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Final state interactions in th8-wave 7= system (=0,2) are reexamined on the basis of the Ogne
Muskhelishvili equation and the coupled channel formalism. The contributions to the pion scalar form factor
from p and f,(1270) exchange in the channel and from thdy(980) s-channel resonance are separately
evaluated and the role of the nontrivial polynomial in the Omfunction in a coupled channel situation is
elucidated. Applications are made ko— 7 andpp— pp= . It is found that the contribution from thf,
resonance to the form factor is strongly reduced by a nearby f#0656-282(197)05505-7

PACS numbdps): 13.75.Lb, 13.25.Es

I. INTRODUCTION Several methods for the evaluation of FSI have been used
in the literature. In one approach rescattering diagrams are
Final state interactioné-SlI's) in the w# system play an evaluated directly. At low energies this has been done by
important role for many production reactions and meson deapplying chiral perturbation theor§gCHPT) [5,6]. The rel-
cays. A case of long-standing interest is the=1/2 rule in  evant application in our context is the calculation of the sca-
K— mm decays. The experimental ratio of the decay ampli{ar form factor of the pion in next-to-leading chiral order at

tudesA, with isospinl =0,2 is[1] low energies [7,8]. To extend the calculations to
s~1 Ge\?, s-channel resonances and the coupling to the
Ag(K— ) —20 (1) KK channel must be included. As a general tool the disper-
Ay(K— ) sive method based on the OnsakluskhelishviliOM) equa-

o tion [9,10] has turned out to be very efficient. It exploits

The calculated ratio is small¢®] by at least a factor of 3 gnayticity and unitarity in order to connect the production or
where this result includes perturbative QCD and soft—gluoruecay amplitudeor its form factoy with the amplitude of
corrections at the weak interaction vertex but no long-g|astic 777 scattering. To solve the OM equation we shall
distancesrm FSI. In this paper we shall discuss the pionic jze the scattering phases either from phase shift analysis or
FSlin theS wave aiming at a concrete application to the from a theoretical model. We shall choose a model which
Al=1/2 rule for theK — 7 decay and the pion production gaisfies the requirements of unitarity and analyticity, and
reactionpp— mpp. Our analysis shows general features ofhence the OM equation automatically. The model with pa-
FSI's which are relevant to other reactions involving pions oframeters fitted to the experimental constraints is described in

other hadrons. Sec. II.

The Al=1/2 amplitude of th&K — 7 decay, as a func-  For theK — v decay it was realized a long time ago that
tion of s=pg wherepy is the kaon four-momentum, can be the nonperturbative long-distance effects must be included,
written in the form(see[2,3] and references thergin and the combination of the attraction in the0 channel

with the repulsion in thd =2 channel favors theé\l =1/2
(wa|AIK)=iCf, (s—m2)F%(s), (2 rule. An enhancement of about a factor of 2 in the0

amplitude was estimated to result from the broad
whereC is a constant describing the short-range part of the;(JPC=0**) meson[4]. The FSI enhanceme,ﬁo(mﬁ)/
process(by its order of magnitud€ is close to the Fermi F°(mi)=1.4 was obtained if3] using the OM equation
constantGg), f. is the pion decay constant, the factor yth 5 simple parametrization of the scattering phase consis-
(s—m?) explicitly takes the chiral symmetry into account, tent with the Weinberg low energy expansion. The analysis
and the scalar form-factd®(s) describes the final state in- was done in CHPT to one loop if8,11]. Rescattering in
teraction. Here the pions are assumed to be on the mass shefimple potential model was evaluated[it2,13 without re-
Note that the definition o€ depends on the normalization of gard to the energy dependence of the form factor. An exten-
FO(s). The calculations of the decay amplitude in the frame-gjye study of the FSI effects in th&wave 77 system in
work of the operator expansidd] exploit the limit of zero  production reactions andf ¢ and ' decays was conducted
pion momenta and therefore provide the combined strengtfh [14—17. Unitarity and analyticity of the production am-
of the productCF°(0). In order to get the physical ampli- piitudes was taken into account in a self-consistent way. It
tude, the FSI factor°(mg)/F°(0) must be used. In the was noticed, in particular, that a narrow resonarfegirf the
framework of the chiral perturbation theory, the expressiorpresent notationin the 77 scattering phasé'Ji%(s) corre-
C(s—m?) is interpreted as the first two terms of the powersponds to a shoulder in ther effective mass distribution in
series expansiof8] and the form factor is normalized by the the reactiorpp— pp [15,16. The occurrence of a shoul-
condition F°(m2)=1. The paramete€ can then be deter- der rather than a peak results from an interplay of the reso-
mined from the data using the scalar form factosam3 . nant pole and a nearby zero. We shall discuss this feature in
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detail in Sec. lll. Resonance phenomena in the S wave s (= &8s

