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We study the phase diagram of the four-dimension@) @odel with first- (3;) and second-8,) neighbor
couplings, especially in th8,<0 region, where we find a line of transitions which seems to be second order.
We also compute the critical exponents on this line at the pgint0 (F, lattice) by finite-size scaling
techniques up to a lattice size of 24, these exponents being different from the mean-field ones.
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I. INTRODUCTION a complicated dynamics, rendering useless perturbation
theory, is a possibility not to be discardadpriori. A large

The action for the electroweak sector of the standarcdamount of work has actually been done in order to know
model has S(2)x U(1) symmetry. If we consider the SP) whether or not nonperturbative effects could change the
part and take the limit in which gauge degrees of freedom arphysics of the electroweak symmetry breaking sefior a
frozen, the resulting action is the(9) nonlinearo model,  review see[12)). In this sense, concerning the universality
which has been extensively studied because its spontaneodigiss of theRPN~! models, the role of nonperturbative ef-
symmetry breaking pattern is equivalent to the one exhibitedects needs to be clarifigd4].
by SU(2) in four dimensiong1]. The regularized version of  Antiferromagnetism(AF) has been considered in a great
the O4) o model on the lattice leads to an interacting con-variety of models in order to find properties not present in
tinuum limit for d<<4 [2], while for d>4 the theory is de- the purely ferromagneti¢FM) systemg13,15. In the con-
scribed by free bosonic field8,4]. text of highT. superconductivity, AF seems to play an es-

At the upper critical dimensio=4, deviations from sential role. The transition from paramagnetic to nonpurely
mean-field theoryMFT) are expected. The MFT predictions FM ordered phases has been studied in two-dimensional
for the scaling of thermodynamic quantities are corrected bynodels[16—19.
multiplicative logarithmic term$5,6]. In four dimensions, in diluted systems recently new criti-

Perturbatively the infrared fixed point of the Callan- cal exponents have been obtairf@f]. Also in d=4 a pre-
Symanzik functionB(g) moves to the origin as the dimen- vious study of the AF Ising mod¢R1] shows the existence
sion becomes foulr5], also the fixed point is now a double of an AF phase nontrivially equivalent to the standard FM
zero(in contrast with thel<<4 case which is responsible for one. However, no new critical behavior was evidenced in
the occurrence of such logarithmic corrections. this work.

The existence of these corrections implies the triviality of Also in four dimensions, competing interactions have
the theory[7]. Triviality seems to persist when gauge fields been considered in order to study the multicritical point of
are included8,9]. the Yukawa models. At this multicritical point four phases

The common feature of all these approaches to the sameet[FM, AF, ferrimagnetic, and paramagnet@M)]. The
called triviality problem[8], is that the self-interactions of question of whether or not it would be possible to define a
the scalar field in the broken phase are weak, and they can bmntrivial continuum limit at this point still remains an open
reasonably studied within the context of perturbation theoryproblem[22-25.

It is generally believed that the perturbative and the strong- It is not clear the role that AF can play in the formulation
coupling regime belong to the same universality class. Howef quantum field theoryQFT), nevertheless a careful study
ever, for the nonperturbative strong-coupling regime a rigor-of these kinds of models is worthwhile since they are known
ous proof is still lacking and we have to rely on numericalto have very rich phase diagrams, and presumably new uni-
simulations[10,11]. versality classes could appear in which alternative formula-
The existence of a strongly interacting Higgs sector, withtions of continuum QFT should be possible. However, when
defining a theory with AF couplings one has to be aware of
the fact that higher order derivatives tends to violate reflec-

*Electronic address: isabel@sol.unizar.es tion positivity [26,27]. A possibility is to perform an appro-
"Electronic address: laf@Iattice.fis.ucm.es priate tuning of the couplings in order to cancel the contri-
*Electronic address: tarancon@sol.unizar.es butions coming from unphysicaéhegative norm states.
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The inclusion of gauge fields can change the situatiortems is approximately proportional to the coordination num-
[27], but it is worthwhile as a probe to see what happens irber, there will be a transition phase line whose approximate
this limit when negative couplings are included, postponingequation is
for a future study the effect of gauge fields. In this work we
study how the existence of opposite couplings influence the Bi+aBs=p5 (4)

vacuum of the theory, specifically, whether or not the ground i i
state Q) is frustrated(the energy cannot be minimized si- whereq is the quotient between the number of second and

multaneously for all couplingsor even disordere¢honzero first neig_h_bors. T_his line can be thought of as a prolongation
vacuum entropy of the critical point at3,=0 so the transitions on this line

are expected to be second order with MFT exponents. This is
also the behavior of the two couplings Ising model in this
region [21]. When 8,<0, the presence of two couplings

