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Photon-meson transition form factors yz°, y%, and y»’ at low and moderately high Q?
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We study photon-meson transition form factars(Q?)y— =, 7,7’ at low and moderately hig? as-
suming a nontrivial hadronlikgq structure of the photon in the soft region. In the hard regiongi@hoton
wave function contains both a perturbative tail of the soft wave function such as the wave function of an
ordinary hadron and a standard QED pointligg component. The latter provides theQf/ asymptotical
behavior of the transition form factor in accordance with QCD. The data on#ffeform factor are used for
fixing the soft photon wave function which is found to have the same structure as the soft wave function of the
pion reconstructed from the elastic pion form factor. Assuming universality of the ground-state pseudoscalar
meson wave functions we calculate the, y»' transition form factors andy— yy, ' — yy partial widths
and found them to be in perfect agreement with the d&8556-282(97)01905-X

PACS numbgs): 12.39-x, 11.55.Fv, 12.38.Bx, 14.40.Aq

I INTRODUCTION (m(P)|Tly(az,u) ¥(qz,v))
In this paper we continue a study of the transition regime =—€% 1 u.a 0C1092F x v (— 02, —q2). 2)
from the soft nonperturbative physics to the physics of hard preatetl T2 vy ! 2
processes described by perturbative QEIRCD. In Ref. (2) In the kinematical region where at least one of the

[1] we have proposed a method for considering a form factophoton virtualities is large, PQCD gives the following pre-

in a broad range of momentum transfers starting with thgjiction for the behavior of the transition form factat]:
nonperturbative region of sma@®? and moving to moder-
¢ (x)dx

ately largeQ? by representing the form factor as a series in V2 1

T : F ey n(Q5.Q5)= = )
ag and taking into account the nonperturbative term and yyrw( {1, {2 3 JoxQ%+(1-x)Q2"
O(«ay) corrections. This approach allows a continuous tran- ! 2

sition from small to asymptotically large momentum trans-yyhere_(x) is the leading twist wave functiofdlistribution
fers. Using this procedure, we have determined the pioRmpiitudg which describes the longitudinal momentum dis-
light-cone wave function by describing the pion elastic formyipytion of valence quark-antiquark pair in the pion. PQCD

factor in the range §Q*<10 Ge\2. ~also predicts the asymptotic behavior of the pion distribution
Recent experiments on pseudoscalar meson production finpjitude in the forni5]

e’ e collisions[2] provide new data on the transition form

factors y*(Q?)y—=C,7,' in the region G<Q? ¢ (x)=6f x(1—X). (4
<20 Ge\,. These results open a new possibility for studying
the onset of the asymptotical PQCD regime. FOFQ§—>0 and IargeQ%zQ2 which correspond to the kine-

Theoretical investigation of the photon-meson transitionmatics of the experimen{2], Eq. (3) gives
processes has given two important results on the photon-pion

transition form factor. ) V2 1 (x)dx 5 1
(1) The Adler-Bell-Jackiw axial anomafg] yields a non- Fya(Q0)= ?fo xQ° [1+0(a(@)]+0 Q*)
vanishing transition form factor of the pion into two real (5)

photons in the chiral limit of vanishing quark masses:
whereF,(Q%)=F ,« ,x ,(Q%0).
At asymptotically largeQ? one can use the asymptotic
2 o _ pion distribution amplitude to find the leading behavior of
Fyrye2(Q1=0Q2=0)= 2272 f»=130 MeV, the transition form factor:

™ m
W 21,

1
Q? @)' ©
where the photon-pion transition form factor is defined as
(Q2=—-0%,Q5=—q3) The leading term corresponds to the diagram of Fidp) 1
with pointlike vertices of the quark-photon interaction.
A problem of applicability of PQCD in the region of few

Fya(Q%)= [1+0(as(Q*)]+0

“Electronic address: anisovic@Inpi.spb.su GeV? and determining the scale at which the leading PQCD
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its of small and larg&? and are expected to provide a real-
istic description also in the region of intermediate momen-
tum transfers.

The hard componen¥ ] is represented as a convolution

A of the one-gluon exchange kernéts with ¥g:
FIG. 1. Diagrams relevant to the description of the transition Wr=VisQWE, (9)

form factor at low and moderately high?.

Thus, the soft wave functio g is responsible for the pion

dominant contribution. To consider the region of 18  ¢,m factor behavior both at small and moderately large
Chernyak and Zhitnitski6] assumed that the hard scattering ~2

picture still remains valid but the distribution amplitude is far
from its asymptotic form such that the hard contribution

saturates the form factor. However, as first underlined by q.i-q analysis we have fourgg=9 GeV? to provide the

H 2
Isgur and Llewellyn-Smitti9], at low Q* a bulk of the form oot qescription of the data on the pion elastic form factor.
factor given by the perturbative hard scattering formularys yajue corresponds to an extended soft region and thus
comes from the nonperturbative 2Iqwreg|on and thus the e rejate a large portion of the pion form factor to the soft
hard scattering approach at 1o@” is not self-consistent. .,nripution. Although particular values of the soft and hard
Moreover, this suggests a considerable soft contribution 1Qqnipytions to the form factor are model-dependent quan-

the form factor in this region. A modified hard scattering isies we found that a good description of the form factor at
approach which takes into account Sudakov effgeisand g4 Q2 yields a substantial soft contribution to the form
transverse motion8] makes the perturbative consideration factor atQ?=10—20 Ge2.

self-consis_tent_ at few Ge¥but considerably de_creases the |4 this paper a similar strategy is applied to the descrip-
hard contribution to the form factor, thus leaving room for ion of the photon-pion transition form factor. Namely, we

the soft contribution.. A qualitative pi(_:ture of the. Process;niroduce the photorgq wave function and decompose it
looks as followg9,10]: The hard scattering mechanism satu-inio the soft and hard components as

rates the form factor at asymptotically lar@g whereas the

soft contribution is dominant at lo®? and is still important WY=P20(sy—S)+ V7 6(S— ;) (10)

in the regionQ?=10—20 Ge\?. At the same time, the dis- ST0 H o’

tribution amplitude is very close to its asymptotical form of  The soft component describes a hadragéestructure of

