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The coupled cluster or exBf form of the eigenvalue problem for a lattice Hamiltonian Q@Rithout
quarks is investigated. A new construction prescription is given for the calculation of the relevant coupled
cluster matrix elements with respect to an orthogonal and independent loop space basis. The method avoids the
explicit introduction of gauge group coupling coefficients by mapping the eigenvalue problem onto a suitable
set of character functions, which allows a simplified procedure. Using appropriate group theoretical methods,
we show that it is possible to set up the eigenvalue problem for eigenstates having arbitrary lattice momentum
and lattice angular momenturf50556-282(97)02705-7
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[. INTRODUCTION AND OVERVIEW the local lattice gauge group, and the lattice Euclidean group
will play a role.

The investigation of the eigenvalue problem for the lattice As discussed in Sec. I, projection operators on represen-
QCD Hamiltonian is considered to be an alternative to stantations of the lattice Euclidean group with given lattice mo-
dard Lagrangian lattice Monte Carlo QCD, possibly giving mentum and lattice angular momentum allow one to intro-
new insight into the structure of such non-Abelian gaugeduce the notion of an intrinsic wave function related to the
theories. ground state functios and to the “excitation operatorF.

For pure SW3) Yang-Mills theory[1] (without fermion$ This structure has been used in R€f§,7,1Q for the
in particular, many attempts have been made to attack thiivial representation; here, we provide a systematic frame-
corresponding Kogut-Susskind Hamiltonian problem: For in-work for general representations of the lattice Euclidean
stance, there exist the strong coupling expang@h the  group.
exp(—tH) method[3], or variational techniquegt]. Up to The solution of the eigenvalue problem for the Kogut-
now, none of these approaches could obtain results for exsusskind Hamiltonian is then reduced to the determination of
cited statege.g., glueball massgsomparable in control and the intrinsic eigenfunctions.
accuracy to those within the Euclidean Monte Carlo method For this purpose, a basis of suitable wave functions is
(there has been, however, some progress for ground stataseded which may be used for an expansion and which al-
using the Green’s function Monte Carlo methdd). lows a computation of the relevant coupled cluster matrix

This also holds for the coupled clustexp(S)] method elements. Within the Kogut-Susskind theory these have to be
which attracted special attention in recent ye@és-9. functions of the link variables which are invariant under the
(Some encouraging results within this framework were ob-action of the local lattice gauge group.
tained recenthy{10].) Here the basic idea is to incorporate  The problem of setting up and handling such a basis in an
manifestly the correct volume dependences of observablesffective way is addressed in the Secs. IV-VI. There exist
by writing the ground state in the formi,=e® and putting  two strategies for the construction of such basis systems.
r=Fy, for excited states. The “Schdinger” equation for (1) Section IV. Choose first a basis for the functions of the
the functionsS andF can be formulated rigorous[y] and it  individual link variables given by the standaid functions.
is tempting to define approximations by a suitable truncatiorseneral polynomials of these functions with different link
of a loop space expansion of these quantit&g,10. variables, combined with suitable St)( coupling coeffi-

It is the purpose of this paper to further elucidate thecients, form then the desired basis for the intrinsic hadoon
structure of this coupled cluster method with the hope thavacuum wave functions. We call this set of functions the
the resulting insights may lead to improved calculations ofD-loop basis
the QCD spectrum. Details of this construction have been worked out in Ref.

We will concentrate our considerations on the treatmenill1]. An application is the “exact linked cluster expansion”
of the Kogut-Susskind Hamiltonian as the lattice regulariza-discussed in Ref.12].
tion of a SUQ) Yang Mills theory. A discussion of the full This method is limited by the necessity to handle an in-
QCD and its treatment within a quenched approximation isreasing number of SW) coupling coefficients.
possible, but this will be deferred to a future publication. A clear merit of the procedure is that it provides an inde-

We now give an outline of our paper which summarizes apendent, orthogonal, angh the limit of increasing polyno-
the same time our methods and our results. mial degre¢ complete basis of physical states.

Our basic tools will be group theoretical methods which  (2) Section V. An alternative system of physical states is
will be introduced in Sec. Il. The group of the link variables, provided by the set ofharacter functionsorresponding to
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55 COUPLED CLUSTER METHOD IN HAMILTONIAN . .. 2975
an expansion in terms of suitable group characters. This ap- [l. GROUP THEORETICAL STRUCTURES
proach was used in the recent calculations within the coupled

clustgr methp(ﬂ6,7]. The obvious qdvaqtage here is that e‘f’u:hSU(n) lattice Yang-Mills theory, especially its group theo-
term is manifestly locally gauge invariant, and no COUp“ngretical content

with SU(n) Clebsch-Gordon coefficients is needed. The  The general framework was given by Kogut and Susskind
problem, however, is that the emerging system of wave func[l]_ Accordingly, one has to define a Hilbert spakegiven

tions is in general nonorthogonal ansgercomplete by the set of “top” wave functions depending dW link
In Refs.[6—8] the problem of having linear dependences, ariaples

was solved with the help of a special form of the Cayley-

We shall first give the definitions and notations for the

Hamilton relation for SUQ) matrices. This method, how- H={¥(Uy, ...Un}, @
ever, does not appear to be very systematic, and only calcu- -
lations with wave functions generated from up to fourthwhere the quantities); (I=1,... N) are elements of the

order plaquette polynomials have been possible up to now.gauge group SU{) andN is the number of oriented links in
In Sec. V we will introduce a new procedure for working @ D-dimensional lattice @ is the number of space dimen-
with the orthogonal and independeBtloop basis which ~Sions.. _ _ .
combines the above two alternatives by constructing a suit- AS in thermodynamics we shall work with a finite vol-
able mapping of the character functions on Exoop basis ume, |.e.,_W|th a finite lattice, for definiteness. Ho_wc_—:-yer, our
avoiding, however, the explicit handling of Sty coupling compgta_ltlonal framework allows one to take an infinite vol-
coefficients. In this framework, the Cayley-Hamilton rela- umeh||m|t (l|\|—>oo) éﬂ any Ia_ter stgge. fold
tionship in its general form is mainly used for systematicallyim;—grzlsCa ar product is given by a&-fold Haar measure
computing certain norm relations. )

Our procedure relies essentially on the following observa- The group theoretical nature of the link variablésgives
tions P y 9 as a natural orthogonal and complete basig{oéll N-fold

roducts of SUQ) D functions; e.qg., for S e have the
(1) The D-loop functions can, up to a normalization fac- produ ) unct 9 (2) w v

. . . functions
tor, be uniquely characterized by the eigenvalue pattern of a

certain set of commuting Casimir operators. D1 (Ul)Djz (Uy)- - .pn (Uy). )
(2) The same Casimir operators may be used to generate my.mj my,my g

suitable subsets of character functions. Hereby, also the ma- o ]

trix elements of these operators are determined. Thelgrou.p of(tlme—lndepender)lﬂocal lattice gauge transfor-
Diagonalizing thesdin general small Casimir operator Mations is abstractly given by

matrices in the space of character functions yields then the

mapping on théD-loop states.