Our starting point is the nonlinear model, with the ac-  With opposite sign makes frustration appear, and very differ-

Il. THE MODEL

tion ent vacua are possible.
IIl. OBSERVABLES AND ORDER PARAMETERS
S;=—B2 B, (D
e We define the energy associated to each coupling:
where® is a four-component vector with fixed modulus J1nzZ
(I)r'(l)rzl. ElE (7:8 :2 (I)r'q)r+[u (5)
The naive way to introduce AF in the nonlinearmodel Loohe
is to consider a negative coupling. In this case the state with J1nzZ
minimal energy for largeg is a staggered vacuum. On a E,= - E d.P, -, - (6)
. d . . . 2 r r+u+v:-
hypercubic lattice, if we denote the coordinates of sitas Bz ru=v

(rx.ry.rz,ry), making the transformation i _
In terms of these energies, the action reads

S=—pB1E1—B2E>. (7)

It is useful to define the energies per bound as

(I)r_)( _ 1)rx+ry+ rz+rt(l)r , (2)

the system with negativ@ is mapped onto the positivg
one, both regions being exactly equivalent.

Therefore to consider true AF we must take into account 1
either different geometries or more couplings, in order to 61=W51-
break the symmetry under the transformati@. In four

dimensions the simplest option is to add more couplings, Weherey =4 is the lattice volume. With this normalization
have chosen to add a coupling between points at a distange o pejong to the interval — 1,1].

of V2 lattice units. _ _ We have computed the configurations which minimize the
Followmg th|s we will consider a system of spn@@r} energy for several asymptotic values of the parameters. We
taking values in the hyperspheréSR* and placed in the have only considered configurations with periodicity two.
nodes of a cubic lattice. The interaction is defined by theyjgre complex structures have not been observed in our
action simulations.
Considering only theg,;=0 case, we have found the fol-
__ . .. lowing regions.
S /31(% PP ’Bzr,;év PPrfis ® (1) ParamagnetidPM) phase or disordered phase, for
small absolute values @, 3,.
The transformation(2) maps the semiplang;>0 onto (2) Ferromagnetic (FM) phase. It appears when
the 8,<0, and therefore only the region wiy, =0 willbe  3,+68, is large and positive.
considered. On the ling,=0 the system decouples in two ~ When the fluctuations go to zero, the vacuum takes the

1
Es, ®

ST

F, independent sublattices. form ®,=v, wherev is an arbitrary element of the hyper-
When B,=0 the model is known to present a continuoussphere.
transition between a disordered phase, whe® ymmetry Concerning the definition of the order parameter let us

is exact, to an ordered phase where th@)Gymmetry is remark that because of tunneling phenomena in finite lattice
spontaneously broken to(8). This transition is second or- we are forced to use pseudo-order parameters for practical
der, being the critical exponents those of MF&=0, purposes. Such quantities behave as true order parameters
v=0.5, 3=0.5, =0, andy=1 up to logarithmic correc- only in the thermodynamical limit. In the FM phase, we
tions. The critical coupling for this case can be studied anaeefine the standarthormalized magnetization as

lytically by an expansion in powers of the coordination num-
ber (q=2d), being8°=0.6055+ O(q~2%) [28].

From a mean-field analysis, we observe thatder-0 the
behavior of the system will not change qualitatively from the
B>,=0 case but with higher coordination number. In fact,and we use as pseudo-order parameter the square root of the
taking into account that the enerdfor nonfrustrated sys- norm of the magnetization vector

1
Me=32 @, 9
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wherem is an order parameter for the transition. It can be
shown[29,3( that U, (0)—O(1/N) andU ()—2/N. The

This quantity has the drawback of being nonzero in the symslope of U, () at j increases withL. The value of the
metric phase but it presents corrections to the bulk behavidBinder cumulant is closely related with the triviality of the

order 1A/V.

