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Ground-state baryon masses in an equally mixed scalar-vector linear potential model
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Taking into account the pionic self-energy of the baryons, the color-electrostatic and magnetostatic energies
due to one-gluon exchange, and the corrections due to the center-of-mass motion, the ground-state masses of
the octet baryons are calculated in a chiral symmetric potential model of independent quarks. The effective
potential representing phenomenologically the nonperturbative gluon interactions, including gluon self-
couplings, is chosen with equally mixed scalar and vector parts in a linear form. The physical masses of the
baryons so obtained with the strong coupling cons@t0.576 agree very well with the corresponding
experimental valuegS0556-282(196)02323-3

PACS numbd(s): 12.39.Pn, 14.26-c

[. INTRODUCTION [5]. Since there are no diquark states, they interaction
must be weaker, which can possibly be provided by the re-
Several works based on nonrelativistic quark model appulsive nature of the vector potential. Thus, for the confine-
proacheg$1] have appeared in the literature to study the massnent of quarks, a mixed scalar and vector potential is a more
spectrum of octet baryons. The phenomenological descripappropriate choice. In fact, the choice of such a potential has
tion of the baryon masses at the nonrelativistic level is quitdbeen immensely successful in predictions of hadronic prop-
reasonable; still, a relativistic approach is indispensable irerties. Therefore, for the study of baryons, one can think of
view of the fact that the baryonic mass splittings are of thetaking an effective individual quark potentigl,(r) in the
same order as the constituent quark masses. In this respdotm of an equally mixed scalar and vector part purely on
the MIT bag mode[2] has proved to be quite successful. In phenomenological grounds without searching for any justifi-
its improved versions, the chiral bag mod¢® (CBM's) cation for its physical origin as well as mathematical struc-
have included the effect of pion self-energy due to baryoniure. However, such a choice is certainly guided by the usual
pion coupling at the vertex to give a better understanding ofiesthetic compulsion of providing simplicity and tractability
the physical mass of the baryons. Nevertheless, such moddls the model in the same spirit as that which led Bogolioubov
still contain some dubious phenomenological ingredient$6] to introduce the idea of the spherical bag at one stage.
which are objectionable. The sharp spherical bag boundary,he implications of such potential forms in the Dirac frame-
the zero point energy, the exclusion of pions from within thework of independent quarks have been discussed by Smith
bag, orad hocinclusion of pions within it are a few such and Tassi¢7]. Bell and Ruegd8] have also shown that the
points to be noted in this context. Furthermore, it is somespin-orbit interaction is absent in such a scheme due to exact
what difficult to believe that the static spherical bag remainsancellation of such terms coming from vector and scalar
unperturbed even after the creation of a pion. On closer scryparts of the potential if taken in equal proportions. This is
tiny one finds that the static spherical bag boundary, which iglearly a welcome aspect of the model in the case of baryons
ironically responsible for the success and simplicity of thesince the contribution of the spin-orbit interaction term to the
CBM, is, on the other hand, at the root of all the difficulties baryon mass splittings is already knoy8i to be negligible.
encountered by the CBM. However, the rigid spherical bagtichten and Feinber§10] provide further support to the
boundary of the CBM, which is nonetheless arbitrary andabove Lorentz structure from a gauge-invariant formalism
phenomenological, can always be replaced by a suitable pheshere the confinement mechanism is assumed to be purely
nomenological average potential for individual quarks, pre<olor electric in character. Furthermore, such a Lorentz struc-
serving at the same time its good features. ture of the two-body confining potential has been observed
The chiral quark model§4] which are comparatively [11] phenomenologically in the study of the hyperfine split-
more straightforward, are no doubt attempts in this directiontings of heavy meson spectra.
In such models the confining potentials which represent ba- Moreover, in a Lagrangian formalism with such a poten-
sically the interaction of quarks with the gluon field are usu-tial, its scalar part together with the quark mass term appear-
ally assumed phenomenologically as Lorentz scalars. Thing in the quark Lagrangian density‘,g, makes it chirally
term in the quark Lagrangian density corresponding to such add through all space, which requires the introduction of an
scalar potential is chirally noninvariant through all space andadditional pionic component everywhere in order to preserve
hence requires the introduction of an additional pionic com-chiral symmetry which is essential in models like the CBM.
ponent everywhere in order to preserve chiral symmetryOn the other hand, the vector part\6f(r) together with the
thus removing thead hocnature of the CBM in including accompanying scalar part in equal proportion at every point
pion field in the interior region as against its requirement inrenders solvability by converting the Dirac equation of the
the exterior region only. However, the pure scalar potentialndependent quarks derivable frouﬁg into an effective
provides an attractive force for both tlyg and qq states, Schralinger-like equation producing no spin-orbit splittings
whereas the pure vector potential produces apdystates as required by the experimental baryon spectrum.
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Nevertheless, there are some definite theoretical justifica- V(r)=a’r+V,, a>0. (2.2
tions underlying this phenomenologically successful confin-
ing potential form. It may be possible to arrive at such po-V(r) represents phenomenologically the confining interac-
tential forms in color-dielectric models with an appropriately tion due to the dominant nonperturbative multigluon mecha-
chosen color-dielectric function having radial dependencenism including the gluon self-couplings. Then, leaving aside
which, however, would require further investigation and onefor the moment any further residual interactions such as
cannot claim anything at this stage. guark-pion and quark-gluon interactions to be treated pertur-

