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We study the phase diagram of the four-dimensional O~4! model with first- (b1) and second- (b2) neighbor
couplings, especially in theb2,0 region, where we find a line of transitions which seems to be second order.
We also compute the critical exponents on this line at the pointb150 (F4 lattice! by finite-size scaling
techniques up to a lattice size of 24, these exponents being different from the mean-field ones.
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I. INTRODUCTION

The action for the electroweak sector of the standard
model has SU~2!3U~1! symmetry. If we consider the SU~2!
part and take the limit in which gauge degrees of freedom are
frozen, the resulting action is the O~4! nonlinears model,
which has been extensively studied because its spontaneous
symmetry breaking pattern is equivalent to the one exhibited
by SU~2! in four dimensions@1#. The regularized version of
the O~4! s model on the lattice leads to an interacting con-
tinuum limit for d,4 @2#, while for d.4 the theory is de-
scribed by free bosonic fields@3,4#.

At the upper critical dimensiond54, deviations from
mean-field theory~MFT! are expected. The MFT predictions
for the scaling of thermodynamic quantities are corrected by
multiplicative logarithmic terms@5,6#.

Perturbatively the infrared fixed point of the Callan-
Symanzik functionb(g) moves to the origin as the dimen-
sion becomes four@5#, also the fixed point is now a double
zero~in contrast with thed,4 case! which is responsible for
the occurrence of such logarithmic corrections.

The existence of these corrections implies the triviality of
the theory@7#. Triviality seems to persist when gauge fields
are included@8,9#.

The common feature of all these approaches to the so-
called triviality problem@8#, is that the self-interactions of
the scalar field in the broken phase are weak, and they can be
reasonably studied within the context of perturbation theory.
It is generally believed that the perturbative and the strong-
coupling regime belong to the same universality class. How-
ever, for the nonperturbative strong-coupling regime a rigor-
ous proof is still lacking and we have to rely on numerical
simulations@10,11#.

The existence of a strongly interacting Higgs sector, with

a complicated dynamics, rendering useless perturbation
theory, is a possibility not to be discardeda priori. A large
amount of work has actually been done in order to know
whether or not nonperturbative effects could change the
physics of the electroweak symmetry breaking sector~for a
review see@12#!. In this sense, concerning the universality
class of theRPN21 models, the role of nonperturbative ef-
fects needs to be clarified@14#.

Antiferromagnetism~AF! has been considered in a great
variety of models in order to find properties not present in
the purely ferromagnetic~FM! systems@13,15#. In the con-
text of high-Tc superconductivity, AF seems to play an es-
sential role. The transition from paramagnetic to nonpurely
FM ordered phases has been studied in two-dimensional
models@16–19#.

In four dimensions, in diluted systems recently new criti-
cal exponents have been obtained@20#. Also in d54 a pre-
vious study of the AF Ising model@21# shows the existence
of an AF phase nontrivially equivalent to the standard FM
one. However, no new critical behavior was evidenced in
this work.

Also in four dimensions, competing interactions have
been considered in order to study the multicritical point of
the Yukawa models. At this multicritical point four phases
meet@FM, AF, ferrimagnetic, and paramagnetic~PM!#. The
question of whether or not it would be possible to define a
nontrivial continuum limit at this point still remains an open
problem@22–25#.

It is not clear the role that AF can play in the formulation
of quantum field theory~QFT!, nevertheless a careful study
of these kinds of models is worthwhile since they are known
to have very rich phase diagrams, and presumably new uni-
versality classes could appear in which alternative formula-
tions of continuum QFT should be possible. However, when
defining a theory with AF couplings one has to be aware of
the fact that higher order derivatives tends to violate reflec-
tion positivity @26,27#. A possibility is to perform an appro-
priate tuning of the couplings in order to cancel the contri-
butions coming from unphysical~negative norm! states.
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The inclusion of gauge fields can change the situation
@27#, but it is worthwhile as a probe to see what happens in
this limit when negative couplings are included, postponing
for a future study the effect of gauge fields. In this work we
study how the existence of opposite couplings influence the
vacuum of the theory, specifically, whether or not the ground
state (V) is frustrated~the energy cannot be minimized si-
multaneously for all couplings! or even disordered~nonzero
vacuum entropy!.

II. THE MODEL

Our starting point is the nonlinears model, with the ac-
tion

Ss52b(
r ,m

FrFr1m̂ , ~1!

whereF is a four-component vector with fixed modulus
Fr•Fr51.