Eq. (4). This picture has been supported by recent applicagye soft photon just in the spirit of vector meson dominance

tion of QCD sum ruleg11] where the distribution amplitude ang can be expected to have the same structure as the soft

has been found to be close to its asymptotic form. A quantiyyayve function of a meson.

tative analysis of the pion form factor within the quark However, the hard component of the photon wave func-

model[1], based on isolating the soft and the hard contribuyjon has an important distinction compared with a hadron

tions, also confirms the picture of R¢@]. o case: in addition to the perturbative tail of the soft part of the
The procedure of Ref1] is the following: the pion light-  \yaye function of Eq(9), the hard component of the photon

cone wave function™ is divided into the soft and hard \aye function contains also a standard pointlike QR
components, Vg and W7, such that¥g is large at component such that

s=(m?+k?)/[x(1—x)]<so, while W[ prevails ats>s;.

The parametes, is a boundary of the soft and the hard P =VasgWI+Wl. (1)
regions and is expected to have the value of severalGeV

We performed the decomposition of the wave function into  The corresponding expansion of the photon-meson transi-
the soft and the hard components using a simple stegion form factor is described by the diagrams of Fig. 1 and

The value ofsy and the pion soft wave function have been
variational parameters of our consideration. From the nu-

function ansatz has the form
VT=W30(sp—s)+V0(s—sp). 7 F, = FSS+ FSPT pSHL 4 pSH2) (12)
Representing the hard compondnf; as a series i, one At small Q?, the FSS part dominates the transition form
comes to the following expansion of the elastic pion formfactor. At largeQ?, the soft-point tern=SPT gives the lead-
factor: ing 1/Q? falloff whereas the contribution of th®(«) terms
N , FSH(D4+ FSH(2) js suppressed by the additional factay: the
Fr=F+2F7"+0(ay), (8)  behavior of the photon-pion transition form factor differs

from that of the elastic pion form factor in which case the
whereF3$°is a truly nonperturbative part of the form factor, soft-point term is absent and the soft-hard terms dominate in
andFiH is anO(«as) term with one-gluon exchange. The first the asymptotic region.
term dominates the pion form factor at sm@fl. The second At intermediate momentum transfers, H42) provides
term gives a minor contribution at sm&F but provides the substantial corrections to theQ7 falloff. These corrections
leading a4(Q?)/Q? behavior of the elastic form factor at are due to the transverse motion of quarks in the soft-point
asymptotically largeQ?. So, the truly nonperturbative and term as well as contributions related to a nontrivjglstruc-
O(«s) terms accumulate the leading behavior in the two lim-ture of the soft photorithe terms involving¥ ¥).
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Allowing for the transverse motion is a standard proce-and(ii) depend on the particular model of the wave function
dure in moving from asymptotically large to intermediate decomposition into the soft and the hard components. How-
momentum transfers within the modified hard scattering apever, the very existence of such regions is a model-
proach[12,13 and the hard scattering approach with trans-independent result.
verse motion taken into accoufit4]. These considerations (2) We calculateyn and y»' transition form factors as-

describe the amplitude of the process with a triangle grapBuming universality of thé dependence of wave functions
with pointlike qqvy vertices. However, the quark between theOf all the ground-state pseudoscalar mesons wkeserela-

photon vertices is an off-shell particle with the virtualky tive momentum of constituent quarks such that
and thus one should take into account the off-shell quark_4 24 4R2. Thi tion is in i ith th
form factorsf(m2,k2,Q?) in both photon vertices. The off- S~ ™M - 1NIS assumption 1S In in€ with the conven-

shell quark form factor is a complicated quaniy particu- tional quark model. In acc_ordance with vector meson domi-
lar, f(m?,k2,0)# 1] and cannot be neglected. This situation nance, the same ansatz is used for relating the nonstrange
) (o4 y il .

is quite different from calculating the— 2y transition form and strange components of the soft photon. Then,and

factor through the axial anomaly in which case the anomaly’” form factors are calculated with no free parameters. The

\ " i
comes from the lowest order triangle diagram with all point—resmltlS for they and ?’;7 htransmon formlfgctor‘ts) arr]e In h
like vertices and is not renormalized by higher order correcExcellent agreement with the experimental data both on the

tions, see discussion in RéL5]. Using the light-cone tech- shape of the form factors and on the decay partial widths,

nique, we do not face the problem of the off-shell form factor! (7—7¥) and I'(#’—yy). It provides an argument for
because the intermediate-state spectral density is calculatéﬂqa” a(,jmn_(tu_re of a glut_abantwo—gluor) component into
by placing intermediate particles on mass skefie Ref[1] nandy E within the e.x.penmental accuracy we estimate cor-
for detailg. But in the light-cone technique we have to allow '¢SPonding probabilities asW,(glueball}<10% and

a nontrivial softqq wave function of the photon which be- Wy (glueball)<20%.

comes a parameter of the consideration. . The paper (I)S orggmzed as foIIows.. In Sec. Il the calcula-

The proposed method allows a self-consistent descriptioHOn Of the ym~ transition form factor is performed and the
of the photon-pion transition form factor in a broad range ofSOft transition vertexy—qq is reconstruc{ted. Section Il is
Q2 We use the soft pion wave function which has beerd€voted to the calculations of7 and y»’ transition form
determined in Ref[1] by fitting the elastic pion form factor. factors. Conclusive remarks are given in Sec. IV. The Ap-
The description of the photon-pion transition form factor re-Pendix presents calculation details.
veals a similarity of the love qq structure of soft photon
and the pion. Il. ym° TRANSITION FORM FACTOR

Summing up, we obtain the following results.