This solves the problem of linear dependences among thghereM is the number ogitesof the lattice.
character functions by using the eigenvalue patterns of the glements oG .. are written agy=g(x) wherex denotes

Casimir operators and by computing the relative norms ofpy |attice site. A unitary representation®f,; on - is then
the dependent eigenstates with the Cayley-Hamilton relatioryjven by

(3) Section VI. The characteristic coupled cluster matrix
elements are easily computed within ffm®northogonal and [p(@P](Uyq, ... ,Uy="(UY, ... U}, 4
overcompletgcharacter functions. Using the mapping to the
D-loop basis, the final calculation of the Kogut-Susskind ei-where the link variables are transformed like parallel trans-
genvalue problem can be done with respect to this orthogadPorters,
nal basis. .

Our procedure yields the usual ordering for the basis UP=g(x)Uig™ (x+ eg)), ®)
functions[6—10] connected with a Lanczos idea. The prob if the link | = (x,,) connects the sitesandx+ ee, (e is the

lem of choosing a truncation based on this ordering is out attice spacing. and. i " it vector in the di
lined in the last section, Sec. VII. Here, we also discuss th%iorll) spacing, ang; Is a positive unit vector in the direc-

genergl I|m|_tat|ons of a truncated calculation in the sense o The physical Hilbert space is defined by the subspace of
a scaling Wlndqw. . - ‘H corresponding to the trivial part of the decomposition of
Thg Appendix contglns a complete descnptmp of the CONthe representatiop, i.e., by the gauge-invariant states
struction of the mapping between tBeloop functions and
the chgracter func_:tions for.the egample of the($U§ogut— Hony={W e H|p(g)¥ =V for all geGye}. ()
Susskind theory in two dimensions up to the third order.
Also the corresponding ingredients for the computation ofA systematic construction of a basis ®fy, s generalizing
the coupled cluster matrix elements are given. These exRefs.[11,7] will be the main topic of this paper and is de-
amples are important for the clarification of our consider-scribed in Sec. IV.
ations. We want to impose on this basis the classification of be-
Numerical calculations within the presented frameworking characterized by the irreducible representations of the
generalizing the previous attempp6-10| are on the way and lattice Euclidean group, which is a strict symmetry group of
will be published in the futur¢l7]. the lattice Kogut-Susskind Hamiltonian. The lattice Euclid-
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ean group is a discrete remnant of the standard continuumhere peRP is restricted to the first Brillouin zone
Euclidean group and is defined as follows: (—7<epj=m).

Let If dz ,» denote theD functions for the irreducible repre-
sentatidns(including inversions of the cubic groupG, g

D H H “ H " i
RD, = [ x=e> ne n;= integer} ) E)1y3], a projection on “lattice angular momentuni” is given
j=1
be the set of Iattic«_e sites .of an infinite IIjattice. The lattice MaTivr)= > d:v,(R)T(R,a=0). (13)
translation grougy, is then isomorphic td&;; and given by ReGLRr

H D .
the mapping oRg: By construction these definitions guarantee for dfyH

X—X+a ®) the characteristic relations

_ pa;
foranyae R,Em. The lattice rotation grouf®, g is the restric- TaM(p)¥=e"lr(p)¥,
tion of the groupO(D) leaving REm invariant. We callG, g v
the cubic groug13]; it is discrete and has 8 elements for T(ROII (T;v, v )¥=2 d, (R, v )P,

D=2 and 48 elements fdd =3. The structure of this cubic 4 (14
group and its representations are well kno\8]. The lat-

tice Euclidean groupGe is then the semidirect product A combination of both projections yields states with “good”
Geg=Gr® G, defined foru=(R,a) € Gg by the mapping momentum and angular momentum in the sense that we
of RR,: have, for

X— Ux=RX+a. (9) WP =TI 1 (p) I (T, v )W, (15)

Since the mappings may change the orientatigne., it may  the relations
be that detR) = — 1], the groupGg acts on the set of links

r ip:aig,T
with  both  orientations. We use the notation T(la)v,, =ePifsw, o,
AN=(l,0),0=*1 for these generalized links:
(1,1) stands for the links with the originally chosen orien- T(ROW!P= d' (R)Ww!RP 16
tation; i.e. they have the structurgX)=(x,e;), connecting (RO, VE o (R (16

X to X+ €€ (xe Ryy) Wheree; is positive _ _ _ .
(I,—1)=(x+ee;,—e;) connects thex+ e to x. The basic problem of a “lattice Yang-Mills theory” is then
Writing A= (x,c;) for a general linkc; being a positive torflnd in Honys (@pproximate elggnfunct|on§ of .the type

or negative lattice unit vector, the actionwt (R,a) e Ggis ¥, of the Kogut-Susskind  Hamiltonian [1]

simply given by Hys=(g%/2€)H with

A—ulk=(ux,Rg). (10 E

H=E,Ej,— XV, v=§ X0. X= g (17

This allows us to define a unitary representafioof the
lattice Euclidean groupGe on the Kogut-Susskind wave where g is the coupling constant and is a color index
functions as a combination of the corresponding permutatiofa=1, . .. n?—1). Summation over repeated indices is al-
of the link variables and the mappitg—U 1 if the link in  ways assumed] labels the plaquettes, ang is given by
guestion is reoriented: If¥ depends on the variables

U,....U, and if we put u(l,1)=(n,0,) XD:=trU|"11U|"22UI"33UI';4, (18)
(a=1,...r, 0,==%1), thenT(u)¥ depends on the vari-
ablesUnl, ...,U, and we have whenO=(l4,01, ... l4,04). The “color-electric field op-

erators” E,, generate, in analogy to the standard momentum
[TWWI(Up, ... Up)=W(UT .. U7 (1D) operator, a left multiplication of group elements in the argu-
r ments of the wave functions. They are quantum operators

. . - conjugate to the link operatots, obeying the commutation
As in the formal continuum limit, the operatoigu) com- 119 P ! ying

. : - B relations
mute with the Kogut-Susskind Hamiltonian for alk Gg .
We now construct projection operators on subspaces of [Eia U 1=68,N\3U,, (19
H or Hynys corresponding to specific irreducible representa-
tions of Gg. where the SU) generators\? are normalized according to
For translations we have a “lattice momentum projec-trA®\P= 520/2.

