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I. INTRODUCTION

A large amount of experimental data was accumulated in
the 1960s and 1970s on the spectroscopy of light hadrons.
These data led first to the introduction of SUf(3) by Gell-
Mann @1# and Ne’eman@2# @later enlarged to SUs f(6) by
Gürsey and Radicati@3##, and subsequently to SUc(3) color
symmetry as a gauge symmetry of strong interactions. The
construction of dedicated facilities@e.g., the Continuous
Electron Beam Accelerator Facility~CEBAF!, Mainz accel-
erater MAMI, Bonn accelerator ELSA# that promise to pro-
duce new and more accurate data on the same subject, have
stimulated us to reexamine baryon spectroscopy with the in-
tent to reexamine whether or not the new data can shed some
new light on the structure of hadrons. In this reanalysis we
have introduced, in addition to the basic spin-flavor-color
symmetry, SUs f(6)^SUc(3), a new ingredient, namely, a
space symmetryG, which we have taken to beG5U~7! for
baryons@4#. The introduction of the space symmetry allows
us to examine, in a straightforward way, several limiting
situations~e.g., harmonic oscillator and collective dynam-
ics!, and to produce transparent results that can be used to
analyze the experimental data. This approach has been used
@4,5# to analyze the mass spectrum and electromagnetic cou-
plings of nonstrange baryon resonances. It presents an alter-
native for the use of nonrelativistic or relativized Schro¨-
dinger equations. In addition to electromagnetic couplings,
strong decays of baryons provide an important, complemen-
tary, tool to study the structure of baryons. These strong
couplings are needed to analyze the new upcoming experi-
mental data, especially (e,e8p) and (e,e8h). Furthermore,
we want to understand whether or not unusual features ap-
pear in the data, which may point out to ‘‘new’’ physics, new
meaning here unconventional configurations of quarks and
gluons, such as hybrid states,q32g, or multiquark states,
q32qq̄. For example, the observed largeh width of the
N(1535)S11 resonance has led to considerable discussion
@6–10# about the nature of this resonance.

The strong decays have been analyzed previously in the
nonrelativistic@11# and relativized quark models@12#. These
models emphasize single-particle aspects of quark dynamics

in which only a few low-lying configurations in the confining
potential contribute significantly to the baryon wave func-
tion. In the framework of the earlier mentioned algebraic
approach, it is possible to study also other, more collective,
types of dynamics. In this article, we analyze in detail the
strong decays in a collective model of baryon structure. The
article is organized as follows: in Sec. II we briefly discuss
the method of calculation, in Sec. III we present the results,
which are compared with the existing data in Sec. IV. Fi-
nally, in Sec. V we present our conclusions and point out
some open problems.

II. METHOD OF CALCULATION

We consider in this article strong decays of baryons by
the emission of a pseudoscalar meson

B→B81M . ~1!

In order to calculate these decays we need two ingredients:
~i! the wave function of the initial and final states and~ii ! the
form of the transition operator. We write both the wave func-
tions and the transition operators in algebraic form. We take
the wave functions as representations of U(7)^SUs f(6)
^SUc(3), asdiscussed in@4#. The algebraic formulation al-
lows us to study a large class of models, all with the same
spin-flavor-color structure, but different types of quark dy-
namics ~e.g., single-particle and collective!. Each scenario
corresponds to different ways in which the U~7! spatial sym-
metry is broken down to the angular momentum group
SO~3!. Among the models in this class is the familiar har-
monic oscillator quark model characterized by the breaking

U~7! . U~6! . Ur~3! ^ Ul~3!

. SOr~3! ^ SOl~3! . SO~3!. SO~2!, ~2!

where the indicesr and l refer to the two relative Jacobi
coordinates
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The nonrelativistic and relativized quark potential models
@13,14# are formulated in this harmonic oscillator basis.

In a collective model the baryon resonances are inter-
preted in terms of rotations and vibrations of the string con-
figuration in Fig. 1, which is characterized by the two rela-
tive Jacobi coordinates of Eq.~3!. The three constituent parts
carry the global quantum numbers: flavor5triplet5u,d,s;
spin5doublet51/2; and color5triplet ~we do not consider
here heavy quark flavors!. Different types of collective mod-
els are specified by a distribution of the charge, magnetic
moment, etc., over the entire volume. For the present analy-
sis of strong decays we use the~normalized! distribution

g~b!5b2e2b/a/2a3, ~4!

whereb is a radial coordinate anda is a scale parameter. We
have shown in@5# that the above distribution appears to de-
scribe the available data on electromagnetic form factors and
helicity amplitudes up toQ2'10220 ~GeV/c! 2.

