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Dispersive approach to semileptonic form factors in heavy-to-light meson decays
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We study the semileptonic decays of heavy mesons into light pseudoscalars by making use of dispersion
relations. Constraints from heavy quark symmetry, chiral symmetry, and perturbative QCD are implemented
into a dispersive model for the form factors. Large deviations f@®frpole dominance are observed in
B— mlv. We discuss the model prediction for this mode and its possible impact on the extractidp,|of
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I. INTRODUCTION higher recoil momenta. Deviations from the pure pole behav-
ior at pion recoil energies abovel GeV inB— 7l v result
Semileptonic decays of heavy hadrons are of great interedt large modifications in the branching ratio. Conversely, the
given that they are the cleanest way to probe the mixinghysical region in the case of tiz modes is confined to be
between quarks of the third generation with those of thecloser to the pole and, therefore, one expects the approxima-
lighter families. The extraction of the Cabibbo-Kobayashi-tion of the form factors by the single pole to be a rather good
Maskawa(CKM) matrix elemen¥ ., from theb—clv tran-  one over a large fraction of phase space. In this paper, we
sitions is largely freed from theoretical uncertainties sinceestablish the theoretical constraints to be obeyed by the dis-
the advent of the heavy quark symmetr(dg. This is the persion relations for the form factors. These include chiral
case for exclusive decay] as well as for the inclusive symmetry, HQS, and perturbative QCD as the asymptotic
lepton spectruni3]. On the other hand, the—ulv transi-  behavior. The latter will result in a sum rule for the nonper-
tions involving the CKM elemenY, are still plagued with  turbative, mostly resonant, contributions. We then construct
large theoretical uncertainties. The inclusive lepton spectrura model which reflects pole dominance at low pion energies
above theb—clv end point, from whicHV|/|V¢,| can be  but at the same time includes other effects that are poten-
extracted, is still the realm of models because of the breaksdally important, mostly inB decays. These will include the
down of the heavy quark operator product expansion. For theffect of resonances other than tB& pole as well as the
exclusive decays, the use of heavy quark symm@iQS is  continuum. A natural model emerges from the dispersion
reduced to relating th® andB decays to light hadrons at relations for the form factor$7]. Their properties in the
fixed values of the recoil energy. The main shortcoming ofphysical region are determined not only by the isolated poles
this prediction forB decays is that it only covers recoil en- but also by the singularities above thay+m,)? threshold.
ergies available ild decays. This is particularly troublesome The contributions from resonances above threshold can be
in the = mode, for which most of the rate might be at large parametrized in a way compatible with HQS. This allows us
recoil energies. It would thus be very useful to have a fullto fix the parameters of the model i decays and have a
calculation of theB— I v decay consistent with the con- prediction forall the available phase spada B— ml v.
straints from HQS as well as from chiral symmetry for heavy Recently, CLEO has observed this decay for the first time
hadrons. The information from HQS is contained in the scaland measured its branching rafi). It is, therefore, impera-
ing behavior of the form factors with the heavy masses asive to realistically assess the theoretical uncertainties asso-
well as in the spin symmetry relations for members of theciated with this mode and their impact on the extraction of
same HQS spin multiplet. In the decays- =l v, chiral per-  |V,,|. The present work is an attempt to address this issue.
turbation theory for heavy hadroGPTHH) [4—6] promotes  We expect the contributions to the dispersion relations gov-
nearest singularitypole) dominance to the leading contribu- erning these transitions to be highly constrained by chiral
tion in the chiral and heavy quark expansions when the piosymmetry, HQS, and perturbative QCD, to the point of hav-
is soft. The validity of nearest pole dominance in the softing a rather complete picture of the relevant physics in-
pion limit is not a surprising result given the proximity of the volved. The remaining model dependence is used to con-
pole to the physical region where the pion recoil is small.struct an example of a model satisfying all the
However, there is no reason to believe that this is also true aiforementioned constraints. This defines a class of models
with distinct features, most notably the shape of the pion

distribution.
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order. Therefore, not far from threshold, the continuum con-
Im [\. ] = |m[ v\. ] tribution to the dispersive integr&P) can be approximated
o N / by theH™*) 7 intermediate states. We will estimate this con-
tribution in CPTHH in Sec. Il A.
The contributions from the radial excitations of thg

+ 3 Im[ N H ] dominat_e the imaginary part at intermediate valuess.of
i 7 Separating them from the continuum, one can expres$2Eq.
’ as
FIG. 1. Contributions to the imaginary part of the— 7l v form _ 1 (A2 Im[fcom(s)]ds
factor f . (t). The squares represent the action of the weak current fo(t)=— Y += R +z aRi(t)
and the circles imply strong interactions. The dashed lines are pions (M —1) 7ls, (s—t—ie) e
and the solid lines are pseudoscalar heavy mesbnsless indi- 3)

cated otherwise.