tion”
I1l. EXP S METHOD AND INTRINSIC WAVE FUNCTIONS

Mi(p)= 2 e @PT(R=1a), (12 A motivation for the introduction of the coupled cluster or
acRigy expS method is given by the following considerations.
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Given a HamiltoniarH, a standard and often successful The linked cluster structure of the functio®U) and
method to get the approximate spectrum of the low-lyingF(U) follows from the fact that they may be expressed with
energy states is provided by the Lanczos approach: Chooske help of the projection operatof$2) and (13) as in Eq.
some trial statep and diagonalizéd restricted to the finite- (15) in terms of “intrinsic” functions. These intrinsic func-

dimensional space spanned byp,H¢,H?¢, ... H"$). tions are given by linked clusters and are defined as follows.
There are many cases where this gives reliable resutissif Suppose thaf ¥, describes a state with Euclidean quan-
large enough. tum numbers §,I',v,v’) [see Eq.(15)]. We then writeF

However, for our lattice Yang Mills case, this procedureandsS in the form (S has to have trivial quantum numbgrs
is doomed to fail[14] because we have here a situation
analogous to nuclear matter, for instance. In the infinite vol- ~ F(p,[,v,v") =T +(p) I x(I";v,v")Fin(p, T, v,v"),
ume limit (N—«), where we want to formulate our ap-
proach, the ground state enerBy and excitation energies S=1,Sp, Hp=117(0)II(0,0,0. (27)

E—E, of Hks have the behavior ) ) o
If FW, corresponds in the continuum limit tokeund state

EqxN, E—Eyx1. (20 we expect thaf;,, may be chosen to describel@calized
state. This is analogous to nonrelativistic many-body theory
Also the ground state wave function displays a characteristigvhere bound states can be separated into square integrable
“pathology” in sense that its norntdefined by theN-fold  functions of the relative coordinates and an overall center-of-
Haar measure integpalhas an essential singularity for mass motion, described here with projection operators.

N—oo, Its precise structure will be given below; within per-  In analogy to nuclear matter, for instance, the same local-
turbation theory, it is related to the appearance of disconization holds true for the vacuum functic,; because cor-
nected diagrams. relations have a finite range.

It has been known for a long time that this difficulty is  The validity of these properties of the intrinsic functions
cured by rewriting the eigenvalue problem within the 8xp is seen below through the structure of the expansion of these
framework(see Ref[15] for the standard many-body theory functions in terms of a localized basis, i.e., a basifirdfed

and Ref[16] for the Kogut-Susskind theoyy clusters
For our case, the method consists of introducing Ane We shall first characterize this basis through its general
saze properties and then describe the concrete construction in
Secs. IV and V.
Wo(U)=exd S(U)] (21 We call the basis
[U=(U4,..,Uy)] for the ground state and X“(Uyp, ..U ), @=123,..., (28)
T (U)=F(U)exd S(U)] (22

and impose the following conditionél) y“ should be gauge
for excited states. invariant; (2) x“ should be “linked” (see Sec. V for the

The mentioned “pathology” of the ground state consistsPrecise definitiony a main consequence is that, is finite
then in the fact that we have the norm relati@pP«N for ~ for any «, though not limited;(3) x“ should be “standard-
the functionS(U) appearing in the exponent with respect toized"; i.e., the equation
V.

0The validity of these volume dependences is related to a T(ux*=Ax’(ueGg) (29
characteristic linked cluster structure 8{U) and F(U),
which follows from rewriting the Schidinger equation in
terms of these functions, resulting in the nonlinear equatio

should only have solutions for=3; (4) xy* should be a
strong coupling eigenfunction, i.e.,
Supt SuSu—XV=Eo (23 ; E| aEl ax“=€.1x% (30

for S and in the linear equation
It will be convenient to specify! as the “plaquette func-

Fu.t2S,F,=(E-EpF (24)  tion” by putting [see Eq(17)]
for the excitation operatdf. Hox=4(D—-1)V (31)
Here, we use the abbreviation
and to distinguish the constant function via
pw=(l,a) (25)
X°=1. (32
for link-color quantum number and the notation
x° fulfills the relation
f,=[Ea.fl, f,.,=[Ea.[Ea.fl] (26)
Mox°=soNx°, (33

for any functionf(U).
Note that the “coupled cluster equation$23) and (24)  where the symmetry factep=|G,g| is equal to 8 and 48 for
are still rigorous. D=2 and 3, respectively.
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Simplifying Eq.(27) by writing F =11F;,; and introducing | 6
the functionsS(S) andF(S,F) by

(ILoSiny) (oS . =110S,  (I1Finy) ,(I1Siny) , = I1F, 2 7 g

(34
the coupled cluster equatioid3) and(24) can be rewritten 3 4
as
FIG. 1. Link pattern of théd-loop functions(42). The numbers
- X . Eo indicate the enumeration of the link angular momenta
(Sint)MM+S_ 4(D_1)X :SO_N! (Jl ..... J7)
(Fint) put2F =(E—E)Fin. (39 UEG X'BT(u))ﬂ:Eu' cAAT(wx®  (B,y#0) (40)
eGg a,

The “linked cluster theorem” for our lattice Yang-Mills ]
theory consists then in the statement thatfof N—«) we  for all cases where the fU_”Ct'OW@P and T(u)x” have a
have the norm relatiofS,,|,|Fi|>1, we have als¢S),|F| common link variableThis yields, then,
o],

The norm relations fo§;,; andF; are fulfilled because of
their localized nature; those f&F follow, then, as a result

CyP(p,T,v,v')=3(e,~ €.~ €p)

; : . aB r —1\a—ipia;
of the fact that the “derivative”S,F, selects only linked Xu=(R,a) CyRrad,, (R™5)e" P,
clusters. We shall prove this structure by suitable expansions
in terms of the linked cluster bas{g8). C‘;B=C‘;B(O,0,O,O. (41

Introducing the summation conventions
A proof hereof is given in the Appendisubsection )l The
S S S (36) linked cluster theorem guaranteeing the correct volume de-
- ' - o pendences of the relevant quantities discussed above is now
given by the fact that, due to the localized nature of the
the expansions of the intrinsic wave functions réspecify-  functions x“, the right-hand sidéRHS) sums in Eqs(40)
ing again the Euclidean quantum numbers and (41) run only over a finite number of terms.
The coupled cluster equatiof38) also have the property
N that approximate solutions generated by truncati(see,
Sin(U) = ; Sax“(U), e.g., Refs[6,7]) display correctly all relevant volume depen-
dences.
The important task is now to compute the matrix elements
Fim(p,F,v,v’;U)=E' F.(p.I',v,v" ) x*(U). (37 cfjg, for which one needs an efficient and systematic way to
“ set up and handle the basis elemepts

a a=12,... a a=0,1,2

The coupled cluster equation®3) and (24) may then
equivalently be formulated as equations for the coefficients IV. D-LOOP BASIS

So andF.(p,I',v,v"): An orthogonal basis of functiong® has been constructed
in Ref.[11]: For simplicity, we will formulate the method for

X Eo T .
€,5,+ >, CP1S,S =————— 8,1+ —— 6.0, (39 SU(2) and D=2, but the generalization is obvious, though
By P2y 4(D—1) "ot soN 70 technically more difficult.
Supposex® (a fixed) depends on the link variables
€.Fo(p,I,v,v") (Ui, --.,U;). This basis function is then, up to a normal-
ization factor,uniquelycharacterized by the following set of
+2 " CAY(p.T, vy, 0" )SF(p.T, v, angular momenta.
,8;1/1 o (P11, ) SeFy (P T v, vy) (1) We have a setJ;, ...,J,), i.e., one(half integey

angular momentum for each link.
(2) We have an angular momentudy,=J.q for each
qguadruplet of linkd 5, . .. |4 forming a four-point vertex in
€a:2 €0l (39) t.he link pattern (1,.. ..,l;). Here the convention_ is t.hat the
[ ’ links (1,,lp) are oriented such that they are going into, and
(Ic,14) are leaving, the common site.