(1) We determine the soffq wave function of the photon
by fitting the available data on the photon-pion transition
form factor atQ?=0—8 GeV?. The pion wave function is
taken from the description of elastic pion form fac{ds.
The soft photon wave function turns out to be close to th
ground-state meson wave function at low, i.e.,
V(s)~VI(s) at s<2 GeV2 The similarity of ¥ and
VI ats<2 GeV? seems to be quite natural and corresponds
to_the vector meson domm_ance n t-he vertgx-qq. At where P is the pion momentum. The partial width of the
s=s; the photon wave function satisfies the boundary Con'decaywo—> reads
dition ¥ {(sg) = ¥ 5(Sp), which provides a correct sewing of rY
the FSSandFSPTterms. The soft wave functions determined, -
we calculate the photon-pion transition form factor in a F(WO—Vy‘y):—azmi.Ff,ﬂ.(O), a=1/137. (15
broad range of?. Calculations show that several kinemati- 4
cal regions with different dominant contributions may be iso-
lated: (i) At smallQ°=0—5 GeV? the transition form factor A. Soft-soft term F55(Q?)
is dominated by the soft-soft term which corresponds to a A ESS 2
nontrivial hadro¥1ic structure of the soft photdii) EE)t large The soft-soft contributionF7(Q“) corresponds to the

Q2=50 Ge\? the QED pointlike component of the photon diagram of Fig. 1a). The qq structure of the pion and the

gives the main contribution reproducing the PQCD result;phOton in the soft region is described by the vertices

(iii ) in the intermediate region the transition form factor is an

We consider they#® transition form factor using the
method presented in detail in R¢fl]. So, we omit here a
discussion of the basic points of the technique, only outlining
the calculation procedure.

The form factorF . is connected with the amplitude of
She process* y— 70 as
T,Z ‘yw(qz):ezsﬂvaﬁanBwa(_qz)a (14)

14

interplay of the soft-soft, soft-point, and soft-hard contribu- q'7s4 G,(s) (16)
tions. Numerically, the form factor behavior is very close to \/—C
the interpolation formula proposed by Brodsky and Lepage
[4]: and
V2t , €407,4G,(s") (17)
2y 7 q v y ’
Fonl Q)= G2y g2z (13

respectively. The contribution of the diagram Figa)lcan
It should be pointed out, that the boundaries of the regibns be written as the double spectral representation
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dsG,(s)#(4m?<s<s,) ds’ G,(s )0(Am?<s’ <sp)

2921

FSS(Q%)=Z,214(Q)) VN, f

Here,fq(QZ) is the quark form factorZ , is the charge factoiZ

nonstrange quark mass.

m(s—m3)

A (s,8",Q7). (18

s’

=(e2—e%)/2, with e,=2/3 andey= —1/3; andm is the

The quantityA .« ,(s,s’ ,Q?) is the double spectral density of the Feynman diagram of Fa.vilith pointlike vertices and

the off-shell pion and photon momenia= P—

d*k, Spliys(m—k,) %(m+ k) yu(m+kyp))

P, P?=s, P'2=¢', G2=¢*

Mmﬁan A x,(85,Q )——dlscsd|sgf 2

The trace reads

SR ys(M—ky) y,(m+k)) v, (m+ky))=—4ms,,,.GP~.
(20

Then, one finds

m 6(s'sQ?—m3\(s,s’,Q?))
)\1/2(3,5 ,QZ)

A yy(s,8,Q% =7 . (2D)

with N (s,s’,Q%) = (s’ —s)2+2Q?(s' +s) + Q%

Introducing the light-cone variablesx=k,, /P,
kL kn, one finds, in the reference frangg. =0, P, =0

((h Q?),

(m?—kg)(m

ki +k,=P’.
(19

, . ky+k,=P,
2—k3)(m?—k}?) 1

K 2
m FJ ds‘Pw(s)\/l—Aﬂ=f7,, 27)

wherek is the weak decay constant of the constituent quark
[1].
At Q?=0 one finds

m (so ds‘y ( ) s) 1+ J1—4m?/s
— S
2w a2 " s 1 Vi-am?/s’

(28)

FS3(0)=2

On the other hand=$3(0) is connected with ther®— yy
decay width through Eq15). We use this equation for fix-
ing an overall magnitude d&,(s).

FSS involves the constituent quark form factor for which

we use the same prescription as in Réf:

1, Q<Qo,

SQ%, Q>Qo, @9

fq(Qz):{

whereQ,=1 GeV andS(Q?) is the Sudakov factor taken in
the form[16]

SIS =
S(Q?%) =ex ——cm( Ce= . (30
(Q%) p[ Q2| G, @0
The choice of the infrared regulat@y=1 GeV in the Suda-
kov form factor is motivated in Ref10].

The coupling constantr((Q?) is assumed to be frozen
below 1 GeV[17]:

const, Q<1 GeVv,
a(Q)=4 4m _ (Q? (31)
9| 1<A2)' Q>1GeV,

- mj dxdPk, 5 m?+k?
Aryey(88.Q9= 2 | 51=02% 8™ x(1=x0)
, m 2+ (k, —xq,)?
X8| s — X(1=%) (22)
In terms of these variables the soft-soft form factor takes the
form
dxd?k,
SS 2\ 2
F32(Q)=2Z,4(Q*) Wiz fx(l 2V (S)
G, (s)
X 0(sp—S) —5—0(sp—s'), (23
with
m?+k? m?+ (k, —xq, )2
“xax ST xaxw 0 @
and
o _ Ga(s) o5
ﬁ(s)_s_mZ' ( )

ko

The functionV .(s) satisfies the normalization conditidf]

1 5 4m
WJ dS\I’Tr(S)S 1- TZJ.. (26)

The pion leptonic constant is expressed throdgh as

where A =220 MeV. This corresponds to freezing the cou-
pling constant at the scale;/w=0.15 which is a reasonable
value for constituent quark models.

B. Soft-point term F$7T(Q?)

The contribution of the diagram of Fig(l) with s’=s
is denoted a&>"(Q?) and reads
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SPT 2 ) m ( ds ds’ Details of the calculation and the analytic expressions for
Fn(Q9)=2Z,14(Q )\/N_czj g aj,a,,b’,b" are given in the Appendix. It should be pointed
, , out that althougid () from Eq.(36) is an infrared-safe quan-
< )0(s’sQ2—m A(s,s",Q%)) tity, we introduce an effective gluon masg; which is not a
m AY(s,s",Q?) regulator but the quantity relevant for the description of the

gluon of a small virtuality{ 18]. However, numerically, the
introduction of the soft gluon mass provides minor changes
in the results.