(3) Hyperplane antiferromagnetielPAF) phase. It corre-
sponds to largeB;, with B, in a narrow interval
([—B1/2,— B1/6] in the mean-field approximationin this

region the vacuum correspond to spins aligned in three di-

rections but antialigned in the fourth.§.

theory since the renormalized couplifig the massless ther-
modynamical limi} at zero momentum can be written as

gr=lim gr(L)= lim (L/&) U (Bo),

L—o L—oo

17

In absence of fluctuations the associated vacuum would

be ®,=(—1)"»v, whereu can be any direction, and any
vector on $. We define arad hocorder parameter for this
phase as

1
Mupar,, =y 2 (— 1) ;. (1D

Mpar,, Will be different from zero only in the HPAF phase,
where the system becomes antiferromagnetic onutlérec-

tion. From the four order parameteiane for every possible
value of ) only one of them will be different from zero in

where¢, is the correlation length in the size lattice.

From this point of view triviality is equivalent to have a
vanishinggg in the thermodynamical limit. In this context it
is clear that we can use the valuegy to classify the uni-
versality class. Out of the upper critical dimensiané, is a
constant afB, sinceé~L, and we could use the Binder cu-
mulant for the same purpog@l]. At the upper critical di-
mension,¢, presents logarithmic corrections ahdé, is no
longer a constant g8.. For the FM @4) model ind=4
(upper critical dimension we have perturbatively
L/&_~ (InL)~*4[32]. In order to have a nontrivial theory, the

the HPAF phase. So, we define the pseudo-order parametBinder cumulant should behave as a positive power bf In

as
(12

Muypar= 1/ 2 MaPAF,,u-
M

(4) Plane antiferromagneti®AF) phase for3, large and

negative. In this region the ground state is a configuration
with spins aligned in two directions and antialigned in the
remaining two. It is characterized by one of the six combi-

nations of two different directionsy(,v), and an arbitrary
spinv: ®,=(—1)"»*"wv. For the PAF region we first define

1
M PAF,;L,VZVEr (—1) wt v, (13
and the quantity we measure is
Mpar= \/ 2 ME’AF,(,LL,V)' (14
u<v

In order to avoid undesirablérustrating boundary effects
for ordered phases, we work with even lattice sidas pe-
riodic boundary conditions are imposed.

but from its definition[29] we see that), (8)<1. This is
just another way of stating the perturbative triviality of the
FM O(4) model.

IV. SYMMETRIES ON THE F, LATTICE

In the 8,=0 case the system decouples in two indepen-
dent lattices, each one constituted by the first neighbors of
the other. So we consider two lattices wity geometry.
There are several reasons to choose the p8irt0 for a
careful study of the PM-PAF transition. The region with
B1>1.5 evolves painfully with our local algorithms; for
small B8, we expect a very large correlation in Monte Carlo
(MC) time because the interaction between both sublattices
is very small, and the response of one lattice to changes in
the other is very slow. We also remark that the presence of
two almost decoupled lattices is rather unphysical. We have
also the experience from a previous work for the Ising model
[21] that the correlation length at its first order transition is
smaller in theF, lattice, that means, we can find asymptotic
critical behavior in smaller lattices.

However we should point out that the results in thg
lattice cannot be easily extrapolated to a neighborhood of the

From this data we can compute the derivatives of anyg, axis. Certainly, the geometry of the model is very modi-
observable with respect to the couplings as the connectefed wheng,;#0, and perhaps continuity arguments present

correlation function with the energies

©_ OE O)E 15
0_[3,-_< i) —(OXE)). (15
An efficient method to determing, for a second order tran-
sition is to measure the Binder cumuldr9] for various

lattice size and to locate the cross point in the spacg.of
For O(N) modelsU (B) takes the forn{30]

((m*)?)

UL(ﬂ)Il-I—Z/N—W,

(16)

problems. Nevertheless, we have run also the ¢ase0,

and as occurs in the Ising model we have not found qualita-
tive differences. In the following when we refer to the size of
the latticeL on theF, lattice we mean a lattice with?/2
sites.

We have to find the configurations that maximizg in
order to define appropriate order parameters for the phase
transition. The system has a very complex structure. As a
starting point we have studied numerically the vacuum with
B><<0. For this values we have found in the simulation.