The crucial quantities in these equations are the coupled These angular momentum quantum numbers are con-
cluster matrix element€%” and C2”(p,I',v;,v") defining  strained byd,=J, if (1,,1,) form a two-point vertex and by
the expansion of the functiors and F, respectively, which the condition that the coupling,+J,— J. should be pos-
are obtained as follows. sible if (1,,1p,l.) form a three-point vertex.

Determine first the set of numbecﬁg (ue Gg) defined For instance, putting=7 and choosing the link pattern
by of Fig. 1, one has just three angular momenta

:(E_Eo)Fa(p,F,V,V,),
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[J1(=J,=133),d4(=J5=Jg),J;] yielding the basis elements \
[a=(31,34,37)] ; 1 ) 3 4
x*= 3 Dy (UDDRE  (Ua)DGk (U
Mq, ..., 10 M1.M, 1 M, M3 2 M3 ,Mg 3
J1,J7,d4 J1,37,4
X (U7) 1
Mg,M19,My 'V' Mig M,,M-, Mg
><DM“4 Ms(Ugl)D 4 Ms(l_jgl)Dlv‘l‘6 w (Vs (42

We call this orthogonal set of functions th®*“loop basis.”

In view of the construction of a mapping between this
basis and the character functioisge beloy, it is convenient
to rephrase the characterization of these states in the follow-
ing way. For anyX“=X“(U|1, U ) (« fixed) there ex-

2

]

FIG. 2. Loop structure of the generic character functi«zx@(

ists a characteristidfinite) set of éommuting operators
(Aq, ... ,AMQ) with the property that

3

A =ax” (43

and such that the statg” is uniquely characterized by the
eigenvaluesd,, . .. ,aMa).

In the case S(2) andD =2, these operators are given by

[see Eq(49)] up to orders=3 for SU(2).

to an exy® generalization of the Lanczos idea and was pur-
sued in Refs[6-10] for trivial representations of the Euclid-
ean group. We think that this is indeed the most convenient

starting point for defining the basis and we will pursue this
idea in detail in this paper.
We will define this method here systematically in such a

a combination of the two sets

Ea ExaBra: A=lo, 'Ifa’ (44) way that it allows the computation of arbitrary Euclidean
representations and also a transition to the independent, or-
and all operators thogonalD-loop basis. This yields especially a simple way
of eliminating linear dependences.
The basic idea of Ref$6—10] is to work with the general
za: (EpatEca)(EpatEca), (45 set of loop space functions given by the algebra of all char-

acters related to closed lattice loops, i.e., to work with linear

which fulfill the condition that b,c) are ingoing links of a  combinations of functions of the type

four-point vertex in the link set related {g”.

r

The more general case may be extracted from Refs. H tr(U Jl UML) (46)
[11,12. Important for our purpose is that eaéh is a Ca- = 'ij '
simir operator of the local lattice gauge gro@p,, i.e., itis
a certain polynomial in the operatoEs , of the type given ~which are defined in terms of loofs,, ... L, given by
above. For S(B), two generalizations have to be taken into certain sets of generalized connected links:
account: The third order Casimir operators have to be added
to the set(43). In addition, suitable permutation operators Li=(1,0505 -l jmp Ojm)) - (47)

have to be included if the SB) Clebsch-Gordan decompo-
sitions generalizing Eq42) have the property that the same The simplest example is the plaquette functid8); more
irreducible representations occur several tinjfear SU2),  examples will be given below, especially also in Figs. 2 and
an example for the definition of such a permutation operatoft and in the Appendixsubsection 2
is given in the Appendixsubsection B] The clear merit of these functions is that they are mani-
In Ref. [12] this framework was used for estimating ob- festly gauge invariant and that a product decomposition of
servables within the ELCE method, but higher order calcuihe type(40) can be easily worked out; their deficiency is
lations were limited by the necessity to handle an increasin§at they are neither orthogonal nor linear independent.
number of SUA) couplings. Also it should be mentioned In Refs.[6—1Q] linear-independent subsets were selected
that in Refs.[11,17 the linked cluster form of the lattice Py using the Cayley-Hamilton relationship which yielded
Yang-Mills many-body problem was taken into accounthonorthogonal basis elements which were no strong coupling

within a different Computat|ona| framework. elgenstate@ e, Eq. (30) was not fulfilled which invalidates
the possibility of leaving out in Eq(40) the derivatives

present in the original coupled cluster equatid@8) and
(24); see the Appendixsubsection J.

An alternative for the construction of a basis avoiding the Here we will follow a new and hopefully more systematic
explicit handling of SUG) couplings and allowing an easy strategy by relating the character functiof46) to the
computation of the coupled cluster matrix elements is relate®-loop basis of Sec. IMwhich are strong coupling eigen-

V. THE SET OF CHARACTER FUNCTIONS
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state$ by diagonalizing simultaneously the commuting op- ¢ & 1 2 3 4 dependent
eratorsA, [Eq. (43)]. This is possible because the matrix
elements of these operators, being of the type of se¢ond
perhaps thirgorder derivativd see Eqs(44) and(45)], may D
be computed with respect to the character functions using the ' !
commutation ruleg19), the product rule of differentiation,
and the standard property of the $iJ(generators\*:

[]

i a 1 1 2 1 (14 (04 =x°
é )\ij)\i,j,zz 5ijr(sji/_ﬁ(sij5i/j/ . (48)
We describe now this construction of tiizloop basis in , 088 W
terms of the character functions in detail and start with the
introduction of a systematiordering of the character func-
tions (46) related to a Lanczos iteration of the product de-
composition in Eq(40) (see[6-8§]). s D @ #
A. Generic functions
First, we introduce the set of “generic” functions 2
9 2 (3,155 (313,19 (1,0% 1% = (1Y
AZK6=12, .. k=1,..n;, (49)

of &-fold linked, standardized plaquette products -1 5

8 is the “order” of the functionAZ¥. In first order we U I RV
haven;=1 and the charactg#9) is the plaquette function
A(13'1= YL -

