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Taking into account the pionic self-energy of the baryons, the color-electrostatic and magnetostatic energies
due to one-gluon exchange, and the corrections due to the center-of-mass motion, the ground-state masses of
the octet baryons are calculated in a chiral symmetric potential model of independent quarks. The effective
potential representing phenomenologically the nonperturbative gluon interactions, including gluon self-
couplings, is chosen with equally mixed scalar and vector parts in a linear form. The physical masses of the
baryons so obtained with the strong coupling constantac50.576 agree very well with the corresponding
experimental values.@S0556-2821~96!02323-5#

PACS number~s!: 12.39.Pn, 14.20.2c

I. INTRODUCTION

Several works based on nonrelativistic quark model ap-
proaches@1# have appeared in the literature to study the mass
spectrum of octet baryons. The phenomenological descrip-
tion of the baryon masses at the nonrelativistic level is quite
reasonable; still, a relativistic approach is indispensable in
view of the fact that the baryonic mass splittings are of the
same order as the constituent quark masses. In this respect
the MIT bag model@2# has proved to be quite successful. In
its improved versions, the chiral bag models@3# ~CBM’s!
have included the effect of pion self-energy due to baryon-
pion coupling at the vertex to give a better understanding of
the physical mass of the baryons. Nevertheless, such models
still contain some dubious phenomenological ingredients
which are objectionable. The sharp spherical bag boundary,
the zero point energy, the exclusion of pions from within the
bag, orad hoc inclusion of pions within it are a few such
points to be noted in this context. Furthermore, it is some-
what difficult to believe that the static spherical bag remains
unperturbed even after the creation of a pion. On closer scru-
tiny one finds that the static spherical bag boundary, which is
ironically responsible for the success and simplicity of the
CBM, is, on the other hand, at the root of all the difficulties
encountered by the CBM. However, the rigid spherical bag
boundary of the CBM, which is nonetheless arbitrary and
phenomenological, can always be replaced by a suitable phe-
nomenological average potential for individual quarks, pre-
serving at the same time its good features.

The chiral quark models@4# which are comparatively
more straightforward, are no doubt attempts in this direction.
In such models the confining potentials which represent ba-
sically the interaction of quarks with the gluon field are usu-
ally assumed phenomenologically as Lorentz scalars. The
term in the quark Lagrangian density corresponding to such a
scalar potential is chirally noninvariant through all space and
hence requires the introduction of an additional pionic com-
ponent everywhere in order to preserve chiral symmetry,
thus removing thead hocnature of the CBM in including
pion field in the interior region as against its requirement in
the exterior region only. However, the pure scalar potential
provides an attractive force for both theqq̄ and qq states,
whereas the pure vector potential produces onlyqq̄ states

@5#. Since there are no diquark states, theq-q interaction
must be weaker, which can possibly be provided by the re-
pulsive nature of the vector potential. Thus, for the confine-
ment of quarks, a mixed scalar and vector potential is a more
appropriate choice. In fact, the choice of such a potential has
been immensely successful in predictions of hadronic prop-
erties. Therefore, for the study of baryons, one can think of
taking an effective individual quark potentialVq(r ) in the
form of an equally mixed scalar and vector part purely on
phenomenological grounds without searching for any justifi-
cation for its physical origin as well as mathematical struc-
ture. However, such a choice is certainly guided by the usual
aesthetic compulsion of providing simplicity and tractability
to the model in the same spirit as that which led Bogolioubov
@6# to introduce the idea of the spherical bag at one stage.
The implications of such potential forms in the Dirac frame-
work of independent quarks have been discussed by Smith
and Tassie@7#. Bell and Ruegg@8# have also shown that the
spin-orbit interaction is absent in such a scheme due to exact
cancellation of such terms coming from vector and scalar
parts of the potential if taken in equal proportions. This is
clearly a welcome aspect of the model in the case of baryons
since the contribution of the spin-orbit interaction term to the
baryon mass splittings is already known@9# to be negligible.
Eichten and Feinberg@10# provide further support to the
above Lorentz structure from a gauge-invariant formalism
where the confinement mechanism is assumed to be purely
color electric in character. Furthermore, such a Lorentz struc-
ture of the two-body confining potential has been observed
@11# phenomenologically in the study of the hyperfine split-
tings of heavy meson spectra.