were emphasized ifil8] where thef, resonance was dis- F(S)=P(S)EXF{;f zmds’) (4)
cussed within a single-resonance model for the decay of a M

light Higgs boson. The prediction of a drastic enhancement

because of thé, resonance is in striking contrast with the @S long as

findings for thepp— ppm# reaction in[16]. An analysis of

the 7= final state interaction in the framework of the 5(s)— const |F(S)|—>O for Ss00 5)
coupled channel OM equation was performedh for the ' s '

decay of a light Higgs boson dec&l/— 7. In this evalua-

tion the f, resonance also produced significant effects farrhe polynomialP(s) is real fors real. In special cases, such
below theKK threshold. as potential scattering without bound stategs) is a con-
The dynamics of thé=0 S-wave 77 interaction is char-  stant, but in general additional information is required to
acterized by several overlapping resonan#17,19,20  determine it. In the following we normalizE(0) to unity
both narrow and broad. In the present paper we shall analyzgince we are not concerned with the overall normalization
the relative importance of the dynamical mechanisms inrepresenting the short-range properties of the decay ampli-
7rar scattering for the calculation of the form factors occur-tyde discussed in Sec. I. Note that the fac®r (nfT) in the
ring in meson decays and in the pion pair productioPm  decay amplitudé2) is real for reals and could be combined

scattering. _ _ with the polynomialP(s); however, we prefer to use the
In Sec. Il we prepare the ground with an evaluation of theform (2) explicitly displaying the chiral symmetry behavior.
OM equation for a restricted energy ranbe cutoff used For K— 7 in the simplest evaluations, single-channel

excludes thd ; resonance With respect to the pion dynam-
ics we shall mainly use the picture 1] which combines
the p and f, exchanges in thé channel with thef, reso-
nance in thes channel. The phases of the=0,2 S-wave
scattering are reproduced quite accurately in this model. T
understand the role of thigy resonance for the calculation of
the form factor in thel =0 channel, we shall introduce a
coupled channel ansatz in Sec. Ill. The final state interactio
effects in theK— 77 decay are evaluated and the conclu-,
sions are presented in Sec. V.

arar scattering data are used below tk& threshold(the
coupling to the 4r channel is known to be smallTo exploit
Eq. (4) we need a smooth parametrization&ff). To dem-
onstrate the sensitivity of the result to the input phases, we
Bse two parametrizations of ther J=1=0 scattering phase
89(s). Figure 1a) showss)(s) from the phase shift analysis
16]. In Fig. 1(b) we show the same phase from the meson
xchange model mentioned earlier and developefRin-
3]. We briefly recapitulate the ingredients for the benefit of
the later discussion. The phases in Fi¢b)lcorrespond to
unitarizedp andf, exchange with thé, resonance added in