Generally, we have the structure that for each |
(6,k), 6=2, there exist Euclidean group elements . 2 | @00 L1  (Li® (LD
Uy, ...,us [depending on §k)] such that

Sk_ 1 1 1
A =x"T(u)x ... T(us)x" FIG. 3. SU2) D-loop basis functiong®*” characterized by the

For SL{Z),. all opcurring plaquetteﬁ'(u,))(l ShOU!d ha_ve link patterns and the related relevant Casimir eigenvalue patterns
the same orientationbecause we havegt=tr(g") in this  which are generated up the ordés 3. If more than one unequal

case. angular momentum occurs, the related links are enumerated in the
For D=2, we have, for S(2), ns=1,2,4 and for S(B), link patterns and indicated in that order in the eigenvalue patterns.

ns=1,4,12 up to third order. Figure 2 gives the correspond-Angular momenta which correspond to unmarked links are placed

ing loop patterns of the functiong9) for SU(2). behind the marked ones. Upper indices stand for the degeneracy of
The relevance of this set of functions is twofold. the angular momenta. Faf=3, k=3 or 4 all angular momenta

(i) They determine, using just combinatorics, the possiblavhich are not specified are equal JoFor (3,k)=(3,4), the third
elements of thd-loop basis occurring at ordet. They are ~ angular momentum is given by the “intermediate” coupling
given by the geometry of the link patterns of the generic sef1ti2 [Ed. (45]. The last column gives the linear-dependent
and by the condition that the eigenvalues of the “link” Ca- D-loop functions emerging up to this order. The orientation of the
simir operatorg44) should be consistent with the coupling ks is not marked; it may be taken analogously to Fig. 1.
rules of as many fundamental representatiasd its ad-
joint) as there exist common links. Hereby, a double coun
ing with lower order states has to be avoided.

F_|gure 3 exemplifies the related elements of [Dléoop. ASKY =1, M(8K), (50)
basis for SW2) and D=2 up to §=3. Hereby, the basis
elements are characterized by their link patteinsanalogy yith A&,k,leék’ spanning subspaces such that the evalua-

to Fig. 1 and by the eigenvalue patterns of the relevanjon of the relevant Casimir operators on these states mixes
Casimir operat_or$43). . . only the states with fixed§ k). (In principle, this is true for
Note that this gives th®-loop basis functpns the natural 5| ‘casimir operators of the local lattice gauge group, but
quantum numbersdk,») where » counts different states gy a finite set is relevantConsequently, with respect to
related to the same generic functiorg“. the stateg50) the relevant Casimir operators are reduced to
(i) The functions(49) are generic in analogy to the \jx M matrices
“maximum weights” occurring in the representation theory
of compact Lie groups in the following sense. M(3,k)
AR =AY (N8 K AR (51)

v'=1

t_subspaces” of finitdin general small dimensionM (4,k);
i.e., one can find character functions

B. Casimir subspaces

The application of the relevant Casimir operators generinvoking the product rule and eliminating the resulting
ates from the state(sék (8,k fixed) characteristic “Casimir SU(n) generators with the help of E¢48) yields for the
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v For the SU2), D=2 cases up to third order, this diagonal-
sk 1 2 3 1 5 ization is worked out in the Appendi(subsection 2 This
yields examples for the following general structure of the
@ D mapping to the basis functiop®.
21 With a suitable enumeratioa(v, §,k) one may identify

@"(8,K)=N(v,8,K) T(U(v,38,k))y* ok, (54)

. DD B Hereby, linear dependences are eliminated by the identifica-

tion prescription

a(v,8,k)=a(v',d8' k' )eay(v,d,k)

3 1@ D D =a,(v',8',k") forall M. (55

Also, one has to pup”(48,k)=0 if one of the eigenvalues
a, (v, 4,k) is incompatible with the known possible eigenval-

@D @D D l ﬁj l g)e? of the Cfl?mif operatofsee the Appendixsubsection
’ or example

Of course, the equality of the eigenvalue patterns as in Eq.
(55) guarantees the equality of the corresponding eigenfunc-
tions only up to a(nonzerg factor N(»,48,k) and up to a
Euclidean transformatiof (u(v, 8,k)).

31 H H l [ ” l T “ l T l For the computation of the normalization factors
N(v, 8,k) we observe that within our exg] framework(in-
cluding a possible truncatigrit is not necessary to work

with basis states which are normalized to 1. Hence only the
D D D relative factors are needed; i.e., we may Nv, 5,k)=1 if
the D-loop function y*(" %X occurs for the first time when
LA e [ | 1] p functionx

increasing the ordes. Also we may set for this first case

FIG. 4. Loop structure of the functions®*” [see Eq(50)] up u_(V’a’ K) :_1' As aresult We_may flnifor%chﬂjmbﬂan
to orders=3. eigenfunction(52) characterized by(é(«),v(«).k(a)) de-
fining an expansion of the elements of tBeloop basis in
terms of the character functions

loop structure of the subspacé&s0) (5,k fixed) the simple
geometrical condition that they are generated from the o
plaquette systems of the generic functigd8) by “cutting Y= C'T,(a)(?(a),k_(a))/\ 8(a),k(a),v (56)
and gluing” doubly occurring links. Up to third order, the P
related SW2) loop structures foD =2 are given in Fig. 4. In
the Appendix (subsection R the validity of the asserted For each ¢,k), the matricesC’,(5,k) may be inverted,
property of the space&0) is demonstrated for these ex- yielding with Eqg.(58) the inverse mapping
amples by working out the Casimir matricésl).

Note that the set€b0) may also contain elements of lower , v , — T
order if they occur during the cutting and gluing procedure. Aok 22 D} (8 KN, 8.K)T(u(r’,8,k)x ">,
Also a standardization is not introduced. This is convenient ! (57)
since this makes the “Casimir matrices(51) especially
simple. Note also that the randd(d,k) of the quantum See again the Appendisubsection 2for examples.
numberv in Eq. (51) is in generallarger than the corre- Equationg56) and(57) constitute a mapping between the
sponding range of th®-loop basis stateg®*". D-loop basis and the character functions, calledl thap-

ping,” in a form which is sufficient for the computation of
C. D mapping the coupled cluster matrix elemer(#0).
) We still have to give a recipe to compute thelative

In order to relate the loop space functiof®0) to the  hormajization factorsN(v, 8,k). In principle, they could be

D-loop basis, one has to diagonalize the Casimir matric§etermined by evaluating Haar measure integrals. This can

(51), giving the eigenfunctions be avoided, however, by rewriting the stat€48,k) in a (up
to the normalization factoysunique form by using the usual
e"(8,K)=2>, CZ,(&,k)A@kvV', (52)  procedure of eliminating linear dependences via the Cayley-
v Hamilton relationd 6—10]

obeying trg"=trg (58)