Moreover, in a Lagrangian formalism with such a poten-
tial, its scalar part together with the quark mass term appear-
ing in the quark Lagrangian density,L q

0, makes it chirally
odd through all space, which requires the introduction of an
additional pionic component everywhere in order to preserve
chiral symmetry which is essential in models like the CBM.
On the other hand, the vector part ofVq(r ) together with the
accompanying scalar part in equal proportion at every point
renders solvability by converting the Dirac equation of the
independent quarks derivable fromL q

0 into an effective
Schrödinger-like equation producing no spin-orbit splittings
as required by the experimental baryon spectrum.

PHYSICAL REVIEW D 1 JANUARY 1997VOLUME 55, NUMBER 1

550556-2821/97/55~1!/291~8!/$10.00 291 © 1997 The American Physical Society



Nevertheless, there are some definite theoretical justifica-
tions underlying this phenomenologically successful confin-
ing potential form. It may be possible to arrive at such po-
tential forms in color-dielectric models with an appropriately
chosen color-dielectric function having radial dependence
which, however, would require further investigation and one
cannot claim anything at this stage.

In view of the success of this scheme, effective confining
potentials with such Lorentz character in linear@12,13#, har-
monic @14#, and non-Coulombic power-law form@15# have
been used by several authors in the recent past for the study
of baryons. In our earlier work we have also employed such
a potential in linear form@13# to obtain a reasonable predic-
tion of the core contributions to the static properties of the
octet baryons. The same scheme has also been adopted by us
to study the nucleon form factors, as well as the weak elec-
tric and magnetic form factors for semileptonic baryon de-
cays@13#. Then, incorporating chiral symmetry in the SU~2!-
flavor sector in the usual manner, we have obtained the
electromagnetic properties of nucleons@16# as well as the
magnetic moments of octet baryons@17# in reasonable agree-
ment with experimental data. But, in this model, we have not
yet taken into account the effects of the residual one-gluon-
exchange interaction assuming its effects to be not so much
significant for the electromagnetic properties of baryons.
This, however, plays an important role in providing color-
electrostatic and magnetostatic energies to the quark core.
Therefore, in the present work, we are interested in employ-
ing such a chiral potential model to study the mass spectrum
of the octet baryons by taking into account the corrections
due to~i! the energy associated with center-of-mass motion,
~ii ! the pionic self-energy of the baryons arising out of the
baryon-pion coupling at the vertex, and~iii ! the color-electric
and -magnetic energy arising out of the residual one-gluon-
exchange interaction. We treat all these corrections, leading
ultimately to the baryon physical masses, independently, as
though they are of the same order of magnitude. This model
with a linear form in particular for the scalar-vector mixed
potential, turns out to be quite simple and tractable in these
respects, yielding very satisfactory results for the physical
masses of the low-lying baryons.

The plan of the present work is as follows. In Sec. II we
outline the framework of the potential model used with the
solutions for the relativistic bound states of the individually
confined quarks in the ground state of baryons. Section III
provides an account of various energy corrections such as
those due to center-of-mass motion and quark-gluon and
quark-pion interactions. Finally in Sec. IV, we present the
results for the ground state baryon masses, which come out
in very good agreement with the corresponding experimental
values.

II. POTENTIAL MODEL

We start with the assumption that the constituent quarks
in a baryon core are assumed to move independently in an
average effective potential of the form

Vq~r !5 1
2 ~11g0!V~r !, ~2.1!

where

V~r !5a2r1V0 , a.0. ~2.2!