Il. FORM FACTORS FROM THE the s channel. The individual contributions are shown in the
OMNE S-MUSKHELISHVILI EQUATION figure as explained in the caption. The Born term for ghe
exchange is
The form factorF(s) represents the effect of the FSI in
the decay amplitude. The OM equatih10] relatesF (s) to s—u s—t
the elastic final state scattering pha&és). For a single- T(s.t)ga =26(m+ m2—u)’ (6)
channel problem the OM equation is P P
st 1
s (= e 9S)sins(s’)F(s’ T(s,t)o2=— =T(s,):30, 7
o1+ > SSRGS (o g (s:)5a"= 5 T(s.)5a @)
T J am? s'(s'—s)

wherem, is the mass of the meson,ngimBZTr, and
where a once-subtracted form has been used. The genegy.. is thepmm coupling constant. The=2 amplitude will
solution of Eq.(3) has the form be needed later. Th&wave projection is
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FIG. 2. The pion scalar form-factdf'=°(s)
vs /s evaluated using the OM equation with the
\ cutoff A=0.975 GeV and thews scattering
N \ phases as shown in Figs(al and Xb), corre-
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25+ m2—4m,27 5_4me and the resonance parameters aké =0.9535 GeV,
Toa> &(S)=4G| —————1In | =1}, 9,=0.1108 GeV, g,=0.4229 GeV, respectively.
s—amy ™ Th ing phase in th h del gi
®) e scattering phase in the meson exchange model gives
a good description of the data fe<1.4 Ge\? [see Fig.
K-matrix unitarization is introduced by 1(b)] which justifies using the simple approach based on Egs.
(9) and (10) as long as we just need a smooth parametriza-
| K'S(s) tion of the scattering phase for the OM equation. A more
Ts(S)=—— T (9)  elaborate meson exchange mof29] where the scattering

— T
1=ip(s)Ks(s) amplitude is calculated from the Lippmann-Schwinger equa-

tion would lead to similar results. Thew | =0 scattering

length in the meson exchange mod@k0.24m_* is in good
(s) TBA «(s), (10) agreement with the Weinberg low energy theorems

=0.20n;' [30] and the mw scattering data

andp(s)=(1—4m?%/s)*2 The coupling constar,,, is de-  aj=(0.28+0.05)m_ " [26].
termined from thep-meson decay width in the crossed In order to show the sensitivity of the form factors to the
I=1 channel afteK-matrix unitarization[21]. The corre- variations in the phase, we shall evaluate the OM equation
sponding value ig,,,=6.04 which is close to the result using the two sets shown in Figs(al and Xb). For small
obtained from the Kawarabayashi-Suzuki-Riazuddin-s the integral of Eq.(4) is dominated by low energies, see

where

FayyazuddinKSRP relation[27], g,,,,= mp/\/ifw. [8]. As a first step we evaluate in this section the OM equa-
The corresponding expression fbs exchange in Born tion with a cutoffA. ChoosingA =0.975 GeV we exclude
approximation21] is the fy and theKK threshold region as in some early appli-
cations. We therefore write
B -1 2, ’ _
Ky, (5)=2Gy, Ts—gmf2+4mﬂ F(s)=FA(s)P(s), (14
where
(2s+mf —4m2)?—(mf —4m?)?/3
- S—am? F f 5(5 15
w A(s)=ex 5 Py . (15
S— 4m ) o .
XIn| 1+ —2— (11)  The polynomialP(s) represents the contribution from high
f, energies and any other dynamics not included so far. We
5 observe that any additive contributions in the phase lead to a
whereG¢ =0.19 GeV “. multiplicative factor inF, see Eq(4). We shall use
The s-channelf, resonance is included using the Dalitz-
Tuan representatiofR8], i.e., theS matrix is considered to P(s)=1+bs, (16)

be the product of th& matrices corresponding to the indi-
vidual mechanisms. The corresponding Breit-Wigner param-
etrization is taken fronj21]

where the parametdy is related to the scalar radius of the
pion by

1
s—MZ2—igypi1(s)+igopa(S) F(s)=1+ =(r? s. 17
) S—M?+ig1p1(S) +ig2pa(s)’ 12

When plotting Fig. 2, we have adjusted the polynomial
where (16) in order to have(r2)=0.6 fi? [8] in both cases. This
leads tob=0.32 GeV ? for Fig. 2a) andb=0.83 GeV?

