
b#m

5(
u1

Dn,n8
p,G

~u1!T~u1!F(
u

xm
a~T~u!xb!mG . ~A2!

The derivatives in the quantity(uxm
a@T(u)xb#m may be

evaluated by using the ‘‘total angular momentum’’
E25(mEmEm which commutes with any Euclidean operator
T(u). Invoking the product rule and the strong coupling
eigenfunction properties~30! and~39! of the basisxa yields,
with the definition~40!,

(
m,uPGE

xm
b@T~u!xg#m5( 8

a,u
c̃a,u

bg T~u!xa

c̃a,u
bg 5 1

2 ~ea2eb2eg!ca,u
bg . ~A3!

Hereby, the functionsxb andT(u)xg may be restricted to
the cases where they display a common link variable because
otherwise the derivatives yield zero. Inserting Eq.~A3! into
Eq. ~A2! gives the final result~41!:
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@PLT~p!PLR~G;n,n8!xa#m~P0x
b!m

5(
u1

Dn,n8
p,G

~u1!T~u1!(
u,g

c̃g,u
a,bT~u!xg

5(
u,g

c̃g,u
a,b(

u1
Dn,n1
p,G ~u1u!Dn1 ,n8

p,G
~u21!T~u1u!xg

5(
n1

PLT~p!PLR~G;n,n1!(
u,g

c̃g,u
a,bDn1 ,n8

p,G
~u21!xg.

~A4!

2. Examples for theD mapping

Within this subsection we will give the construction of
‘‘Casimir matrices’’ ~51! for SU~2! andD52 for some typi-
cal cases of subspaces (d,k) taken from in Fig. 4. Subse-
quently, we will present the corresponding part of theD
mapping resulting from a diagonalization.

Note that theD-loop basis is characterized by the quan-
tum numbers (d,k,n); see Fig. 3. Concerning the character
functionsLd,k,n, we leave out in the following the quantum
numbers (d,k) if they are fixed when discussing the corre-
sponding specific subspace.

(d,k)5(2,1). Here, two parallel links with the same ori-
entation occur. Only one of the four cases of link variables is
relevant which we denote byU. Applying the cutting and
gluing procedure toL1 yields a two-dimensional space of
the type

L15tr~BU!tr~BU!, L25tr~BUBU!. ~A5!

The evaluation ofA5EaEa is possible with the help of Eqs.
~19! and~48!, and the product rule of differentiation. A mix-
ing of the states in Eq.~A5! arises because we have, for
instance,

(
a

@ tr~AU!#a@ tr~BU!#a5
1

2
~ trAUBU!2

1

2n
tr~AU!tr~BU!.

~A6!

The result of a detailed, but straightforward calculation is

AL15L11L2, AL25L11L2. ~A7!

The diagonalization gives the Casimir spectrum as an ex-
ample of Eqs.~52! and ~53!:

w15L11L2, a~1!52,

w25L12L2, a~1!50. ~A8!

Eliminating in the statew2 the function (BU)2 via Eq. ~59!
yields the identifications with theD-loop functions~see Fig.
3 for the notation!

w15x2,1, w25252x0. ~A9!

Note that we put the normalization factorN(n,d,k) equal to
1 when the corresponding basis statexa occurs for the first
time. Within our examples, the Euclidean mappingT(u) in
Eq. ~54! is the identity in most cases.

With the inversion

L15 1
2x2,11x0, L25 1

2 x2,12x0, ~A10!

these formulas give theD mapping relevant for the subspace
(d,k)5(2,1).

(d,k)5(2,2). In this case there is again only one relevant
link variable, denoted byU, and the space~50! is of the type

L15tr~BU!tr~U†C!, L25tr~BC!. ~A11!

A corresponding, straightforward computation yields

AL152L12L2, AL250. ~A12!

A diagonalization of Eq.~A12! gives

w152L12L2, a~1!52, w25L2, a~1!50.
~A13!