Vq(r ) represents phenomenologically the confining interac-
tion due to the dominant nonperturbative multigluon mecha-
nism including the gluon self-couplings. Then, leaving aside
for the moment any further residual interactions such as
quark-pion and quark-gluon interactions to be treated pertur-
batively, one can write the zeroth order Lagrangian density
for independent quarks in a baryon core as

Lq0~x!5c̄q~x!F i2 gm]Jm2mq2Vq~r !Gcq~x!. ~2.3!

Assuming all the quarks in a baryon core are in their ground
states withJP51

2
1, the normalized quark wave functions

cq(rW) satisfying the Dirac equation, derivable fromL q
0(x) as

@g0Eq2gW •PW 2mq2Vq~r !#cq~rW !50, ~2.4!

can be written in a two-component form as

cq~rW !5NqF fq~r !

sW •PW

lq
fq~r !Gx↑, ~2.5!

where

lq5Eq1mq ,
~2.6!

fq~r !5Aq

Uq~r !

r
Y0
0~u,f!

is the normalized radial angular part ofcq(r ) with normal-
ization constant Aq . Taking Eq85Eq2V0/2, mq85mq

1V0/2, andlq5Eq81mq8 , the reduced radial partUq(r ) can
be found to satisfy a Schro¨dinger-type equation

Uq9~r !1lq@Eq82mq82a2r #Uq~r !50, ~2.7!

which can be transformed into a convenient dimensionless
form

U9~r!1~ens2q!Uq~r!50, ~2.8!

where r5r /r 0q is a dimensionless variable withr 0q
5(a2lq)

21/3 and

ens5S lq

a4D
1/3

~Eq82mq8!. ~2.9!

Now, with z5r2ens , Eq. ~2.8! reduces to

Uq9~z!2zUq~z!50, ~2.10!

whose solutionUq(z) is the Airy function Ai(z). Since, at
r50, Uq(r )50, we have Ai(z)50 atz52ens . If zn are the
roots of the Airy function such that Ai(zn)50, then we have
zn52ens . For the ground state of quarks, theens value is
given by the first rootz1 of the Airy function so that

ens5e1s5eq52z1 , ~2.11!
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the value of the root beingz1522.338 11. Now the ground
state individual quark binding energyEq5Eq81V0/2 is ob-
tainable from the energy eigenvalue condition~2.9! through
the relation

Eq85~mq81axq!, ~2.12!

wherexq is the root of the equation

xq
41bxq

32eq
350, ~2.13!

with b52mq8/a.
The overall normalization constantNq of cq(rW) appearing

in Eq. ~2.5! can be obtained in a simplified form as

Nq
25

3~Eq81mq8!

2~2Eq81mq8!
. ~2.14!

III. ENERGY CORRECTIONS TO BARYON MASSES

The binding energies of the individual constituent quarks
contribute additionally to the mass of the baryon core. Equa-
tions ~2.9!–~2.12! provides the quark binding energyEq ,
which immediately leads to the mass of the baryonic core in
zeroth order as

MB
05EB5(

q
Eq . ~3.1!

Such a contribution needs corrections due to center-of-mass
motion, quark pion interaction, and quark-gluon interaction,
which need to be calculated separately so as to obtain the
physical masses of the baryon.

A. Center-of-mass correction

In this model there would be a sizable spurious contribu-
tion to the energyEq from the motion of the c.m. of the
three-quark system. Unless this aspect is duly accounted for,
the concept of the independent motion of quarks inside the
baryon core will not lead to a physical baryon state of defi-
nite momentum. Although there is still some controversy on
this subject, we follow the technique adopted by Bartelski
et al. @18# and Eichet al. @19#, which is just one way of
accounting for the c.m. motion. Following their prescription,
a ready estimate of the center-of-mass momentumPW B can be
obtained as

^PW B
2&5(

q
^PW 2&q , ~3.2!

where^PW 2&q is the average value of the square of the indi-
vidual quark momentum taken over the 1S1/2 single quark
states and is given in the present model as

^PW 2&q5
~Eq8

22mq8
2!~4Eq81mq8!