The spatial part of the baryon wave functions in the ‘‘col-
lective’’ model is characterized by the following labels:
(v1 ,v2);K,Lt

P @4#, where (v1 ,v2) denotes the vibrations
~stretching and bending! of the configuration of Fig. 1;K
denotes the projection of the rotational angular momentum
L on the body-fixed axis;P the parity andt the symmetry
type of the state under the point groupD3. The classification
underD3 and parity is equivalent to that of the point group
D3h , which describes the discrete symmetry of the object of
Fig. 1. Instead of theD3 labels (t5A1, A2, E) one can use
the labels ofS3 (t5S, A, M ), the group of permutations of
the three constituent parts (S3 andD3 are isomorphic!. The
permutation symmetryt of the spatial part of the wave func-
tion must be the same as that of the spin-flavor part in order
to have total wave functions that are antisymmetric~the color
part is a color-singlet, i.e., antisymmetric!. Therefore one can
also use the dimension of the SUs f(6) representations to
label the states:A1↔S↔56, A2↔A↔20, andE↔M↔70.
We adhere to the latter notation and label the states by

u@dim$SUs f~6!%,LP#~v1 ,v2!;K&. ~5!

When the spin-flavor quantum numbers are explicitly added,
we obtain the total baryon wave function:

u2S11dim$SUf~3!%J@dim$SUs f~6!%,LP#~v1 ,v2!;K&, ~6!

whereS and J are the spin and total angular momentum
JW5LW 1SW . For example, in this notation the nucleon and
delta wave functions are given by

u281/2@56,01#~0,0!;0& and u4103/2@56,01#~0,0!;0&, ~7!

respectively.
The second ingredient in the calculation is the form of the

operator inducing the strong transition. Several forms have
been suggested@15#. We use here the simple form@11#

H5
1

~2p!3/2~2k0!
1/2(

j51

3

Xj
M@2g~sW j•kW !e2 ikW•rW j

1hsW j•~pW je
2 ikW•rW j1e2 ikW•rW j pW j !#, ~8!

where rW j , pW j , and sW j are the coordinate, momentum, and
spin of the j th constituent, respectively;k05EM5EB2EB8
is the meson energy, andkW5PW M5PW 2PW 85kẑ denotes the
momentum carried by the outgoing meson. HerePW 5Pzẑ and
PW 8 (5Pz8ẑ) are the momenta of the initial and final baryon.
The coefficientsg andh denote the strength of the two terms
in the transition operator of Eq.~8!. The flavor operator
Xj
M ~to be discussed below! corresponds to the emission of

an elementary meson (M ) by the j th constituent:
qj→qj81M ~see Fig. 2!.

Using the symmetry of the wave functions for nonstrange
baryons~the only case we discuss here!, transforming to Ja-
cobi coordinates and integrating over the baryon center of
mass coordinate, we find

FIG. 1. Collective model of baryons.

FIG. 2. Elementary meson emission.
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H5
1

~2p!3/2~2k0!
1/26X3

M$gks3,zÛ2hs3,z@ T̂z2
1
6 ~Pz1Pz8!Û#

2 1
2h~s3,1T̂21s3,2T̂1!%, ~9!

with

Û5eikA
2
3 lz,

T̂m5 1
2 ~A 2

3pl,mexp~ ikA2
3lz!1exp~ ikA2

3lz!A 2
3pl,m!.

~10!

By using momentum conservationPz1Pz8 can be written as
2Pz2k. The dependence on the overall center of mass mo-
mentum is spurious and must be eliminated.~In the rest
frame of B, Pz50 and the spurious term is automatically
absent.! By making the replacement,pW l /mq→2 ik0lW @16#,

and the mapping onto the algebraic operators,
A2/3lm→bD̂l,m /XD @4,5#, we can write Eq.~10! as

Û5eikbD̂l,z /XD,

T̂m52
imqk0b

2XD
~D̂l,me

ikbD̂l,z /XD1eikbD̂l,z /XDD̂l,m!.

~11!

The dipole operatorD̂l,m is a generator of U~7! andXD is its
normalization, as discussed in@4,5#. The calculation of the
matrix elements ofH can be done in configuration space
(rW , lW ) or in momentum space (pW r , pW l). The mapping onto
the algebraic space of U~7! is a convenient way to carry out
the calculations, much in the same way as the mapping of
coordinates and momenta onto creation and annihilation op-
erators in the harmonic oscillator space.

TABLE I. Matrix elementsF(k) andG(k) in the collective model forN→` ~large model space!. The final state is@56,01# (0,0);0. The
matrix elements for the vibrational excitations are given in terms ofx15(12R2)/RAN and x25A11R2/RAN @4,5#.
H(x)5arctanx2x/(11x2).

Initial state F(k) Gz(k)/m3k0a G6(k)/m3k0a

@56,01#~0,0!;0 1

~11k2a2!2
4ka

~11k2a2!3
0

@20,11#~0,0!;0
0 0 0

@70,12#~0,0!;1
iA3

ka

~11k2a2!2
2 iA3

123k2a2

~11k2a2!3
7 iA6

1

~11k2a2!2

@56,21#~0,0!;0 1
2A5F 21

~11k2a2!2

1
3

2k3a3
H~ka!G

2
1
2A5F 317k2a2

ka~11k2a2!3

2
9

2k4a4
H~ka!G

7A15
2 F 21

ka~11k2a2!2

1
3

2k4a4
H~ka!G

@70,22#~0,0!;1
0 0 0

@70,21#~0,0!;2
2

1
2A15F 21

~11k2a2!2

1
3

2k3a3
H~ka!G

1
2A15F 317k2a2

ka~11k2a2!3

2
9

2k4a4
H~ka!G

6
3
2A10F 21

ka~11k2a2!2

1
3

2k4a4
H~ka!G

@56,01#~1,0!;0
2x1

2k2a2

~11k2a2!3
x1

4ka~122k2a2!