With the identification

w15x2,2,1, w25x2,2,2, ~A14!

and the inversion

L15 1
2 ~x2,2,11x2,2,2!, L25x2,2,2, ~A15!

this defines all theD-mapping ingredients for (d,k)5(2,2).
(d,k)5(3,1). Here one has to deal with a three-

dimensional subpace given by

L15~ trg!3, L25trgtrg2, L35trg3, ~A16!

with g5BU. The product rule yields for the evaluation of
the Casimir operator

AL15 3
4L113L2, AL25L11 3

4L212L3,

AL353L21 3
4L3. ~A17!

The eigenvectors and eigenvalues are

w15L113L212L3, a~1!5 15
4 ,

w25L12L3, a~2!5 3
4

w35L123L212L3, a~3!52 9
4 . ~A18!

Using trg35(trg)323trg obtained from Eq.~59!, this yields
the identifications

w15x3,1, w253x1,1. ~A19!

Since the eigenvaluea(3) is negative, we must have

w350, ~A20!

yielding the linear dependence relation

L25 1
3 ~L112L3!5~ trg!322trg, ~A21!

which is just the result forL2 when eliminatingg2 by Eq.
~59!. The inversion~57! now reads

L15 1
6x3,112x1,1, L25 1

6x3,1, L35 1
6x3,12x1,1,

~A22!
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~d,k!5~3,4!. This case is interesting because it involves a
four-point vertex; the dimension of the subspace~50! is 5.
Calling the doubly occurring link variablesU1 andU2 the
generating character states are of the type

L15tr~BU1!tr~U1
†CU2!tr~U2

†D !,

L25tr~BCU2!tr~U2
†D !,

L35tr~BU1!tr~U1
†CD!,

L45tr~BCD!,

L55tr~U1
†CU2!tr~BU1U2

†D !. ~A23!

Now we have three relevant Casimir operators,A1 andA2 as
before of type ~44! and A35(E1a1E2a)(E1a1E2a)2A1
2A252E1aE2a which is of the type ~45!. The
related Casimir matrices are given by

A1L
152L12L2, A1L

250, A1L
352L32L4,

A1L
450, A1L

552L412L5, ~A24!

A2L
152L12L3, A2L

252L22L4, A2L
350,

A2L
450, A2L

552L412L5, ~A25!

A3L
1522L11L21L32L5, A3L

250, A3L
350,

A3L
450, A3L

552L424L5. ~A26!

The simultaneous eigenfunctions are

w3522L11L21L32L41L5, a1~1!5a2~1!52,

a3~1!522,

w4522L51L4, a1~2!5a2~2!52, a3~2!524,

w2522L21L4, a1~3!50, a2~3!52, a3~3!50,

w5522L31L4, a1~4!52, a2~4!50, a3~4!50,

w15L4, a1~5!5a2~5!5a3~5!50, ~A27!

with the identifications

wn5x3,4,n, n51,2,3,4, w55T~P!x3,4,2, ~A28!

whereP describes the reflection~parity transformation! de-
fined byT(P)L25L3.

The inversion~57! reads

L15 1
4 @22x3,4,31x3,4,12x3,4,22T~P!x3,4,22x3,4,4#,

L25 1
2 ~x3,4,12x3,4,2!, L352 1

2 ~T~P!x3,4,22x3,4,1!,

L45x3,4,1, L55 1
2 ~x3,4,12x3,4,4!. ~A29!

3. Local action of the permutation group

We explain this structure for the ‘‘typical’’ example
(d,k)5(3,4) discussed in subsection 2, above, of this Ap-

pendix; a generalization for general cases is straightforward,
but will not be displayed within this paper.

For SU~2!, first the equivalence of the fundamental repre-
sentation and its adjoint has to be invoked by introducing the
skew-symmetric 232 matrix

e5S 0 1

21 0D ,
which has the property thateg21e215g̃ for any
gPSU(2). Consequently, the modified link variable
Ū5Ue obeys instead of Eq.~5! the ‘‘tensor product’’ trans-
formation rule~written in terms of matrix elements!

