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J/ ¢ production in top quark decays
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We calculate the direct production rate &fy in top quark decays. The color-octétys production via
t—W"bJ/¢4 is shown to have a large branching ratio of order<1® “, which is over an order of magnitude
higher than that of the color-singlel/s production viat—W*bJ/¢¥gg or t—W*by.,g followed by
xc3—J/¥y. Our result can also be used as a tool to test the importance of the color-octet mechanism in heavy
guarkonium production in the futurS0556-282(197)02203-0

PACS numbgs): 13.20.Jf, 12.39.Jh

Since the discovery of charmonium in 1974, there havepressed by order af* relative to the corresponding color-

been a lot of attempts to interpret the production and decay§ng|et matrix eIementQOi"”(SSl))[(Of'(381)>] from the
o_f these new bounq states. Among many scenarios, the ‘?o'OﬁbnreIativistic QCD (NRQCD) ‘“velocity scaling rules,”
singlet model 1] gains more success than other alternat|ve§hey are enhanced by a factor off/relative to the color-

[2] such as the color-evaporation mod&|3]. Based upon singlet processes in short-distance perturbative calculations
the color-singlet model, it is possible to calculate the producs glet p P '

tion rates of heavy quarkonium from first principles by stan—Igr?r%zjribmeesnusgﬁgzssﬁgE';:ir:he t(;]oelo(r:gnlgtrit)g;trlrzaetlreiz??et?
dard methodd44]. Indeed, the study of heavy quarkonium P : 9

production provides a suitable ground to precisely test quang]ents as free parameters, the description of high-
tum chromodynamic§QCD). 1+ (') production at the Tevatron can indeed be res-

i . cued[8-10!.
However, during the past few years, it was found that the Recently, from a direct search at the Tevatron, the CDF

color-singlet model also has some defects in describing thgnd DO arouns confirmed the existence of a heavy top quark
production of heavy quarkoniunl5]. Predictions for group ytop g

S-wave charmoniumJ/¢ and ', production failed to ex- [11’1+2]1§ with a mass of (17ﬁ8i10) .GeV- or
plain the new data of the Collider Detector at Fermilab(199-21* 22) GeV. The next experimental studies will focus

(CDF) at the Tevatror{6]. To resolve these discrepancies on the determination of its propert_ies. Among others, the
one needs to seek new production mechanisms as well agTaeasurement of top quark decays into heavy quark mesons

new paradigm for treating heavy quark-antiquark bound sys?/nich are made of charm or bottom quarks and antiquarks

tems that go beyond the color-singlet model. To these endg\’iII be OT special interest. In par.ticular,' the charmonium pro-
recently a novel effective field theory for bound states ofd’ucpon_m top_ quark decays will provide very useful infor-
heavy quarks and antiquarks was provided by BodwinMation in testing the standard model. .
Braaten, and Lepagf7] in the context of nonrelativistic In th|§ paper we would like 1o discuss t'he dirgetomp?
guantum chromodynamic€®NRQCD). In this new frame- produ_cnon otd/y in _top_quark decays._Thls type of prod_uc-
work a heavy quarkonium staté is not solely regarded as t|oq differs from the |nd|+recﬂ/¢ production processes which
simply a quark-antiquark pair but rather a superposition of gninly come fromt—W"b followed byb decays. Although
series of Fock states: the direct production rate is smaller than that frbrdecays,
they can be well distinguished experimentally from each
other by using the vertex detector. In fact, direct charmonium

PCy\ _ ‘Ar2S+1
[H(nJ")) =01 x[QQ( Ly, 1)) production has been extensively studied at the Tevatron.

10 O(2S*+L(L+1 .8 Since in the standard model the main decay mode of the
(U)|QQL ( )31:8)) top quark ist—W™b, the dominant direcl/ ¢ production is
+0(v?)|QQ(2*1L,,8 or 1)gg)+-- -, expected to proceed vie—W*bg* with the virtual gluon

g* fragmenting into charmonium. In this paper we consider
@D three subprocesses fdfy production viat—W*bg*: (i)

— color-octet gluon fragmentatiog* —J/, (ii) color-singlet
where the angular momentum of tgQ pair in each Fock glyon fragmentationg* —J/¢gg, and (iii) color-singlet
state is labeled B3 1L ; with a color configuration of either gluon fragmentationg* — y.,g followed by yc;— /iy,

8 or1. The pureQQ state in the color-singlet model is only wherey,.; (J=0,1,2) are the charmoniuf-wave states.

the leading term in the above expansion. Up to and including Direct charmonium production appears at ordeégor
O(v® in the Fock state expansion in describinf  over in the color-singlet modélL3], whereas the color-octet
$(¢') production, the color-octet matrix element production process given dy—W"bJ/¢, as shown in Fig.
((’)g’”’(381)>[<(9§’/(381)>] should also be taken into consid- 1, is at ordera?. The amplitude of the latter process may be
eration. Although these color-octet matrix elements are supwritten as
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FIG. 2. Diagrams for color-singletl/s production (a) via

FIG. 1. Color-octet charmonium production process in top quarkg* —J/#9g and (b) via g*— x.,0—J/¢¥yg. For diagram (a)

decays.
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where T, P’, K, and P are the four-momenta of the top
quark, b quark, W* boson, andJ/, respectively, and
Mg(I ) =] A(QQ[3S{¥]—J/ )| is the long-distance non-
perturbative amplitude of all possible way of evolving to

J/ 4 starting from a color-octe® Q[ 3S{®)] pair at short dis-

tances. It may be treated as phenomenological parameter
which can be determined by fitting the data, e.g., from th

J/¢ production rate at the Tevatron. We define
f1=—(M2+2mp)[ (m—mg)?+ (m{+mi—2mg)mg ],

f,=—2(m2—m2)2(M2+m2+m?)
+2mZ[(2M?+3m2)(m2+ m?)