In view of the success of this scheme, effective confiningbatively, one can write the zeroth order Lagrangian density
potentials with such Lorentz character in lin¢42,13, har-  for independent quarks in a baryon core as
monic [14], and non-Coulombic power-law forfii5] have
been used by several authors in the recent past for the study 0 — [ -
of baryons. In our earlier work we have also employed such Lq(X)=(X)| 5 749, = Mg= V(1) [¢hg(X). 23
a potential in linear forni13] to obtain a reasonable predic-
tion of the core contributions to the static properties of theAssuming all the quarks in a baryon core are in their ground
octet baryons. The same scheme has also been adopted bystistes WithJP=%+, the normalized quark wave functions
to study the nucleon form factors, as well as the weak elecy, (r) satisfying the Dirac equation, derivable frahﬁ(x) as
tric and magnetic form factors for semileptonic baryon de-
cays[13]. Then, incorporating chiral symmetry in the &) [Y°Eq— - P— My— V(1) 1¢4(F) =0, (2.4
flavor sector in the usual manner, we have obtained the
electromagnetic properties of nucleofi®] as well as the can be written in a two-component form as
magnetic moments of octet barydri¥] in reasonable agree-
ment with experimental data. But, in this model, we have not bq(1)
)é()a(ift]zl;en into account the effects of the residual one-gluon Yo(F)=Ng| &P ¥, (2.5

ge interaction assuming its effects to be not so much —— ¢q(1)

significant for the electromagnetic properties of baryons. A
This, however, plays an important role in providing color-
electrostatic and magnetostatic energies to the quark cor}Q’.here
Therefore, in the present work, we are interested in employ-

ing such a chiral potential model to study the mass spectrum Ng=EqTmq,
of the octet baryons by taking into account the corrections U,(r) (2.6
due to(i) the energy associated with center-of-mass motion, b1 =Aq q Yg( 9,0)

(i) the pionic self-energy of the baryons arising out of the r

baryon-pion coupling at the vertex, afidl) the color-electric ] ) )

and -magnetic energy arising out of the residual one-gluoniS the normalized radial angular part ¢f,(r) with normal-
exchange interaction. We treat all these corrections, leadingation constant A;. Taking E;=Eq—Vo/2, mg=m
ultimately to the baryon physical masses, independently, a3 Vo/2, and\=E;+mg, the reduced radial pad,(r) can
though they are of the same order of magnitude. This moddde found to satisfy a Schdinger-type equation

with a linear form in particular for the scalar-vector mixed

potential, turns out to be quite simple and tractable in these Ug(r)+Ng[Eq—mg—a®r]Uq(r)=0, 2.7
respects, yielding very satisfactory results for the physical ] . ) )
masses of the low-lying baryons. which can be transformed into a convenient dimensionless

The plan of the present work is as follows. In Sec. Il weform
outline the framework of the potential model used with the "
solutions for the relativistic bound states of the individually U"(p)+ (ens— 3)Uq(p) =0, 2.8
confined quarks in the ground state of baryons. Section |
provides an account of various energy corrections such a\g
those due to center-of-mass motion and quark-gluon and
quark-pion interactions. Finally in Sec. IV, we present the
results for the ground state baryon masses, which come out
in very good agreement with the corresponding experimental
values.