where the cutoff in the continuum integral defines the maxi-
which will highly determine those contributions. In Sec. IV mum center-of-mass energy Hw scattering for which the
we present a model that naturally emerges from all the theomain contribution comes from the continuum. This also cor-
retical constraints, discuss its predictions, and compare themesponds to the beginning of the resonance-dominated re-
with other calculations. We summarize our results and congion. Typically,A defines an energy about 0.7—1 GeV above

clude in Sec. V. threshold. Therefore, the use of CPTHH to compute the con-
tinuum contribution to the dispersive integral is justified.
Il. DISPERSION RELATIONS In the narrow width approximation,
The hadronic matrix element for ti&°— 7| " v transi-
tion can be written as Ri(h)= MZ—t’ (4)
(m(pm)uy,bIH(P)=f (4*)(P+P,), whereas if finite width effects are taken into account these
+f (g?)(P— D) (1) functions take the form
where g?=(P—p,)? is the momentum transferred to the _1(w So— M7 (M=)
leptons. In the approximation where the leptons are massless, Ri()= 7|2 arctan MT; |(MZ—t)2+M?T?’ )
only the form factorf | (g?) enters the partial rate. This form
factor obeys a dispersion relation of the form with M; the mass of théth radial excitation. In deriving Eq.
(5) the widthsI'; were assumed to be constant. Thes are
fL() —y +£ =Im[f.(s)]ds @ the couplings analogous tp of the nearest resonan¢¢*,

the residues at the poles. They involve the strong coupling
between theith resonance ant#, as well as the decay
wheresy,=(my+m_)2. The isolated pole an,«<s, is ac-  constant of the resonance.

tually present in theB meson case, whereas for tBe— 7 The physical region for the dec&y— =l v is given by the
transition theD* pole is located almost exactly at threshold. interval t=(0,t;5,), with tmas= (My—m_)2. Thus, theH*
There are no anomalous thresholds in thes |l v transi-  pole, the first term in Eq(3), corresponds to the singularity
tions, although there might be iH— plv. Contributing to  closest to this region and will be the dominant contribution
the imaginary part in Eq(2) are all possible intermediate for values oft close tot,x. However, the question of how
states that couple télr and are annihilated by the weak good this approximation is in each case is not a simple one.
vertex, as shown schematically in Fig. 1. These include thé&or instance, neglecting the continuum contribution, it is
multiparticle continuum as well as resonances. The lattelikely that theH* -pole approximation will be a good one as
must beradially excited)”=1" states in order to contribute long as the three-momentum of the recoiling pjppis not

to f,(t), and are expected to be located at abstt GeV  larger thanA;=M;—my»), the gap between the ground
above the ground staf@]. The first contribution appearing state and the first radially excited state. This intuitive picture
aboves, corresponds to thel*) 7 continuum. Other contri- suggests that thel*-pole term in Eq.(3) should be a rea-
butions to the continuum include states wkt*) mesons sonable approximation tb, (t) for D semileptonic decays,
and various light mesonée.g., multipion states We will given that almost all its phase space falls in this region.
neglect them at these valuessibecause they involve higher However, this is certainly not the case f&—mlv. Al-
order terms in the chiral expansion. Finally, we consider théhough the spacings between resonances and the ground state
contributions of orbitally excite¢H mesons with one pion. In are independent of the heavy quark mass to a very good
principle, these could be important given that the=1, approximation, now the recoil momentum of the pion can be
P-wave states are only abost500 MeV above the ground as large ap®~mg/2. Asp, increases and we move away
state[10]. The lightestL=1 states correspond to {01*) from the H* pole, the relative influence of the higher reso-
and (17,2%) doublets. The second doublet, however, doesances grows. These deviations from the pdfepole be-

not couple to the ground state to leading order in CPTHHhavior at large values gf,. are particularly important given
[11]. The doublet (0,1") does couple to the ground state that the pion momentum distribution goespﬁs. As we will
doublet, but the verteld 7— (0" ,1%) 7 vanishes to leading see below, large changes in the total rate and the shape of the

:(ma*—t) m)s, (s—t—ie) ’
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t distribution occur when the corrections to tHé& -pole be- ngmE'/fW
havior at largep,, are taken into account. fo(t)=— N (13)
H

In what follows, we will consider the theoretical con-
straints that can be imposed én(t). These constitute the
basis for a model calculation of th@— 7r transition form
factor, which will incorporate all of these constraints.

Therefore, CPTHH tells us that to leading order the form
factor is approximated by the first term in the dispersion
relation (2) with

Ill. THEORETICAL CONSTRAINTS ngmf,
=" . (12

m

Although the form factorf , (t) is not calculable in per-
turbation theory, it must satisfy several constraints. These ) . o
result from the application of HQS, chiral symmetry, and theln this way CPTHH provides an approximate normalization
asymptotic behavior imposed by perturbative QCD for ex-of f_(t) at low pion recoil momentunip,|<1 GeV.

clusive processes. On the other hand, CPTHH can be used to compute the
continuum contribution in Eq.3) for values of the integrand
A. Chiral symmetry close to threshold. At these values)funitarity implies
Chiral perturbation theory for heavy hadrofGPTHH) IM[f"(s)]= o(s) TT(S)F.(5), (13)

provides a formal framework for the approximation that only
keeps the first term in Eq2) [4,5]. In the effective theory \yhere the threshold factor is
that couples heavy hadrons to Goldstone bosons respecting