The naive way to introduce AF in the nonlinears model
is to consider a negative coupling. In this case the state with
minimal energy for largeb is a staggered vacuum. On a
hypercubic lattice, if we denote the coordinates of siter as
(r x ,r y ,r z ,r t), making the transformation

Fr→~21!r x1r y1r z1r tFr , ~2!

the system with negativeb is mapped onto the positiveb
one, both regions being exactly equivalent.

Therefore to consider true AF we must take into account
either different geometries or more couplings, in order to
break the symmetry under the transformation~2!. In four
dimensions the simplest option is to add more couplings, we
have chosen to add a coupling between points at a distance
of A2 lattice units.

Following this we will consider a system of spins$Fr%
taking values in the hypersphere S3,R4 and placed in the
nodes of a cubic lattice. The interaction is defined by the
action

S52b1(
r ,m

FrFr1m̂2b2 (
r ,m,n

FrFr1m̂1 n̂ . ~3!

The transformation~2! maps the semiplaneb1.0 onto
theb1,0, and therefore only the region withb1>0 will be
considered. On the lineb150 the system decouples in two
F4 independent sublattices.

Whenb250 the model is known to present a continuous
transition between a disordered phase, where O~4! symmetry
is exact, to an ordered phase where the O~4! symmetry is
spontaneously broken to O~3!. This transition is second or-
der, being the critical exponents those of MFT:a50,
n50.5, b50.5, h50, andg51 up to logarithmic correc-
tions. The critical coupling for this case can be studied ana-
lytically by an expansion in powers of the coordination num-
ber (q52d), beingbc50.60551O(q22d) @28#.

From a mean-field analysis, we observe that forb2.0 the
behavior of the system will not change qualitatively from the
b250 case but with higher coordination number. In fact,
taking into account that the energy~for nonfrustrated sys-

tems! is approximately proportional to the coordination num-
ber, there will be a transition phase line whose approximate
equation is

b1
c1qb2

c5bc, ~4!

whereq is the quotient between the number of second and
first neighbors. This line can be thought of as a prolongation
of the critical point atb250 so the transitions on this line
are expected to be second order with MFT exponents. This is
also the behavior of the two couplings Ising model in this
region @21#. When b2,0, the presence of two couplings
with opposite sign makes frustration appear, and very differ-
ent vacua are possible.

III. OBSERVABLES AND ORDER PARAMETERS

We define the energy associated to each coupling:

E1[
] lnZ

]b1
5(

r ,m
Fr•Fr1m̂ , ~5!

E2[
] lnZ

]b2
5 (

r ,m,n
Fr•Fr1m̂1 n̂ . ~6!

In terms of these energies, the action reads

S52b1E12b2E2 . ~7!

It is useful to define the energies per bound as

e15
1

4V
E1 , e25

1

12V
E2 , ~8!

whereV5L4 is the lattice volume. With this normalization
e1,e2 belong to the interval@21,1#.

We have computed the configurations which minimize the
energy for several asymptotic values of the parameters. We
have only considered configurations with periodicity two.
More complex structures have not been observed in our
simulations.

Considering only theb1>0 case, we have found the fol-
lowing regions.

~1! Paramagnetic~PM! phase or disordered phase, for
small absolute values ofb1 ,b2.

~2! Ferromagnetic ~FM! phase. It appears when
b116b2 is large and positive.

When the fluctuations go to zero, the vacuum takes the
form Fr5v, wherev is an arbitrary element of the hyper-
sphere.

Concerning the definition of the order parameter let us
remark that because of tunneling phenomena in finite lattice
we are forced to use pseudo-order parameters for practical
purposes. Such quantities behave as true order parameters
only in the thermodynamical limit. In the FM phase, we
define the standard~normalized! magnetization as

MF5
1

V(
r

Fr , ~9!

and we use as pseudo-order parameter the square root of the
norm of the magnetization vector
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MF5^AMF
2&. ~10!

This quantity has the drawback of being nonzero in the sym-
metric phase but it presents corrections to the bulk behavior
order 1/AV.

~3! Hyperplane antiferromagnetic~HPAF! phase. It corre-
sponds to largeb1, with b2 in a narrow interval
(@2b1/2,2b1/6# in the mean-field approximation!. In this
region the vacuum correspond to spins aligned in three di-
rections but antialigned in the fourth (m).

In absence of fluctuations the associated vacuum would
beFr5(21)rmv, wherem can be any direction, andv any
vector on S4. We define anad hocorder parameter for this
phase as

MHPAF,m5
1

V(
r

~21!rmFr . ~11!

