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Final state interactions in theS-wave pp system (I50,2) are reexamined on the basis of the Omne`s-
Muskhelishvili equation and the coupled channel formalism. The contributions to the pion scalar form factor
from r and f 2(1270) exchange in thet channel and from thef 0(980) s-channel resonance are separately
evaluated and the role of the nontrivial polynomial in the Omne`s function in a coupled channel situation is
elucidated. Applications are made toK→pp andpp→pppp. It is found that the contribution from thef 0
resonance to the form factor is strongly reduced by a nearby zero.@S0556-2821~97!05505-7#

PACS number~s!: 13.75.Lb, 13.25.Es

I. INTRODUCTION

Final state interactions~FSI’s! in thepp system play an
important role for many production reactions and meson de-
cays. A case of long-standing interest is theDI51/2 rule in
K→pp decays. The experimental ratio of the decay ampli-
tudesAI with isospinI50,2 is @1#

A0~K→pp!

A2~K→pp!
522. ~1!

The calculated ratio is smaller@2# by at least a factor of 3
where this result includes perturbative QCD and soft-gluon
corrections at the weak interaction vertex but no long-
distancepp FSI. In this paper we shall discuss the pionic
FSI in theS wave aiming at a concrete application to the
DI51/2 rule for theK→pp decay and the pion production
reactionpp→pppp. Our analysis shows general features of
FSI’s which are relevant to other reactions involving pions or
other hadrons.

TheDI51/2 amplitude of theK→pp decay, as a func-
tion of s5pK

2 wherepK is the kaon four-momentum, can be
written in the form~see@2,3# and references therein!

^ppuAuK&5 iC f p~s2mp
2 !F0~s!, ~2!

whereC is a constant describing the short-range part of the
process~by its order of magnitudeC is close to the Fermi
constantGF), f p is the pion decay constant, the factor
(s2mp

2 ) explicitly takes the chiral symmetry into account,
and the scalar form-factorF0(s) describes the final state in-
teraction. Here the pions are assumed to be on the mass shell.
Note that the definition ofC depends on the normalization of
F0(s). The calculations of the decay amplitude in the frame-
work of the operator expansion@4# exploit the limit of zero
pion momenta and therefore provide the combined strength
of the productCF0(0). In order to get the physical ampli-
tude, the FSI factorF0(mK

2 )/F0(0) must be used. In the
framework of the chiral perturbation theory, the expression
C(s2mp

2 ) is interpreted as the first two terms of the power
series expansion@3# and the form factor is normalized by the
conditionF0(mp

2 )51. The parameterC can then be deter-
mined from the data using the scalar form factor ats5mK

2 .

Several methods for the evaluation of FSI have been used
in the literature. In one approach rescattering diagrams are
evaluated directly. At low energies this has been done by
applying chiral perturbation theory~CHPT! @5,6#. The rel-
evant application in our context is the calculation of the sca-
lar form factor of the pion in next-to-leading chiral order at
low energies @7,8#. To extend the calculations to
s;1 GeV2, s-channel resonances and the coupling to the
KK̄ channel must be included. As a general tool the disper-
sive method based on the Omne`s-Muskhelishvili~OM! equa-
tion @9,10# has turned out to be very efficient. It exploits
analyticity and unitarity in order to connect the production or
decay amplitude~or its form factor! with the amplitude of
elasticpp scattering. To solve the OM equation we shall
take the scattering phases either from phase shift analysis or
from a theoretical model. We shall choose a model which
satisfies the requirements of unitarity and analyticity, and
hence the OM equation automatically. The model with pa-
rameters fitted to the experimental constraints is described in
Sec. III.