~11k2a2!4
0

@70,12#~1,0!;1
i 12A3x1

ka~123k2a2!

~11k2a2!3
2 i 12A3x1

1214k2a219k4a4

~11k2a2!4
7 iA3

2x1

123k2a2

~11k2a2!3

@70,01#~0,1!;0
x2

2k2a2

~11k2a2!3
2x2

4ka~122k2a2!

~11k2a2!4
0

@70,12#~0,1!;1
2 iA3

2x2

ka~12k2a2!

~11k2a2!3
iA 3

2x2

128k2a213k4a4

~11k2a2!4
6 iA3x2

12k2a2

~11k2a2!3

@56,12#~0,1!;1
2 iA6x2

k3a3

~11k2a2!3
iA6x2

3k2a2~12k2a2!

~11k2a2!4
6 i2A3x2

k2a2

~11k2a2!3
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In the collective model the matrix elements ofH are ob-
tained by folding with the distribution functiong(b) of Eq.
~4!. These collective matrix elements can be expressed in
terms of helicity amplitudes. For decays in which the initial

baryon has angular momentumJW5LW 1SW and in which the
final baryon is either the nucleon or the delta withL850 and
thusJ85S8, the helicity amplitudes are

An~k!5E dbg~b!

3^a8,L850,S8,J85S8,MJ85nuHua,L,S,J,MJ5n&

5
1

~2p!3/2~2k0!
1/2@^L,0,S,nuJ,n&z0Z0~k!

1 1
2 ^L,1,S,n21uJ,n&z1Z2~k!

1 1
2 ^L,21,S,n11uJ,n&z2Z1~k!#. ~12!

Herea denotes the labels that, in addition toL, S, J, and
n, are needed to specify the baryon wave function@see Eq.
~6!#. The coefficientszm are the spin-flavor matrix elements
of X3

Ms3,m , to be discussed below, andZm(k) (m50,6) are
the radial matrix elements

Z0~k!56E dbg~b!^a8,L85ML850u

3~gk2 1
6hk!Û2hT̂zua,L,ML50&

56~gk2 1
6hk!F~k!26hGz~k!,

Z6~k!

526hE dbg~b!^a8,L85ML850uT̂6ua,L,ML571&

526hG6~k!. ~13!

TABLE II. SU f(3) reduced matrix elements.

^(p2 ,q2)uuT(1,1)uu(p1 ,q1)&g

(p2 ,q2) (p1 ,q1) g51 g52

(1,1)l (1,1)l
2

A5
A3

1

A3

(1,1)r (1,1)r A5
A3

A3

(3,0) (3,0) 2A2
A3

(3,0) (1,1)l 2A2
A3

(3,0) (1,1)r 0

(1,1)l (3,0)
2

A10
A3

(1,1)r (3,0) 0

TABLE III. Spin-flavor matrix elementszm (m50,6) of Eq. ~12! for strong decay of baryons
B→B81M with M5p. The final state is281/2@56,0

1# for the nucleon (B85N) and 4103/2@56,0
1# for the

delta (B85D).

A1/2(Np) A1/2(Dp) A3/2(Dp)
Initial state z0 z1 z2 z0 z1 z2 z0 z1 z2

28J@56,L
P#

5

6A3
5

3A3
0

22A2
3A3

2A2
3A3

0 0
2A2
3

0

28J@70,L
P#

A2
3A3

2A2
3A3

0
2

3A3
22

3A3
0 0

22

3
0

48J@70,L
P#

1

3A6
1

3A6
21

3A2
1

3A3
4

3A3
2

3

1

A3
2

3
0

28J@20,L
P# 0 0 0 0 0 0 0 0 0

410J@56,L
P#

2

3A3
2

3A3
22

3

A5
6A3

2A5
3A3

A5
3

A5
2A3

A5
3

0

210J@70,L
P#

1

6A3
1

3A3
0

2A5
3A3

A5
3A3

0 0
A5
3

0
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The calculation of the radial matrix elements is identical to
that already reported for electromagnetic couplings@4,5#.
Therefore, we do not repeat it here, but only show in Table I
the matrix elementsF(k) andGm(k) of Û and T̂m , respec-
tively, for the ‘‘collective’’ model with distribution given by
Eq. ~4!. Note that Table I presents the results for an emission
process, whereas the corresponding table for the ‘‘collec-
tive’’ model in @4,5# shows the results for an absorption pro-
cess. For any other model of baryons with the same spin-
flavor structure, the corresponding results can be obtained by
replacing Table I with the appropriate table~for example, by

using harmonic oscillator wave functions as discussed in
@4#!.