MHPAF,m will be different from zero only in the HPAF phase,
where the system becomes antiferromagnetic on them direc-
tion. From the four order parameters~one for every possible
value ofm) only one of them will be different from zero in
the HPAF phase. So, we define the pseudo-order parameter
as

MHPAF5A(
m

MHPAF,m
2 . ~12!

~4! Plane antiferromagnetic~PAF! phase forb2 large and
negative. In this region the ground state is a configuration
with spins aligned in two directions and antialigned in the
remaining two. It is characterized by one of the six combi-
nations of two different directions (m,n), and an arbitrary
spinv: Fr5(21)rm1r nv. For the PAF region we first define

MPAF,m,n5
1

V(
r

~21!rm1r nFr , ~13!

and the quantity we measure is

MPAF5A(
m,n

MPAF,~m,n!
2 . ~14!

In order to avoid undesirable~frustrating! boundary effects
for ordered phases, we work with even lattice sideL as pe-
riodic boundary conditions are imposed.

From this data we can compute the derivatives of any
observable with respect to the couplings as the connected
correlation function with the energies

]O

]b j
5^OEj&2^O&^Ej&. ~15!

An efficient method to determinebc for a second order tran-
sition is to measure the Binder cumulant@29# for various
lattice size and to locate the cross point in the space ofb.

For O(N) modelsUL(b) takes the form@30#

UL~b!5112/N2
^~m2!2&

^m2&2
, ~16!

wherem is an order parameter for the transition. It can be
shown@29,30# thatUL(0)→O(1/V) andUL(`)→2/N. The
slope ofUL(b) at bc increases withL. The value of the
Binder cumulant is closely related with the triviality of the
theory since the renormalized coupling~in the massless ther-
modynamical limit! at zero momentum can be written as

gR5 lim
L→`

gR~L !5 lim
L→`

~L/jL!dUL~bc!, ~17!

wherejL is the correlation length in the sizeL lattice.
From this point of view triviality is equivalent to have a

vanishinggR in the thermodynamical limit. In this context it
is clear that we can use the value ofgR to classify the uni-
versality class. Out of the upper critical dimension,L/jL is a
constant atbc sincej;L, and we could use the Binder cu-
mulant for the same purpose@31#. At the upper critical di-
mension,jL presents logarithmic corrections andL/jL is no
longer a constant atbc . For the FM O~4! model in d54
~upper critical dimension! we have perturbatively
L/jL;(lnL)21/4 @32#. In order to have a nontrivial theory, the
Binder cumulant should behave as a positive power of lnL,
but from its definition@29# we see thatUL(b)<1. This is
just another way of stating the perturbative triviality of the
FM O~4! model.

IV. SYMMETRIES ON THE F 4 LATTICE

In the b150 case the system decouples in two indepen-
dent lattices, each one constituted by the first neighbors of
the other. So we consider two lattices withF4 geometry.
There are several reasons to choose the pointb150 for a
careful study of the PM-PAF transition. The region with
b1.1.5 evolves painfully with our local algorithms; for
smallb1 we expect a very large correlation in Monte Carlo
~MC! time because the interaction between both sublattices
is very small, and the response of one lattice to changes in
the other is very slow. We also remark that the presence of
two almost decoupled lattices is rather unphysical. We have
also the experience from a previous work for the Ising model
@21# that the correlation length at its first order transition is
smaller in theF4 lattice, that means, we can find asymptotic
critical behavior in smaller lattices.

However we should point out that the results in theF4
lattice cannot be easily extrapolated to a neighborhood of the
b1 axis. Certainly, the geometry of the model is very modi-
fied whenb1Þ0, and perhaps continuity arguments present
problems. Nevertheless, we have run also the caseb1;0,
and as occurs in the Ising model we have not found qualita-
tive differences. In the following when we refer to the size of
the latticeL on theF4 lattice we mean a lattice withL4/2
sites.

We have to find the configurations that maximizeE2 in
order to define appropriate order parameters for the phase
transition. The system has a very complex structure. As a
starting point we have studied numerically the vacuum with
b2!0. For this values we have found in the simulation.

~1! The vacuum has periodicity two. To check this, we
have defined

55 2967ANTIFERROMAGNETIC FOUR-DIMENSIONAL O~4! MODEL



V i5
1

Ld/2d(I FI i
, ~18!

wherei50, . . . ,7stands for thei th vertex of each 24 hyper-
cube belonging to theF4 lattice, and withI we denote the
24 hypercubes themselves.