pi(8)=\1-4mi/s, py(s)=V1-4mi/s,  (13)  for Fig. 2b).
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Figure 2 demonstrates that the form factor is rather sensi- —
tive to thew 7 scattering phase shift at low energies, one of -
the important parameters being the scattering IeaﬁtrFor
the meson exchange m0(ﬁ=0.24n;1 in good agreement |
with the data, and the absolute value of the form factor con- 24
tinues to rise between thew threshold and/s~0.5 GeV.

On the other hand, the form factor corresponding to the
phase in Fig. @) displays a more prominent cusp and de-
creases above thew threshold. This difference is not sur-
prising because the phase of Figa)2was obtained from the
fit of the data at/s>0.6 GeV and does not provide a good
description of the low energy regiofthe corresponding
value ofaj=0.51m_" is too large. For \s<0.5 GeV the
result in Fig. 2Zb) is cl_ose to the solution of the coupled 0 o o3 o6 09 12
channel OM equation if8].

s'2 (GeV)

4

Ill. PROTECTIVE ZERO AND THE F, RESONANCE
' ) o FIG. 3. The pion scalar form-factd®' =°(s) vs \/s. The solid
For energies arounsi=1 GeV* the truncation in the cal- |ine corresponds tp andf, exchange and afy, resonance includ-

culation of the form factor must be abandoned and the role ofg the polynomialprotective zerp The f, resonance alone leads
the fy and theKK threshold discussed. The resonant part ofto the dotted linglOM equation without a polynomialand to the

the phase will be defined by dashed line with polynomial.
gk(s) A. The OM equation for a resonance
S;ed S)=arcta , 18 in the Weisskopf-Wigner model
red S) I?W—_s) (18

We shall study the modification required for a sensible
inclusion of a direct channel resonance into the OM equation
by means of a very simple coupled channel model. The fol-
lowing nonrelativistic ansatz, which is a variant of the

gk(s) Weisskopf-WigneWW) model with two channels, already
s—M2+igk(s)’ 19 has all the necessary ingredients. Channel 1 is the scattering
channel of interest which has no diagonal potential. It will be
) denoted by its relative momentufik). Channel 2 has a
wherek(s) = ys—4m2/2, leading to bound statéb), and the rest of the dynamics in this channel
is ignored. The only interaction in the model results from the
S [ bedS) coupling of the first channdthe 7 channel to the bound
Fres(S):eXP( = J . md5,> (20) state|b) (the baref, resonance considered as a bound state
° of either aKK or a quark-antiquark systemwe assume a
channel coupling of the form

corresponding to the resonance amplitude

Tres(s) =

~ M?+gm, 21
MZ—s—igk(s) <k|v|b>=y§(k)=P+7—Mz, (23

Inserting this phase naively into EQL5) has the undesirable

feature that where y is the coupling constantdimension[ y]=[k]*?

and u characterizes the range of interaction. Thematrix
satisfies the Lippmann-Schwinger equation

S—*+w
|Fres(s)| —0 (22 |b><b|
T(E)=V——==V[1+Gyx(E)T(E)], (24
rather than unity which would be expected at high energies (E—Ep)
where the resonance contribution should vanish. The wrong ) ] 5 )
asymptotic form is actually imposed on the whole solutionWhereGo(E) is the free Green function arg=k"/2m (m is
by means of phase additivity. In Fig. 3 the dotted line correthe reduced magsThe solution for the scattering amplitude

sponds to the naive evaluation B{s), with P(s) being set has the form
to unity. Apart from the wrong asymptotics it is also seen

that thef, resonance dominates the form factor far outside f(k)=—2m(k|T(E)[k) (25
the resonance regid\;lfoi Ffo. Recall that the experimental -

width is 'y ~60 MeV. It is clear that this defect should be _ 2—2m7 &°(k) ’ 26
compensated by a nontrivial polynomR(s) in the solution k_ —Ey— y?D(K)

of the OM equation. 2m
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FIG. 4. The momentum dependence of the
scattering phaséa) and the form factorb) for a
resonance in the WW model. The solid line is the
exact solution29), the dashed line is the solution
of the OM equation without polynomial factor.
The dots show the approximate solution of the
OM equation with the factorE—E,).

kin

with 4v°mk
=773, (35
Tkt p?)?