5~2Eq81mq8!
. ~3.3!

In the same manner one can get the expression for the physi-
cal massMB of the bare baryon core as

^MB
2/EB

2&512(
q

^PW 2&q /EB
2, ~3.4!

which provides the energy correction to the baryon mass in
Eq. ~3.1! as

~dEB!c.m.5F SEB
22(

q
^P2&qD 1/22EBG . ~3.5!

B. Pionic self-energy corrections

Looking at the zeroth order Lagrangian densityL q
0 de-

scribed in Sec. II, one can note that under a global infinitesi-
mal chiral transformation at least in the (u,d)-flavor sector
the axial vector current of quarks is not conserved due to the
fact that the scalar term inL q

0, which is proportional to
S(r )5[mq1V(r )/2], is chirally odd. Of course, the vector
part of the potential poses no problem in this respect.

In order to restore the chiral SU~2!3SU~2! symmetry
within the PCAC~partial conservation of axial vector cur-
rent! limit, one can introduce in the usual manner an elemen-
tary pion fieldfW (x) of small but finite massmp50.14 GeV
with linearized interaction Lagrangian density

LIp~x!5
1

f p
S~r !c̄q~x!g5~tW•fW !cq~x!, ~3.6!

wherefp593 MeV is the phenomenological pion decay con-
stant. Then the four-divergence of the total axial vector cur-
rent becomes

]mA
m~x!52 f pmp

2f~x!, ~3.7!

yielding the usual PCAC relation. Consequently, the pion
coupling of the nonstrange quarks would give rise to pionic
self-energy of the baryons which would ultimately contribute
to the physical masses of the baryon.

Though this consideration can be generalized to include
the strange flavor sector for a chiral SU~3!3SU~3! symme-
try, we would ignore it because of the large mass of the kaon
involved in the process.

Then following the Hamiltonian techniques@20# as has
been used in the CBM, we can describe the effect of pion
coupling in low order perturbation theory as given below.

The pionic self-energy of the baryons can be evaluated
with the help of the single-loop self-energy diagram~Fig. 1!
as

(
B

~EB!5(
K

(
B8

Vj
†BB8~KW !Vj

BB8~KW !

EB2wk2MB8
0 , ~3.8!

FIG. 1. Baryon self-energy due to coupling with pion.
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where

(
K

5(
j
E d3kW /~2p!3.

Here j corresponds to the pion-isospin index andB8 is the

intermediate baryon state.Vj
BB8(kW ) is the general baryon

pion absorption vertex function obtained@17# in the present
model as

Vj
BB8~kW !5 iA4p

f BB8p

mp

ku~k!

~2wk!
1/2 ~sW BB8

• k̂!t j
BB8 , ~3.9!

wheres j
BB8 and t j

BB8 are spin and isospin matrices andwk
2

5kW21mp
2 . The form factoru(k) in this model can be ex-

pressed as

u~k!5
5Nq

2

3lugA
@2mq8^^ j 0~kr !&&1a2^^r j 0~kr !&&

1a2^^ j 1~kr !/k&&#, ~3.10!

where j 0(kr) and j l(kr) represent the zeroth and first order
spherical Bessel functions, respectively. The double angular
brackets stand for the expectation values with respect to
fq(r ). The baryon pion coupling constantsf BB8p can be
expressed in terms of the nucleon-pion coupling constant
f NNp as given in Table I.

Now with the vertex functionVj
BB8(K) on hand, it is pos-

sible to calculate the pionic self-energy for various baryons
with appropriate baryon intermediate states contributing to
the process. For degenerate intermediate states on mass shell
with MB

05MB8
0 , the self-energy correction becomes

~dEB!P5(
B

~EB5MB
05MB8

0
!52 (

K,B8

Vj
†BB8Vj

BB8

wk
.

~3.11!