Contrary to the case of electromagnetic couplings where
the spin-flavor part is relatively simple, the calculation of the
spin-flavor part for strong decays is somewhat more in-
volved. The spin-flavor matrix elements factorize into a spin
matrix element ofs3,m between spin wave functions and a
flavor matrix element ofX3

M between flavor wave functions
(f andf8). The calculation of the spin part is straightfor-
ward. For the flavor part we take the flavor operators of the
form

TABLE IV. Same as Table III, but withM5h andM5h8 corresponding toj5(cosuP2A2sinuP)/A3
andj5(sinuP1A2cosuP)/A3, respectively.

A1/2(Nh)/j A1/2(Dh)/j A3/2(Dh)/j
Initial state z0 z1 z2 z0 z1 z2 z0 z1 z2

28J@56,L
P#

1
6

1
3 0 0 0 0 0 0 0

28J@70,L
P#

1

3A2
A2
3

0 0 0 0 0 0 0

48J@70,L
P#

21

3A2
21

3A2
1

A6
0 0 0 0 0 0

28J@20,L
P# 0 0 0 0 0 0 0 0 0

410J@56,L
P# 0 0 0

1
6

2
3

1

A3
1
2

1

A3
0

210J@70,L
P# 0 0 0

21
3

1
3

0 0
1

A3
0

TABLE V. Coefficientscl of Eq. ~20! for the strong decay widthsB→B81M of the negative parity
resonances with (v1 ,v2),L

P5(0,0),12. The final state is281/2@56,0
1# (0,0);0 for the nucleon (B85N) and

4103/2@56,0
1# (0,0);0 for the delta (B85D). j is defined in the caption of Table IV.

State Np Nh Dp Dh
c0 c2 c0 c2 c0 c2 c0 c2

S11
281/2@70,1

2# (0,0);1
8
3

2j2
16
3

D13
283/2@70,1

2# (0,0);1
1
3

2j2
8
3

8
3

S11
481/2@70,1

2# (0,0);1
2
3

2j2
4
3

D13
483/2@70,1

2# (0,0);1
1
15

1
5

j2
20
3

64
15

D15
485/2@70,1

2# (0,0);1
2
5

6
5

j2
28
5

S31
2101/2@70,1

2# (0,0);1
1
3

20
3

4j2

D33
2103/2@70,1

2# (0,0);1
1
3

10
3

10
3

2j2 2j2
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Xp1
52

1

A2
~l12 il2!,

Xp0
5l3 ,

Xp2
5

1

A2
~l11 il2!,

Xh85l8 ,

Xh15A2

3
I, ~14!

wherel i are the Gell-Mann matrices@17# andI denotes the
unit operator in flavor space. For the pseudoscalarh mesons
we introduce a mixing angleuP between the octet and singlet
mesons@17#

h5h8cosuP2h1sinuP ,

h85h8sinuP1h1cosuP , ~15!

and similarly for the corresponding flavor operators

Xh5Xh8cosuP2Xh1sinuP,

Xh85Xh8sinuP1Xh1cosuP . ~16!

The flavor operatorsX3
M appearing in Eq.~9! only act on the

third constituent. The corresponding matrix elements can ei-
ther be evaluated explicitly for each channel separately, or
more conveniently, by using the Wigner-Eckart theorem and
isoscalar factors of SUf(3) @18#. For the decay process
B→B81M we have

TABLE VI. Coefficientscl of Eq. ~20! for the strong decay widths of the positive parity resonances with
(v1 ,v2),L

P5(0,0),21. For notation see Table V.

State Np Nh Dp Dh
c1 c3 c1 c3 c1 c3 c1 c3

P13
283/2@56,2

1# (0,0);0
25
12

1
4

j2
4
15

12
5

F15
285/2@56,2

1# (0,0);0
25
12

1
4

j2
8
5

16
15

P13
283/2@70,2

1# (0,0);2 2
3
2

j2
2
5

18
5

F15
285/2@70,2

1# (0,0);2 2
3
2

j2
12
5

8
5

P11
481/2@70,2

1# (0,0);2
1
2

3
2

j2 1

P13
483/2@70,2

1# (0,0);2
1
4

3
4

j2
16
5

9
5

F15
485/2@70,2

1# (0,0);2
1
14

3
14

j2
21
5

128
35

F17
487/2@70,2

1# (0,0);2
9
28

27
28

j2
27
7

P31
4101/2@56,2

1# (0,0);0
4
3

5
12

1
4

j2

P33
4103/2@56,2

1# (0,0);0
2
3

4
3

3
4

4
5

j2
9
20

j2

F35
4105/2@56,2

1# (0,0);0
4
21

7
4

32
21

21
20

j2
32
35

j2

F37
4107/2@56,2

1# (0,0);0
6
7

45
28

27
28

j2

P33
2103/2@70,2

1# (0,0);2
1
4

1
2

9
2

3
10

j2
27
10

j2

F35
2105/2@70,2

1# (0,0);2
1
4

3 2
9
5

j2
6
5

j2
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^f8uX3
Muf&

5^~p2,q2!,I 2,MI2
,Y2uT~p,q!,I ,MI ,Yu~p1,q1!,I 1,MI1

,Y1&

5^I 1,MI1
,I ,MI uI 2,MI2

&(
g

K ~p1,q1! ~p,q!