HQS and chiral symmetry, the heavy meson fields are repre- (m3—m,)?\ 12 (Mm% +m,)?\ 12
sented by the X4 matrices a(s)z( 1- T) (1— T) (14
(1+9) . : . .
= {H* —H s}, (6) and T(s) is the Hm— Hr-scattering amplitude projected

onto theJ=1 partial wave. We neglect the contribution of
the H* 7 intermediate state which is suppressed by a factor
of p,/my relative toH 7. Therefore, abovs, but below the
resonance region in the cut, the phase ofs) is given by

the H7— H 7r-scattering phase shift

whereH, andH are the T and O ground state fileds,
respectively, and, is the heavy meson four-velocity. The
Goldstone bosons enter through

E=exdimy(X)Ta/f], (7)

with T,, (a=1,... N?—1) the SUN) generators and ) ] .
m4(X) the Goldstone boson fields. To leading orderf,, ~ The computation from Eq8) is straightforward. After pro-
the pion decay constant. The leading order Lagrangian, in€cting to the correct partial wave and isospin channels, the

sind, (s)=a(s)|T(s)|. (15)

variant under HQS and chiral symmetry, is given[By5] phase, to leading order, is given by
_ — 2
Log=iTr Ho - DH]+gTi{ HAHys]. ®) : __ 1 [9) s 3 !
¢ sind..(s) 247\ f . P v-p,—A * v-p,tA)’
The coupling constang is independent of the heavy mass (16)

and the axial-vector field is defined by
whereA=my« —my is the mass splitting within the ground
i " " state and
A= (£10,6-£0,E). (9)
s—mi—m?2
Requiring that the weak current transforms as a left-handed VPaTT my (17
doublet implies
i is the pion energy in thél rest frame. The dominant effect,
vmyfy_ — once again, comes from thé* -pole exchange, both in the
Jivea= 1 2 THHE Y (1= 5)], (100 5 andt channels. These are governed by the same coupling
g entering in theH* H 7 vertex in Eq.(8) and, therefore, do
with f, the heavy pseudoscalar decay constant. This cormrot introduce any new parameter. The phase in(E6). to-
pletes the description to leading order both ind/and  gether with the leading order expression fér (s)| yields
1/A,, whereA , is the scale of chiral symmetry breaking. Im[f$°™](s), in the threshold region. The corresponding dis-
The H— 7l v transition receives a direct contribution from persive part provides, in a next-to-leading singularity ap-
Eqg. (10), as well as anH*-pole term resulting from the proximation, the first correction to thel*-pole behavior.
H*Har interaction governed by the coupling in Eq. (8) However, as we will see below, this is not the most impor-
followed by theH* -vacuum transition governed by Ed.0).  tant modification to pole dominance coming from the cut.
The latter dominates the former in thenly expansion. The presence of radially excited states, coupling to both the
Thus, for soft pion momentum, the transition form factor canground state and the weak current, turns out to be a more
be approximated by significant correction.
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B. Heavy quark symmetry fore doing so, there is a last theoretical constraint we can

Although HQS is an ingredient of the CPTHH formula- impose onf, (t), regarding its behavior at large values of
tion, the applicability of the flavor symmetry is very limited t.
in practice, as it was mentioned above, if the scaling of
f , (t) with my is used to relat® — 7l v to B— 7l v. How- C. Asymptotic behavior
ever, we will show here that the application of HQS to the

dispersion relation of Eq3) does not suffer from such limi- The behavior of the form factar (1) for very large val-

! ) X . ues of|t| can be estimated reliably in perturbative QCD for
tations. Thg first two terms in E@3) already have a defined exclus!v|e processe®QCD [12]. In thispapproach the had-
behgwor withm, b.u'lt ";] CPTHH. On the _gthﬁf hand, lthe ronic matrix element is described by the hard scattering tran-
regs;'z uesa; governing the resongnt contri ut|ons'scae 3Ssition amplitude folded into an overlap integral between the
my”, the same way ay does. This allows us to write two hadron state wave functions. To leading order, the hard
a g scattering amplitude is approximated by the one-gluon ex-
22 18 change diagrams. The gluon momentum satisfies
g 1 ( )
Q%= (1-x)?m§+(1-y)’mZ=2(1-x)(1-y)P-p,,

. . . o (20
whereg; is a dimensionless constant characterizing the cou-
pling of the radially excited resonankk to H® ), andriis  \perex andy are the momentum fractions of the nonspec-
essentially the ratio of the mass-independent decay constalfior quarks in the initial and final hadron, respectively. The
of H; to that of the ground stat, . On the other hand, the ,qgitive sign in the last term in EG20) corresponds to the
spacing among resonances and also the gap to the groudQpannel procesky— Hr, whereas the negative sign cor-
state is independent ahy, to leading order in the heavy togn0nds to the channel, e.g.JH— v as well as to the
mass. Therefore, if we knew tr&g’s and the masses of the decayH — #lv. In order for PQCD to be safely applicable
resonances for the charm system, we would kriq\t) for o needQ?s-1Ge\2. However, the wave function of a me-