here p=r/ryq is a dimensionless variable witlr,
(a®\g) ¥ and

1/3

A
3| (E{—m)). (2.9

a4

€ns—

Now, with z=p—€,s, EQ. (2.8) reduces to

Il. POTENTIAL MODEL U’(;(z)—qu(z)=0, (2.10

We start with the assumption that the constituent quark
in a baryon core are assumed to move independently in
average effective potential of the form

Whose solutionU4(2) is the Airy function Ai(z). Since, at
o, Uqy(r)=0, we have Aig) =0 atz= — €. If z, are the
roots of the Airy function such that Az() =0, then we have
. 0 z,= — €,5. For the ground state of quarks, tlag, value is
Vq(r)=z(1+y)V(r), (2.1) given by the first rootz; of the Airy function so that

where €ns= €15= €q= — 23, (2.1)
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the value of the root being,=—2.338 11. Now the ground e~
state individual quark binding enerdy,=E +V,/2 is ob- g N
tainable from the energy eigenvalue conditi@?9 through / \
the relation /. \
[ )
Eq=(mg+axg), (2.12 B B B

wherex, is the root of the equation

320’ (2.13 FIG. 1. Baryon self-energy due to coupling with pion.

4 3
Xqtbxg—e€
with b=2m//a. 222\ _ 32 2
q Mg/Eg)=1— P<),/Eg, (3.9
The overall normalization constany, of ¢,(F") appearing (M/Es) % (P5)alEs
in Eg. (2.5 can be obtained in a simplified form as ] ) ] ]
which provides the energy correction to the baryon mass in
3(E.+m!) Eqg. (3.1) as
-3 3 (2.14

2
4 2(2E.+m))’ 112
(2Fa* M) <5EB>c.m_={(Eé—2<Pz>q) —EB}. (3.5)
q

Ill. ENERGY CORRECTIONS TO BARYON MASSES

The binding energies of the individual constituent quarks B. Pionic self-energy corrections

contribute additionally to the mass of the baryon core. Equa- Looking at the zeroth order Lagrangian densng de-
tions (2.9—(2.12 provides the quark binding enerdy,,  scribed in Sec. I, one can note that under a global infinitesi-
which immediately leads to the mass of the baryonic core irmal chiral transformation at least in the,f)-flavor sector
zeroth order as the axial vector current of quarks is not conserved due to the
fact that the scalar term im:g, which is proportional to
S(r)=[mgy+V(r)/2], is chirally odd. Of course, the vector
part of the potential poses no problem in this respect.

In order to restore the chiral SR)XSU(2) symmetry
Such a contribution needs corrections due to center-of-magtithin the PCAC (partial conservation of axial vector cur-
motion, quark pion interaction, and quark-gluon interaction,rend limit, one can introduce in the usual manner an elemen-
which need to be calculated separately so as to obtain the@ary pion field ¢(x) of small but finite massn,=0.14 GeV
physical masses of the baryon. with linearized interaction Lagrangian density

Mg=EB=§ Eq- (3.0

A. Center-of-mass correction LT(x)= fi S(r) (%) Y2 (7 j,) thq(X), (3.6

In this model there would be a sizable spurious contribu- i
tion to the energyE, from the motion of the c.m. of the wheref_=93 MeV is the phenomenological pion decay con-
three-quark system. Unless this aspect is duly accounted fogtant. Then the four-divergence of the total axial vector cur-
the concept of the independent motion of quarks inside theent becomes
baryon core will not lead to a physical baryon state of defi-
nite momentum. Although there is still some controversy on 3, AH(X)=— f,,mf,fp(x), 3.7
this subject, we follow the technique adopted by Bartelski
et al. [18] and Eichet al. [19], which is just one way of Yielding the usual PCAC relation. Consequently, the pion
accounting for the c.m. motion. Following their prescription, coupling of the nonstrange quarks would give rise to pionic
a ready estimate of the center-of-mass momeriﬁéman pe Self-energy of the baryons which would ultimately contribute
obtained as to the physical masses of the baryon.