Ave' (8K =ay(v,8,k)¢"(5,k). (53) g’=gtrg—1 [geSU2)] (59
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and If v, is suitably chosen, we have then for eacft k1“1 and
A%2k2k2 g function A% k3:%3 50 that they are nontrivially
trg?=(trg)2—2trg", (60 connected with the same set of Euclidean group elements as
in Eq. (63) and this exhausts all possibilities.
g®=glrg—gtrgT+1 [geSU3)]. (61) Given the generic functions of the RHS of H§4) and

k1 and k,, the third character functiogh?:*s:*2 is then de-

This allows us to introduce a standardization of the functiondérmined by findingust onepair (uv) solving Eq.(62).
A%k by eliminating for SW2) [SU3)] all structures of the Up to third orderé;=3, a full computation of ally co-
type tig"g’ with n=2 [n=3]. For this purpose, Eq¢59) efficients is presented in the Appendsubsection %

and(61), respectively, have to be iterated, yielding formulas

of the typeTg”= ag’+bg+c wherea,b,c are polynomials in B. Computation of the c coefficients in Eq.(40)
trg and tg'. [For SU2), a=0 andb,c become polynomials . _ . .
ingtrg onE/] [ U2 poly Having solved the “combinatorial” problem of determin-

For SU3) andn=2, also terms of the typeg? in Eq. ing the coefficients of Eq62), one may compute the quan-
(46) may be standardized with the help of E§0). [See the tities ¢ ;"2 by writing Eqg. (62) in terms of the orthogonal

Appendix (subsection 2for examples) and independent basis' with the help of Eqs(56) and(57).
Writing y(a) = (6(a),k(a),v(«)) and recalling Eq(54) for
VI. COUPLED CLUSTER MATRIX ELEMENTS the definition of the functiom(y) we obtain, as a final result

for the crucial coupled cluster matrix elemerdg),
The loop space character of the functioh$*” allows us

) P
to compute the coupled cluster matrix elemmﬁ§u2 in EqQ. crrea= N Y >

,u L, -
(40) in two steps. T 0 EGe 117273 yawith aly)=ag

XCWQl)CWaz)N(’y ) 71i72 o ~ D73. (65)
A. Incorporation of the Euclidean group "1 Y2 g0ty 1 7

The first step is to incorporate the Euclidean group in the
product decomposition of Eq40) on the level of thgnon- VII. DISCUSSION AND CONCLUSION
orthogonal and overcomplgteharacter functiong50) by

computing the coefficientggizzu (u,v € Gg) given by The coupled cluster formulation of Hamiltonian lattice

QCD needs an efficient method to deal with suitable basis
systems of loop space functions. Within this paper we have

AT(U)A72= Z 7771f32 T(v)A7. (62) demonstrated that it is possible to combine the merits of a

vz Y D-function basis, used within the ELCE framewofk2]
with those of the character sets used within recent coupled

Here, we introduced the abbreviatiod,k,»)=1y, and the cluster attempt§7,6] without facing the respective deficien-
character functiong\”* and T(u) A2 have to fulfill the re- cies.
striction that they ardinked i.e., they should have a com-  The merits are the orthogonality of the basis in the first
mon link variable. Also the trivial functio ®**= y° should  case, the close relation to the Lanczos method, and the easy

be left out on the left-hand side. computability of the coupled cluster matrix elements in the
The following structures resulting directly from the loop second case.

space nature of the functios” simplify the determination The deficiencies are the need of handling too many SU

of thesey coefficients[see the Appendixsubsection #for  (n) recoupling coefficients for the computation of the Hamil-

example$ tonian matrix elements when usiligfunctions, and the non-

(a) There is only one nonvanishing term on the RHS oforthogonality and linear dependence of the states when using
Eq. (62). If nzli:fzv is nonvanishing, it is equal to 1. In this the character functions.
case we call sthe corresponding state&, Az, and A7 Our combination is based upon the simple idea that the
nontrivially connected D-function basis may be characte_rlzed by the quantum num-
(b) For each tripleA”1, A”2, and A7 of nontrivially bers ofacomple_te_ set of commuting operators. These opera-
connected character functions we have a characteristic set {f'> &€ the Casimir operators of the local lattice gauge group

Euclidean aroub elements. ando. such that or the gauge group S@3), also certain permutation opera-
group 5 Ux tor have to be includddand our method relies on the fact

that these commuting operatofwhere only a finite set is
relevant for any specific casenay be evaluated as finite
matrices with respect to the character functions. This allows
the construction of a systematic mapping between the two
frameworks.

Invoking the lattice Euclidean symmetry of the regular-
ized gauge field theory and systematizing the action of this
symmetry group, we were also able to formulate the coupled

51,k Syky 51Ky cluster lattice Hamiltonian eigenvalue problem for eigen-
AgT(U)AG =T (W) A (64) states with arbitrary lattice momentum and lattice angular

ANT(UOA2=T(v\)A”, N=1,..n(y1,72,73).

The determination of these elements andv, is how sim-
plified by the following structure.

Suppose we have found all solutiong and v, for a
nontrivially connected triple ofeneric functions
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momentum. The whole formulation may be done in the infi-when the physical lattice volume, given by the truncation or
nite volume limit. by the number of lattice points in the standard lattice Monte

For any concrete calculation of the spectrum, a truncatiorCarlo case, becomes smaller than the size of the hdd&jn
prescription has to be defined. This point has been much in A systematic numerical analysis of these points is, of
dispute previously6-8,10. Here we want to stress the fol- course, needed. Concrete calculations in this direction are on
lowing points in connection with this problem. the way and will be reported in the futufa7].

(1 In principle, several strategies have to be tried in order Finally we want to mention that our computational frame-
to find the “best” truncation. The ultimate criterium for the work may, in principle, be easily extended to include fermi-
quality should be that higher orders become small. Thions. Especially, a formulation for Wilson fermions within a
makes higher order calculations most important. quenched approximation yields equations whose treatment

(2) The prescription of Guet al.[10] seems very prom- appears to be no more complicated than that for glueballs.
ising. In our notation this truncation is defined by putting, in Details of this structure will be reported elsewhere.
order &,
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(3) In nonrelativistic many-body theory, the standard trun-

cation prescription is given bgrojectingthe coupled cluster APPENDIX

form of the eigenvalue equation on a suitafildte set of 1. Proof of Eq. (37)

orthogonal Hilbert space stategl5]. Hereby, the set of all ) o

states has to be ordered and the finite set used in the projec- Introducing the abbreviation

tion becomes larger and larger with increasing order, ex- T r _—

hausting in the limit the whole Hilbert space. Dﬁyv,(R,a)=dw,(R)e'pJaJ, (AD)
This method is also well defined for the case of our