~Ū l
g! jk5g~x! j j 8g~x1ej !kk8~Ū l ! j 8k8 . ~A30!

Introducing the ‘‘modified loop group elements’’ specified
according to the common~four point! lattice site of our ex-
ample@see Eq.~89!#

a5BU1e, b5U1
†DU2e, g5U2

†De, ~A31!

the character states~A23! may be written as

Ln5d~n! j 1 j 2 j 3 j 4 j 4 j 6a j 1 j 2
b j 3 j 4

g j 5 j 6
. ~A32!

Eachd coefficient couples the tensor product of the six fun-
damental representations — defined ‘‘locally,’’ correspond-
ing to the chosen four point vertex—to the trivial represen-
tation; i.e., introducing the related six angular momentum
operatorss(r ), r51, . . . ,6 (sj are the Pauli spin matrices in
our case! the states~A32! obey

stotalL
n50, stotal5(

r51

6

s~r !. ~A33!

Obviously, the ‘‘total angular momentum’’stotal is invariant
with respect to any permutation of the six variables appear-
ing as indices in Eq.~A32!; i.e., we may simultaneously
characterize the space~A23! by the representations of the
permutation groupS6 which acts on the states~A32! by

d~n! j 1 j 2 j 3 j 4 j 4 j 6→d~n! js~1! js~2! js~3! js~4! js~5! js~6! ~A34!

(sPS6). One may use the decomposition of this representa-
tion for classifying the states in the space~A23!. In its gen-
eral form, however, the corresponding permutation operators
do not commute with the Casimir operators~43! since they
involve only ‘‘reduced total angular momenta.’’ In our case
we have, e.g.,

A15@s~2!1s~3!#2, A25@s~4!1s~5!#2,

A35@s~2!1s~3!1s~4!1s~5!#22A12A2 . ~A35!

Conveniently chosen subgroups ofS6, however, do com-
mute. We may take, e.g.,S2 embedded inS6 in different
ways: If p is the nontrivial element ofS2, we may put
p(1,2,3,4,5,6)5(1,3,2,4,5,6), yieldingx3,4,1 and x3,4,2 as
antisymmetric andx3,4,3 andx3,4,4 as symmetric representa-
tions, or p(1,2,3,4,5,6)5(1,3,2,5,4,6), yieldingx3,4,1 and
x3,4,3as antisymmetric andx3,4,2andx3,4,4as symmetric rep-
resentations.
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Of course, for SU~2!, this does not yield independent
quantum numbers. With a suitable choice of the permutation
subgroup, however, this may be the case for SU~3!.

4. Examples for the incorporation of the Euclidean group

We restrict ourselves to SU~2! andD52. A convenient
enumeration of the up to third order relevant elements of the
Euclidean group forD52 is given by

@n,m,m,s#5RntmRmPs, m,n50,1,2,3,

s50,1, m50,1,2,3,4,5,. . . , ~A36!

where we use the following conventions.
The parity transformation P is fixed by the condition

T(P)L3,4,25L3,4,3.
The rotation Ris given by the constraint that it has rota-

tion anglep/2 and fulfillsT(R)x15x15L1,1,1.
The ‘‘one-unit’’ translationt is defined by the condition

thatLG
2,25x1T(t)x1.

Taking into accountT(P)x15x1, we obtain in lowest
order g15g25(1,1,1) the nontrivially connected cases
@n, m, ands are arbitrary with the restriction~A36!#

g35~2,1,1!, u5@n,0,m,s#, v5@0,0,0,0#,

g35~2,2,1!, u5@n,1,m,s#, v5@n,0,0,0#.
~A37!