(1) The vacuum has periodicity two. To check this, we
have defined
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1 0,= ¢+ a, and 3= ¢+ 7+ a, Va. In addition to thegp
Vi :WZ D, (18 freedom that corresponds to the globdRDsymmetry, there
is a degeneration of the vacuum in theangle and this zero
wherei =0, . .. ,7stands for théth vertex of each 2hyper- ~Mode is doubleVa. The other two eigenvalues are
cube belonging to th&, lattice, and withl we denote the M1.2=2(1%cos), so, an additional zero mode appears when
2% hypercubes themselves. a=0, obtaining in this case a threefold degenerated zero
From these vectors we can define the eight magnetizatiorf§0de corresponding t6,= 6, = 6+ 7= 05+ .
associated to the elementary cell, The Q4) case is quahtanvgly S|m|Iar. We hqvg ;2 de-
grees of freedom. Of all configurations that minimize the
Vi:<\/v—i2>- (19 energy, that with a largest degeneratioime timesg consist

of two spins aligned and two antialigned that correspond to a

We have checked that avi tends to 1 for the ordered PAF vacuum. We consider this degeneration as the main
phase in the thermodynamical limit, so we conclude that thélifference with the FM sector, and could be relevant to ob-
ordered vacua have periodicity two. Let us remark for thetain different critical exponents. o _
sake of completeness that all order parameters we have de- In the presence of fluctuations the configurations with

fined can be written as an appropriate linear combination ofergest degeneration are favored by phase space consider-
theV;. ations, so we expect that the real vacuum is a PAF one. This

(2) In the elementary cell®, ;. ,;=®, VYu,v with statement will be checked below with Monte Carlo data in

w<v. So, in this section we will restrict the study of the the critical region.
vacuum structure to the four sites<0,1,2,3) belonging to
the cube in the hyperplarmg=0. V. FINITE-SIZE SCALING (FSS ANALYSIS

(3) We have_ measured t_he energy per boun_d associated to Our measures of critical exponents are based on the FSS
the second-neighbor coupling. We check that in the thermo-
. Lo I ansatz[33,34. Let the mean value of an observable mea-
dynamical limite,= —1/3.

. oo sured on a sizé lattice at a couplingd be (O(L,8)). If
4) If we choose the symmetry breaking direction b ;
keép)ing fixed one vectde qu) ) v)v/e find 9 Y 0(,8)~|B— BJ*, from the FSS ansatz one readily ob-
9 0h tains[34]

3
) [(Do: @) Do~ D] =0, (20 (O(L.g)=LX Folllé(=.p) - (23
=3

whereF 4 is a smooth function and the dots stand for correc-

The vacuum structure is not completely fixed by thesetions to scaling terms.
three conditions since different symmetry breaking patterns To obtain » we apply Eq. (23) to the operator
are possible. For instance, a configurati®a=(1,0,0,0), d InMpar/dB whose relateck exponent is 1. As this opera-
®,=[—1/3,(2J213)v,], ®y=[—1/3,(2J2/3)v,], P, toris almost constant in the critical region, we just measure
=[—1/3,(2J2/3)v5], with v; a three-component unitary atthe extrapolated critical point or any definition of the ap-
vector with the constraink; ,;v;v;=0, breaks @), but an parent critica_l point in a finite lattice, the difference being
O(2) symmetry remaingfor the differentv;). small corrections-to-scaling terms. -

To determine which is the vacuum in presence of fluctua- FOr the magnetic critical exponents the situation is more
tions, we consider four independent fields in acll with ~ involved as the slope of the magnetization or the uncon-
periodic boundary conditions. Let us first consider an O(2)nected susceptibility is very large at the critical point. We
group. We can study the four vectors as a mechanical systeRfoceed as followgsee Refs[13] for other applications of
of massless links of length unity, rotating in a plane aroundhis method. Let ® be any operator with scaling law
the same point, whose extremes are attached with a spring ¥6=1 (for instance the Binder parameter or a correlation

natural length zero. The energy for the system is length defined in a finite lattice divided Wy). Applying Eq.
(23) to an arbitrary operatd® and® we can write
3
E=— 2 cod6-0). (21 (O(L.BN)=L "o, 0(OL BN+ (29
i,j=0i>j