Now, using Eq.~3.9!, we get

~dEB!P52 1
3 Ip(

B8
CBB8 f BB8p

2 , ~3.12!

where

TABLE I. Baryon-pion coupling constant and spin-isospin reduced matrix elements for various baryon
states.

Baryon
B

Baryon
intermediate
baryon

statesBB8

f BB8p

f NNp (sBB8
•sBB8) (tBB8

•tBB8) CBB8

N NN 1 3 3 9

ND 6&
5

2 2 4

D DD 1/5 15 15 225

DN 6&
5

1 1 1

L LL 0 3 0 0

LS 22)
5

3 3 9

LS* 26/5 2 3 6

S SS 4/5 3 2 6

SL 22)
5

3 1 3

SS* 22)
5

2 2 4

S* S*S* 2/5 15 2 30

S*L 26/5 1 1 1

S*S 22)
5

1 2 2

J JJ 21/5 3 3 9

JJ* 22)
5

2 3 6

J* J*J* 1/5 15 3 45

J*J 22)
5

1 3 3
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CBB85~sW BB8
•sW BB8!~tWBB8

•tWBB8!

and

Ip5
1

pmp
2 E

0

` dk k4u2~k!

wk
2 . ~3.13!

For the intermediate baryon statesB8, we consider only
the octet and decuplet ground states. Using the values of
f BB8p andCBB8 summarized in Table I according to Ref.
@1#, the pionic self-energy for different baryons can be com-
puted as

~dEN!P52 171
25 f NNp

2 Ip ,

~dED!P52 99
25 f NNp

2 Ip ,

~dEL!P52 108
25 f NNp

2 Ip , ~3.14!

~dES!P5~DES* !p52 12
5 f NNp

2 Ip ,

~dEJ!P5~DEJ* !p52 27
25 f NNp

2 Ip ,

and, of course, (dEV2)p50 since the strange quarks inV2

have no interaction with the pion. The self-energydEB cal-
culated here contains both the quark self-energy@Fig. 2~a!#
and the one-pion-exchange contribution@Fig. 2~b!#.

The bare pseudovector nucleon-pion coupling constant
f NNp can be computed from the usual relation@21#

A4pS f NNp

mp
D5S gNNp

2MP
D , ~3.15!

wheregNNp is the pseudoscalar nucleon-pion coupling con-
stant defined asgNNp5GNNp(q

25mp
2 ), GNNp being the

nucleon-pion form factor given by

GNNp~q2!5SMP

f p
DgAu~q2!. ~3.16!

HereMP is the mass of the proton andgA is the axial vector
coupling constant for theb decay of the neutron. In the
present model the expression forgA is corrected for center-
of-mass motion and is given by

gA5
5

3

~4Nu
221!

~112dN!
, ~3.17!

where

dN5
MN

EN
, ~3.18!

with MN andEN given in Eqs.~3.4! and ~3.1!.

C. One-gluon-exchange correction

The weak one-gluon-exchange interaction arising inside
the quark core is provided by the Lagrangian density

LIg5 (
a51

8

Ji
ma~x!Am

a ~x!, ~3.19!

whereA m
a (x) are eight vector gluon fields andJi

ma is the i th
quark color current. Since at small distances the quarks
should be almost free, it is reasonable to calculate the energy
shift in the mass spectrum arising out of the quark interaction
energy due to their coupling to the colored gluons, using a
first order perturbation theory.

If we keep only terms of the orderac , the quark-gluon
coupling constant, then the problem reduces to evaluating the
diagrams shown in Figs. 3~a! and 3~b!, where Fig. 3~a! cor-
responds to the one-gluon-exchange part between different
quarks, while Fig. 3~b! implies the quark self-energy that
normally contributes to the renormalization of the quark
masses.