I 1,Y1 I ,Y
U~p2,q2!g

I 2,Y2
L

3^~p2,q2!uuT~p,q!uu~p1,q1!&g. ~17!

In this notation (pi ,qi)5(1,1) or (3,0) for the baryon flavor
octet and decuplet, respectively, and (p,q)5(1,1) or (0,0)
for the meson flavor octet and singlet, respectively@see
Eq. ~14!#. The sum overg is over different multiplicities.
The flavor states are labeled by the quantum numbers
(p,q),I ,MI ,Y corresponding to the reduction
SU f(3).SUI(2)^UY(1). The right-hand side contains the
sum of products of an isospin Clebsch-Gordan coefficient,
which contains the dependence on the charge channel, a
SU~3! isoscalar factor, which depends on the isospin chan-
nel, and a SU~3! reduced matrix element, which depends on
the coupling of the flavor multiplets (p,q), but not on isospin
I ,MI , and hyperchargeY. In Table II we give the expres-
sions for the SUf(3) reduced matrix elements.

Using Eqs.~14!–~17! and the matrix elements of the spin
operator, we can compute all spin-flavor matrix elements for
a given isospin channel. In Tables III and IV we present the

results for the decay intop andh, h8, respectively. Results
for a specific charge channel can be obtained by multiplying
with the appropriate isospin Clebsch-Gordan coefficient.

The helicity amplitudesAn(k) of Eq. ~12! can be con-
verted to partial wave amplitudesal(k) by @19#

An~k!5 (
l5L61

A2l11^ l ,0,J8,nuJ,n&al~k!,

al~k!5
1

2J11(n
A2l11^ l ,0,J8,nuJ,n&An~k!. ~18!

Here l is the relative orbital angular momentum between the
final baryon and the emitted meson. It takes the values
l5L61 ~the valuel5L is not allowed because of parity
conservation!. With the definition of the transition operator
in Eq. ~8! and the helicity amplitudes and partial wave am-
plitudes, the decay widths for a specific isospin channel are
given by @15#

G~B→B81M !52pr f

2

2J11(n.0
uAn~k!u2

52pr f (
l5L61

ual~k!u2, ~19!

TABLE VII. Np decay widths of~3 and 4 star! nucleon and delta resonances in MeV. The experimental
values are taken from@17#. The mixing angle for theh mesons isuP5223° @20#. x1 andx2 are defined in
the caption of Table I.

State Mass Resonance k ~MeV! G~th! G ~Expt.!

S11 N(1535) 281/2@70,1
2# (0,0);1 467 85 79638

S11 N(1650) 481/2@70,1
2# (0,0);1 547 35 130627

P13 N(1720) 283/2@56,2
1# (0,0);0 594 31 22611

D13 N(1520) 283/2@70,1
2# (0,0);1 456 115 6769

D13 N(1700) 483/2@70,1
2# (0,0);1 580 5 1067

D15 N(1675) 485/2@70,1
2# (0,0);1 564 31 72612

F15 N(1680) 285/2@56,2
1# (0,0);0 567 41 8469

G17 N(2190) 287/2@70,3
2# (0,0);1 888 34 67627

G19 N(2250) 489/2@70,3
2# (0,0);1 923 7 38621

H19 N(2220) 289/2@56,4
1# (0,0);0 905 15 65628

I 1,11 N(2600) 2811/2@70,5
2# (0,0);1 1126 9 49620

P11 N(1440) 281/2@56,0
1# (1,0);0 398 108x1

2 227667
P11 N(1710) 281/2@70,0

1# (0,1);0 587 173x2
2 22617

S31 D(1620) 2101/2@70,1
2# (0,0);1 526 16 37611

P31 D(1910) 4101/2@56,2
1# (0,0);0 716 42 52619

P33 D(1232) 4103/2@56,0
1# (0,0);0 229 116 11965

P33 D(1920) 4103/2@56,2
1# (0,0);0 723 22 28619

D33 D(1700) 2103/2@70,1
2# (0,0);1 580 27 45621

D35 D(1930) 2105/2@70,2
2# (0,0);1 729 0 52623

F35 D(1905) 4105/2@56,2
1# (0,0);0 713 9 36620

F37 D(1950) 4107/2@56,2
1# (0,0);2 741 45 120614

H3,11 D(2420) 41011/2@56,4
1# (0,0);0 1023 12 40622

S31 D(1900) 2101/2@70,1
2# (1,0);1 710 2x1

2 38621
P33 D(1600) 4103/2@56,0

1# (1,0);0 513 108x1
2 61632
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wherer f is a phase space factor.

III. RESULTS

For all resonances with the same value of (v1 ,v2),L
P the

expression for the decay widths of Eq.~19! can be rewritten
in a more transparent form in terms of only two elementary
partial wave amplitudesWl(k),

G~B→B81M !52pr f (
l5L61

ual~k!u2

52pr f

1

~2p!32k0
(

l5L61
cl uWl~k!u2. ~20!