Measuring the operatdD in a pair of lattices of sizek and

We consider the fluctuation matrik = 9E?/36,06; inor-  s|_at a coupling where the mean value®fis the same, one
der to find the normal modes. The matrix elementsidake  readily obtains
the form
(O(sL,pB))
—|@) -0 =SXO/V+~'-. (25)
Hi;j=8; >, cod6—6)—cos - 6)(1—5;). (22 (O(L.py) OHH7OEH

k#i
The use of the spectral density meth&DM) [35] avoids an
In the FM case the minimum corresponddite- ¢, for all ~ exacta priori knowledge of the coupling where the mean
i. There is a single zero mode, and a three times degeneratedlues of® cross. We remark that usually the main source of
nonzero mode with eigenvalue=—4. statistical error in the measures of magnetic exponents is the
For the AF(maximum energycase, the maximum energy error in the determination of where to measure the coupling.
is found, up to permutations, abv,=d¢, 6,=¢+, However, using Eq(25) we can take into account the corre-
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lation between the measures of the observable and the mea- LA L L LN L L L L L B
sure of the coupling where the cross occurs. This allows to
reduce the statistical error in an order of magnitude. 0

VI. FSS AT THE UPPER CRITICAL DIMENSION:
LOGARITHMIC CORRECTIONS 05

«
==X

It is well known thatd=4 is the upper critical dimension
of the FM 4) model. As we have already pointed out loga-
rithmic corrections to the mean-field predictions are ex-
pected. In particular, FSS in its standard formulation breaks
at d=4 because the essential assumption, namely

P ST AN SR SR ST N RN YT ST S W MUY

~L is no longer true. In fact, in four dimensiohs e b b b b L
gL(IBC) g ﬁ ] 4] 0.5 1.0 1.5 2.0 2.5
&, t)~[t| = YAIn|t[|¥ (26) B,
The FSS formula for the correlation length was calculated FIG. 1. Phase diagram obtained from the MC simulation on a
by Brezin[32]. At the critical point one gets L=8 lattice.
&(L,Bo)~L(InL)Y4 (27)  than 1@ for thermalization. The errors have been estimated

with the jackknife method.
It has been suggestdd0] that the usual FSS statement

should be replaced by the more general

O(L,Bc) (é(L,Bc))

=F
O(=,)  °\ &, . _ .
We have studied the phase diagram of the model using a
When applying the quotient method described above td-=8 lattice. We have done a sweep along the parameter
systems in four dimensions one has to take into account thgpace of several thousands of iterations, finding the transition

logarithmic corrections, so that the modified formula reads lines shown in Fig. 1. The symbols represent the coupling
values where a peak in the order parameter derivative ap-
(O(sL,B))

s\ V4 pears.
m|®(L,ﬁ):®(sL,B)

VIIl. RESULTS AND MEASURES

(28) A. Phase diagram

=g%/ 1+

inC (29 The line FM-PM has a clear second-order behavior. It
contains the critical point for the @ model with first-
This point is particularly important when measuring the neighbor couplings £,~0.6, 5,=0) with classical expo-
magnetic critical exponents because as we have already mefents ¢=0.5, =0). In the 3, =0 axis, we have computed
tioned, the slope of the magnetization and susceptibility aréhe critical coupling 85~0.18) and the critical exponents as
very large, and one has to be very careful where to measuw test for the method in thie, lattice. We have also consid-

when locating the coupling. ered the influence of the logarithmic corrections when com-
puting the exponents. The lines FM-HPAF, HPAF-PAF, and
VII. NUMERICAL METHOD FM-HtEAF show clear metastability, indicating a first order
ransition.
We have simulated the model irL4 lattice with periodic The regions between the lower dotted line and the PAF