Thus, one obtains

X 6(4m?<s<s;) 0(Sp=<S'). (32

The pointlikeqq component of the photon at largecor-
responds tdG,=1 for s=s,. Hence, the continuity oG,
requires D(l (E,EI,EH) Myaﬂqapﬁ (1)(5,3’,5",Q2),
G,(sp)=1. (33

where

Notice thatF>577(0)=0 as follows from the constraints

s<sy ands’'=s;. AD(ss & O)— C 4 47m5(t) .
In terms of the light-cone variableE,S. (Q?) reads (s,8%,8%.Q%) d s—t S(1)
dxdPk 1 X S(m?—k?2) 8(m?— k2) s(m?—Kkj?)
FTQ2=22,o( @ WNgs | 5z V(9 vorm e :
X 8(m2—k}2) S(m?—ky?). (39
X 0(sp—5S)0(s' —5sp), (39
° ° The dispersion representation for the soft-hard form factor
with s ands’ from Eq. (24). FS1(Q?) takes the form
C. Soft-hard term F32P(Q?) SH(l(Q )= 27 \/—J deS’/ v ( )Gy(s,) 1
AS)—g &
The soft-hard terni>"(Q?) is given by the diagram of s s
Fig. 1(c) which can be written as the dispersion representa- X A(s,s’ & Qg) B(so—)
tion A 0
_ ! "n__ . 4
TSHD — 9g27 \/_f degdg Gus") 1 S0 s)0"= %) (40
wo =€ s’ ¢ Introducing the light-cone variablesx=k,, /P,

ST S o k. =k, , X' =kj, /P, , k| =k}, (for details see the Appen-
XDW(PvP P")0(9=5) 859~ ) 6(S" o), dix), one finds

(35
~ ~ ~ o D o 2 Ce dxd?k,
where P?=s, P’?=s’, P"’=g", and q=P"-P, A (s,s',8",Q%) = 25613 X(1—x)2
5=P"—P’ such thaff?=—Q?, §2=0, 6G=0. In this ex-
pressmnD(l’ is the spectral density of the diagram of Fig. dx'd?k| 4mag(t) 1
1(c): x'(1-x") m&—t S(1)
—_—— dagy(t) 2+ (k! —x'k,)?
DY(P,P,P")= diod iy~ S ,_ Mk Xk
g 64 27 mg- xo|s X' (1—x")
X 8(m?—k2) 8(m?—k3) 8(m?—kj?) m2+ k2
X ol s—
X 8(m2—k}2) 8(m?—k42), x(1—x)
~ ~ 2 2
ki=P—kp, K/=P"—ky, oM+ (K 7xq,)
1 3 2 1 2 X8| s X(1=%) . (4)
ki=P'—ky, t=(ky—kp)>. (36) _— . . .
Substituting Eq.(41) into Eq. (40) yields the expression
Here, of FSHM(Q?) in terms of the light-cone variables:
SP.L=SHiys(m—kz) ya(m—k3) y,(m+kj;) P G2 27.CeNg [ dxdk, dx'd?k]
~ ~ - 3\2 _w\2 ! v/
X YoM+ )y, (meky)] (om)7 I xA=0Tx =)
_ G,(s') 1 4mad(t)
=£,,ap0"PP-S(1), 3 AN
prapd (1) (37 XWo(s) =5 mE—t 1)
with

X 0(sg—5S) 6(sg—S")0(s"—s¢), (42
S(1)=4m[s'—12b’ +4b"+(s"—s+Q?)(a;—aJ)].

(39 where



m?+ k2 m?+ (k] —x'q,)?
T x(1-x)’ x'(1-x")
m?+ (k, —xq,)?
S :—x(l—x) , (43
m2(x’ —x)24+ (xk! —x'k, )2

X' X

With the light-cone expressions fay ,a;,b’,b” [see Eq.

(A12)] the functionS(1) takes the form

S(l)=4m{ 12(( L‘hé( kia,) (k! ))
(kjq,)? | (kla,)
+4( 5; —kf)—(s"—s+Q2) 6; .

(49)

D. Soft-hard term F5#?(Q?)

The calculation of the soft-hard ter@>H(®(Q?) looks
very much like the calculation oFSH(X Q?), namely,

FSH3(Q?) is given by the diagram Flg (@) which can be
ertten as the spectral representation

T2 =267 N, f

xD2)(P,P’ ,B") 0(So—S) 0(So—S') 8(S" —Sp),
(46)

dsdéds” G,u(s') 1

’ " 2
S S _mw

with P2=s, E’2=s”,u5”2=’§", andg=P'—P", 5=P—P"
such thafj?= —Q?, 6°=0, §§=0. The quantityD?) is the
spectral density of the diagram of Figdl

47Tas(t)

D2 (P,P",P")= 64 d*kedk—

;LV

X 8(m?—k2) 8(m?—k5) 8(m?

ki?) 8(m2—k3?),

~K;?)
X 8(m?—

ky=P—k, K{=P"—kj, ki=P'—kj, (47)

with
Sp,,=Saiys(m— k) ¥o(m— kz)?’y(m+k1)
XyM<m+R'1'>ya<m+Rl>]
=& 050" PP-S(2), (48)
S(2)=8m[s—(a; —a;)(kiP)—ay(k;k;) — 2b"

—m?(1+aj)]. (49

Details of the calculation and the expressions for

a;,a,,b’,b"” are given in the Appendix. So,

Dfﬁ(E,B’ P")= swaﬁ'ﬁ‘“ﬁﬁ- AP (s,s',5",Q?),
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2923
C
A<2’(s,s’,s”,Q2)=#gf d4k2d4k2—2£8(2)
X 8(m?—k3) 8(m?—k3) 8(m?—Kk}?)
X 8(m?—k;2) S(m?—kj?). (50)

Finally, the soft-hard form factoF3"(*(Q?) takes the
form

SH(2)
FSH2(Q?)
dsdsdy’

=27 J—f W _(s)

(2)(s,s',8",Q?) 0(sg— ) A(so—S') B(S"— Sp).