For this set of resonances, thek dependence of the partial
wave amplitudesal(k) is contained in the amplitudes
Wl(k), while the dependence on the individual baryon reso-
nance is contained in the coefficientscl . In the algebraic
method, the elementary partial wave amplitudesWl(k) can
be obtained in closed form.

In Table V we present the values ofcl for the negative
parity resonances with (v1 ,v2),L

P5(0,0),12. In the ‘‘col-
lective’’ model with distribution given by Eq.~4! the corre-
spondingS andD elementary partial wave amplitudes are

W0~k!5 i H @gk2 1
6hk#

ka

~11k2a2!2

1hm3k0a
32k2a2

~11k2a2!3 J ,

W2~k!5 i H @gk2 1
6hk#

ka

~11k2a2!2

2hm3k0a
4k2a2

~11k2a2!3 J . ~21!

Similarly, in Table VI we present thecl coefficients for the
positive parity resonances with (v1 ,v2),L

P5(0,0),21. The
correspondingP andF elementary partial wave amplitudes
are

W1~k!5@gk2 1
6hk#H 21

~11k2a2!2
1

3

2k3a3
H~ka!J

1hm3k0a
1

ka

4k2a2

~11k2a2!3
,

TABLE VIII. Dp decay widths of~3 and 4 star! nucleon and delta resonances in MeV. For classification
of the resonances see Table VII. The experimental values are taken from@17#.

State Mass k~MeV! l G ~th! G ~expt.! l G ~th! G ~expt.!

S11 N(1535) 244 D 23 161
S11 N(1650) 345 D 24 765
P13 N(1720) 402 P 1 102689 F 10
D13 N(1520) 230 S 3 1064 D 9 1563
D13 N(1700) 386 S 111 264 D 114 14626
D15 N(1675) 366 D 123 88614
F15 N(1680) 370 P 2 1365 F 3 161
G17 N(2190) 740 D 13 G 12
G19 N(2250) 780 G 40
H19 N(2220) 760 F 3 H 3
I 1,11 N(2600) 1003 G 4 I 3

P11 N(1440) 147 P 0.1x1
2 87630

P11 N(1710) 394 P 70x2
2 41633

S31 D(1620) 320 D 89 67626
P31 D(1910) 546 P 4
P33 D(1920) 553 P 15 F 14
D33 D(1700) 386 S 55 112653 D 89 12610
D35 D(1930) 560 P 0 F 0
F35 D(1905) 542 P 18 F 27
F37 D(1950) 575 F 36 77620
H3,11 D(2420) 890 H 11

S31 D(1900) 539 D x1
2

P33 D(1600) 303 P 25x1
2 1806143 F 0 16625
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W3~k!5@gk2 1
6hk#H 21

~11k2a2!2
1

3

2k3a3
H~ka!J

1hm3k0a
1

ka H 519k2a2

~11k2a2!3
2

15

2k3a3
H~ka!J ,

~22!

with H(ka)5arctanka2ka/(11k2a2).

Partial widths for other models of the nucleon and its
resonances can be obtained by introducing the corresponding
expressions for the elementary amplitudesWl(k). For ex-
ample, the relevant expressions in the harmonic oscillator
quark model are

W0~k!5
i

3 H @gk2 1
6hk#kb1hm3k0b

3S 32
k2b2

3 D J e2k2b2/6,

W2~k!5
i

3
$@gk2 1

6hk#kb

2 1
3hm3k0bk

2b2%e2k2b2/6, ~23!

and

W1~k!5
A2
3A15

kbH @gk2 1
6hk#kb1hm3k0b

3S 52
k2b2

3 D J e2k2b2/6,

W3~k!5
A2
3A15

kb$@gk2 1
6hk#kb

2 1
3hm3k0bk

2b2%e2k2b2/6. ~24!

IV. ANALYSIS OF EXPERIMENTAL DATA

Use of Eqs.~20!–~22! allows us to do a straightforward
and systematic analysis of the experimental data. Here we
adopt the procedure of@15#, in which calculations are per-
formed in the rest frame of the decaying resonance, and in
which the relativistic expression for the phase space factor
r f as well as for the momentumk of the emitted meson are
retained. The expressions fork andr f are

TABLE IX. N*→Nh andD*→Dh decay widths of~3 and 4
star! nucleon and delta resonances in MeV. For classification of the
resonances see Table VII. The experimental values are taken from
@17#. The mixing angle for theh mesons isuP5223° @20#. x1 and
x2 are defined in the caption of Table I.

State Mass k ~MeV! G ~th! G ~expt.!

S11 N(1535) 182 0.1 74639
S11 N(1650) 346 8 1166
P13 N(1720) 420 0.2
D13 N(1520) 150 0.6
D13 N(1700) 400 4
D15 N(1675) 374 17
F15 N(1680) 379 0.5
G17 N(2190) 791 11
G19 N(2250) 831 9
H19 N(2220) 811 0.7
I 1,11 N(2600) 1054 3

P11 N(1710) 410 17x2
2

P31 D(1910) 322 0.0
P33 D(1920) 335 0.5
D35 D(1930) 348 0
F35 D(1905) 316 1
F37 D(1950) 372 2
H3,11 D(2420) 786 2

S31 D(1900) 309 3x1
2

FIG. 3. Strong decay widths forN*→N1p decays of negative
parity resonances withLP512. The theoretical values are in paren-
thesis. All values in MeV.