For theK→pp decay it was realized a long time ago that
the nonperturbative long-distance effects must be included,
and the combination of the attraction in theI50 channel
with the repulsion in theI52 channel favors theDI51/2
rule. An enhancement of about a factor of 2 in theI50
amplitude was estimated to result from the broad
s(JPC5011) meson@4#. The FSI enhancementF0(mK

2 )/
F0(mp

2 )51.4 was obtained in@3# using the OM equation
with a simple parametrization of the scattering phase consis-
tent with the Weinberg low energy expansion. The analysis
was done in CHPT to one loop in@8,11#. Rescattering in
simple potential model was evaluated in@12,13# without re-
gard to the energy dependence of the form factor. An exten-
sive study of the FSI effects in theS-wavepp system in
production reactions andJ/c andc8 decays was conducted
in @14–17#. Unitarity and analyticity of the production am-
plitudes was taken into account in a self-consistent way. It
was noticed, in particular, that a narrow resonance (f 0 in the
present notation! in thepp scattering phasedJ50

I50(s) corre-
sponds to a shoulder in thepp effective mass distribution in
the reactionpp→pppp @15,16#. The occurrence of a shoul-
der rather than a peak results from an interplay of the reso-
nant pole and a nearby zero. We shall discuss this feature in
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detail in Sec. III. Resonance phenomena in thepp S wave
were emphasized in@18# where thef 0 resonance was dis-
cussed within a single-resonance model for the decay of a
light Higgs boson. The prediction of a drastic enhancement
because of thef 0 resonance is in striking contrast with the
findings for thepp→pppp reaction in@16#. An analysis of
the pp final state interaction in the framework of the
coupled channel OM equation was performed in@7# for the
decay of a light Higgs boson decayH→pp. In this evalua-
tion the f 0 resonance also produced significant effects far
below theKK̄ threshold.

The dynamics of theI50 S-wavepp interaction is char-
acterized by several overlapping resonances@16,17,19,20#,
both narrow and broad. In the present paper we shall analyze
the relative importance of the dynamical mechanisms in
pp scattering for the calculation of the form factors occur-
ring in meson decays and in the pion pair production inpp
scattering.

In Sec. II we prepare the ground with an evaluation of the
OM equation for a restricted energy range~the cutoff used
excludes thef 0 resonance!. With respect to the pion dynam-
ics we shall mainly use the picture of@21# which combines
the r and f 2 exchanges in thet channel with thef 0 reso-
nance in thes channel. The phases of theI50,2 S-wave
scattering are reproduced quite accurately in this model. To
understand the role of thef 0 resonance for the calculation of
the form factor in theI50 channel, we shall introduce a
coupled channel ansatz in Sec. III. The final state interaction
effects in theK→pp decay are evaluated and the conclu-
sions are presented in Sec. IV.

II. FORM FACTORS FROM THE
OMNÈS-MUSKHELISHVILI EQUATION

The form factorF(s) represents the effect of the FSI in
the decay amplitude. The OM equation@9,10# relatesF(s) to
the elastic final state scattering phased(s). For a single-
channel problem the OM equation is

F~s!511
s

pE4mp
2

` e2 id~s8!sind~s8!F~s8!

s8~s82s!
ds8, ~3!

where a once-subtracted form has been used. The general
solution of Eq.~3! has the form

F~s!5P~s!expS spE4mp
2

` d~s8!

s8~s82s!
ds8D ~4!

as long as

d~s!→ const,
uF~s!u
s
→0 for s→`. ~5!

The polynomialP(s) is real fors real. In special cases, such
as potential scattering without bound states,P(s) is a con-
stant, but in general additional information is required to
determine it. In the following we normalizeF(0) to unity
since we are not concerned with the overall normalization
representing the short-range properties of the decay ampli-
tude discussed in Sec. I. Note that the factor (s2mp

2 ) in the
decay amplitude~2! is real for reals and could be combined
with the polynomialP(s); however, we prefer to use the
form ~2! explicitly displaying the chiral symmetry behavior.