If EW i
a andBW i

a are the color-electric and -magnetic parts,
respectively, generated by thei th quark color-current

Ji
ma~x!5gcc̄ i~x!gml i

ac i~x!, ~3.20!

with l i
a being the usual Gell-Mann SU~3! matrices and

ac5(g c
2/4p), then the contribution to the mass due to the

relevant diagrams can be written as a sum of color-electric
and magnetic parts as

~dEB!g5~dEB!g
e1~dEB!g

m , ~3.21!

where

~dEB!g
e5

1

8p (
i , j

(
a51

8 E E d3rW id
3rW j

urW i2rW j u
^BuJi

0a~rW j !Jj
0a~rW j !uB&,

~3.22!

~dEB!g
m52

1

4p (
i, j

(
a51

8 E E d3rW id
3rW j

urW i2rW j u

3^BuJW i
a~rW i !•JW j

a~rW j !uB&. ~3.23!

FIG. 2. One-pion-exchange contribution to the energy.
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Here the self-energy diagram contributing to the renor-
malization of quark masses has not been included in the
calculation of the magnetic part of the interaction as it can
possibly be accounted for in the phenomenological quark
masses. The exclusion of this diagram, however, requires
that eachB i

a should satisfy the boundary conditionr̂3BW i
a

50, separately at the edge of the confining region, which is
a possible case. On the other hand, as the electric fieldE i

a is
necessarily in the radial direction, it is only possible to sat-
isfy the boundary conditionr̂ •(( iE i

a)50 for a color-singlet
stateuB& for which (( il i

a)50. Therefore, in order to pre-
serve the boundary conditions, we are forced to take into
account the self-energy diagrams in Fig. 3~b! in the calcula-
tion of electric part only.

Now, using Eq.~2.5! in Eq. ~3.20!, we find

Ji
0a~rW i !5gcl i

aNi
2Ff2~r i !1

f82~r i !

l i
2 G ,

~3.24!

JW i
a~rW i !522gcl i

aNi
2~sW i3 r̂ i !f~r i !f8~r i !/l i .

Again, using Eq.~3.24! together with the identity

1

urW i2rW j u
5

1

2p2 E d3k

k2
exp@ ikW•~rW i2rW j !#

in Eqs.~3.22! and ~3.23!, we obtain

~dEB!g
e5

ac

4p2 (
i , j

K (
a

l i
al j

aLNi
2Nj

2E d3kW

k2
Fi
e~k!F j

e~k!,

~3.25!

~dEB!g
m5

2ac

p2 (
i, j

K (
a

l i
al j

aL Ni
2Nj

2

l il j

3E d3kW

k2
FW i
m~k!•FW j

m~k!, ~3.26!

where

Fi
e~k!5

1

2l i
2 @~4Ei8l i2k2!^^ j 0~kri !&&

22l ia
2^^r i j 0~kri !&&#, ~3.27!

FW i
m~k!5

i

2
^^ j 0~kri !&&~sW i3kW !. ~3.28!

Then Eqs.~3.25! and ~3.26! can be written as

~dEB!g
e5

ac

p (
i , j

K (
a

l i
al j

aLNi
2Nj

2I i j
e , ~3.29!

~dEB!g
m52

4ac

3p (
i, j

K (
a

l i
al j

a~sW i•sW j !L Ni
2Nj

2

l il j
I i j
m ,

~3.30!

where

I i j
e5E

0

`

dk Fi
e~k!F j

e~k!, ~3.31!

I i j
m5E

0

`

dk k2^^ j 0~kri !&&^^ j 0~kr j !&&. ~3.32!

Finally, taking into account the specific quark flavor and
spin configurations in various ground state baryons and using
the relationŝ (a(l i

a)2&516
3 and^(al i

al j
a& iÞ j528

3 for bary-
ons, one can write in general the energy correction due to
one-gluon exchange as

~dEB!g
e5ac~auuTuu

e 1ausTus
e 1assTss

e !,
~3.33!

~dEB!g
m5ac~buuTuu

m 1busTus
m1bssTss

m!,

whereai j and bi j are the numerical coefficients depending
on each baryon, listed in Table II, and the termsT i , j

e,m are

FIG. 3. One-gluon-exchange contribution to the energy.