From these vectors we can define the eight magnetizations
associated to the elementary cell,

Vi5^AV i
2&. ~19!

We have checked that allVi tends to 1 for the ordered
phase in the thermodynamical limit, so we conclude that the
ordered vacua have periodicity two. Let us remark for the
sake of completeness that all order parameters we have de-
fined can be written as an appropriate linear combination of
theV i .

~2! In the elementary cell,Fr1m̂1 n̂5Fr ;m,n with
m,n. So, in this section we will restrict the study of the
vacuum structure to the four sites (i50,1,2,3) belonging to
the cube in the hyperplaner t50.

~3! We have measured the energy per bound associated to
the second-neighbor coupling. We check that in the thermo-
dynamical limite2521/3.

~4! If we choose the symmetry breaking direction by
keeping fixed one vector~e.g.,F0), we find

(
i51

3

@~F0•Fi!F02Fi#50, ~20!

The vacuum structure is not completely fixed by these
three conditions since different symmetry breaking patterns
are possible. For instance, a configurationF05(1,0,0,0),
F15@21/3,(2A2/3)v1#, F05@21/3,(2A2/3)v2#, F0

5@21/3,(2A2/3)v3#, with v i a three-component unitary
vector with the constraint( iÞ jvivj50, breaks O~4!, but an
O~2! symmetry remains~for the differentv i).

To determine which is the vacuum in presence of fluctua-
tions, we consider four independent fields in a 24 cell with
periodic boundary conditions. Let us first consider an O(2)
group. We can study the four vectors as a mechanical system
of massless links of length unity, rotating in a plane around
the same point, whose extremes are attached with a spring of
natural length zero. The energy for the system is

E52 (
i , j50,i. j

3

cos~u i2u j !. ~21!

We consider the fluctuation matrix,H5]E2/]u i]u j in or-
der to find the normal modes. The matrix elements ofH take
the form

Hi , j5d i j(
kÞ i

cos~u i2uk!2cos~u i2u j !~12d i j !. ~22!

In the FM case the minimum corresponds tou i5f, for all
i . There is a single zero mode, and a three times degenerated
nonzero mode with eigenvaluel524.

For the AF~maximum energy! case, the maximum energy
is found, up to permutations, atu05f, u15f1p,

u25f1a, and u35f1p1a, ;a. In addition to thef
freedom that corresponds to the global O~2! symmetry, there
is a degeneration of the vacuum in thea angle and this zero
mode is double;a. The other two eigenvalues are
l1,252(16cosa), so, an additional zero mode appears when
a50, obtaining in this case a threefold degenerated zero
mode corresponding tou05u15u21p5u31p.

The O~4! case is qualitatively similar. We have 12 de-
grees of freedom. Of all configurations that minimize the
energy, that with a largest degeneration~nine times! consist
of two spins aligned and two antialigned that correspond to a
PAF vacuum. We consider this degeneration as the main
difference with the FM sector, and could be relevant to ob-
tain different critical exponents.

In the presence of fluctuations the configurations with
largest degeneration are favored by phase space consider-
ations, so we expect that the real vacuum is a PAF one. This
statement will be checked below with Monte Carlo data in
the critical region.

V. FINITE-SIZE SCALING „FSS… ANALYSIS

Our measures of critical exponents are based on the FSS
ansatz@33,34#. Let the mean value of an observable mea-
sured on a sizeL lattice at a couplingb be ^O(L,b)&. If
O(`,b);ub2bcuxO, from the FSS ansatz one readily ob-
tains @34#

^O~L,b!&5LxO /nFO„L/j~`,b!…1•••, ~23!

whereFO is a smooth function and the dots stand for correc-
tions to scaling terms.

To obtain n we apply Eq. ~23! to the operator
d lnMPAF/db whose relatedx exponent is 1. As this opera-
tor is almost constant in the critical region, we just measure
at the extrapolated critical point or any definition of the ap-
parent critical point in a finite lattice, the difference being
small corrections-to-scaling terms.

For the magnetic critical exponents the situation is more
involved as the slope of the magnetization or the uncon-
nected susceptibility is very large at the critical point. We
proceed as follows~see Refs.@13# for other applications of
this method!. Let Q be any operator with scaling law
xQ51 ~for instance the Binder parameter or a correlation
length defined in a finite lattice divided byL). Applying Eq.
~23! to an arbitrary operatorO andQ we can write

^O~L,b!&5LxO /n f O,Q„^Q~L,b!&…1•••. ~24!