Combining first and second orders on the RHS of Eq.~62!
we have the generic alternativesg15(2,1,1);g25(1,1,1):

g35~3,1,1!, u5@n,0,m,s#, v5@0,0,0,0#,

g35~3,2,1!, u5@n,1,m,s#, v5@n,0,0,0#.
~A38!

g15(2,2,1),g25(1,1,1):

g35~3,2,1!, u5@0,0,m,s#, v5@0,0,0,0#,

u5@0,1,m,s#, v5@0,1,2,0#,

g35~3,3,1!, u5@0,2,m,s#, v5@0,0,0,0#,

u5@2,0,m,s#, v5@0,1,2,0#, g35~3,4,1!,

u5@1,1,m,s#,

v5@0,0,0,0#, u5@3,1,m,s#, v5@0,0,3,0#.
~A39!

Here, the Euclidean elementsv are chosen such that a non-
trivial connection withthe samepairs (u,v) is described for
the g triplets ~2,1,2!,~1,1,1!,@~3,1,2! or ~3,2,2!# for the two
cases~A38! and ~2,2,2!,~1,1,1!,@~3,3,2! or ~3,4,2!# for the
cases~A39!.

The Euclidean elements (u,v) for the cases whereg1 and
g2 are exchanged may be obtained by the replacements
u→u21,v→u21v in the above formulas. This follows
from L2T(u21)L15T(u21)@L1T(u)L2#5T(u21v)L3 if
L1T(u)L25T(v)L3.

This provides all nonvanishingh coefficients~62! up to
the orderd353.

@1# J. Kogut and L. Susskind, Phys. Rev. D11, 395 ~1975!.
@2# C.J. Hamer, Phys. Lett. B224, 339 ~1989!.
@3# C.P. van den Doel and D. Horn, Phys. Rev. D35, 2824~1987!.
@4# S.A. Chin, C. Long, and D. Robson, Phys. Rev. D37, 3001

~1988!; 37, 3006 ~1988!.
@5# C.J. Hamer, M. Sheppeard, Zheng Weihong, and D. Schu¨tte,

Phys. Rev. D54, 2395~1996!.
@6# C.H. Llewellyn Smith and N.J. Watson, Phys. Lett. B302, 463

~1993!.
@7# S.H. Guo, Q.Z. Chen, and L. Li, Phys. Rev. D49, 507~1994!;

Q.Z. Chen, S.H. Guo, W.H. Zheng, and X.Y. Fang, Phys. Rev.
D 50, 3564~1994!.

@8# Q. Chen, X. Luo, S. Guo and X. Fang, Phys. Lett. B348, 560
~1995!; S. Guo, Q. Chen, X. Fang, J. Liu, X. Luo, and W.
Zheng, inLattice ’95, Proceedings of the International Sym-
posium on Lattice Field Theory, Melbourne, Australia, edited
by T. D. Kieuet al. @Nucl. Phys. B~Proc. Suppl.! 47 ~1996!#.

@9# M.K. Mak and D. Schu¨tte, Many Body Structure in Hamil-

tonian QCD, Proceedings of the workshop on ‘‘Quantum In-
frared Physics’’~World Scientific, Singapore, 1995!, p. 525.

@10# S. Guo, Q.Z. Chen, X.Y. Fang, and R.S. Chen, ‘‘Mass gap,
vacuum and glueball wave functions of SU~2! lattice gauge
theory in ~211! dimensions,’’ CCAST report, 1996~unpub-
lished!.

@11# D. Robson and D.M. Webber, Z. Phys. C15, 199 ~1982!.
@12# C.J. Hamer, A.C. Irving, and T.E. Preece, Nucl. Phys.B270,

@FS16#, 553 ~1986!; A.C. Irving and C.J. Hamer,ibid. B230,
361 ~1984!.

@13# I. Montvay and G. Mu¨nster,Quantum Fields on the Lattice
~Cambridge University Press, Cambridge, England, 1994!.

@14# L.C.L. Hollenberg and N.S. Witte, Phys. Rev. D50, 3382
~1994!.

@15# J.P. Blaizot and G. Ripka,Quantum Theory of Finite Systems
~Cambridge University Press, Cambridge, England, 1986!.

@16# J.P. Greensite, Nucl. Phys.B166, 113 ~1980!.
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