TABLE II. Coefficients appearing in the calculation of the
color-electric and -magnetic energy corrections due to one-gluon
exchange.

Baryons auu aus ass buu bus bss

N 0 0 0 23 0 0
D 0 0 0 13 0 0
L 1 22 1 23 0 0
S 1 22 1 1 24 0
J 1 22 1 0 24 1
S* 1 22 1 1 2 0
J* 1 22 1 0 2 1
V2 0 0 0 0 0 13
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Ti , j
e 5

12~Ei81mi8!~Ej81mj8!

p~2Ei81mi8!~2Ej81mj8!
I i j
e , ~3.34!

Ti , j
m 5

8

p~2Ei81mi8!~2Ej81mj8!
I i j
m . ~3.35!

One can note from Table III that the color-electric contribu-
tion for the baryon masses vanishes when all the constituent-
quark masses in a baryon are equal, whereas it is nonzero
otherwise. However, even in the case of strange baryons, it
would be seen, subsequently, that the color-electric contribu-
tion is quite small. Therefore the degeneracy among the
baryons is essentially removed through the spin-spin interac-
tion energy in the color-magnetic part.

IV. FIXATION OF PARAMETERS, RESULTS,
AND CONCLUSIONS

In the foregoing sections we have shown that the zeroth
order massM B

05EB of a ground-state baryon arising out of
the binding energies of the constituent quarks confined inde-
pendently by a phenomenological average potentialVq(r ),
which presumably represents the dominant nonperturbative
gluon interactions, must be subjected to certain corrections
due to the residual quark-pion and quark-gluon interactions
together with that due to the spurious center-of-mass motion.
All these corrections can be treated independently as though
they are of the same order of magnitude so that we can
obtain the physical mass of a low-lying ground-state baryon
as

MB5EB1~dEB!c.m.1~dEB!P1~dEB!g
m1~dE!g

e , ~4.1!

where (dEB)c.m. is the energy associated with the spurious
c.m. motion@Eq. ~3.5!#, (dEB)P is the pionic self-energy of
the baryon@Eq. ~3.14!#, and [(dEB) g

e1(dEB) g
m] is the color-

electric and -magnetic interaction energies arising out of the
residual one-gluon-exchange processes@Eq. ~3.32!#.

To calculate the terms on the right-hand side~RHS! of
Eq. ~4.1!, we first all assume the potential parametersa and
V0 to be flavor independent and take the quark masses as
mu5mdÞms . However, for convenience the parameterV0 is
absorbed appropriately inmq andEq of Eq. ~2.4! so as to

obtain solutions leading to individual quark binding energy
in terms ofmq85(mq1V0/2) andEq85(Eq2V0/2) through
Eqs ~2.9!–~2.13!. Consequently, the computation of the en-
ergy correction terms in Eq.~4.1!, and hence the physical
massMB of the ground-state baryon, is found to depend on
the choice of the effective Lagrangian mass parameters
mq8(mu85md8 ,ms8) and the potential parametera alone.

In the Lagrangian formulation adopted here, we chose to
fix mq8 in the current quark limit as

~mu85md8 , ms8!5~10, 205! MeV. ~4.2!

Then we find that with a suitable choice of the potential
parameter

a5386.05 MeV, ~4.3!

the energy eigenvalue condition~2.9! yields through relation
~2.11! the individual quark effective binding energies

~Eu85Ed8 , Es8!5~735, 850! MeV. ~4.4!

Now, using a standard numerical method, we evaluate the
integral expressionIp in Eq. ~3.13! as Ip5296.283 MeV,
which enables us to obtain the pionic self-energies of differ-
ent baryons through Eq.~3.14!. The values of (dEB)P so
obtained withf NNp

2 50.083 for various baryons are predicted
in Table III.

Then we evaluate the integral expressions forI i , j
e,m in Eqs.