Measuring the operatorO in a pair of lattices of sizesL and
sL at a coupling where the mean value ofQ is the same, one
readily obtains

^O~sL,b!&

^O~L,b!&
uQ~L,b!5Q~sL,b!5sxO /n1•••. ~25!

The use of the spectral density method~SDM! @35# avoids an
exacta priori knowledge of the coupling where the mean
values ofQ cross. We remark that usually the main source of
statistical error in the measures of magnetic exponents is the
error in the determination of where to measure the coupling.
However, using Eq.~25! we can take into account the corre-
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lation between the measures of the observable and the mea-
sure of the coupling where the cross occurs. This allows to
reduce the statistical error in an order of magnitude.

VI. FSS AT THE UPPER CRITICAL DIMENSION:
LOGARITHMIC CORRECTIONS

It is well known thatd54 is the upper critical dimension
of the FM O~4! model. As we have already pointed out loga-
rithmic corrections to the mean-field predictions are ex-
pected. In particular, FSS in its standard formulation breaks
at d54 because the essential assumption, namely
jL(bc);L is no longer true. In fact, in four dimensions@7#

j~`,t !;utu21/2u lnutuu1/4. ~26!

The FSS formula for the correlation length was calculated
by Brezin @32#. At the critical point one gets

j~L,bc!;L~ lnL !1/4. ~27!

It has been suggested@10# that the usual FSS statement
should be replaced by the more general

O~L,bc!

O~`,b!
5FOS j~L,bc!

j~`,b! D . ~28!

When applying the quotient method described above to
systems in four dimensions one has to take into account the
logarithmic corrections, so that the modified formula reads

^O~sL,b!&

^O~L,b!&
uQ~L,b!5Q~sL,b!5sxO /nS 11

lns

lnL D 1/4. ~29!

This point is particularly important when measuring the
magnetic critical exponents because as we have already men-
tioned, the slope of the magnetization and susceptibility are
very large, and one has to be very careful where to measure
when locating the coupling.

VII. NUMERICAL METHOD

We have simulated the model in aL4 lattice with periodic
boundary conditions. The biggest lattice size has been
L524. For the update we have employed a combination of
heat-bath and over-relaxation algorithms~ten over-relax
sweeps followed by a heat-bath sweep!.

The dynamic exponentz we obtain is near 1. Cluster-type
algorithms are not expected to improve thisz value. In sys-
tems with competing interactions the cluster size average is a
great fraction of the whole system, losing the efficacy they
show for ferromagnetic spin systems.

We have used for the simulations ALPHA-processor-
based machines. The total computer time employed has been
the equivalent of two years of ALPHA AXP3000. We mea-
sure every 10 sweeps and store the individual measures to
extrapolate in a neighborhood of the simulation coupling by
using the SDM.

In the F4 case, we have run about 23105t for each lattice
size,t being the largest integrated autocorrelation time mea-
sured, that corresponds toMPAF, and ranges from 2.3 mea-
sures forL56 to 8.9 forL524. We have discarded more

than 102t for thermalization. The errors have been estimated
with the jackknife method.

VIII. RESULTS AND MEASURES

A. Phase diagram

We have studied the phase diagram of the model using a
L58 lattice. We have done a sweep along the parameter
space of several thousands of iterations, finding the transition
lines shown in Fig. 1. The symbols represent the coupling
values where a peak in the order parameter derivative ap-
pears.

The line FM-PM has a clear second-order behavior. It
contains the critical point for the O~4! model with first-
neighbor couplings (b1'0.6, b250) with classical expo-
nents (n50.5,h50). In theb150 axis, we have computed
the critical coupling (b2

c'0.18) and the critical exponents as
a test for the method in theF4 lattice. We have also consid-
ered the influence of the logarithmic corrections when com-
puting the exponents. The lines FM-HPAF, HPAF-PAF, and
PM-HPAF show clear metastability, indicating a first order
transition.

The regions between the lower dotted line and the PAF
transition line, and between the upper dotted line and the FM
transition line, are disordered up to our numerical precision.
We could expect always a PM region separating the different
ordered phases, however, from a MC simulation it is not
possible to give a conclusive answer since the width of the
hypothetical PM region decreases when increasingb1, and
for a fixed lattice size there is a practical limit in the preci-
sion of the measures of critical values.

On the line PM-PAF we have found no signs of first or-
der. We have done hysteresis cycles in several points and no
metastability has been observed. In Fig. 2 we plot the energy
distribution at the coupling where a peak in the specific heat
appears. There is no evidence of two-state signal up to
L524.