—2(M2+m2)2—4m2m?],
fa=—mi—m—2m2,

f,=2mp—4m2m?+ 2mf — 4AM2mZ + 2m2m2 + 2m?m2

—4amy,
fs=—(M2+2mdH)[(MZ—md)2+(mZ+m3—2m3)m2],
fe=2(m?—m2)?—2(2M%—m2—m?2+2mZ)mz,
f,=—2mi-2m?, fg=—-mi—mZ—2mg,

where M =2m, is the mass of)/¢. Then, the differential
decay rate fot—W*bJ/ is given by

fere N(xy,2)=(x—-y—2)2-4yz.

x;=2E; /u with i =J/¢, andg, ,g, are the energy fractions carried
by the decay products ig* rest frame normalized to=m(g*).

d’r
dx,dx,

(t—W'bJ/ )

_gPag] Vil Me(I/ )2

2 3
A MZmem2 {FaxT+ foxXo+ faXiX,
Tt w

+ 3%+ T5xXa+ fex x5+ F7x2x5
31/ (y 232
+ feX1 X5} (X7X3). 4

Here, the variables,=m3—mZ—mZ+2mE,,. The physi-
cal limits of x; andx, are

N 1
x5=m{(M2—xz)(mf+ mﬁ—mﬁ,—xz)

NV (MP—x5),m2,MZINYE (m2 = x,),mg,m2]}
_MZ

X, =mZ—(m—M)2, x5 =mZ—(my+my)>% (5

Setting «a;=0.253,

m.=15 GeV, my=4.9 GeV, m;=176 GeV [8], and

| Mg(J/4)|?=0.68<10"2 GeV? [10], we get a branching
ratio of

B(t—=W'bJ/y)~1.46x10 *. (6)

The dominant color-singlet prom@t/ ¢ production pro-
cess ist—W"bg* with g* —J/¥gg, and g* — x.;9 fol-
lowed by x.;—J/ ¢y, as shown in Fig. 2. We can estimate
the partial widths following the method in Refl4]. The
differential decay rate of—=W"bg* is similar to Eq.(4),
and can be easily obtained or found in Ref5]. With the
definition

I(g*—AX)=7mu3P(g* —AX), @)

the decay distribution®(g* — x.39) and P(g* —J/4gg)
for the gluon of virtualityu can be found in Ref4] and Ref.
[16]:

- r(1—3r)?
nP(g HXCOg):Tva 8
- 6r(1+r)
pP(* = Xe19) = —3——Cop. 9
- 2r(1+3r+6r?)
mP(G* = Xe2Q) = ———— Cp. (10
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X4
dxyf(Xary,X1;1),

mt2/4
v - | anrr @ wbg (12)P(g* ~AX). (19

2p( ey L I'(t—W'bg*;g* —AX)
uP(g*—J/¢gg)=Cyr .- dxy,

v X

V\{[h(tarerzl\él/u, M is the mass of the relevant charmonium In the numerical estimation, we take,=0.253, m.=1.5
states, an GeV, M=2m,, |R(0)]?>=0.999 GeV’, and |R;(0)|?=

82 |R}(0)|? 543 |Ry(0)|2 0.125 Ge\? [17], and get
o w0 ST w2 B(t—W" byeod)B(xeo— I/ 1hy)=2.49x10°°, (16)
The functionf(xy,,x;;r) in Eq. (11) is of the form B(t—W*bye10)B(xer—J/ry) =5.35< 108, (17)
f(Xyry X1;1)= (ZEXZ)XZ , B(t—W"bx20)B(xco—J/py)=1.88<10°°, (18)
(2=Xyp)(L=xy=1) B(t—W"bJ/y/gg) = 1.39x 105, 19

(2+X1)Xq

+ The x.; production rates depend on the infrared cutoff. Here
(2= X34)*(1=xp—1)? we take the cutoffu’,,=2M?, which is the same as that in
(Xyy—1)2—1 the fragmentation analysj48]. Adding the branching ratios
d 5 . together, we obtain the total color-singlet prondpts pro-
(1=X= 1)1 =X, 1) duction rate to be 86108, which is about a factor of 20
1 6(1“_XJ/¢/)2 smaller than that via the color-octet production mechanism.
+ = > > In conclusion, we have considered the color-octet char-
(2=Xy) "1 (1% =1)* (=X, = 1) monium production in top quark decays, and found the
2(1—Xy,)(1—T) 1 branching ratiol of t.his dominant procea;S?V\(erJ/(ﬁ, to be
R T p— o)) (13)  1.46x10 *, which is over an order of magnitude larger than
2 1 that of direct color-singled/ s production processes. Such a
large difference makes the processlof production in top
quark decays another important channel to identify color-
octet qurkonium signals whenever there are enough top

where x;=2E; /n with i=J3/y, g,,9, are the energy frac-
tions carried by thé/ and two gluons in thg* rest frame,
and thenx,=2—X;—Xy,,. The limits of thex, integration

in Eq. (11) are quark events at the Fermilab Tevatron, CERN Large Hadron
' Collider (LHC), or Next Linear CollideNLC) in the future.
Xi= %(Z—XJ,wt \/x37,¢—4r). (14 This work was supported in part by the National Natural

Science Foundation of China, the State Education Commis-
We can evaluate the total decay rates of top quark to variousion of China, and the State Commission of Science and

color-singlet charmonium states via Technology of China.
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