For K→pp in the simplest evaluations, single-channel
pp scattering data are used below theKK̄ threshold~the
coupling to the 4p channel is known to be small!. To exploit
Eq. ~4! we need a smooth parametrization ofd(s). To dem-
onstrate the sensitivity of the result to the input phases, we
use two parametrizations of thepp J5I50 scattering phase
d0
0(s). Figure 1~a! showsd0

0(s) from the phase shift analysis
@16#. In Fig. 1~b! we show the same phase from the meson
exchange model mentioned earlier and developed in@21–
23#. We briefly recapitulate the ingredients for the benefit of
the later discussion. The phases in Fig. 1~b! correspond to
unitarizedr and f 2 exchange with thef 0 resonance added in
thes channel. The individual contributions are shown in the
figure as explained in the caption. The Born term for ther
exchange is

T~s,t !BA
I5052GS s2u

mr
22t

1
s2t

mr
22uD , ~6!

T~s,t !BA
I5252

1

2
T~s,t !BA

I50 , ~7!

wheremr is the mass of ther meson,G5grpp
2 /32p, and

grpp is therpp coupling constant. TheI52 amplitude will
be needed later. TheS-wave projection is

FIG. 1. Thepp S-wave scattering phased0
0

vs As: ~a! the K1 fit from @16#, ~b! the meson
exchange model described in the text~solid line:
the total phase; dotted line:r1 f 2 t exchange;
dashed line:f 0 resonance!. The experimental data
are from@24–26#.
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TBA2S
I50 ~s!54GF2s1mr

224mp
2

s24mp
2 lnS 11

s24mp
2

mr
2 D 21G ,

~8!

K-matrix unitarization is introduced by

TS
I ~s!5

KS
I ~s!

12 ir~s!KS
I ~s!

, ~9!

where

KS
I ~s!5TBA2S

I ~s!, ~10!

andr(s)5(124mp
2 /s)1/2. The coupling constantgrpp is de-

termined from ther-meson decay width in the crossed
I51 channel afterK-matrix unitarization@21#. The corre-
sponding value isgrpp56.04 which is close to the result
obtained from the Kawarabayashi-Suzuki-Riazuddin-
Fayyazuddin~KSRF! relation @27#, grpp5mr /A2 f p .

The corresponding expression forf 2 exchange in Born
approximation@21# is

Kf2
~s!52Gf2H 211

3
s2

2

3
mf2
2 14mp

2

1
~2s1mf2

2 24mp
2 !22~mf2

2 24mp
2 !2/3

s24mp
2

3 lnS 11
s24mp

2

mf2
2 D J , ~11!

whereGf2
.0.19 GeV22.

The s-channelf 0 resonance is included using the Dalitz-
Tuan representation@28#, i.e., theS matrix is considered to
be the product of theS matrices corresponding to the indi-
vidual mechanisms. The corresponding Breit-Wigner param-
etrization is taken from@21#

S~s!5
s2Mr

22 ig1r1~s!1 ig2r2~s!

s2Mr
21 ig1r1~s!1 ig2r2~s!

, ~12!

where

r1~s!5A124mp
2 /s, r2~s!5A124mK

2 /s, ~13!

and the resonance parameters areMr50.9535 GeV,
g150.1108 GeV2, g250.4229 GeV2, respectively.

The scattering phase in the meson exchange model gives
a good description of the data fors,1.4 GeV2 @see Fig.
1~b!# which justifies using the simple approach based on Eqs.
~9! and ~10! as long as we just need a smooth parametriza-
tion of the scattering phase for the OM equation. A more
elaborate meson exchange model@29# where the scattering
amplitude is calculated from the Lippmann-Schwinger equa-
tion would lead to similar results. Thepp I50 scattering
length in the meson exchange modela0

050.24mp
21 is in good

agreement with the Weinberg low energy theorems
a0
050.20mp

21 @30# and the pp scattering data
a0
05(0.2860.05)mp

21 @26#.
In order to show the sensitivity of the form factors to the

variations in the phase, we shall evaluate the OM equation
using the two sets shown in Figs. 1~a! and 1~b!. For small
s the integral of Eq.~4! is dominated by low energies, see
@8#. As a first step we evaluate in this section the OM equa-
tion with a cutoffL. ChoosingL50.975 GeV we exclude
the f 0 and theKK̄ threshold region as in some early appli-
cations. We therefore write

F~s!5FL~s!P~s!, ~14!

where

FL~s!5expS spE4mp
2

L2 d~s8!

s8~s82s!
ds8D . ~15!