The likely second-order behavior of the PM-PAF transi-
tion line contrasts with the first order one found in the Ising
model with two couplings in the analogous region@21#. This
is not surprising because we are dealing now with a global
continuous symmetry. The spontaneous symmetry breaking

FIG. 1. Phase diagram obtained from the MC simulation on a
L58 lattice.
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of such symmetries manifests in the appearance of soft
modes or low-energy excitations~long wavelength!, the
Goldstone bosons in QFT terminology@36#. The role of
these soft modes is quite important and is actually under a a
vigorous discussion in the two-dimensional case@37,38#. In
general, these low-energy modes will perturb the mechanism
of long-distance ordering, softening in this way the phase
transitions.

Regarding the differences with the FM case, the most
remarkable feature is the different vacuum structures appear-
ing, especially the very large degeneration in the PAF tran-
sition, in contrast with the single degeneration of the FM
O~4! mode. As a simpler point for study the properties of the
transition, namely the critical exponents, is theF4 limit, most
of the MC work has been done for this case.

B. Results on theF 4 lattice

1. Results on the FM region

First, we have checked our method on the FM region of
the F4 lattice. In Fig. 3 the crossing points of the Binder
cumulant for various lattice sizes are displayed. The predic-
tion for the critical couplingbc;0.1831(1) agrees with an
earlier study by Bhanot@39#.

Concerning the measures of critical exponents, we have
applied the quotient method, described in Sec. IV. In Table I
we quote the results when logarithmic corrections are in-
cluded@formula~29!#, and also for sake of comparison, when
they are neglected@formula ~25!#. The results obtained with
logarithmic correction do not rule out the possibility of non-
logarithmic corrections, but point out in correct direction,
making the exponents to be closer to the mean-field ones.
From now on we will focus on the transition between the PM
phase and the PAF phase on theF4 lattice.

2. Vacuum symmetries on the PAF region

We will check using MC data that the ordered vacuum in
the critical region is of type PAF.

Let us define

Ai j5V i•V j . ~30!

The leading ordering corresponds to the eigenvector associ-
ated to the maximum eigenvalue of the matrixA, that should
scale asL22b/n at the critical point. The scaling law of the
biggest eigenvalue agrees with theb/n value reported in
Table III, and the associated eigenvector is, within errors,
~1,1,21,21!.

We also have found that the other eigenvalues scale as
L24. This is the expected behavior if just the O~4! symmetry
is broken, and it remains an O~3! symmetry in the subspace
orthogonal to the O~4! breaking direction.

3. Critical coupling

To obtain a precise determination of the critical pointbc
we have used the data for the Binder parameter~16!. In Fig.
4 we plot the crossing points of the Binder cumulants for the
simulated lattices sizes. Extrapolations have been done using
SDM from simulations atb2520.7090 forL56, 8, 10, 12,
and 16; b2520.7078 for L520, and b2520.7070 for
L524.

The shift of the crossing point of the curves can be ex-
plained through the finite-size confluent corrections. The de-
pendence in the deviation of the crossing point forL and
sL size lattices was estimated by Binder@29#

bc~L,sL!2bc;
12s2v

s1/n21
L2v21/n, ~31!

FIG. 2. Energy distribution forL516, 20, and 24 in theF4

lattice at the peak of the specific heat.

FIG. 3. Crossing points of the Binder cumulant for various lat-
tice sizes on the transition FM-PM.

TABLE I. Critical exponents for the FM-PM phase transition in
theF4 lattice.

L values 8/16 12/16 10/12

~without logarithmic corrections!
n 0.483~8! 0.495~4! 0.467~26!
b/n 0.92~3! 0.94~3! 0.87~4!

g/n 2.16~2! 2.12~2! 2.24~4!

~with logarithmic corrections!
n 0.512~6! 0.509~7! 0.492~10!
b/n 1.04~3! 1.06~3! 1.04~2!

g/n 1.94~3! 1.90~4! 1.93~3!
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wherev is the universal exponent for the corrections to scal-
ing.

The infinite volume critical point the value

bc520.7065~5!@12#@22#, ~32!

where the errors in brackets correspond to the variations in
the extrapolation when we use the valuesv50.5 and
v52, respectively. In Fig. 5 we plot Eq.~31! for v51.

Using the previous value ofbc we can compute the
Binder cumulant at this point. In Table II we quote the ob-
tained values. The result points to that the Binder cumulant
stays constant in the critical region. This result would be
compatible with a nonzero value of the renormalized cou-
pling whenL increases. Concerning the possibility of having
logarithmic corrections in the determination of the critical
coupling, from the numerical point of view, it is not possible
to discern between thev effect, and a logarithmic correction.