B—wlv in the whole physical regiorThis is an important ¢, containing a heavy quark peaksat(1— €), with
departure from the application of the flavor HQS to semilep- '

tonic decays. The HQS is applied to the resonances in the

cut, which have excitation energies independent of the heavy e~0
mass as long as both tleeand theb quark are considered to

be sufficiently heavy. Of course, we do not knawriori the

values of thea;’s and the spacings among resonances and théhis implies that in the physical region for the decay
ground state. The latter can be calculated in potential modeld — 7l v, the gluon momentum Q%< 1Ge\?, with the ex-

that have been successful in predicting the spectrum of théeption of a negligible larg&? tail of the wave function.
orbitally excited heavy mesonglO] and are expected to This casts a serious shadow over the applicability of the one-
yield a good approximation also for the radial excitations.gluon exchange approximation in computifig(t) in the
Regarding the couplings , if the sum in Eq(3) has a small  physical region for the semileptonic decay, signaling pos-
number of terms, we will show below that the asymptoticSible large correction$13]. However, outside the physical
behavior off , (t) plus theD decay data can be used to fix region and for large enough values [if, the condition
their values, resulting in a fully predictive model for tBe ~ Q*>1Ge\F is satisfied. In these two regions, fox0 and
decay. This procedure assumes that the effect of the heavigér t much larger than the typical mass of heavy resonances,
resonances can be absorbed in the values of the lighter radi8BQCD should yield a very good approximation to the form
excitations in such a way that the “effective” couplings still factor. The known asymptotic behavior bf (t) constitutes
obey the heavy mass scaling given above. For instance, trugn important constraint to be satisfied by any calculation. We
cating the sum over resonancesiat2, the effect of the rewrite the dispersion relation as

heavier resonances can be absorbed, for instanca;,e-

(21)

fining ()= ¥ +£ AZ Im[fS°"(s)]ds
A (ma*—t) s, s—t—ie
J; S )2
eff — 11— J|l1- 2 1A% Im[f,.(s)]ds 1 (= Im[f,.(s)]ds
as a2+i§3 a1 v-pﬁ+A2)(1 ZmH)’ (19 Lt [fi(s)] Lt [f(9)] .

) A2 s—t—ie mJr2 s—t—ie

(22)
with A,=M,—my and§;=M;—M,. As long as the spacing
between successive resonances becomes smaller, one canTige second term in Eq22) contains the continuum contri-
glect & /(2my) corrections. This implies thaa$" has the  bution, whereas the third one accounts for the region domi-
samemy dependence as, so themy, scaling is still valid for  nated by resonances, far’<s<A'?. The last term in Eq.
the truncated case. The interpretationagf is not straight-  (22) can be calculated perturbatively providad is suffi-
forward. In particular, there is no clear correspondence otiently large. Its contribution is small for values bin the
this quantity with the product of the couplirgy times the  physical region. At very largé|, for instance fort<0, the
decay constant of the resonaride. This, however, is not a form factor can also be calculated perturbatively. Thus, the
problem as we will fit the effective parameters to data. Be-asymptotic behavior of Eq22) gives
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1 (A2 The convergence relation of E7) is a model-independent
—7+;J Im[{°™(s)]ds result and constitutes a very binding constraint for model
S0 building. In the next section we will explore a specific model
1 (A2 for the resonant contribution in order to understand the effect
+;JA2 Im[f.(s)]ds+ pl(trA,)]*)foCD(t)i of Eq. (27) on the behavior of _(t) in the physical region.

-1
f+(t)HT

(23)
IV. CONSTRAINED DISPERSIVE MODEL OF f, (1)
where the last term in the brackets in Eg3) is the leading

asymptotic contribution from the last term in E@2). For _ In the rest of the paper we will specify a model that sat-
|t|>mﬁ,, the form factor in PQCD is given bji2,14 isfies the theoretical cqnstramts of the previous section. In
order to translate them into a calculationfof(t) we need to
167 ag(t)fuf, 1 specify the resonant contributions. This will introduce model
fPRCh ) = = 1 o (24)  dependence in the calculation. However, as we will see be-

low, the most defining aspect of the form factor is provided
by the constraint of Eq925) and (27). The imposition of
I1;'his constraint will lead to a very distinct behavior of the
pion momentum distribution, independently of how many
resonances we choose to keep in the branch cut.

The first step to specify the form factor is to truncate the
sum over resonances in E@). As the radial excitations of
the H* become heavier, they are less relevanf iqt). On
txfiQCD(t) due to thea, suppression. Therefore, becausetheI onefhand, hef'iviehr resonance% %ontributg With a smaller
fPRCRt) is a reliable approximation to the form factor for value of ; even in the narrow width approximation. Fur-

+ X thermore, as finite widths are considered, the contributions of
t— —ee, there must be large cancellations among the NONPeleyier and thus broader excitations are additionally sup-
t_urbatlve contributions. This leads to a convergence Cond'bressed, as can be seen in Eg§). On the other hand, the
tion or “sum rule” of the form couplings of the excitations to the ground stgteare con-
strained to obey an Adler-Weisberger sum rls]

As mentioned earlier, we see from E@4) that the pertur-
bative form factor is generated by the tail of the heavy meso
wave function characterized by We do not attempt a cal-
culation of e here[13]. However, it should be noted that the
smallere is the smaller is the region of validity of the PQCD
approximation. Most importantly, the nonperturbative contri-
butions in Eq. (23 are, individually, much larger than

1 AZ 1 A/2
y—;f |m[fi°“‘(s)]ds——f2 Im[f (s)]ds=0,
So mTJA
(25) 1=g?+gi+g3+---, (30)

where the equality corresponds t§°°%(t)=—p,(t,A’)/t.