Though this consideration can be generalized to include
- - the strange flavor sector for a chiral @Ux<SU(3) symme-
<Pé>: E <P2>q, 3.2 try, we would ignore it because of the large mass of the kaon
d involved in the process.

Then following the Hamiltonian techniqug¢®0] as has
been used in the CBM, we can describe the effect of pion
coupling in low order perturbation theory as given below.

The pionic self-energy of the baryons can be evaluated
(E/2—m/?)(4E/+m/) with the help of the single-loop self-energy diagréfig. 1)

q q 9" ''q 3.3 as

where(l32>q is the average value of the square of the indi-
vidual quark momentum taken over th&;) single quark
states and is given in the present model as

o _
P a5 oErm))
VBB (K)VPE (K)

0
B’ EB_WK_MB’

In the same manner one can get the expression for the physi- 2 (Ep)= E
cal massMg of the bare baryon core as B K

: (3.8
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TABLE I. Baryon-pion coupling constant and spin-isospin reduced matrix elements for various baryon

states.
Baryon
intermediate
Baryon baryon BB’ 7
B statesBB’ fung (o8B 6BB)) (B8 788" Cgp’
N NN 1 3 3 9
NA 6v2 2 2 4
5
A AA 1/5 15 15 225
AN 6v2 1 1 1
5
A AA 0 3 0 0
AS —2v3 3 3 9
5
AZ* —6/5 2 3 6
3 33 4/5 3 2 6
SA —2v3 3 1 3
5
s* —2v3 2 2 4
5
>* k3 2/5 15 2 30
S*A —6/5 1 1 1
S*Y -2 1 2 2
5
= =}=) -1/5 3 3 9
EE —2v3 2 3 6
5
B* BErE* 1/5 15 3 45
Al —2v3 1 3 3
—
where wherejq(kr) andj,(kr) represent the zeroth and first order

spherical Bessel functions, respectively. The double angular
. brackets stand for the expectation values with respect to
> = Jdgk/(zﬂ)s- ¢4(r). The baryon pion coupling constanfgg:,, can be
K ! expressed in terms of the nucleon-pion coupling constant
faune @S given in Table I

_ _ . Now with the vertex functio’/®® (K) on hand, it is pos-
intermediate baryon stateVE® (k) is the general baryon iani ! i

, ) i ' ) sible to calculate the pionic self-energy for various baryons
pion absorption vertex function obtaingtl7] in the present \yith appropriate baryon intermediate states contributing to
model as the process. For degenerate intermediate states on mass shell
with Mgz Mg,, the self-energy correction becomes

Here|j corresponds to the pion-isospin index aBdis the

V?B'(E)Zim%%(&%,&ﬁ?y- (3.9 \/1BB'\/BB'
(0Eg)p=2 (Es=Mg=Mg,)=~ 2 —— ——.
where o?®" and 7°%" are spin and isospin matrices and 8 (3.12)
=k?+m?2. The form factoru(k) in this model can be ex-
pressed as Now, using Eq.(3.9), we get
2 2
0= 5 [2mi( (kD)) +a%((r] o kD)) (0Eele=—81:2 Confopn (312

3N uda
+a%((j(kr)/k))T, (3.10  where
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(¢
FIG. 2. One-pion-exchange contribution to the energy.
CBB,_(~BB B8’ )(*BB' *BB’)

and

1 dk k4u2(k)
| = — f w: (3.13

For the intermediate baryon statB$, we consider only

295

Mp
Gna(0°)= <f_) gau(g?). (3.19
HereMy is the mass of the proton amyj is the axial vector
coupling constant for thed decay of the neutron. In the
present model the expression gy is corrected for center-
of-mass motion and is given by

5 (4N2-1)

where
P 3.1
N_E_Nv ( . &

with M andEy given in Eqs.(3.4) and(3.1).

C. One-gluon-exchange correction

The weak one-gluon-exchange interaction arising inside
the quark core is provided by the Lagrangian density

8

=2 J(x)AL(x),
1

(3.19

WhereAfL(x) are eight vector gluon fields anrﬁ‘a is theith
quark color current. Since at small distances the quarks
should be almost free, it is reasonable to calculate the energy
shift in the mass spectrum arising out of the quark interaction
energy due to their coupling to the colored gluons, using a
first order perturbation theory.