Kogut-Susskind theorf9]. Within our formulation a natural  the expansion oF ,S,, according to Eqs(27) and(34) yields

choice for ordered sets of states would be Bhdoop func-  the relevant terms

tions. Because of their orthogonality and because our formu-

lation of the coupled cluster equations is in terms of an ex- o a

pansion in thes®-loop functions, the computation of the (T3 (P R(T: v, 7)) X1 (Tox?) .

projections(in terms of anN-fold Haar measure integpais

trivial. As a result we obtain in this case the truncation pre- = >, DS:Er(Ul)[T(Ul)X“]M[T(Uz)XB],L

scription, in orders, up.UzeGg
CZ;:?:O for 8;, &,, or 83>6. (67) =, UEG D,F,)jff(Ul)[T(Ul))(“],,,[T(Ul)T(uiluz)Xﬁ]M
1.U2€bE

In Ref.[6] a similar method was introduced using, however, _2 o,

a nonorthogonalloop space basis. The experience of stan-  — < D, (u)T(uy)

dard many-body theory is that the orthogonality is essential

[15] so that Eq.(67), defined in terms of th®-loop basis,

possibly improves the results of R¢6]. The derivatives in the quantit)ZuXZ[T(u)Xﬁ]M may be
We want to stress that any truncated coupled cluster cakvaluated by using the “total angular momentum”

culation (which is formululated in the infinte volume limit E*=ZX,E,E, which commutes with any Euclidean operator

will have the same limitations as arfinite volume stan-  T(u). Invoking the product rule and the strong coupling

dard lattice Monte Carlo computation, namely, that at beseigenfunction propertie630) and(39) of the basisy® yields,

one has to hope for a scaling window indicating consistencyvith the definition(40),

with respect to the predicted renormalization group structure

which has to be displayed by any observable when approach-

. (A2)

2 X(TWx?),

ing the continuum limit(This structure is still unclear within > XT(wx,= Z AT (u)x”
Ref.[10] which gives the “best” coupled cluster results up mueGg “
to now,)
The reason for this expected scaling window is given by EQL: (e, — €5 EV)C%. (A3)

the fact that the truncation, which has to be defined with
respect to an expansion of therinsic wave functions of the
vacuum and of the hadron, necessarily limits the possiblélereby, the functiong® and T(u) x” may be restricted to
lattice volume over which the physical states may extendthe cases where they display a common link variable because
Consequently, when the physical lattice scale is set bytherwise the derivatives yield zero. Inserting E43) into
choosing the couplingy, the method has to break down Eq. (A2) gives the final result41):



2984 D. SCHUTTE, ZHENG WEIHONG, AND C. J. HAMER 55
[Hr(P (T v, v") x*].(Hox?) , AT=5x21X0 AP=3 x21- X0, (A10)
these formulas give the mapping relevant for the subspace

— I o
_% DEYV,(ul)T(ul)% cyiT(ux (6,k)=(2,1).

(6,k)=(2,2). In this case there is again only one relevant

link variable, denoted by, and the spacé50) is of the type

v, (U2U) Dp L (U™ HT(ugu)x?”

:% ZD

Al=tr(BU)tr(UTC), A%=tr(BC). (A11)

—2 Hr(p) (T, Vl)z c5 ﬁDp Luthx. A corresponding, straightforward computation yields
(A4) AAT=2AT-A2 AA?=0 (A12)
2. Examples for theD mapping A diagonalization of Eq(A12) gives

Within this subsection we will give the construction of  ¢'=2A'—A2 a(1)=2, ¢*=A? a(1)=0.
“Casimir matrices” (51) for SU(2) andD =2 for some typi- (A13)
cal cases of subspaces,k) taken from in Fig. 4. Subse- With the identificati
quently, we will present the corresponding part of the : € ldentification
mapping resulting from a diagonalization. 1_ 221 222 Al4

Note that theD-loop basis is characterized by the quan- A (Al4)
tum numbers §,k,v); see Fig. 3. Concerning the character g the inversion
functionsA %7, we leave out in the following the quantum
numbers §,k) if they are fixed when discussing the corre- AY=3(x%214 222, A%2=y222 (A15)

sponding specific subspace.

(8,k)=(2,1). Here, two parallel links with the same ori- this defines all théd-mapping ingredients ford, k) =(2,2).
entation occur. Only one of the four cases of link variables is (6,k)=(3,1). Here one has to deal with a three-
relevant which we denote by. Applying the cutting and dimensional subpace given by
gluing procedure to\! yields a two-dimensional space of

the type Al=(trg)®, A’=trgtrg?, A3=trg3, (A16)

with g=BU. The product rule yields for the evaluation of
the Casimir operator

Al=tr(BU)tr(BU), A?=tr(BUBU). (A5)

The evaluation oA=E_4E, is possible with the help of Egs.
(19) and(48), and the product rule of differentiation. A mix-
ing of the states in Eq(A5) arises because we have, for

AAT=3AT+3A2 AAZ=AT+3A24+2A3,

instance, AA3=3A%+2A3, (A17)
E [tr(AU)]a[tr(BU)]a=%(trAUBU)— %tr(AU)tr(BU). The eigenvectors and eigenvalues are
: (A6) e'=AT+3A2+2A3, a(l)=%,
The result of a detailed, but straightforward calculation is e’=A'=A3 a(2)=3
AAT=AT+A? AAZ=AT+AZ (A7) e3=A1-3A%+2A8%, a(3)=-2. (A18)

The diagonalization gives the Casimir spectrum as an exysing tig3=(trg)3— 3trg obtained from Eq(59), this yields
ample of Eqs(52) and(53): the identifications

eI=AYMA% a(l)=2, ol=y3L  2=3yl1 (A19)

p?=A'—A%  a(1)=0. (A8) Since the eigenvalue(3) is negative, we must have
Eliminating in the statep? the function BU)? via Eq. (59) ©3=0, (A20)
yields the identifications with thB-loop functions(see Fig.
3 for the notation yielding the linear dependence relation

et=x>  @?=2=2)" (A9) A2=1(A+2A3)=(trg)3- 2trg, (A21)

Note that we put the normalization factd(v, §,k) equal to
1 when the corresponding basis stgtéoccurs for the first
time. Within our examples, the Euclidean mappih@!) in
Eq. (54) is the identity in most cases.