G,s) 1

’ " 2
S S —m_

(51)

Introducing the light-cone variables, one obtains
AP(s,s',9",Q?)

_ Ck fdxdzki dx'd?k| 4mag(t)
~ 2567 ] x(1—-x) x'(1-x')2 mE—t )

m?+k? m?+k| 2
X 8| s— = T
X(1—Xx) x"(1—x")
Pk —x'a,)?
X 8| s’ — T (1=x) (52
Substituting Eq(52) into Eq. (51 yields
SH(2) 2
F3H2(Q?)
2Z,CeNg [ dxdPk,  dx'd’k]
(1672 ) x(1—x) x'(1—x")?
G, (s 1 4 t
< () 7(, ) 1 772as()
s s"—m_ mg—t
X 8(2)0(sg—s)B(sp—s") 6(s"—sp), (53
where
m?+k? . mP+(ki—x'g,)®  mP+k(?
Cx(1-x)’ - x'(1-x) X' (1-x')"
(54)

Using the light-cone expressions fay,aj;,b’,b” from
Eqg. (A12), one finds

k
S(2)=8m|s +—2—( gh)(k”P) '+—2—( aqi))(klkz)
(ki q,)? (kia,)
—2( B; —kiz)—m2 1+x + 6; )

(59
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SH 4

0 5 10 15 20 25 30 35 40 45 50
Q° (GeV/c)?

FIG. 2. Relative contributions of different terms to the form 225
factor: the ratios of different terms contributing to the whole form 2
factor are shown. Four variants for the SH term correspondljo: 1.75
mg=0, ag(t), the upper solid curvef2) mg=0, ay(Q%4), the 1.5
lower solid curve;(3) mg=mg(t), ag(t), the upper dotted curve; 195
(4) mg=mg(t), as(Q?4), the lower dotted curve. ’ 1
0.75
E. Calculation results 05
For calculating the form factors at low and intermediate 0.25
Q? one needs masses which are relevant for the soft physics: 0 b
constituent quark mass and effective gluon mass. For the 1. 2 3 4 5 6 7 8 9
constituent quark mass we use the vatne 0.35 GeV. For s(GeV?)

the effective gluon massi;(t) we consider, just as in Ref.
[1], the following two variantg§masses are given in GgV FIG. 3. qg-distribution function for pion@) and for photon(b).

(i) mg=0,

Much more important is the shape of the soft photon wave
function. There are two constraints on the soft photon wave
function: the conditior(28) which guarantees the correct de-

(56)  cay width #°— yy, and the continuity conditior{33). In
addition, we impose the third constraint in the spirit of vector
dominance model and §8) symmetry: the slope oG (s)

In the second variant the effective gluon mass depends on it§ the region 4n2<s<1.5. _GeV2 is the same as that of

virtuality, namely, Mg(t=0)=0.7=M gepa(2 [18], above Gi(s_). _Usn_wg these_condltlons we reconstruct the_ photon

t=0.5 Ge\? the gluon is massless, and in the regionqq—dlstrlbutlon functionG,(s) which is shown in Fig. 3,

[t|<0.5 GeV,

t
(i) mg= 07(1+0—5

0, [t|>0.5 Ge\,.

0<t=<0.5 Ge\2 a simple linear interpolation is used. together with G,(s) for comparison. The reconstructed
; distribution function has a dip in the regien-2—4 GeV?
For a4(t) we use the two options ISt p 9 a
similar to that of G.(s). In Ref. [1] we termed theqq
const, t| <1 Gel?, distribution of such type a quasizone structure, as this distri-
4 bution looks like a smeared zone structure in solid state:
() agt)= —Trlnl(ﬂz) lt|>1 Ge\?, there is a forbidden zonghe dip in the region o6~2—4
9 A°) GeV?) where the probability of finding theq pair is low

and an allowed zone above the forbidden @tiee second
. Q? bump in G). We could not propose an explanation of this
(i) “S(t)zaS(T)' (57 fact but only observed it.
The reconstructeé ,(s) behavior provides an argument

The first choice corresponds to freeziag(t) at lowt justas that the quasizone structure in the distributions is a gen-
in Egs. (29). The second choice takeg(t) in the middle eral property. The quantityq-(/4)a2m737F§W(Q2) with the re-
point, [t|=Q?%/4. So, Eqs(56) and (57) provide four possi- constructedG (s) is presented in Fig. 4. We tried other
bilities for the soft-hard form factors. The corresponding re-shapes of5,, but did not succeed in describing the data. To
sults for the soft-hard term are shown in Fig. 2. One can se#lustrate the form factor sensitivity to the photon
that a particular choice ahg andag in the soft region does gg-distribution function we preselﬁtW(Qz) calculated with
not influence the result significantly. the following alternativeG (s):
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latter is a smooth function, the description at intermediate

10 . :
> r,=7.23eV Q? will be also good. However, real problem arises when
one is trying to describe botk, andF ., simultaneously
° = yy with the same parameters. Our numerical analysis of both the

elastic pion and the transition pion-photon form factors sug-
gests an extended soft region with=8—9 GeV? and the
photon qq distribution with a dip in the regiors=2—4
Ge\? just as in the pion case.

10 F
. lll. y» AND y#n' TRANSITION FORM FACTORS
""" For theyn andy#’ transition form factors we assume, in
o the spirit of the quark model, the universality of soft wave
0O 1 2 3 4 5 6 7 8 functions of the 0 nonet. This universality is usually for-

Q? (GeV/c)Z mulated in ther representation, or in terms of the relative
guark momenta. So, let us rewrite the pion wave function

FIG. 4. y7° transion form factor: the quantity V¥ _(s) of Eq.(25) as ajuncnon of<2wh|ch is connected with
(m/4)a?m3F2_(Q?) is shown. Different curves correspond to dif- the energy squared = (s—4m?)/4.