The polynomialP(s) represents the contribution from high
energies and any other dynamics not included so far. We
observe that any additive contributions in the phase lead to a
multiplicative factor inF, see Eq.~4!. We shall use

P~s!511bs, ~16!

where the parameterb is related to the scalar radius of the
pion by

F~s!511
1

6
^r s

2& s . ~17!

When plotting Fig. 2, we have adjusted the polynomial
~16! in order to havê r s

2&50.6 fm2 @8# in both cases. This
leads tob50.32 GeV22 for Fig. 2~a! andb50.83 GeV22

for Fig. 2~b!.

FIG. 2. The pion scalar form-factorFI50(s)
vs As evaluated using the OM equation with the
cutoff L50.975 GeV and thepp scattering
phases as shown in Figs. 1~a! and 1~b!, corre-
spondingly.
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Figure 2 demonstrates that the form factor is rather sensi-
tive to thepp scattering phase shift at low energies, one of
the important parameters being the scattering lengtha0

0. For
the meson exchange modela0

050.24mp
21 in good agreement

with the data, and the absolute value of the form factor con-
tinues to rise between thepp threshold andAs'0.5 GeV.
On the other hand, the form factor corresponding to the
phase in Fig. 2~a! displays a more prominent cusp and de-
creases above thepp threshold. This difference is not sur-
prising because the phase of Fig. 2~a! was obtained from the
fit of the data atAs.0.6 GeV and does not provide a good
description of the low energy region~the corresponding
value of a0

050.51mp
21 is too large!. For As,0.5 GeV the

result in Fig. 2~b! is close to the solution of the coupled
channel OM equation in@8#.

III. PROTECTIVE ZERO AND THE F 0 RESONANCE

For energies arounds51 GeV2 the truncation in the cal-
culation of the form factor must be abandoned and the role of
the f 0 and theKK̄ threshold discussed. The resonant part of
the phase will be defined by

d res~s!5arctan
gk~s!

~Mr
22s!

, ~18!

corresponding to the resonance amplitude

Tres~s!5
gk~s!

s2Mr
21 igk~s!

, ~19!

wherek(s)5As24mp
2 /2, leading to

F res~s!5expS spEs0
` d res~s8!

s8~s82s!
ds8D ~20!

5
Mr

21gmp

Mr
22s2 igk~s!

. ~21!

Inserting this phase naively into Eq.~15! has the undesirable
feature that

uF res~s!u ——→
s→6`

0 ~22!

rather than unity which would be expected at high energies
where the resonance contribution should vanish. The wrong
asymptotic form is actually imposed on the whole solution
by means of phase additivity. In Fig. 3 the dotted line corre-
sponds to the naive evaluation ofF(s), with P(s) being set
to unity. Apart from the wrong asymptotics it is also seen
that the f 0 resonance dominates the form factor far outside
the resonance regionM f0

6G f0
. Recall that the experimental

width is G f0
'60 MeV. It is clear that this defect should be

compensated by a nontrivial polynomialP(s) in the solution
of the OM equation.

A. The OM equation for a resonance
in the Weisskopf-Wigner model

We shall study the modification required for a sensible
inclusion of a direct channel resonance into the OM equation
by means of a very simple coupled channel model. The fol-
lowing nonrelativistic ansatz, which is a variant of the
Weisskopf-Wigner~WW! model with two channels, already
has all the necessary ingredients. Channel 1 is the scattering
channel of interest which has no diagonal potential. It will be
denoted by its relative momentumuk&. Channel 2 has a
bound stateub&, and the rest of the dynamics in this channel
is ignored. The only interaction in the model results from the
coupling of the first channel~thepp channel! to the bound
stateub& ~the baref 0 resonance considered as a bound state
of either aKK̄ or a quark-antiquark system!. We assume a
channel coupling of the form