If we keep only terms of the ordet., the quark-gluon

the octet and decuplet ground states. Using the values @pPupling constant, then the problem reduces to evaluating the
fgg 7 and Cggr summarized in Table | according to Ref. diagrams shown in Figs.(& and 3b), where Fig. 8a) cor-
[1], the pionic self-energy for different baryons can be com-résponds to the one-gluon-exchange part between different

puted as

(0EN)p=— 171fNNTr T

(0Ep)p=— 99fNN7T Ly

(8Ep)p=— 2 Rnal s (3.19

12f2

(5EE)P:(AE2*)7T NN s

(6Ez)p=(AEz«),=— 22\l m
and, of course, dE-) ,=0 since the strange quarks -
have no interaction with the pion. The self-eneigfyg cal-
culated here contains both the quark self-endigyg. 2(a)]
and the one-pion-exchange contributidtig. 2(b)].

The bare pseudovector nucleon-pion coupling constant

fnne €an be computed from the usual relati@i]

f
m( NN _

m’ﬂ'

ONNm
2Mp )’

(3.15

wheregyn, IS the pseudoscalar nucleon-pion coupling con-

stant defined agjyn,=Gnno(G2=mM2), Gy, being the

nucleon-pion form factor given by

quarks, while Fig. &) implies the quark self-energy that
normally contributes to the renormalization of the quark
masses.

If E2 and B? are the color-electric and -magnetic parts,
respectively, generated by th#h quark color-current

3#3(%) = gt (X) YA 2 (X), (3.20

with A being the usual Gell-Mann SB) matrices and

(g 2/47), then the contribution to the mass due to the
relevant diagrams can be written as a sum of color-electric
and magnetic parts as

(8Eg)g=(5Ep)§+(SEp)y (3.21)
where

3‘) 3"

Ei5- 2 3 [ | Tor -

47T|<]a1JJ

X (B|J%(F;) - J(F))|B).

L (BJIP(F))3%(F))|B),
(3.22

drdrJ

(5EB)g1: |I’ _r|

(3.23



296 S. N. JENA, M. R. BEHERA, AND S. PANDA 55

TABLE II. Coefficients appearing in the calculation of the
color-electric and -magnetic energy corrections due to one-gluon
exchange.

Baryons auu aUS aSS buu bUS bSS

N 0 o o -3 0 0

A 0 0 0  +3 0 0

o A 1 -2 1 -3 0 0
> 1 -2 1 1 -4 0

= 1 -2 1 0o -4 1

3+ 1 -2 1 1 2 0

B* 1 -2 1 0 2 1

o 0 o 0 0 0 +3

F

2a NZN?
m_~"¢ ay a o
) (5Eg)p ?.Z, <§ m1> w
d3
><J' ra F (k) - F "(K), (3.26
where
®)
FF(k) = 52 [(4E/ N~ KO (fo(kr)))
FIG. 3. One-gluon-exchange contribution to the energy. !
. - —2n@%((rijo(kr))], (3.2
Here the self-energy diagram contributing to the renor-
malization of quark masses has not been included in the - i .
calculation of the magnetic part of the interaction as it can Frtk=5 ((To(kr))) (i xk). (3.28
possibly be accounted for in the phenomenological quark
masses. The exclusion of this diagram, however, r§quire$hen Eqgs(3.25 and(3.26) can be written as
that eachB? should satisfy the boundary conditian< B2
=0, separately at the edge of the confining region, which is e a e
a possible case. On the other hand, as the electricHili$ (0Bg)g= z Ni )\ N N} iy (329
necessarily in the radial direction, it is only possible to sat-
isfy the boundary condition- (=,E?) =0 for a color-singlet NiZNJ.2
state|B) for which (£;A ) =0. Therefore, in order to pre- (6Eg)g=— 2 <2 p(ai-ay) > N i
serve the boundary conditions, we are forced to take into <l a " (3.30
account the self-energy diagrams in Figb)3in the calcula- ’
tion of electric part only. where
Now, using Eq.(2.5) in Eq. (3.20, we find
0a o a2 ) ¢72(ri) Iﬁ:fo dk Fle(k)F]e(k), (331)
Ji " (F) =g N (i) + Z |
I
3.2 * . .
L o 324 - [ akGiokrn Ciotkr)). (332
Ji (M) = —2gNN (0 XT7) p(ri) ' (1;)/\; . 0