Ty

ferent sets of parameters in the SH term; the curve notation is the In terms of the relative momenta, the pion wave function
same as in Fig. 2. Experimental data are taken from [2éf. has the form
0.98G (s), s<1.5 Ge\?, . 9(k)
(1) GW(s)= ! Vo (S) = (K)=——, (59
Y 1, s>1.5 GeV, K2+ k5
(2) GP(s)=1. (58)  where according to Refl] k5=0.1176 Ge\,.

The pseudoscalar mesomsand »' are mixtures of the
The results are shown in Fig. 5. The varidit corresponds  ponstrange and strange components= (uu+dd)/y2 and
to the lows qqdistribution similar toG(s) but without a g5~ ,—nncosg—sssing, 7’ =nnsind+sscosd. Respec-
dip ats~3 GeV? (the factor 0.98 is due to renormalization tively, the wave functions of they and »' mesons are de-
of theqq distribution to havd",,=7.23 e\). The absence of g¢riped by the two components
a dip in the photorgq distribution results in raising the cal-
culated curve at larg®?. The varian{(2), which corresponds W, = contk?) — sinfiss(K?),
to the pointlike vertexqygq— 7y at low s, reproduces neither 7
r,, nor low-Q? form factor correctly. It should be noticed

that the value of",_, ., strongly depends on the constituent

quark mass, namely, using the valune=0.22 GeV one can The universality of the pseudoscalar meson wave function
easily find the pion wave function to reproduce the correcyggests that the function
decay width with pointlike vertexs(s)=1 at alls [19]. At

W, =singy,ntk?) + coypsstk?). (60)

the same time such a description provides the correct large R o( K2)
Q? asymptotic behavior df . Taking into account that the Pantk?) = e (62)
Ko
%10 e normalized as
2 (k2 . . = N L, S
= vy ?fokodk2|k| VK2 +m2yP—(k?) =1, kg=z°—m2,
at e CELLO (62)

= CLEO

: is just the same function as for the meson.

For thess component we should take into account the

el £ SU(3)-breaking effects which are described mainly by the
..... strange or nonstrange quark mass difference; hence,

- g(k?)
’]O 1 1 i 1 1 1 L k2 :N_}—'
o1 2 3 4 5 6 7 8 Vel =N, K2+ A2

Q* (GeV/c)?

(63)

where A2=m?-m?, m=0.5 GeV andk®=(s—4m?)/4.
FIG. 5. The quantity ¢/4)e®m>F2_(Q?) for the variant(1) of ~ The factorN corresponds to the renormalization 0fs(k?)

T ym

Eq. (58), dotted line, and for the variaii®), dashed line. The solid after introducingA, i.e., replacingm—ms. The strange
line is the same as in Fig. 4. component is normalized as
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2 (K2 oo 2 - 2Z7Ce N, [ dxcPk,  dX d?k]
di?|K| VK2 +m2y2(k?) =1. 64 SHL)(Q2)= NN T ¢ - =
?Jo K s¥sll) 9 R (QY=—6m7 | xi—x2 ¥ (1%}
Similarly, for the momentum representation of the soft . ., 1 Amag(t)
photon wave function we use the expressions XYtk ¥y nntk' g mE—t (1)
9,k X 0(so—8)0(Sp—S") 0(S" —Sp), (72)
Vo (s)=ty nntk)==—7 (65
k“+m ands, s', ands” are given by Eq(43).
The soft-hard ternf >(?\(Q?):
and
@ o2 2 - 2Z,+Ce N, [ dxd?k, dx'd%k]
U K2 == 9y _ (66) (167°)% ) x(1—x) x'(1—x")?
[ K2+ m?+ A2
. _ 1
Thenn andss components of the meson and soft photon X it k) it K 2)5”— .
wave function fixed, one can proceed with calculations of the K
transitionyn and y»' form factors, which read 4rrag(t)
X— S(2)6(sg—S)
mg—t
G
(73

F,,(Q%) =CcodF 1( Q%) — sinbF s5( Q?),
F ., (Q%) =SsingF ;7 Q?) + cohF 5t Q?).

The following two subsections present a summary of for-
mulas forF (Q?) andFs(Q?).

X 6(sg—S")0(s" —sp),

(67) _
ands, s’, andsr are given by Eq(54).

B. The ss contributions to the form factor

The ss expressions are obtained from the corresponding
terms inFW(QZ) by replacing the charge factor, the wave

g form.

A. The nn contributions to the form factor
The nn contributions can be obtained from the corre-functions, and the quark masses. The results have the follow-

sponding terms |rFW(Q2) by replacing the charge factor in

and the wave functions. The final results are listed below.
The soft-soft termF>3(Q?):
FrntQ®) =2Zyafo(Q%) VN7 5 fx(l 22 Yt

X 0(So— )¢yt 2) B(sp— '),

k?)

(68)

2 2 ’
e, T €y .. S R S
- kK?=——-m?, k'?=—-m? (69

ZnF \/E ’ 4

m
OO0 =Zag | e bR, )

1+\/1 4m?/s 70
1 1-V1-_am?/s’

s ands’ are given by Eq(24).
The soft-point ternF >(Q?):

SPT 2\ _ 5 lf dxd?k,
Fan (Q%)= 2Zuafo( Q) Wz s | 57 —52

L1
X Yt k) 57 (S0 9) 6(S' = o). (71)

SH(1 .
The soft-hard ternf>H(1(Q?):

The soft-soft termF2XQ?):
500 =22, Q) Ny s f T 1d2§§2 vssk?)
X 0(so= )¢, _s5tk'?) 0(so—"), (74)
Zss=€?, I22=E—m§, E’Zzsz,—mg, (75)
:(]itlf) = mg +X((?:X);ql)2: (76)

ss mg so+4A2dS
FRO=Zag, | 2

1+\1-4mZ/s an

2 2
Xttt
The soft-point tern‘F (Q ):
dxd?k
FSETQ2) = 2Z4314(Q2) Ny 5| 5102

L1
X PsotkD S 0(s0=5)0(s' ~s0).  (78)

The soft-hard ternF22(Q?):
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2ZCe N, [ dxd’k, dx'd?k]