D (k) =(b|VGy(E)V|b)= ki) (27) ) _ .
p(ktin) whereE, =k;/2m. The form factor in the vicinity of the reso-
. i nance has the form
In our model the form factoF (k) describing the final

state interaction is equal to the scattering wave function at E-E,

zero dlstar.u:e according to standard results from scattering F(k)= E_(E, +AE,—iT./2)’ (36)

theory[31]:

and the zeroE, is located near the resonance energy

F(k)=(r=0lk"*))=(r=0[k)+(r 0|GO<E>T<E>|I<%28 E+AE. at
27(k) (K E,=E,+AE + T, 3
=1+ k2y ( )g( ) , (29) z r r kr r ( 7)
_ _ A2

2m E=yD(l If |E,—E,—AE,|>TI,, the resonance produces a pro-

nounced peak followed by a dip in the energy dependence of
with the form factor. In caséE,—E, — AE,|<T,, the energy de-

_ pendence coming from the pole is damped completely by the

Z(k) = —2im (30) zero in the nominator, and only a dip is visible in the form
C k+ip factor. Notice that the zero is of dynamical nature and disap-

pears for vanishing channel coupling—1 asy—0.

In Fig. 4 we show the scattering phase and the form factor Since A(E) is a real symmetric function of momentum
for the WW model foru=5m, y=10u%? E,=4m. The Kk, it does not contribute to the elastic scattering amplitude.
pole produces a resonance peak in the energy dependenceTdfe solution of the OM equation without a polynomial factor
the form factor which is damped by a nearby zero restoringeflects only the resonance pole in form{®s6) as shown in
the right limit F—1 for E—. The reduction imposed by Fig. 4, dashed line. By including the factoE{E,), one

this zero is enormous. gets
Formula(29) can be rewritten explicitly showing the in-
terplay of the pole and the zero: _ (E,—E) EJ’w S(E") .
E F(E)=F(0) E, exp — . E’(E’—E)dE
F(k)= —BEE) , (31 (38
which is very close to the exact solutioof the WW model.
Ya 1 These results characterizecaupled channetesonance.
A(E)=E—-E,~ RUETE (32)  The scattering phase beyond the resonance does not decrease

as occurs for a direct channgbtentialresonancewhere no

2m (k2= u?—2i uk
B(E)=E—E,—7 (k= u #K)

PRV (33
(k*+u) 1A careful analysis of the OM equation for the model considered

o _ ) ~ shows that there is an extra factok®¢ v2)/(k?>+ u?) resulting
In the I'm't Of weak coupling the resonance in the Scatterintrom the singularities in the upper half-plane of complex momen-
channel is directly connected to the bound state in the conymk: a pole atk=ix and a nearby zero &=i». For our example

tinuum which has an energy shitE, and a width', : this factor is close to 1 in the region of the resonance.

2 5 2 2In the literature the first category is often calladrmal reso-
_Y m(k"—u) (34) nanceand the second onmolecularor bootstrap resonangesee,