^kuVub&5gj~k!5
g

k21m2 , ~23!

where g is the coupling constant~dimension@g#5@k#3/2)
andm characterizes the range of interaction. TheT matrix
satisfies the Lippmann-Schwinger equation

T~E!5V
ub&^bu

~E2Er !
V@11G0~E!T~E!#, ~24!

whereG0(E) is the free Green function andE5k2/2m (m is
the reduced mass!. The solution for the scattering amplitude
has the form

f ~k!522m^kuT~E!uk& ~25!

5
22mg2j2~k!

k2

2m
2Eb2g2D~k!

, ~26!

FIG. 3. The pion scalar form-factorFI50(s) vs As. The solid
line corresponds tor and f 2 exchange and anf 0 resonance includ-
ing the polynomial~protective zero!. The f 0 resonance alone leads
to the dotted line~OM equation without a polynomial! and to the
dashed line with polynomial.
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with

D~k!5^buVG0~E!Vub&5
m

m~k1 im!2
. ~27!

In our model the form factorF(k) describing the final
state interaction is equal to the scattering wave function at
zero distance according to standard results from scattering
theory @31#:

F~k!5^r50uk~1 !&5^r50uk&1^r50uG0~E!T~E!uk&
~28!

511
g2Z~k!j~k!

k2

2m
2Er2g2D~k!

, ~29!

with

Z~k!5
22im

k1 im
. ~30!

In Fig. 4 we show the scattering phase and the form factor
for the WW model form55m, g510m3/2, Er54m. The
pole produces a resonance peak in the energy dependence of
the form factor which is damped by a nearby zero restoring
the right limit F→1 for E→`. The reduction imposed by
this zero is enormous.

Formula~29! can be rewritten explicitly showing the in-
terplay of the pole and the zero:

F~k!5
A~E!

B~E!
, ~31!

A~E!5E2Er2
g2m

m

1

~k21m2!
, ~32!

B~E!5E2Er2
g2m

m

~k22m222imk!

~k21m2!2
. ~33!

In the limit of weak coupling the resonance in the scattering
channel is directly connected to the bound state in the con-
tinuum which has an energy shiftDEr and a widthG r :

DEr5
g2m~k22m2!

m~k21m2!2
, ~34!

G r5
4g2mk

~kr
21m2!2

, ~35!

whereEr5kr
2/2m. The form factor in the vicinity of the reso-

nance has the form

F~k!5
E2Ez

E2~Er1DEr2 iG r /2!
, ~36!

and the zeroEz is located near the resonance energy
Er1DEr at

Ez5Er1DEr1
m

kr
G r . ~37!

If uEz2Er2DEr u.G r , the resonance produces a pro-
nounced peak followed by a dip in the energy dependence of
the form factor. In caseuEz2Er2DEr u,G r , the energy de-
pendence coming from the pole is damped completely by the
zero in the nominator, and only a dip is visible in the form
factor. Notice that the zero is of dynamical nature and disap-
pears for vanishing channel coupling:F→1 asg→0.

SinceA(E) is a real symmetric function of momentum
k, it does not contribute to the elastic scattering amplitude.
The solution of the OM equation without a polynomial factor
reflects only the resonance pole in formula~36! as shown in
Fig. 4, dashed line. By including the factor (E2Ez), one
gets

F~E!5F~0!
~Ez2E!

Ez
expS EpE0` d~E8!

E8~E82E!
dE8D ,

~38!

which is very close to the exact solution1 of the WW model.
These results characterize acoupled channelresonance.

The scattering phase beyond the resonance does not decrease
as occurs for a direct channelpotentialresonance2 where no

1A careful analysis of the OM equation for the model considered
shows that there is an extra factor (k21n2)/(k21m2) resulting
from the singularities in the upper half-plane of complex momen-
tum k: a pole atk5 im and a nearby zero atk5 in. For our example
this factor is close to 1 in the region of the resonance.
2In the literature the first category is often callednormal reso-

nanceand the second onemolecularor bootstrap resonance, see,
e.g.,@16# and references therein.