FIG. 4. Strong decay widths forD*→N1p andD*→D1p
decays of positive parity resonances withLP521 and negative par-
ity resonances withLP512. Notation as in Fig. 3.
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k252mM
2 1

~mB
22mB8

2
1mM

2 !2

4mB
2 ,

r f5E dPW 8dPW Md@mB2EB8~PM !2EM~PM !#d~PW 81PW M !

54p
EB8~k!EM~k!k

mB
~25!

with EB8(k)5AmB8
2

1k2 andEM(k)5AmM
2 1k2.

We consider here decays with emission ofp andh. The
experimental data, extracted from the compilation by the
Particle Data Group~PDG! @17# are shown in Tables VII,
VIII, and IX, where they are compared with the results of our
calculation. The calculated values depend on the two param-
etersg andh in the transition operator of Eq.~8!, and on the
scale parametera of Eq. ~4!. We keepg, h, anda equal for
all resonances andall decay channels (Np, Nh, Dp, Dh).
In comparing with previous calculations, it should be noted
that in the calculation in the nonrelativistic quark model of
@11# the decay widths are parametrized by four reduced par-
tial wave amplitudes instead of the two elementary ampli-
tudesg andh. Furthermore, the momentum dependence of
these reduced amplitudes are represented by constants. The
calculation in the relativized quark model of@12# was done
using a pair-creation model for the decay and involved a
different assumption on the phase space factor. Both the non-
relativistic and relativized quark model calculations include
the effects of mixing induced by the hyperfine interaction,
which in the present calculation are not taken into account.

In the present analysis we determine the values ofg, h
anda from a least square fit to theNp partial widths~which
are relatively well known! with the exclusion of theS11 reso-
nances. For the latter the situation is not clear due to possible
mixing of N(1535)S11 andN(1650)S11 and the possible ex-
istence of a thirdS11 resonance@9#. As a result we find
g51.164 GeV21 andh520.094 GeV21. The relative sign
is consistent with a previous analysis of the strong decay of
mesons@20# and with a derivation from the axial-vector cou-
pling ~see, e.g.,@15#!. The scale parameter,a50.232 fm,
extracted in the present fit is found to be equal to the value
extracted in the calculation of electromagnetic couplings@5#.
Just as in our study of the electromagnetic couplings@5# we
present the strong decays of the resonances, that in the ‘‘col-

lective’’ model are assigned as vibrational excitations of the
configuration of Fig. 1, in terms of two coefficients,
x15(12R2)/RAN and x25A11R2/RAN, one for each
fundamental vibration~hereN determines the size of the
model space andR2 is a size parameter, as discussed in@4#!.

The calculation of decay widths into theNp channel, as
shown for the 3 and 4 star resonances in Table VII, is in fair
agreement with experiment. This is emphasized in Figs. 3
and 4. The results are to a large extent a consequence of
spin-flavor symmetry. The use of ‘‘collective’’ form factors
improves somewhat the results when compared with older
~harmonic oscillator! calculations. This is shown in Table X
where the decay of aD Regge trajectory intoNp is analyzed
and compared with the calculations of@15#, which are based
on the harmonic oscillator model discussed in@21#. We also
include the results of more recent calculations in the nonrel-
ativistic quark model@11# and in the relativized quark model
@12#. There does not seem to be anything unusual in the
decays intop and our analysis confirms the results of previ-
ous analyses. In Table XI we show theNp decays of the
calculated resonances below 2 GeV which have not been
observed ~missing resonances!. The resonances with
LP511 and LP522 are decoupled because of the spin-
flavor symmetry. Most of other resonances have small decay
widths, with the exception of theP13 andF15 states, which
have widths comparable to those of the well-established
P13 andF15 states of Table VII. This behavior can be under-
stood by inspection of Table VI. The coefficients for the
P13 states arec1525/12 andc152. This leads to compa-
rableNp widths of 31 MeV and 56 MeV, respectively. The
difference is due to thek values of these resonances that
enter in the elementary partial wave amplitudeW1(k) of Eq.
~22!. A similar situation holds for theF15 states. The relative
magnitude of thecl coefficients in Table VI explain the
smaller decay widths for the other missing resonances of
Table XI.

Contrary to the decays intop, the decay widths intoh
have some unusual properties. The calculation gives system-
atically small values for these widths. This is due to a com-
bination of phase space factors and the structure of the tran-
sition operator. Both depend on the momentum transferk.
The values ofk in Tables VII, VIII, and IX show that, due to
the difference between thep and h mass, the momentum
carried by theh is smaller than that carried by thep. There-

TABLE X. Strong decay widths forD*→N1p andN*→N1p in MeV. Experimental values are from
@17#.

G ~th!

Resonance L Ref. @15# Ref. @11# Ref. @12# Present G ~expt.!