AE =———>, )
(kP p?)? e.g.,[16] and references therein.
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extra polynomial factor appears in the solution of the OM 15
equation. For a potential resonance the decrease of the phase
for s—o guarantees that the asymptotic limit of the form 1
factor is one. 12 1
It must be emphasized that in the WW model considered, i 9
the resonance-dip structure occurs only in processes where ]
the particles in the scattering channel are produced at small
distance due to some extraneous interaction which can be )
treated perturbatively, so that the momentum dependence of 6 -
the production amplitude is entirely determined by the form-
factor F(k) given by Eq. (29 (this is relevant for the
K— mar decay. This situation must be distinguished from a 37
situation where the original bound stat® is produced as a ]

do/dM

Q

resonance with amplitude and it then decays into the scat- 0 | - : I VA
tering channel. The corresponding amplitude with rescatter- 0 0.3 0.6 0.9 1.2
ing included is M (GeV)
yé(k)
To(k)=C k2 ) ' (39 FIG. 5. The effective mass distribution of pion pairs in
om BTy D(k) pp—ppmm vs M=+/s. The data are fromi32].

which has a purely resonant behavior, there is no nearbif is interesting to note that the description of the pion pair
zero. Studying the energy dependence of the data in the véistribution do/dM in [15,16 was seemingly achieved
cinity of the resonance, one can determine whether this situising the trivial polynomial P(s)=1. However, the

ation is realized for the process in question. elastic phase was calculated from the expressibn
=arctan(ImT;/Re T;9). In the presence of inelasticities

B. Application to the f, resonance and constraint the phase off; is bounded to the intervgl0,7] by the
from pp—ppma requirement of continuity. When RE;; changes from nega-

tive to positive due to the sharp resonance ris&é(@), the
phase® drops sharply by nearlyr. With this choice the
Omnes function develops a zero close to the point where
6= . While this provides a good description of the data, the
introduction of the zero in this way appears to be accidental.
For instance, in the model considered in Sec. Il A there is
s no connection between the position of the zero and the con-
P(s)=1——. (400  dition 6= . Also, if the scattering phas®&reachedr before
Sz theKK threshold, the zero factor would not be obtained from

using the phase prescription fdr quoted above.

To evaluate the role of thg, resonance foK— 77 de-
cay, we use th& matrix in Breit-Wigner form fitted to data
[21], see Eq.(12). As we demonstrated in Sec. lll A, the
polynomial in the solution of the OM equation is expected to
have a zero a$=s, close to the resonance:

Note thatsZHM,2 asg;—0. In order to fix the position of
the zero, we use information from a related process and

study the effective mass distributioM(= \/§) of pion pairs IV. RESULTS FOR THE K— @ DECAY
produced in the reactiopp— ppma [32], which can be i
expressed by15] We have prep_ared the groqnd for t_h:eO S-wave _flnz_il _
state interaction in the preceding sections. The solid line in
do  (M2—4m?2)12 Fig. 3 shows the net result for the model combining the
av T' F(M?)|2, (41)  andf, exchange with thé, resonance. The resonance in the

form factor is protected by the zerost=1 Ge\? as deter-
mined from the pion pair production data. At the kaon mass

— 2y _ ;
form-factor F(s) (fo plus p and f, exchangg we obtain thel =0 enhancement factor i5(my)=1.62, a result which

s,=1.0 Ge\? for the position of the zero, see Fig. 5. The fit is similar to the values obtained in the Iitgrature guoted
shown for the mass distributictio/dM also contains a fac- 2PoVe. Fromp egchange alone we obtak(mi)=1.38, p
tor (1+0.25) in the polynomial and an overall normaliza- @nd f give F(mi)=1.57 while the enhancement from the
tion constant. The position of the zero, however, is deterfo resonance alone B(mg)=1.03. For the complete form
mined very precisely from nearby data alone. Thefactor the reduction of thé, contribution induced by the
corresponding scalar form factor will be discussed in Secprotective zero is, of course, crucial. The effects of the zero
\VA and the resonance largely cancel and only a very small con-
Note that the factor containing the zero can be incorpotribution to the form factor far away from the poleerg
rated into a formal solution of the OM equation, if a physi- survives. For example, &=0 the pion scalar radius is:
cally equivalent discontinuous scattering phase is introducedr§)=0.52 fr? when only considering andf, exchanges.
o When including the resonance protected by the zero, we
8(s)=46(s)—mwl(s—s,) . (42 have(r§)=O.58 fi?. We see that the inclusion of the reso-