This sum rule translates our knowledge of the asymptotiovhere g; is the coupling the theth radial excitation to
behavior off | (t) as a constraint on the nonperturbative con-Hr, and additional terms, e.g., from orbitally excited states,
tributions, which in turn dominaté_ (t) in the physical re- are not shown. This implies that one cannot add a large num-
gion. In order to actually implement this constraint, we canber of resonances in the cut with large couplings to the
write the integral over the resonant region as a sum over thground state. This, together with the mass and width suppres-
individual resonances. In the narrow width approximation,sion, shows that the truncation of the sum over resonances is

we have a controlled approximation.
In what follows, we will study a constrained dispersive
1 (a2lm[f,(s)]ds a, model(CDM) where only the first two terms in the sum over
Tl s—t—ie :El MZ—t’ (260 resonances are kept. This is partly motivated by the fact that

only two 1™ radially excited states are known in the light

where thea;’s are defined in Sec. II. In this way the conver- quark sector. On the other hand, the “minimal” choice of

gence Condition now reads keeping Only one term W|” turn out to be incompatib|e W|th
the data on exclusive charm semileptonic decays and the
convergence conditiof27), as we will see below.

V—C—iZl a;=0, (27) The other necessary ingredient to specify the model is the
knowledge of the spectrum of radial excitations. These reso-
nanced (29 and (39 excitations ofD* and B* | have not
been observed in thB or B systems. We will then rely on

1 (A2 potential model calculations of their mas$6% These mod-
c= ;f Im[ <" (s)]ds. (28)  els have been very successful in predicting the masses of
%o orbitally excited states and, therefore, we are confident that

Finite width effects are taken into account by the replace:[he position of the radial excitations in the cut does not in-

) , , troduce a sizable uncertainty. The resulting spectrum explic-
menta;—a;l;, with thel;’s defined by itly shows that the spacings among the 1S, 2S, and 3S states

( S _M_g) are, to leading order, independent of the heavy quark mass

where we defined

Z_arctanu (29) and, therefore, constitute a property of the light degrees of
freedom. We take the spectrum of radial excitations t69e

2 M.,
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MDP=2.7GeV, M2=3.3GeV, oF
MP=6.0Gev, M5=6.6 GeV, (31) of

where the subindex 1 corresponds to the 2S excitation of the =
H*, etc. In this model, the convergence conditi@) now -
reads

y—Cc—a;—a,=0. (32

This condition, together with Eq12) for y and the CPTHH ° ° e "

calculation for the continuum terra defined in Eq.(28),

leaves only one free parameter in the model. This parameter FIG. 2. The form factorf , (t) as a function of the momentum
can be fixed by fitting to the observé@f— 7 e™ ve branch-  transfert. The solid line is the CDM prediction fog=0.5,
ing ratio. Given thaf, /y anda,/y are independent of the fp=0.24 GeV,fz=0.15 GeV, andB°~"=3.9x10"°. The dashed
heavy quark mass, this procedure results in a prediction fdine is theB*-pole prediction as normalized by CPTHH in Eg2)
B°— 1" . The result not only has the correct scaling of (chiral pole and corresponds to the first term in the dispersion
f,(t) with the heavy meson mass but also implements théelation (2). The dotted line is the BSW model prediction of Ref.
HQS properties of the resonances in the cut, namely, the?3

scaling of thea;’s with my.

The form factor emerging in this picture has the form  B®"(D%— 7 ") =(3.90+1.5)x10°°. We do not
make use of the more precisely measubéd-K ~| " » mode

—y Mg—mﬁ* al(Mg— Mi) due to the presence of potentially large (S8)-breaking ef-
f (t)=— M2t (MZ—O)(M2—1) fects, which we do not take into consideration. Thus, at this
Miyx 2 1 2 point, the largest uncertainty in the model prediction comes
AZ(M2=s)Iml < s from the experimental uncertainty in thB*— 7 e" v,
+ 2;&] (M2~s) [_ ha ( )]ds, branching ratio. It is expected that this will be known to
(M3—t) s, s—t-le within 5% in the near futur22]. With the present precision
(33 Wwe obtain
where we made use of the narrow width approximation. The a; 12
cutoff in the integral in Eq. (33 is given by 7:(_ 1.05" 159, (34)

A=(my+0.7 GeV), which corresponds to the maximum

center-of-mass energy iH 7 scattering for which CPTHH \yhere the central value corresponds to the one in
can be used to compute the phase ofs), and at the same B(p°—, 7~|*1), and the errors in Eq(34) reflect its 1r
time coincides with the beginning of the resonance-fiyctuations. This, together with the choice of external pa-
dominated region in the cut. rameters mentioned above, gives the form factor of (B8