boundary conditions. The biggest lattice size has beelransition line, and between the upper dotted line and the FM
L=24. For the update we have employed a combination ofransition line, are disordered up to our numerical precision.
heat-bath and over-relaxation algorithnigen over-relax We could expect always a PM region separating the different
sweeps followed by a heat-bath swgep ordered phases, however, from a MC simulation it is not
The dynamic exponerztwe obtain is near 1. Cluster-type possible to give a conclusive answer since the width of the
algorithms are not expected to improve thisalue. In sys-  hypothetical PM region decreases when increagpgand
tems with competing interactions the cluster size average isfar a fixed lattice size there is a practical limit in the preci-
great fraction of the whole system, losing the efficacy theysion of the measures of critical values.
show for ferromagnetic spin systems. On the line PM-PAF we have found no signs of first or-
We have used for the simulations ALPHA-processor-der. We have done hysteresis cycles in several points and no
based machines. The total computer time employed has be@emetastability has been observed. In Fig. 2 we plot the energy
the equivalent of two years of ALPHA AXP3000. We mea- distribution at the coupling where a peak in the specific heat
sure every 10 sweeps and store the individual measures tppears. There is no evidence of two-state signal up to
extrapolate in a neighborhood of the simulation coupling byl =24,
using the SDM. The likely second-order behavior of the PM-PAF transi-
In the F, case, we have run about2l0° 7 for each lattice  tion line contrasts with the first order one found in the Ising
size, 7 being the largest integrated autocorrelation time meamodel with two couplings in the analogous regi@1]. This
sured, that corresponds My, and ranges from 2.3 mea- is not surprising because we are dealing now with a global
sures forL=6 to 8.9 forL=24. We have discarded more continuous symmetry. The spontaneous symmetry breaking
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L e e o e B S P s s e TABLE I. Critical exponents for the FM-PM phase transition in

the F, lattice.
600

F g L values 8/16 12/16 10/12

400 [ ] (without logarithmic corrections
oL ) v 0.4838) 0.4954) 0.46726)
Z T 1 Blv 0.923) 0.943) 0.874)
i ] ylv 2.162) 2.122) 2.244)

200 [~ - (with logarithmic corrections
i ] v 0.5126) 0.5097) 0.49210)
- 1 Blv 1.043) 1.063) 1.042)
A B A o ] ylv 1.943) 1.904) 1.933)

0
-0.1125 -0.1100 -0.1075 -0.1050 -0.1025 -0.1000

)
Concerning the measures of critical exponents, we have
FIG. 2. Energy distribution fol.=16, 20, and 24 in th&~,  applied the quotient method, described in Sec. IV. In Table |
lattice at the peak of the specific heat. we quote the results when logarithmic corrections are in-
cluded[formula(29)], and also for sake of comparison, when
of such symmetries manifests in the appearance of sothey are neglectefformula (25)]. The results obtained with
modes or low-energy excitationfong wavelength the |ogarithmic correction do not rule out the possibility of non-
Goldstone bosons in QFT terminolod®6]. The role of |ogarithmic corrections, but point out in correct direction,
these soft modes is quite important and is actually under a making the exponents to be closer to the mean-field ones.
vigorous discussion in the two-dimensional c38,38. In  From now on we will focus on the transition between the PM
general, these low-energy modes will perturb the mechanisrphase and the PAF phase on fhelattice.
of long-distance ordering, softening in this way the phase
transitions. 2. Vacuum symmetries on the PAF region
Regarding the differences with the FM case, the most . . .
remarkable feature is the different vacuum structures appear- W€ Will check using MC data that the ordered vacuum in
ing, especially the very large degeneration in the PAF trantl€ critical region is of type PAF.
sition, in contrast with the single degeneration of the FM L€t us define
O(4) mode. As a simpler point for study the properties of the
transition, namely the critical exponents, is fhgelimit, most Aij=V;-V;j. (30
of the MC work has been done for this case.

_ The leading ordering corresponds to the eigenvector associ-
B. Results on theF, lattice ated to the maximum eigenvalue of the matixthat should
1. Results on the FM region scale ad ~2#” at the critical point. The scaling law of the

biggest eigenvalue agrees with ti#v value reported in

First, we have checked our method on the FM region Ofrgpe |11, and the associated eigenvector is, within errors,
the F, lattice. In Fig. 3 the crossing points of the Binder (1,1-1,-1).

cumulant for various lattice sizes are displayed. The predic- \ye aiso have found that the other eigenvalues scale as

tion'for the critical coupling8.~0.1831(1) agrees with an | -4 This is the expected behavior if just thé4Dsymmetry

earlier study by Bhand39)]. is broken, and it remains an(8 symmetry in the subspace
orthogonal to the @) breaking direction.