Again, using Eq(3.24 together with the identity

1 1 d3k o rr
|r1—rj|‘ﬁf W exike(nimr)]

in Egs.(3.22 and(3.23, we obtain

d3k
(8E)g=7— 22 <E x?x?>N?fo & FIOFS(K),
(3.25

Finally, taking into account the specific quark flavor and
spin configurations in vanous ground state baryons and using
the relationg = ,(\ a)2> Z and(S N\ ). ;=—3 for bary-
ons, one can write in general the energy correction due to
one-gluon exchange as

( 5EB)SZ a’c(auuTﬁu+ ausTSs+ 8ss g

(3.33
(SEg)=

wherea;; andb;; are the numerical coefficients depending
on each baryon listed in Table Il, and the terffy" are

ac( buuTTu—'_ busTums+ bssT?s) ,
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TABLE lll. Energy corrections and physical masses of ground state baryondeV).

MB
Present
Baryon Eg (AEgR)em. (AEg) (AEg)g SMpg calculation Experiment
N —110.612 —168.092 940 940
1459.863 —241.159 0
A +110.612 —97.3165 1232 1232
A —110.612 —106.164 1129.628 1111.6
3 1575.373 —236.239 —98.164 7.27 —58.980 1189.26 1193
3 +104.387 —58.980 1391.811 1385
E —103.551 —26.540 1335.946 1321
1690.882 —232.115 7.27
g* +98.999 —26.540 1538.496 1533
(O 1806.392 —228.605 94.448 0 0 1672.235 1672
. 12(Ei’+mi')(Ej'+mj') e a3 pbtain solutio,ns leading to individEJaI guark binding energy
T (2E M) (2 +m) (3.39 E terms of mg=(mq+Vo/2) andEq=(E,—V,/2) through
gs(2.9—(2.13. Consequently, the computation of the en-
8 ergy correction terms in Eq4.1), and hence the physical
imj: - : - - |IT (3.35 massMB_ of the ground—stgte baryon, i_s found to depend on
1o m(2E{ +mi)(2E] +myp) the choice of the effective Lagrangian mass parameters

. . mg(m,=mg,m{) and the potential parametaralone.

One can note from Table Il that the color-electric contribu- ql(n tuhe ch|i rzﬁ] ian formpulation ago ted here. we chose to
tion for the baryon masses vanishes when all the constituenﬁ- m’ in thegcur?ent uark limit as P !
guark masses in a baryon are equal, whereas it is nonzerd Ma q
otherwise. However, even in the case of strange baryons, it ' "

' . ! m,=m;, my)=(10, 205 MeV. 4.2
would be seen, subsequently, that the color-electric contribu- (M, =my o) =( 9 4.2
tion is quite small. Therefore the degeneracy among thehen we find that with a suitable choice of the potential
baryons is essentially removed through the spin-spin interagsarameter
tion energy in the color-magnetic part.

a=2386.05 MeV, 4.3

IV. FIXATION OF PARAMETERS, RESULTS, , . _ _
AND CONCLUSIONS the energy eigenvalue conditig®.9) yields through relation
(2.1) the individual quark effective binding energies
In the foregoing sections we have shown that the zeroth

order massvl §=Eg of a ground-state baryon arising out of (E,=Eg, El)=(735, 850 MeV. (4.9
the binding energies of the constituent quarks confined inde- ) ]
pendently by a phenomenological average potentig), Now, using a standard numerical method, we evaluate the

which presumably represents the dominant nonperturbativéfitegral expressior ;. in Eq. (3.13 as|,=296.283 MeV,
gluon interactions, must be subjected to certain correction@hich enables us to obtain the pionic self-energies of differ-
due to the residual quark-pion and quark-gluon interaction§nt baryons through Eq3.14). The values of §Eg)p so
together with that due to the spurious center-of-mass motior2btained withf {,=0.083 for various baryons are predicted
All these corrections can be treated independently as though Table Ill. . _ _
they are of the same order of magnitude so that we can Then we evaluate the integral expressions! fgf' in Egs.
obtain the physical mass of a low-lying ground-state baryor{3-31 and(3.32 with the help of standard numerical meth-
as ods and calculate the terriig;™ from Egs.(3.34 and(3.39
which are necessary for computingHg) g'm. We find
Mg=Eg+(SE +(8Eg)p+ (SER)M+(SE)E, (4.1
2= Eo* (9Eg)omt (OEa)pt (9Eg)g +(5E)g, (4.1 (T8,, TS, T¢)=(553.57, 581.373, 622.01MeV,