~3.31! and ~3.32! with the help of standard numerical meth-
ods and calculate the termsT i j

e,m from Eqs.~3.34! and~3.35!
which are necessary for computing (dEB) g

e,m. We find

~Tuu
e , Tus

e , Tss
e !5~553.57, 581.373, 622.01! MeV,

~4.5!

~Tuu
m , Tus

m , Tss
m!5~63.95, 58.55, 54.60! MeV.

~4.6!

Referring to the physical masses ofN andD, which are

MD5@EN
22Eu^PW

2&u#
1/21~dED!P13acTuu

m , ~4.7!

MN5@EN2Eu^PW
2&u#

1/21~dEN!P23acTuu
m , ~4.8!

TABLE III. Energy corrections and physical masses of ground state baryons~in MeV!.

Baryon EB (DEB)c.m. (DEB) g
M (DEB) g

E dMB

MB

Present
calculation Experiment

N 2110.612 2168.092 940 940
1459.863 2241.159 0

D 1110.612 297.3165 1232 1232
L 2110.612 2106.164 1129.628 1111.6
S 1575.373 2236.239 298.164 7.27 258.980 1189.26 1193
S* 1104.387 258.980 1391.811 1385
J 2103.551 226.540 1335.946 1321

1690.882 2232.115 7.27
J* 198.999 226.540 1538.496 1533
V2 1806.392 2228.605 94.448 0 0 1672.235 1672
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we find the QCD splitting among theN andD masses as

6acTuu
M 5~MD2MN!2@~dED!P2~dEN!P#. ~4.9!

Since (MD2MN).292 MeV and [(dED)P2(dEN)P].71
MeV, as seen from Table II, we find that 6acT uu

M 5221.011
MeV. This givesac50.576, which is comparable with 0.55
found by DeGrandet al. @21# and is not too much different
from the value 0.3–0.4 obtained in the CBM@22#. It must be
pointed out here that we do not need anywhere near as large
a value ofac as in the original MIT work, where without
including pionic corrections the QCD splitting was equated
with (MD2MN).292 MeV. Finally, using the combination

@MD2~dED!P#1@MN2~dEN!P#52FEN
22(

u
^PW 2&uG1/2,

~4.10!

we find EN53(Eu81V0/2), which enables us to fix the po-
tential parameterV0 independent of ac at a value
V052496.75 MeV. It must be noted here that the value of
the NNp-coupling constantf NNp , which has been used in
the evaluation of pionic corrections, is obtained from Eqs.
~3.15! and ~3.16! by using c.m.-corrected expressions~3.17!
for gA . With the value ofEN calculated from Eq.~4.10!, we
find gA51.1223, which yieldsf NNp50.288 as against the
experimental value 0.283. Now, using all the results thus
obtained, one can calculate all the individual terms leading to
the physical masses of various ground-state baryons. The

calculated values of the energy correction terms for various
baryons considered here are presented in Table II. Conse-
quently, the physical masses of baryons such asN, D, L, S,
J, andJ* are found to be in very good agreement with the
corresponding experimental values. The quark-gluon cou-
pling constantas50.576 taken in our calculation is quite
consistent with the idea of treating one-gluon-exchange ef-
fects in lowest order perturbation theory.

Thus we draw the following conclusions in the present
work.

~i! The SU~3!-breaking effect due to the quark masses
mu5mdÞms lifts the degeneracy in baryon masses through
the energy term@EB1(dEB)c.m.# among the groups~N,D!,
~L,S,S* !, ~J,J* !, andV2.

~ii ! The constraint of chiral symmetry imposed on the
baryon core removes the degeneracy partially through the
spin-isospin interaction energydMB betweenN andD, L,
andS, whereasS* still remains degenerate withS andJ*
with J.

~iii ! The color-electric and -magnetic interaction energy
arising out of the one-gluon exchange with the dominant
color-magnetic part giving a spin-spin contribution removes
the mass degeneracy completely among these baryons.
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