FSHD(Q2) =
(@)= (167°)% | x(1—x)? x'(1—x")
2 12 S(t)
X hsstk) ¢, 55tk ) 5(1)
X 0(sg—S) 0(sg—S") 0(3”—30), (79
_ mi+k? S,_m§+(ki—><’qi)2
x(1-x)’ - x'(1-x")
2 2
" ms+(kJ__XqL)
X(1—X) ' (80)
m2(x’ —x)%+ (xk| —x'k, )2
— s( ) ,( q 1) . (1)
X' X
The soft-hard ternF24(?(Q?):
£sH2 2Z5Cr N, [ dxdPk,  dx'd?k]
ss (Q )_ (16773)2 (1—X) r(l_X/)Z
P L ——
ss y—ss S,,_mz /
mn
drrag(t)
XTS(Z)H(SO S)
Mg —
X 6(sg—s")0(s"—sp), (82
_ mi+k? S,_m§+(ki—x’qL)2 e m2+k!?
Cx(1-x)’ - X'(1-x") X' (1-x')"
(83

C. Calculation results for the y5» and y#’ transition form
factors

The calculation of theyn andy#’ transition form factors

>
< M,=0.512 KeV
—1
10 n Y, ceuo
« TPC/2y
-2 )

10 F
I~
B

—4
10 I I I | I
O T e
Q2 (GeV/C)2
3
X r,=4.81KeV
Ty n =y e CELLO
. TPC/2y
-1 o
10 ¥
1 PR e
o k\
-3
10 " o)

0 2 4 6 8 10121416 18 20
Q" (GeV/c)?

FIG. 6. Q? dependence for the quantities/@)asz],Fi,’(QZ)
and (w/4)a m'3F - (Q?). Different curves correspond to different
sets of the parameters in the SH teftime curve notation is the same
as in Fig. 2. Experimental data are taken from RE].

does not require any additional parameter, as all unknowapproach developed in Refl] which allows covering a
quantities are fixed by them case. We use only the univer- wide range of momentum transfers from the soft to PQCD
sality of wave functions of the ground-state pseudoscalaPhysics. Our analysis shows that a hadrapépstructure of
meson nonet. For the mixing angle we take the valughe soft photon similar to the pion structure at Iswthat is
sing=0.61 [20]. The results show an excellent agreementquite natural in the framework of the vector dominance

with data both in th&? dependence of the form factoisee
Fig. 6) and in absolute values df,,(0) andF,, (0): ex-
perimental data for the partial decay widths dre_.,,

=0.514+0.052 keV[20] andI',, _, ,,=4.57+0.69 keV[20]

and our calculation givesl', . ,,=0.512 keV and
r,._.,,=4.81KkeV.

7' —vyy

model, yields a good description of the photon-pion transi-
tion form factor.

It should be underlined that we use the pion wave func-
tion which has been previously determined within the same
approach from the data on the elastic pion form factor at
Q?=0-10 Ge\2. Thus, we have a simultaneous description

Assuming universality of the pseudoscalar meson wave@f F - andF ., at low and intermediat® and guarantee the

functions, we can estimate the value of gluofdc gluebal)
components inn and n'. With »=C;qq+C,gg and

7' =C;qq+Cjgg, we obtain the following constraints for

probabilities of the gluonic components i and 7':
C3<0.1 andC,2<0.2.
IV. CONCLUSION

We have analyzed the#°, y7, andyz’ transition form
factors at low and moderately higB?, making use of the

asymptotlcal behavior of these form factors in accordance
with PQCD.

In the case when both of the photon virtualities are non-
zero, our approach recovers at la@éthe 1Q? behavior as
PQCD does, and not Q£Q3 as might be expected from the
naive application of the vector meson dominance. The vector
meson dominance reveals itself rather in a hadronic structure
of the soft photon than in a naiveQi behavior of the form
factors.

For theyn andy#%’ transition the universality of the soft
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wave functions of the ground-state pseudoscalar mesons, the
members of the lightest nonet, gives unambiguous results
found to be in perfect agreement with the experimental data.
The transition photon-meson form factors were calculated
at moderately larg€? within the hard scattering approach
[12—14 and at lowQ? in the quark mode]19,21]. A com- kK Ky
mon feature of these considerations is describing the process
by the triangle graph with pointlikeqy vertices. This is
equivalent to writing single dispersion representations in the
pion channel and hence leaving the exchange quark between
the photon vertices an off-shell particle with the virtuality
k2. In this case one should include into consideration the

quark form factorsf (k?,m?,Q?) in both photon vertices ke ks
(see also discussion in Réfl5]). The off-shell quark form
factor is a Compﬁcated object, in particuHE(kz’mz’o) FIG. 7. Momentum notations in soft-hard terfsH® (a) and

# 1. This important point is usually neglected. We overcome™>"? (b).

this problem by considering a double dispersion representa-

tion whose spectral density is optalned by_ pIaC|2ng ?II (zquarks APPENDIX: CALCULATION OF THE

on mass shell and thus havm_g m_the vertiégdn<, m=,q;) SOFT-HARD CONTRIBUTIONS

such thatf .(m?,m?,0)=1. But in this case we have to allow

a nontrivial qq structure of the soft photon. The quantity  The soft-hard contributions are described by the two-loop
G, describing this structure has been a variational parametéfiagrams of Figs. (£) and 1d), the momentum notations in
of our consideration. As a matter of fact, the numericalWhich are shown in Figs.(@ and 7b), respectively. As the

analysis suggests a hadronic structure of the soft photof@lculations of these graphs have many common steps, we
similar to the structure of the meson just in the spirit of thePT€Sent formulas in parallel denoting the specific formulas as

vector meson dominance. Although some particular detail§2S€ A_and case B. For_ obtaining the spectral densiti_es Qf the
of the consideration are model dependéhie partition of dispersion representations for the soft-hard contributions

wave function into the soft and the hard components and th@'Ith only two_—parncleqq singularities taken into account we
must set all intermediate quarks on the mass shell and allow

corresponding description of the elastic and transition form —
factors in terms of the soft and the soft-hard parts at inter-0 fi-shell qg momenta, namely,
mediate momentum transfgr¢he main conclusion on the  case A: P=k;+k,, ’F",r:kiJrké, —Fv’"=|<1+k2,
importance of the hadronic structure of the soft photon and

the similarity of the soft photon and meson structure remains

valid and crucial for a simultaneous description of the pion E—B”—B S=p"—p' (A1)
elastic form factor and pion-photon transition form factor in '
a broad interval of momentum transfers.