0.5 T —— T T
i ] 3. Critical coupling
oal ] To obtain a precise determination of the critical pagiht
r ] we have used the data for the Binder paramétéy). In Fig.
- 1 4 we plot the crossing points of the Binder cumulants for the
S osk 4 simulated lattices sizes. Extrapolations have been done using
i i SDM from simulations aB,=—0.7090 forL=6, 8, 10, 12,
- . and 16; 8,=—0.7078 for L=20, and B8,=—0.7070 for
02| __ L=24.
C ] The shift of the crossing point of the curves can be ex-
- . plained through the finite-size confluent corrections. The de-
04 L ] pendence in the deviation of the crossing point foand
0181 0185 sL size lattices was estimated by Binde9]
B,
FIG. 3. Crossing points of the Binder cumulant for various lat- 1-s° —w—1v
tice sizes on the trgn‘;ition FM-PM. B(L,sL) =B~ = 1 L ' )
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0.50 P e TABLE II. Binder cumulant for various lattices sizes at the
C ] extrapolated critical point fom=0.5,1,2.
048 oa B Lattice sizes U [B(w=0.5)] U [B(w=1)] U [B(w=2)]
L Le20 _ 6 0.4435%15) 0.443712) 0.443812)
hd S ] 8 0.440615) 0.440912) 0.441312)
o C ]
= C ] 10 0.440714) 0.441%116) 0.441414)
044~ 7] 12 0.4364) 0.4373) 0.4383)
C ] 16 0.43%3) 0.4363) 0.43713)
042 ] 20 0.4295) 0.4315) 0.4335)
A I 24 0.4286) 0.43Q7) 0.4337)
040 C 1 1 I 1 1 1 1 I 1 1 1 1 | 1 1 il B
-0.710 -0.708 -0.706
[52 _ d InM 33

FIG. 4. Crossing points of the Binder cumulant for various lat-

tice sizes on the transition PM-PAF. whereM is an order parameter for the transitidvipar for

our purposes. In the critical region~LY". As « is a flat
wherew is the universal exponent for the corrections to scalfunction of 8, the point where we actually measure is not

Ing. crucial. The results displayed in Table Il have been obtained

The infinite volume critical point the value measuring at the crossing point of the Binder parameters for
lattice sized. and A using Eq.(25).
Be=—0.70655)[ + 2][— 2], (32) A Ftor measuringy/v we study the scaling of the specific
eal

where the errors in brackets correspond to the variations in A(E,)

the extrapolation when we use the values=0.5 and c=—~%. (34)

w=2, respectively. In Fig. 5 we plot E¢31) for o=1. B2

Using the previous value o8, we can compute the )

Binder cumulant at this point. In Table Il we quote the ob-We expect thaC scales asA+BL*”, whereA is usually
tained values. The result points to that the Binder cumulanfon-negligible. In Fig. 6 we plot the specific heat measuring
stays constant in the critical region. This result would bedt Ed.(32), as well as at the peak of the specific heat, as a
compatible with a nonzero value of the renormalized Coujunptlon of L. We observe a linear behavior for intermediate
pling whenL increases. Concerning the possibility of having Iattlces. For the Igrgest lattice the slope decrt_aases. The weak
logarithmic corrections in the determination of the critical first order behaviof40] (a/v=1 for small lattices that be-
coupling, from the numerical point of view, it is not possible comesd for large enough siz¢seem hardly compatible with

to discern between the effect, and a logarithmic correction. our data. If we neglect th& term (which is asymptotically
correc}, and compute the exponent using E2f) we obtain

alv~=0.3 for intermediate lattices that reduces to
alv=0.15(2) for the(20,29 pair. However, it is mandatory

be obtained from the scaling of larger lattices.

4. Thermal critical exponentsy, v

N LA o o NN o e o TABLE Ill. Critical exponents for the PM-PAF phase transition

i - in the F, lattice.
-0.706 - —
i ] Lattice sizes ylv Blv v
L 4 (without logarithmic corrections
0708 7] 6/12 2.4113) 0.7914) 0.47410)
i) S g 8/16 2.4083) 0.7926) 0.4838)
i ] 10/20 2.412) 0.7904) 0.4716)
0710 — — 12/24 2.40%5) 0.7975) 0.4837)
i i 20/24 2.39%) 0.8024) 0.4876)
- . (with logarithmic corrections
_0.712-...|I||..I||||I..|.I....I....1_ 6/12 2.3013) 0.8494) 0.4849)
0 0.00025 0.00050 0.00075 0.00100 0.00125 0.00150 8/16 2.3003) 0.8505) 0.4897)
(-ss2- L, 10/20 2.31R2) 0.8433) 0.4885)
12/24 2.3145) 0.8435) 0.4875)
FIG. 5. Extrapolation tg34(«) for L,=6,8,10,12(circle, cross, 20/24 2.317) 0.8394) 0.4985)

triangle, and square symbols, respectiyely
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corrections. We have no perturbative predictions about the