In order to fit Eq.(33) to theD°— 7~ e" v data we need  shown in the solid line of Fig. 2 for thB°— 71+ » mode.
values forfp andg entering in the expressiol2) for y.  Also shown for comparison are the first term in the disper-
Currently, there is only an upper limit on the decay constant;jgn relationg2) (dashed ling corresponding to thB* pole
from D— uv, fD<Q.310 GeV[16]. On the other hanq, the with y given by Eq.(12) (chiral B* pole), as well as the
CLEO Collaboration measurement obs—uv gives prediction from the Bauer-Stech-Wirb@SW) model [23]
fp,=(0.284+0.030+0.030=0.016) GeV [17]. We com-  (dotted ling. The pion momentum distributions for these
bine this with the predictions from lattice calculatiofi8]  cases are shown in Fig. 3. As expected, the cl@dfapole is
for the ratio of decay constants, to obtain the valuea good approximation to the full form factor up to pion mo-
fy=0.24 GeV, to be used in the fit. TH8*H# coupling
gets an upper bound from the upper limit on & lifetime
[19] plus theD* — D branching fraction[16]. It is also .
possible to derive a lower limit og from D* —Dy [20].
These two combined give 0s33<0.7. We takeg=0.50 for
some of our numerical estimates. Finally, the prediction for
B°—a 1" v will depend on theB meson decay constant
fg. Lacking experimental information on this quantity, we
make use of the scaling with heavy meson masses and, from
the value forf,, we obtainfg=0.15 GeV. In any event the . -
values off , fg, andg are external input parametersand not |
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model parameters. Eventually, they will be experimentally 0 o8 L oo 2 2s
determined.
We are now ready to fit E¢33) to D°— 7~ e v, and fix FIG. 3. The pion momentum distribution in units f,,|? as

the value ofa; /y. A recent CLEO measuremef1], com-  a function of the pion momentum. The caption is the same as in
bined with the value in[16] for D°—K e'v,, gives Fig. 2.
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menta of~1 GeV. Above this momentum, large deviations 10
from the B* -pole behavior are observed. On the other hand,
with the choice of parameters made, the model interpolates
between the soft momentum region, predicted by CPTHH,
and the BSW calculation of the form factor & 0. This
type of procedure was first suggested 24]. After all, the
relativistic quark model calculation df, (0) in the BSW
model constitutes the most reliable prediction of quark mod-
els for charmless decays Bf mesons. Thus, one alternative
within our model to the need of knowing the external param- 0 ‘ s ‘ : :
eter, is to normalize the prediction B 7l v to agree with o e
the prediction fronf23] att=0. As seen in Fig. 3, choosing
the central values of all the external parameters provides us FIG. 4. The pion momentum distribution in units [af,|? as a
with a good extrapolation. On the other hand, the Isgurfunction of the pion momentum. The solid line is the CDM predic-
Scora-Grinstein-Wis€ SGW2) model[25] is a modification  tion in the narrow width approximation. The dashed line is the
of the nonrelativistic quark model §26] which has a harder result taking into account finite widths, as given by E8jr).
pion momentum spectrum than the original calculation in
order to give a better fit to the pion electromagnetic form
factor F_(Q?). Thus, the shape of the spectrum in the
ISGW2 model is a parametrization of the soft physics gov-
erningF .. The shapeof the resultingf . (t) resembles the wherex is a typical hadronic scale 1 GeV. This results in
one obtained in our calculation and is yet another reason to
believe that the convergence relation captures the correct F?:(O.ZS—O.BS GeV, 1“52(0.40—0.50 GeV,
physics at large values af In the future, the precise mea-
surement ofy, fp, andfg will provide an independent pre- r?z(o_30_0_40 GeV, 1“2‘3:(0_40_0_5() GeV. (39
diction within our model and will help us understand the
relation between this simple dispersive approach and quarkhe resulting prediction for the pion momentum distribution
models. in B°— 7~ 1" v is given by the dashed line in Fig. 4, together
We now address the possible sources of corrections to thisith the narrow width approximation result. The reason for
calculation of the form factor. The widths of the resonanceshe effect being small lies on the fact that, when the widths
are expected to be rather large. When finite width effects arare incorporated into the fit of the model to the
taken into account, the form factor is that given by E8). D°— =~ |* v branching ratio, the heavy mass-independent
keeping only the first two terms in the sum over resonancegarameter, / y must be slightly modified to upset the width
with R, , given by Eq.(5) and the convergence relation effect. Thus, the same type of cancellation takes place in the
B— wlv case. The procedure to obtain a prediction for the
y—C—ayl;—ayl,=0, (39 B transition is built in a way that is nearly independent
) . of the widths. The model dependence on the cutofh the
Wherell_and |2 are deflne(_j by Ed29). The widthsI', and . continuum integral is also ngarginally small. This is partly
I'; are, in principle, not fixed. However, they can be esti-pa.5,5e of the fitting to the charm meson decay data, but
mated by calculating the partial widths to the ground state ag, g1y pecause the continuum plays a small role overall.
well as to orbital excitations. To leading order in CPTHH, Finally, the mass independence afl y receives correc-

these interactions are governed by tions that go like powers oA ocp/m.. Although these are
2 2 formally small, they could be numerically significant. Here,
/3:_2 giTr[giAH%]Jrz f T EASYs], (36) to be consistent we only take the leading order in the heavy
i=1 i=1 mass expansion throughout the paper. It should be noted that
in order for the corrections ta; /vy to be large, the correc-
where is defined in Eq(6) and represents the ground statetions toa; and y must be large and very different.
doublet,&; represents the two radial excitation doublets and In Fig. 5 we show the pion momentum distribution for the
have the same form a4, and the (0,1") P-wave doublet D°— 771"y decay. The solid line represents the CDM pre-