Finally, we would like to comment on a possibility to
distinguish between the pion distribution amplitudes of the
Chernyak-Zhitnitsky{CZ-) type and the asymptotic type by
studying the photon-meson transition form factors at several
GeV?, whereas in an earlier application of the hard scatter-
ing picture[12,13, the CZ distribution is discarded as failing
to describe the data §°=2—8 GeV?, a later analysi§14]
shows that with the transverse corrections taken into accou
more properly, both of the distribution amplitudes agree with F lculating the t in the doubl tral densiti
the data. These conclusions are based on ignoring the soft or calcuialing the traces in Ine double Spectral densilies

contribution in a few GeV region. We have found that once® Egs. (36) and (.47) it is conven_ient fo perform the Fierz .
the soft part of the elastic pion form factor and a nontrivial rearrangements in the traces to isolate factors related to dif-

hadronic structure of the soft photon in the transition pion-ferent loops as follows

photon form factor are included, the reconstructed distribu- . D e 1t Y Y
tion amplitude is numerically very close to the asymptotic C35€ A* SP.y=SHIvs(M=ka) v(M=kz)y,(m+ky)
form in agreement with recent QCD sum rule res{ig].

Case B: P=k;+k,, P'=kj+k,, P"=Ki+kj,
G=P' -P", 5=P-P, (A2)

v¥here52=s, Pr2=g', P"2=g" §2=¢?, 52=0, 5G=0, and
2= m?2
: .

X yo(m+k]) v, (m+kyp)]
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s'+

. 2)— : i i i —_ S — 2
Case B: Sp)=SHiys(M—ky)vo(m—ky) y,(m+ky) P:(P+’2P 'O>, P,:(P+, 2PQ q) 28)
+ +

X (MK yo(m+ky)] _
The vectorsP”, 8, andq are different in the A and B cases:

= > CGSH(m+ky

i=SV,T,AP _ S"+Q2
. . Case A: P"=|P,,—,q, |,
Xiys(Mm—Kky) O] 2P,
X SHOI(M—k3) y,(m+k1)y,,
s+Q?
X (m+kj)], (A4) q= O,T,QL :
with Cg=1,Cy=—13,C1=0,Co=3,Cp=—1. Each term in ~ s'—s’
Eqgs.(A3) and(A4) is a product of two factors, related to two 6=10, 2P, 0], (A9)
different loops(see Fig. 7. The nonzero terms in Eq6A3) , L
and(A4) are theS,V,A andP,A terms, respectively. Case B P'=|p S 0 3=lo s'=s"+Q
Next, we have to calculate integrals of the form S SR T= T K il D T- I T
5—(03_5” 0) (A10)
1k M,k,; kK., KK} S\ ey )
f dk,dk,dkjdk;dk; Y- 8(Kj2—m?)
6~ (ko= k) The light-cone variableg,x’ ,k, , andk| are introduced as
X 8 (K —m?) (k5 —m?) 8(k;2—m?) 8(ky? —m?) m2+ k2 m2+k/ 2
_ 5 _ k2 XP+, 2XP+ ,kJ_), k2_ X P+, 2 ,P+ 1kJ_ y
X 8(P—k;—ky) 8(P"—kj—ky) 8(P'—k;—k3). (A5)
Under the integral sign we can substitute - ~, s'+Q?
P_ P+,2P+,O l P - P+1 2P+ 1ql
_ _ — (A11)
k,—a;P,+axq,+asd,,
In terms of these variables the coefficients in &), which
are needed for the trace calculation, take the form
k' —ajP,+ajq,+asd,, )
' ' ' ' a;=x, a;=x', a _ka a,=x"+ Kid
15X, 1=X, 2577 AT A2
Q Q
k.k,—_ > ansA,B,+b'g,,, (k,q,)(K q,) (K.q,)2
u AERud ,u w b — LqLQZ 1A (KK, b= Lqi S
(A12)
K K, — Z a}&BZ\MEﬁb”gw- (A6)  The final expressions for the traces read
AB=P,q,8

1)_ BB " ’
For further calculations it is convenient to use the light-cone S 4m8“”“ﬁq PHs’+4b"=120
variables and work in the reference framg =0,P, =0 +(s"-s—g?)(a;—aj)], (A13)
such that

SP2=8Me .50 PP[s— (a] —a})(K;P) — 2b" —aj(kjkj)

m2 Q2
— T r_ < 2 ’
P_<P+,2P+,O), P (P+12P+1qi)a m (1+a2)]! (A14)
where
_m2+ 2
- 2_0n2 ~ 1 1
q—(O:T’qL)1 o =Q~ (A7) (K{P)=5[X's"+(1-x)s],  (kjk)=5s'—m?.
(A15)

In this reference frame the vectoPsand P’ can be chosen
such that The expressions fos ands’ are
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m?+ k2 m?+ (k] —x'q,)?
xS waexy v (A8
ands’ is different in the A and B cases:
m2+(k, —xq, )2
Case A: s”=(i—ch),
X(1—X)
o m?+Kk| 2
Case B: s —m. (Al?)
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B—>P, P'—P’, ’5‘—>0,

g—aq,
Case A: P"— P,

Case B: P"—P. (A18)
These Lorentz structures determine the Lorentz structure of
the amplitude, and the corresponding scalar factors enter into
the spectral densities of the form factors. Let us point out
that shifting from the mass shell is performed only in the
(—) components of the vectors, while the  and (L) com-
ponents ofP, P’, and P” are equal to the corresponding

In the Lorentz structures of the final expressions for thecomponents of the physical vectdpsandP’, in agreement

traces one must set
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