where (OEg).m. is the energy associated with the spurious (4.9
c.m. motion[Eq. (3.5)], (6Eg)p is the pionic self-energy of

the baryor{Eq. (3.14)], and [(5Eg) §+ (SEg) 1] is the color- (Th,, Tis, Toy=(63.95, 58.55, 54.60 MeV.
electric and -magnetic interaction energies arising out of the (4.6)

residual one-gluon-exchange proce 3.32].

To calcula?e the terms ?)n Ft)he rigﬁ;nd 2;,]'(@443) of Referring to the physical massesMfandA, which are
Eq. (4.1, we first all assume the potential paramet@rand
V, to be flavor independent and take the quark masses as
m,=My#* M. However, for convenience the paramegiis SO, o
absorbed appropriately im, and E, of Eq. (2.4) so as to Mn=[En—Eu(P?) "+ (SEN)p—3acTy,, (4.9

Ma=[EZ—Ey(P?),]Y2+ (SEy)p+3acTh,,  (4.7)

uu’
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we find the QCD splitting among thd and A masses as calculated values of the energy correction terms for various
" baryons considered here are presented in Table Il. Conse-
BacTy=(My—My)—[(Ex)p—(SEn)p]. (4.9  quently, the physical masses of baryons suchNaa, A, 3,
. E, andE* are found to be in very good agreement with the
MeV, as seen from Table Il, we find thatvgl'l’j"u=221.011 corresponcing expenmemial values. 1he guarkcgiion cou

ST o L ; pling constanta,=0.576 taken in our calculation is quite
MeV. This givesa,=0.576, which is comparable with 0.55 ¢, qistent with the idea of treating one-gluon-exchange ef-
found by DeGrancet al. [21] and is not too much different fects in lowest order perturbation theory
from the value 0.3-0.4 obtained in the CHER]. It must be Thus we draw the following conclusions in the present
pointed out here that we do not need anywhere near as Iar%ork
a value ofa, as in the original MIT work, where without '

including pionic corrections the QCD splitting was equated (i) The SU3)-breaking effect due to the quark masses
m,= my# M lifts the degeneracy in baryon masses through
with (M, — M) =292 MeV. Finally, using the combination ¢ 1d”Ms g yin sary ug

the energy term{Eg+ (8Eg).m] among the group$N,A),
e (A2 2*), (B,BY), andQ™.
EE,—E (Pz)u} , (ii) The constraint of chiral symmetry imposed on the
u baryon core removes the degeneracy partially through the
(4.10  spin-isospin interaction energ§Mg betweenN and A, A,
- PR - - and, whereas>* still remains degenerate with and =*
we find Ey=3(E/+ V,/2), which enables us to fix the po- ’

tential parameterV, independent ofw, at a value WihZ=.

Vy=—496.75 MeV. It must be noted here that the value of .(i.ii) The color-electric and -magnetic in'teraction energy
the NN#-coupling constanf y,., which has been used in arising out of the one-gluon exchange with the dominant

the evaluation of pionic corrections, is obtained from Eqs_color-magnetic part giving a spin-spin coniribution removes

(3.15 and (3.16 by using c.m.-corrected expressiof@sL1?) the mass degeneracy completely among these baryons.
for g, . With the value ofEy calculated from Eq(4.10, we ACKNOWLEDGMENTS

find g,=1.1223, which yieldsfy,,=0.288 as against the

experimental value 0.283. Now, using all the results thus The authors are thankful to Professor N. Barik, at the
obtained, one can calculate all the individual terms leading t@®epartment of Physics, Utkal University, India, for his valu-
the physical masses of various ground-state baryons. Thatble suggestions and useful discussions on this work.

[Ma—(0Ex)p]+[Mn—(SEN)p]=2
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