With the inversion

which is just the result for\? when eliminatingg? by Eq.
(59). The inversion(57) now reads
Al=1y314 0,11 A2-1,31  A3_1,31 11
(A22)
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(6k)=(3,4). This case is interesting because it involves apendix; a generalization for general cases is straightforward,

four-point vertex; the dimension of the subspdb6) is 5.
Calling the doubly occurring link variabled; and U, the
generating character states are of the type

At=tr(BUtr(UICU,)tr(UID),
A?=tr(BCU,)tr(UID),
A3=tr(BU,)tr(UICD),

A%=tr(BCD),
AS=tr(UICU,)tr(BU,UID). (A23)

Now we have three relevant Casimir operatdtsandA, as

before of type(44) and Az=(E;a+Ez.)(E1atEza) —As

—-A,=2E,,E», which is of the type (45. The
related Casimir matrices are given by

AAT=2AT—A2 AA%=0, AAS=2A3-A4
AA*=0, AAS=—A*+2A5 (A24)

AAT=2AT— A3 AA%=2A%—A%  A,A%=0,
AA%=0, AAS=—A*+2A5, (A25)

AsAT=—2AT+ A%+ AS— A5, AzA%=0, AzA3=0,
AsAY=0, AZAS=2A%—4A5 (A26)

The simultaneous eigenfunctions are

3= —2AT+APH AP AT NS, ay(1)=ay(1)=2,

az(1)=-2,
e*==—2A%+ A% a;(2)=ay(2)=2, ay(2)=-4,
©?>=—2A%+A% @a;(3)=0, ay(3)=2, a4(3)=0,
e®=—2A%+ A% a;(4)=2, ay(4)=0, ay(4)=0,
e'=A"%  ay(5)=ay(5)=a5(5)=0,  (A27)
with the identifications
e'=x3", v=1234, ¢°=T(P)x*"% (A29)

where P describes the reflectiofparity transformationde-
fined by T(P)A2=A3.
The inversion(57) reads
A1= 41_1[ _ 2X3,4,3+ X3,4,1_ X3,4,2_ T( P)X3,4,2_ X3,4,4]
AZ=3( M=), AS= = (TP 2= X3,

A4: X3,4,l, A5: %(X3,4,1_ X3,4,4) ) (Azg)

3. Local action of the permutation group

but will not be displayed within this paper.

For SU?2), first the equivalence of the fundamental repre-
sentation and its adjoint has to be invoked by introducing the
skew-symmetric X2 matrix

0o 1
““l-1 o0

which has the property thateg 'e '=g for any

ge SU(2). Consequently, the modified link variable
U=Ue obeys instead of EJ5) the “tensor product” trans-
formation rule(written in terms of matrix elements
(UP)jk=9(x)jj 9(x+ &)k (Uy)rr - (A30)
Introducing the “modified loop group elements” specified

according to the commof(four poind lattice site of our ex-
ample[see Eq(89)]

a=BUje, B=UlDU,e, y=UlDe, (A31)
the character statéé&23) may be written as
AV:d(V)J11213141416aj1j2313j4y1516_ (A32)

Eachd coefficient couples the tensor product of the six fun-
damental representations — defined “locally,” correspond-
ing to the chosen four point vertex—to the trivial represen-
tation; i.e., introducing the related six angular momentum
operatorss(r), r=1,...,6 (5 are the Pauli spin matrices in
our case the stategA32) obey

6
SotaN =0, Soa™ ;1 s(r). (A33)

Obviously, the “total angular momentums,,, is invariant
with respect to any permutation of the six variables appear-
ing as indices in Eq(A32); i.e., we may simultaneously
characterize the spadé23) by the representations of the
permutation grougsg which acts on the statd#32) by

(o€ Sg). One may use the decomposition of this representa-
tion for classifying the states in the spa@23). In its gen-

eral form, however, the corresponding permutation operators
do not commute with the Casimir operatd¥s) since they
involve only “reduced total angular momenta.” In our case
we have, e.g.,

A=[s(2)+8(3)]%,  A=[5(4)+5(5)]%,

As=[S(2)+(3)+5(4)+5(5)]*~A;—A,. (A35)
Conveniently chosen subgroups 8§, however, do com-
mute. We may take, e.gS, embedded inSg in different
ways: If 7 is the nontrivial element ofS,, we may put
m(1,2,3,4,5,6%(1,3,2,4,5,6), yieldingy®*! and x**? as
antisymmetric angy>*3and y>**as symmetric representa-
tions, or m(1,2,3,4,5,6(1,3,2,5,4,6), yieldingy®** and

We explain this structure for the “typical” example x>“*3as antisymmetric ang®*2?andy>**as symmetric rep-
(8,k)=(3,4) discussed in subsection 2, above, of this Ap-resentations.
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Of course, for S(R), this does not yield independent v3=(3,1,), u=[n,0m,c], v=[0,0,0,0,
guantum numbers. With a suitable choice of the permutation
subgroup, however, this may be the case fo(BU v3=(3,2,, u=[n,1,m,o], v=[n,0,0,q.

(A38)

4, Examplfas for the incorporation of the Euclidean grou? y1=(2,2,1), y,=(1,1,1):

We restrict ourselves to SB) and D=2. A convenient
enumeration of the up to third order relevant elements of the ¥3=(3,2,), u=[0,0m,0], v=[0,0,0,0,
Euclidean group foD =2 is given by

u=[0,1m,o], v=[0,1,2,q,
[n,u,m,o]=R"t*R™P?, m,n=0,1,2,3,
v3=(3,3,), u=[0,2m,os], v=[0,0,0,d,
=01, ©=01,2345,.., (A36)
u=[2,0m,o], v=[0,1,2,0, v3=(3,4),

where we use the following conventions.

The parity transformation Pis fixed by the condition u=[1,1m,o],
T(P)A342=A343

The rotation Ris given by the constraint that it has rota- v=[0,0,00, u=[31mc], v=[0,0,340.
tion anglew/2 and fulfills T(R) x!=x'=A11 (A39)

Thez ;‘onel-umt”ltranslanont is defined by the condition  yere the Euclidean elementsare chosen such that a non-
that Ag™= x"T(t)x " trivial connection withthe samepairs (u,v) is described for

Taking into accounﬂ'(P)Xlzx_l,_we obtain in lowest the v triplets (2,1,2,(1,1,1,[(3,1,2 or (3,2,2] for the two
order y,=7v,=(1,1,1) the nontrivially connected cases cases(A38) and (2,2,2,(1,1,0,[(3,3,2 or (3,4,2] for the
[n, m, ando are arbitrary with the restrictiofA36)] cases(A39).

_ _ _ The Euclidean elementsi(v) for the cases wherg, and
7s=(210, u=[nomo], v=[0000, v, are exchanged may be obtained by the replacements
_1 _l . .
=(22.0, u=[nilmo], v=[n0,00. u—u “,v—u v in the above formulas. This follows
y3=( D, u=[ o], v=[ a (A37) from AZT(Ufl)A1=T(U71)[A1T(U)A2]IT(Uilv)A?’ if
AT(U)A%=T(v) A3

Combining first and second orders on the RHS of &2) This provides all nonvanishing coefficients(62) up to
we have the generic alternatives=(2,1,1);y,=(1,1,1): the orderd;=3.
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