(1IVw Tg) dr/dp, [1/GeV]

1

_pi/Kz—z 7
(1+p7/my)

(39

is given by[11] diction, whereas the dashed line corresponds to the chiral
pole term and the dotted line is the BSW model. The CDM

S= (1+39) Brye— S 37) prediction agrees well with both, the first term in the disper-

2 [Bys— 1, sion relations and the BSW model. The maximum pion mo-

mentum is not large enough to cause a disagreement, which
with S§ and S, the 0" and 1" fields, respectively. The arises ap,=1 GeV and to which only the CDM model is
couplingsg, g,, f1, andf, are unknown. In order to obtain sensitive.
a conservative estimate of the widths we take the values As stated above, our results depend on the external pa-
g,=9,=f,="f,=0.50. This choice will probably resultin an rametersg, fy, fg, andBP~", the D°— =l *» branching
overestimate of the widths given it does not respect the corratio. In Table | we present the results for tB&— 7|1 »
dition Eq. (30). Finally, we account for the the softening of branching ratio in units ofV,|? for a particular choice of
the vertices with momentum by the fac{drO] these external parameters and for two sets of masses for the
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0012 TABLE Il. CDM prediction of theB(B°— 71 *v) in the nar-
row width approximation, foff,=0.24 GeV and with the Set 1 of

0.01 - radial excitation masses. The values chosemgfoover the allowed
§‘ region. The results are shown for two typical valued of
&, 0.008 |-
& B(Bo—>’7T_|+V)/|VUb|2
= | g f3=0.15 GeV f5=0.20 GeV
S o000 0.30 19.50 35.00
= 0.50 14.00 25.00

002y 0.70 7.30 12.80

0
0 0.2 04 0.6 0.8 1
Pr  [GeV] perturbative behavior in the asymptotic region, e.g., for large

) R o . —q@?, this coincidence is interesting and deserves to be stud-
FIG. 5. The pion momentum distribution B"—m~1"v as a  jed further. We expect the shape of the pion momentum dis-
function of the Plon momentum. The solid line is the CDM fit to yihytion to be greatly constrained by the future CLEO data
B”77=3.9x10 " for g=0.5 andfp=0.24 GeV. Also shown are  [>7] Thjs will allow one to discriminate between the CDM
the chiral pole(dashed lingand the BSW predictiofdotted ling. approach and the puB -pole model. From Table I it can be
N ) seen that the intrinsic uncertainty of the model is small. This
resonances, as well as for the finite width case. The set G§ due to the fact that each change in a model parameter leads
radial excitation masses we call Set 1 is the one presented {g 3 new value ofa;/y to keep a good fit oBP 7. This

the text, whereas Set 2 corresponds to a shifta00 MeV  procedure, built in the model, makes the predictions for
in the masses. As it can be seen, the result is rather stabi_, ,~|*, very stable. However, an extraction p#,y|
under this type of modifications. In Table Il we show resultsfrom the CLEO data is not possible at this point given the

in the narrow width approximation fdi, =0.24 GeV and_for large uncertainties in external parameters, namglyfz,
various values ofg and fg. As expected, the predicted gnqgP—~.

branching ratio is rather sensitive to the values of these two
external parameters, which hopefully will be determined in
the near future by experiment and/or lattice calculations.
Although the normalization of the model prediction for ~ We have presented an approach to semileptonic form fac-
B%— 7~ 1"» depends on poorly known or still unmeasuredtors that bridges the gap between low and high pion momen-
guantities, one characteristic feature of the model thatum recoil. The dispersion relation described in Sec. Il is a
emerges independently of these is the shape of the momesuitable framework to identify the various contributions. Fur-
tum distribution. As is seen in Figs. 3 and 4, at pion mo-thermore, the imposition of model-independent theoretical
menta above=1 GeV the CDM model predicts that the dis- constraints leads to either complete calculations or an impor-
tribution flattens out, as opposed to the characteristic almostant reduction in model dependence in calculating the vari-
linear growth of the pureB*-pole behavior. This feature ous pieces entering in these transitions.
persists when varying the value &f / y over the 1 interval First, chiral symmetry tells us that, fer,<1 GeV, the
as well as when considering models with more resonancefirst term in the dispersion relatiof2) is a good approxima-
This reflects the fact that this is a model-independent featuréion to f (t), with y given by Eq.(12). The singularity
resulting from the application of the convergence relationclosest to this region of thél— zlv decay is the leading
(25), a direct consequence of the validity of PQCD at largeterm entering inf , (t) in CPTHH. The next contribution to
values of the momentum transfer outside the physical regiorgq. (2) comes from thed ) 7+ continuum, which dominates
In particular, the CDM prediction for the shape at maximumthe In{f,(s)] from threshold(the branch pointup to a
recoil momentum 2= 0) is consistent with thehapeof the  scale where individual resonances start dominating. The
perturbative form factor in the Brodsky-Lepage formalism.phase off . (s) in this region is computed in CPTHH, which
Considering that the CDM shape is a result of imposing thes a valid tool up to this energy scale. We conclude that the
resulting contribution is not the chief modification of the
TABLE |I. CDM prediction of the B(B’—=|*v) for H* -pole behavior.
g=0.50,f,=0.24 GeV, andfg=0.15 GeV. Set 1 corresponds to  On the other hand, the radial excitations dominate the
the spectrum of radial excitations of E(B0), whereas Set 2 is |m[f, (s)] above the scald, and result in large deviations
obtained by a common shift of 100 MeV. The first two results are  from the H*-pole behavior at values qf . larger than=1
in the narrow width approximation. The third_ one inclut_jes the ef-GeV. Their contributions to the branch cut obey a definite
fects of the widths as discussed in Sec. 1V, with widths given by Eq'HQS scaling withm,, . This imposes a constraint that allows