Including the polynomial40) into the calculation of the
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FIG. 6. Therrr | =2 S-wave scattering phase
207 08 8y 2 vs \/s (a) and the form-factoF'=%(s) (b).
Solid line: p+f, exchange, dashed ling: ex-
.30 0.7 - change with vertex form factor. The experimental
data are froni33].
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nance does improve the result on the scalar radius but avoids V. CONCLUSION

too large an effect. Our full result is very close to the value
obtained in[8] where(r2) is determined from chiral pertur-
bation theory. Without the zero we would have obtained
rather large valuér2)=0.81 fn?.

We conclude that thp- and f,-exchange interactions re-
main the dominant mechanisms for the FSI enhancement
afactor in the Al=1/2 rule in K— . Since p exchange
In order to complete the evaluation of the overall generates a broad pole n the=0 Swave _amplltude

[21,23, one can associate this enhancement withraeson.

Al=1/2 enhancement factor, the contribution of the? The f, resonance plays a minor role. This is because of the
channel must be evaluated as well. Because of the signature . g

) . o .~ -occurrence of a protective zerosat 1 Ge\?, modifying the
of the crossing matrix, the contribution fromexchange is

. a polynomial in the OM equation. The nature and position of
;epgiia/:nlg;hddo;szn%rlacnhnaer:;:;(see;gaq?()a.lfti?/gl(e;l(;;%ercﬂggd, this zero has been verified by analyzing pion pair production
5 -
nel leading to destructive interference betwegeand f, for in pp—ppa where thef, resonance only leads to a small

. s TR Sl shoulder in the mass distribution.
the isotensor. The solid line in Fig(d@ Sh.OWS the unltarlzgd A simple coupled channel model describes the resonance-
?uzjn ogp andf, etxchafnge. A}Isot showlr:hys exchangle modi- dip structure in the form factor very adequately and illumi-
/'\e _1 35/ é \)/e(; exh d°r|.m ar?. ohr W m(;)ntﬁ)o? range hates the appearance of a nontrivial polynomial in the solu-
P_t'. i eV ( fasthe énfw {7V'trl1$ te;].goo ‘;.f.ec P’e p?r'] tion of the OM equation when the scattering involves a
rametrization of the a?. ! |§1 moditication the coupled channel resonance. We expect that this damping
7 | =2 scattering lengtlag=—0.052n_ " is in fair agree-

; ) 3 mechanism will be applicable to many other decay and pro-
ment with the result of the soft-pion thedry qyction reactions in the vicinity of a coupled channel reso-

ag=—0.0an_ " [30]. The phases at higher energies are Noiyance.

known, but fortunately the form factor afs=my is not As a consequence, all other higher resonances inrthe

sensitive to this region. The corresponding form-factorchannel(above 1 GeY, which have coupled channel origin,

F*“(s) is shown in Fig. 6). At the kaon mass we obtain a play a minor role in the FSI effects at-my and below. This

reduction factor F'~*(mg)=0.9 leading to a combined makes the OM calculations of these effects only weakly

Al=1/2 enhancement d&&'=°(mg)/F'=2(mg)=1.81 which model dependent if only the model reproduces the scattering

is satisfactory, but slightly less than the value required by thejata below the, resonance. In particular, the previous OM

data. calculations of the scalar form factor in the framework of the
chiral perturbation theorysee[8] and references thergin
will get only a few percent correction at= mﬁ if the higher

3Note that the Born approximation fprexchange alone, Eqé), resonances are taken into account.
(7), gives the rati®@d/a3= — 2 while the low energy theorems pre-
dict aj/a3=—7/2 [30]. The construction of a chiral-invariant La-

g.rangia.n withp mesons .Was first cqnsidered iB4]. For more ACKNOWLEDGMENT
discussion of the scattering lengths in theexchange model see
[23]. The authors thank Bing-Song Zou for useful discussions.
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