L B L B L L AL
08 - form in which these corrections would affegt for the AF

C 3 ¥ ] case. However, one expects that such corrections slightly
o7k ] modify the critical exponents, as occurs in the FM case. It

- 3 1 could be possible that logarithmic corrections modify largely
06 - b the previous critical exponents and drift them to the FM

S ] ones. To sort this out, we have considered the possibility of

r e i I a FM-like behavior, so thag, ~L(InL)** In the lower part
0‘5:_ v I B of Table Ill we quote the values of the critical exponents for

r ¢ . ] the PAF phase transition when logarithmic corrections are
04~ : 1 7 included[formula (29)]. We see how in effect the magnetic

g ] critical exponents are too far from the classical ones for be-
0al P 1'0 T 1'5 T 2'0 E— ing the result of a logarithmic correction to the MFT predic-

tions. It is interesting to compare this situation with that in
L the RP> model ind=4 [15] where small deviations from

MFT exponents can be explained as logarithmic corrections.
FIG. 6. Specific heat at the pedkriangle symbols and at P P 9

B=—0.7068(cross symbolsas a function of the lattice size.
IX. CONCLUSIONS AND OUTLOOK

5. Magnetic critical exponentsy, B We have studied the phase diagram of the four-
The exponentsy and B can be obtained, respectively, dimensional Q4) model with first- and second-neighbor Ccou-
from the scaling of susceptibility and magnetization: plings. ForB,<0 we find a region nontrivially related with
the FM one, in which the system is AF ordered in some
x=V(M%)~L"", (35  plane. The phase transition between the disordered region
and this PAF region seems to be second order.
M~L~A, (36) We also compute the critical exponents on this line at

) N B1=0 (F, lattice) by means of FSS techniques. We found
whereM is an order parameter for the phase transition. Inya¢ 5 tol = 24 the exponents are in disagreement with the
Fig. 7 upper part, we plot the quotient betweBipar for  hean field predictions. Specifically, from oyt estimation
Ia_ttlcesL and 4 as a funct|0n_ of the quotient between the (or B/v using the hyperscaling relatipthe exponent; as-
Binder cumulants for both lattice sizes. , , sociated with the anomalous dimension of the field is

For largeL in the critical region we should obtain asingle 5 4 This fact itself would imply the nontriviality of the
curve, the deviations corresponding to corrections to Sca”r‘gmeory because Green functions would not factorize any-
In the lower part of Fig. 7 we plot the same function for 416" One cannot discard that the observed behavior were
susceptibility. The values foy and g are summarized in  {ansitory. However, the stability of our measuregt for
Table II. lattice sizes ranging fronh.=6 to L =24, which are more

than a hundred standard deviations apart in the MF value,
C. Logarithmic corrections makes this hypothesis very unlikely. Actually, it would be

We now address the question of the possibility of loga-Possible to obtain triviality also with a logarithmic exponent
rithmic corrections in the AF @) model. For the thermal in Ed. (29) different from 1/4. We can fix the critical expo-
critical exponents, the situation seems clear, they are conflents to its MF value and compute this parameter from the
patible with the classical exponent=0.5. For the magnetic numerical data. The results obtained show a nonasymptotic
exponents, the situation is more involved. In principle, onePehavior, with values ranging from 0.8 to 1.2 for the lattices

can think that they disagree from MFT due to logarithmicused. A logarithmic fit is not satisfactory because of the non-
asymptoticity and the large value of the logarithmic expo-

nent, but larger lattices sizes are needed in order to get a

0.98 0.99 1.00 1.01 1.02 !

B L L B S S more conclusive answer. _
3 os0b E The _behawor of the specific heat does not show any flrs_t
2 g E order signature, but we have not been able to obtain a reli-
3 0.58 = = . .

3 £ E able estimation of ther exponent. We have also measured
S 0%6p 3 the Binder cumulant at the critical point, finding that it stays

823‘ E almost constant when increasing the lattice size. If this is not

038 b 3 a transient effect, and logarithmic corrections are finally
2 o3 E ruled out, it would correspond to a nonzero value of the
2 0_345_ _ renormalized constant in the thermodynamical limit.

% 032f =
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