4. Thermal critical exponentsa, n

The critical exponent associated to correlation length can
be obtained from the scaling of

k5
] lnM

]b
, ~33!

whereM is an order parameter for the transition,MPAF for
our purposes. In the critical regionk;L1/n. As k is a flat
function of b, the point where we actually measure is not
crucial. The results displayed in Table III have been obtained
measuring at the crossing point of the Binder parameters for
lattice sizesL and 2L using Eq.~25!.

For measuringa/n we study the scaling of the specific
heat

C5
]^E2&
]b2

. ~34!

We expect thatC scales asA1BLa/n, whereA is usually
non-negligible. In Fig. 6 we plot the specific heat measuring
at Eq. ~32!, as well as at the peak of the specific heat, as a
function ofL. We observe a linear behavior for intermediate
lattices. For the largest lattice the slope decreases. The weak
first order behavior@40# (a/n51 for small lattices that be-
comesd for large enough sizes! seem hardly compatible with
our data. If we neglect theA term ~which is asymptotically
correct!, and compute the exponent using Eq.~25! we obtain
a/n'0.3 for intermediate lattices that reduces to
a/n50.15(2) for the~20,24! pair. However, it is mandatory
to give a conclusive answer for the value ofa statistics on
larger lattices.

FIG. 5. Extrapolation tobc(`) for L156,8,10,12~circle, cross,
triangle, and square symbols, respectively!.

TABLE II. Binder cumulant for various lattices sizes at the
extrapolated critical point forv50.5,1,2.

Lattice sizes UL@bc(v50.5)# UL@bc(v51)# UL@bc(v52)#

6 0.4435~15! 0.4437~12! 0.4438~12!
8 0.4406~15! 0.4409~12! 0.4413~12!
10 0.4407~14! 0.4411~16! 0.4414~14!
12 0.436~4! 0.437~3! 0.438~3!

16 0.435~3! 0.436~3! 0.437~3!

20 0.429~5! 0.431~5! 0.433~5!

24 0.428~6! 0.430~7! 0.433~7!

TABLE III. Critical exponents for the PM-PAF phase transition
in theF4 lattice.

Lattice sizes g/n b/n n

~without logarithmic corrections!
6/12 2.417~3! 0.791~4! 0.474~10!
8/16 2.403~3! 0.792~6! 0.483~8!

10/20 2.410~2! 0.790~4! 0.471~6!

12/24 2.403~5! 0.797~5! 0.483~7!

20/24 2.398~5! 0.802~4! 0.487~6!

~with logarithmic corrections!
6/12 2.301~3! 0.849~4! 0.484~9!

8/16 2.300~3! 0.850~5! 0.489~7!

10/20 2.315~2! 0.843~3! 0.488~5!

12/24 2.314~5! 0.842~5! 0.487~5!

20/24 2.317~5! 0.839~4! 0.498~5!

FIG. 4. Crossing points of the Binder cumulant for various lat-
tice sizes on the transition PM-PAF.
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5. Magnetic critical exponentsg, b

The exponentsg and b can be obtained, respectively,
from the scaling of susceptibility and magnetization:

x[V^M2&;Lg/n, ~35!

M;L2b/n, ~36!

whereM is an order parameter for the phase transition. In
Fig. 7 upper part, we plot the quotient betweenMPAF for
latticesL and 2L as a function of the quotient between the
Binder cumulants for both lattice sizes.

For largeL in the critical region we should obtain a single
curve, the deviations corresponding to corrections to scaling.
In the lower part of Fig. 7 we plot the same function for
susceptibility. The values forg and b are summarized in
Table III.

C. Logarithmic corrections

We now address the question of the possibility of loga-
rithmic corrections in the AF O~4! model. For the thermal
critical exponents, the situation seems clear, they are com-
patible with the classical exponentn50.5. For the magnetic
exponents, the situation is more involved. In principle, one
can think that they disagree from MFT due to logarithmic

corrections. We have no perturbative predictions about the
form in which these corrections would affectjL for the AF
case. However, one expects that such corrections slightly
modify the critical exponents, as occurs in the FM case. It
could be possible that logarithmic corrections modify largely
the previous critical exponents and drift them to the FM
ones. To sort this out, we have considered the possibility of
a FM-like behavior, so thatjL;L(lnL)1/4. In the lower part
of Table III we quote the values of the critical exponents for
the PAF phase transition when logarithmic corrections are
included@formula ~29!#. We see how in effect the magnetic
critical exponents are too far from the classical ones for be-
ing the result of a logarithmic correction to the MFT predic-
tions. It is interesting to compare this situation with that in
the RP2 model in d54 @15# where small deviations from
MFT exponents can be explained as logarithmic corrections.