V. CONCLUSIONS

(37). us to relate th8— 7l v form factor to that entering in the
B(BO— 1" )| Vyy? D— wlv mode forall values of the pion momentunihis
ub represents a considerable improvement over the simple
NWA (Set 1 14.00 scaling of the form factors, which only allows a prediction of
NWA (Set 2 14.40 the B mode up to pion momenta smaller than 1 GeV.
FW (Set 1 13.40 Finally, requiring that the form factor has the correct as-

ymptotic behavior as dictated by perturbative QCD, we de-
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rive the convergence relation or sum rule of E25). This  ized in CPTHH confirms that pole dominance is a good ap-
translates into an additional constraint to be obeyed by thproximation forp,<1 GeV. However, at larger values of
couplings of the radial excitations, as seen in &7). p, the model deviates largely from the characteristic
The model presented in Sec. IV has two active resonancd3™-pole distribution. For the same normalization at low
in the branch cut, leaving only one free parameter, which i, the branching ratio is about a factor of 2 smaller than
fixed by fitting to the observe@®—". The resulting form that if the pureB* pole is assumed. The flat distribution at
factor, as seen for instance in E®3) in the narrow width large pion momentum is a consequence of the cancellations
approximation, presents several interesting features. First, that result when imposing perturbative QCD as the asymp-
respects the constraints from chiral symmetry, HQS, and peitotic behavior. Interestingly, this shape resembles the one
turbative QCD. Second, it is a realization of the intuitive ideathat is obtained by computing the form factor directly in
that theH* -pole behavior must be softened by an effectiveperturbative QCD for exclusive processes, characteristic of a
suppression of the coupling. In our model this suppression dipole falloff with t [14], rather than a monopole falloff.
is provided by the radial excitations in E@3). This can be Although, as we argued in Sec. Ill C, the PQCD formalism is
readily seen if we write the first term in EB3) as not expected to give the right answer, this coincidence in
shape is an important point to bear in mind in an attempt to
Miz—mf'* v fully match the nonperturbative and perturbative regimes.
MZ—t = m2.—t\1+v-p,/A;)’ (40 Ppresent and future CLEO measurements of the pion momen-
H tum distribution will test this aspect of the model, indepen-

whereA;=M,—m, is the gap between the ground state andd.ently Qf the value_s of external parameters. Lattice.calcula-
the ith excitation, and provides the scale of suppressioﬁ'ons will also provide a powerful test once systematic errors
which in this case is of abou0.8—1 GeV. Therefore, the are better understod@9. _

resonances in the cut give the scale for the effective suppres- Another important test of this approach and the natural
sion of theH* -pole behavior at large pion recoil. The model NEXt Step, is the prediction &— plv. In this case the con-
presents a natural explanation for the softening $24,28. straints from chiral symmetry are not so Clear._However, the
It also provides us with a simple rule for the validity of pole HQS and perturbative QCD constraints are still present and
dominance in semileptonic transitions in general: neared@r9€ly define the behavior of the form factors, as in the
pole dominance is a good approximation for values of theB— v case. U_nderstandmg tHe—plv to 3—>17Iv ratio
hadronic recoil energy small compared to the gap betweeff branc_hlng rat_los, as We_ll_as the polar|_zat|on in the vector
the first excitations of the pole and the ground state. This igh0de will turn into a definite test of this approach and a
the reason why pole dominance is a good approximation ifajor step towards the extraction pf,| from exclusive

D semileptonic decays as well asB-D®)l» decays, but d€cays in the coming factory era.

not in B— wl v, where large portions of the rate come from
v- p7T>Ai .

As discussed in Sec. IV, the intrinsic uncertainty of the The authors thank W. A. Bardeen, J. F. Donoghue, E.
model is small. This implies that a determination|df,,]  Eichten, L. Gibbons, C. Quigg, J. Simone, and S. Willen-
from the measurement of the— 7l v branching ratio will  brock for useful discussions and suggestions. G.B. acknowl-
only be limited by the experimental precision with which edges the support of the U.S. Department of Energy. J.K.
B(D—wlv), g, fp, andfg are determined. acknowledges support from the University of Massachusetts,

The shape of the pion momentum distribution is a veryAmherst. Division de Physique Thaque is Unitede Re-
distinctive feature of the model, as can be appreciated icherche des UniversgeParis XI et Paris VI associau
Figs. 3 and 4. The comparison with tB& pole as normal- CNRS.
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