FIG. 4. The momentum dependence of the
scattering phase~a! and the form factor~b! for a
resonance in the WW model. The solid line is the
exact solution~29!, the dashed line is the solution
of the OM equation without polynomial factor.
The dots show the approximate solution of the
OM equation with the factor (E2Ez).
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extra polynomial factor appears in the solution of the OM
equation. For a potential resonance the decrease of the phase
for s→` guarantees that the asymptotic limit of the form
factor is one.

It must be emphasized that in the WW model considered,
the resonance-dip structure occurs only in processes where
the particles in the scattering channel are produced at small
distance due to some extraneous interaction which can be
treated perturbatively, so that the momentum dependence of
the production amplitude is entirely determined by the form-
factor F(k) given by Eq. ~29! ~this is relevant for the
K→pp decay!. This situation must be distinguished from a
situation where the original bound stateub& is produced as a
resonance with amplitudeC and it then decays into the scat-
tering channel. The corresponding amplitude with rescatter-
ing included is

Tb~k!5C
gj~k!

k2

2m
2Er2g2D~k!

, ~39!

which has a purely resonant behavior, there is no nearby
zero. Studying the energy dependence of the data in the vi-
cinity of the resonance, one can determine whether this situ-
ation is realized for the process in question.

B. Application to the f 0 resonance and constraint
from pp˜pppp

To evaluate the role of thef 0 resonance forK→pp de-
cay, we use theSmatrix in Breit-Wigner form fitted to data
@21#, see Eq.~12!. As we demonstrated in Sec. III A, the
polynomial in the solution of the OM equation is expected to
have a zero ats5sz close to the resonance:

P~s!512
s

sz
. ~40!

Note thatsz→Mr
2 asg1→0. In order to fix the position of

the zero, we use information from a related process and
study the effective mass distribution (M5As) of pion pairs
produced in the reactionpp→pppp @32#, which can be
expressed by@15#

ds

dM
;

~M224mp
2 !1/2

M3 uF~M2!u2. ~41!

Including the polynomial~40! into the calculation of the
form-factor F(s) ( f 0 plus r and f 2 exchange!, we obtain
sz51.0 GeV2 for the position of the zero, see Fig. 5. The fit
shown for the mass distributionds/dM also contains a fac-
tor (110.25s) in the polynomial and an overall normaliza-
tion constant. The position of the zero, however, is deter-
mined very precisely from nearby data alone. The
corresponding scalar form factor will be discussed in Sec.
IV.

Note that the factor containing the zero can be incorpo-
rated into a formal solution of the OM equation, if a physi-
cally equivalent discontinuous scattering phase is introduced:

d̄~s!5d~s!2pu~s2sz! . ~42!

It is interesting to note that the description of the pion pair
distribution ds/dM in @15,16# was seemingly achieved
using the trivial polynomial P(s)51. However, the
elastic phase was calculated from the expressionF
5arctan(ImT11/Re T11). In the presence of inelasticities
the phase ofT11 is bounded to the interval@0,p# by the
requirement of continuity. When ReT11 changes from nega-
tive to positive due to the sharp resonance rise ofd(s), the
phaseF drops sharply by nearlyp. With this choice the
Omnès function develops a zero close to the point where
d5p. While this provides a good description of the data, the
introduction of the zero in this way appears to be accidental.
For instance, in the model considered in Sec. III A there is
no connection between the position of the zero and the con-
dition d5p. Also, if the scattering phased reachedp before
theKK̄ threshold, the zero factor would not be obtained from
using the phase prescription forF quoted above.