IX. CONCLUSIONS AND OUTLOOK

We have studied the phase diagram of the four-
dimensional O~4! model with first- and second-neighbor cou-
plings. Forb2,0 we find a region nontrivially related with
the FM one, in which the system is AF ordered in some
plane. The phase transition between the disordered region
and this PAF region seems to be second order.

We also compute the critical exponents on this line at
b150 (F4 lattice! by means of FSS techniques. We found
that up toL524 the exponents are in disagreement with the
mean-field predictions. Specifically, from ourg/n estimation
~or b/n using the hyperscaling relation! the exponenth as-
sociated with the anomalous dimension of the field is
h'20.4. This fact itself would imply the nontriviality of the
theory because Green functions would not factorize any-
more. One cannot discard that the observed behavior were
transitory. However, the stability of our measure ofg/n for
lattice sizes ranging fromL56 to L524, which are more
than a hundred standard deviations apart in the MF value,
makes this hypothesis very unlikely. Actually, it would be
possible to obtain triviality also with a logarithmic exponent
in Eq. ~29! different from 1/4. We can fix the critical expo-
nents to its MF value and compute this parameter from the
numerical data. The results obtained show a nonasymptotic
behavior, with values ranging from 0.8 to 1.2 for the lattices
used. A logarithmic fit is not satisfactory because of the non-
asymptoticity and the large value of the logarithmic expo-
nent, but larger lattices sizes are needed in order to get a
more conclusive answer.

The behavior of the specific heat does not show any first
order signature, but we have not been able to obtain a reli-
able estimation of thea exponent. We have also measured
the Binder cumulant at the critical point, finding that it stays
almost constant when increasing the lattice size. If this is not
a transient effect, and logarithmic corrections are finally
ruled out, it would correspond to a nonzero value of the
renormalized constant in the thermodynamical limit.
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pecially J. M. Carmona for useful discussions concerning the
logarithmic corrections. One of us~I.C.! wishes to thank R.
D. Kenway for this kind hospitality at the Department of
Physics and Astronomy, University of Edinburgh, as well as
to Edinburgh Parallel Computing Center~EPCC! for com-

puting facilities where part of these computations have been
done under the financial support of TRACS-EC program.
This work was partially supported by CICyT AEN95-1284,
and AEN96-1670. I.C. thanks the Ministerio de Educacio´n y
Ciencia for financial support.

@1# S. Weinberg, Phys. Rev. Lett.19, 1264~1967!.
@2# D. Brydges, J. Frohlich, and T. Spencer, Commun. Math.

Phys.83, 123 ~1982!.
@3# M. Aizenman, Phys. Rev. Lett.47, 1 ~1981!.
@4# J. Frolich, Nucl. Phys.B200 @FS4#, 281 ~1982!.
@5# E. Brezin, J. C. Le Guillou, and J. Zinn-Justin, inPhase Tran-

sitions and Critical Phenomena, edited by C. Domb and M. S.
Green~Academic, London 1976!.

@6# F. J. Wegner and E. K. Riedel, Phys. Rev. B7, 248 ~1973!.
@7# M. Luscher and P. Weisz, Nucl. Phys.B299 @FS20#, 25

~1987!.
@8# D. E. Callaway, Nucl. Phys.B233, 189 ~1984!.
@9# RTN Collaboration, J. L. Alonsoet al., Nucl. Phys.B405, 575

~1993!.
@10# R. Kenna and C. B. Lang, Nucl. Phys.B393, 461 ~1993!.
@11# R. Kenna and C. B. Lang, inLattice ’92, Proceedings of the

International Symposium, Amsterdam, The Netherlands, ed-
ited by J. Smit and P. van Baal@Nucl. Phys. B~Proc. Suppl.!
30, 697 ~1993!#.

@12# I. Montvay, in Lattice ’91, Proceedings of the International
Symposium, Tsukuba, Japan, edited by M. Fukugitaet al.
@Nucl. Phys. B,~Proc. Suppl.! 26, 57 ~1991!#.

@13# H. G. Ballesteros, L. A. Ferna´ndez, V. Martı´n-Mayor, and A.
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