D(1232)P33 0 70 121 108 116 11965
D(1950)F37 2 27 56 50 45 120614
D(2420)H3,11 4 4 8 12 40622
D(2950)K3,15 6 1 3 5 1368

N(1520)D13 1 85 74 115 6769
N(2190)G17 3 48 34 67627
N(2600)I 1,11 5 11 9 49620

55 2871STRONG DECAYS OF NONSTRANGEq3 BARYONS



fore, theh decay widths are suppressed relative to thep
decays. The spin-flavor part is approximately the same for
Np andNh, sincep andh are in the same SUf(3) multip-
let. We emphasize here, that the transition operator was de-
termined by fitting the coefficientsg andh to theNp decays
of the 3 and 4 star resonances. Hence theh decays are cal-
culated without introducing any further parameters.

The experimental situation is unclear. The 1992 PDG
compilation @22# gave systematically small widths (;1
MeV! for all resonances exceptN(1535)S11. The 1994 PDG
compilation@23# deleted allh widths with the exception of
N(1535)S11. This situation persists in the latest PDG com-
pilation @17#, whereN(1650)S11 is now assigned a small but
nonzeroh width. The results of our analysis suggest that the
large h width for theN(1535)S11 is not due to a conven-
tional q3 state. One possible explanation is the presence of
another state in the same mass region, e.g., a quasibound
meson-baryonSwave resonance just below or above thresh-
old, for exampleNh, KS, or KL @8#. Another possibility is
an exotic configuration of four quarks and one antiquark
~q4q̄!.

For possible use in the analysis of new experimental data,
we give in Table XI the strong decay widths of the socalled
missing resonances with a calculated mass below 2 GeV

which up to now have not been observed experimentally.

V. CONCLUSIONS

We have presented a calculation of the strong decay
widths N*→N1p, N*→D1p, N*→N1h, D*→N1p,
D*→D1p, andD*→D1h in a collective model of bary-
ons. By exploiting the symmetry of the problem, both in its
spin-flavor-color part, SUs f(6)^SUc(3), and in its space
part, U~7!, we have been able to write the results in a trans-
parent analytic way~Sec. III!. The analysis of experimental
data shows that, while the decays intop follow the expected
pattern, the decays intoh have some unusual features. Our
calculations do not show any indication for a largeh width,
as is observed for theN(1535)S11 resonance. The observed
large h width indicates the presence of another configura-
tion, which is outside the present model space. This suggests,
that in order to elucidate this point, particular attention be
paid at CEBAF to theNh channel.

Our calculations can be easily extended to include other
decay channels, such asLK andSK. These calculations are
currently underway and are part of the extension of the
model to include strange resonances as well.

TABLE XI. Strong decay widths for the missing nucleon and delta resonances below 2 GeV. The mixing
angle for theh mesons isuP5223° @20#.

G ~MeV!
State Mass Resonance Np Dp Nh Dh

P1,2J N(1720) 28J@20,1
1# (0,0);0 0 0 0

D1,2J N(1875) 28J@70,2
2# (0,0);1 0 0 0

P13 N(1875) 283/2@70,2
1# (0,0);2 56 56 9

F15 N(1875) 285/2@70,2
1# (0,0);2 85 43 19

S11 N(1972) 481/2@70,2
2# (0,0);1 0 0 0

D13 N(1972) 483/2@70,2
2# (0,0);1 0 0 0

D15 N(1972) 485/2@70,2
2# (0,0);1 0 0 0

G17 N(1972) 487/2@70,2
2# (0,0);1 0 0 0

P11 N(1972) 481/2@70,2
1# (0,0);2 19 15 17

P13 N(1972) 483/2@70,2
1# (0,0);2 9 94 9

F15 N(1972) 485/2@70,2
1# (0,0);2 4 156 4

F17 N(1972) 487/2@70,2
1# (0,0);2 18 96 20

S11 N(1909) 281/2@70,1
2# (1,0);1 22x1

2 0.7x1
2 0.5x1

2

D13 N(1909) 283/2@70,1
2# (1,0);1 28x1

2 0.6x1
2 x1

2

P13 N(1815) 483/2@70,0
1# (0,1);0 30x2

2 211x2
2 24x2

2

S11 N(1866) 281/2@56,1
2# (0,1);1 211x2

2 84x2
2 4x2

2

D13 N(1866) 283/2@56,1
2# (0,1);1 271x2

2 71x2
2 7x2

2

P1,2J N(1997) 28J@70,1
1# (0,1);0 0 0 0

S11 N(1997) 281/2@70,1
2# (0,1);1 3x2

2 34x2
2 5x2

2

D13 N(1997) 283/2@70,1
2# (0,1);1 3x2

2 30x2
2 7x2

2

D33 D(1945) 2103/2@70,2
2# (0,0);1 0 0 0

P33 D(1945) 2103/2@70,2
1# (0,0);2 9 105 4

F35 D(1945) 2105/2@70,2
1# (0,0);2 13 83 2

D33 D(1977) 2103/2@70,1
2# (1,0);1 5x1

2 7x1
2 3x1

2

P31 D(1786) 2101/2@70,0
1# (0,1);0 27x2

2 172x2
2 0.0
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