IV. RESULTS FOR THE K˜pp DECAY

We have prepared the ground for theI50 S-wave final
state interaction in the preceding sections. The solid line in
Fig. 3 shows the net result for the model combining ther
and f 2 exchange with thef 0 resonance. The resonance in the
form factor is protected by the zero atsz51 GeV2 as deter-
mined from the pion pair production data. At the kaon mass
the I50 enhancement factor isF(mK

2 )51.62, a result which
is similar to the values obtained in the literature quoted
above. Fromr exchange alone we obtainF(mK

2 )51.38, r
and f 2 give F(mK

2 )51.57 while the enhancement from the
f 0 resonance alone isF(mK

2 )51.03. For the complete form
factor the reduction of thef 0 contribution induced by the
protective zero is, of course, crucial. The effects of the zero
and the resonance largely cancel and only a very small con-
tribution to the form factor far away from the pole~zero!
survives. For example, ats50 the pion scalar radius is:
^r s

2&50.52 fm2 when only consideringr and f 2 exchanges.
When including the resonance protected by the zero, we
have^r s

2&50.58 fm2. We see that the inclusion of the reso-

FIG. 5. The effective mass distribution of pion pairs in
pp→pppp vsM5As. The data are from@32#.
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nance does improve the result on the scalar radius but avoids
too large an effect. Our full result is very close to the value
obtained in@8# where^r s

2& is determined from chiral pertur-
bation theory. Without the zero we would have obtained a
rather large valuêr s

2&50.81 fm2.
In order to complete the evaluation of the overall

DI51/2 enhancement factor, the contribution of theI52
channel must be evaluated as well. Because of the signature
of the crossing matrix, the contribution fromr exchange is
repulsive in theI52 channel, see Eq.~6!. On the other hand,
f 2 exchange does not change sign relative to theI50 chan-
nel leading to destructive interference betweenr and f 2 for
the isotensor. The solid line in Fig. 6~a! shows the unitarized
sum ofr and f 2 exchange. Also shown isr exchange modi-
fied by a vertex form factor with monopole range
Lr51.5 GeV ~dashed line! which is a good effective pa-
rametrization of the data. With this modification the
pp I52 scattering lengtha0

2520.052mp
21 is in fair agree-

ment with the result of the soft-pion theory3

a0
2520.06mp

21 @30#. The phases at higher energies are not
known, but fortunately the form factor atAs5mK is not
sensitive to this region. The corresponding form-factor
FI52(s) is shown in Fig. 6~b!. At the kaon mass we obtain a
reduction factorFI52(mK

2 )50.9 leading to a combined
DI51/2 enhancement ofFI50(mK

2 )/FI52(mK
2 )51.81 which

is satisfactory, but slightly less than the value required by the
data.

V. CONCLUSION

We conclude that ther- and f 2-exchange interactions re-
main the dominant mechanisms for the FSI enhancement
factor in theDI51/2 rule in K→pp. Since r exchange
generates a broad pole in theI50 S-wave amplitude
@21,23#, one can associate this enhancement with as meson.
The f 0 resonance plays a minor role. This is because of the
occurrence of a protective zero ats51 GeV2, modifying the
polynomial in the OM equation. The nature and position of
this zero has been verified by analyzing pion pair production
in pp→pppp where thef 0 resonance only leads to a small
shoulder in the mass distribution.

A simple coupled channel model describes the resonance-
dip structure in the form factor very adequately and illumi-
nates the appearance of a nontrivial polynomial in the solu-
tion of the OM equation when the scattering involves a
coupled channel resonance. We expect that this damping
mechanism will be applicable to many other decay and pro-
duction reactions in the vicinity of a coupled channel reso-
nance.

As a consequence, all other higher resonances in thepp
channel~above 1 GeV!, which have coupled channel origin,
play a minor role in the FSI effects ats5mK

2 and below. This
makes the OM calculations of these effects only weakly
model dependent if only the model reproduces the scattering
data below thef 0 resonance. In particular, the previous OM
calculations of the scalar form factor in the framework of the
chiral perturbation theory~see @8# and references therein!
will get only a few percent correction ats5mK

2 if the higher
resonances are taken into account.
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