
Dispersive approach to semileptonic form factors in heavy-to-light meson decays

Gustavo Burdman*
Fermi National Accelerator Laboratory, Batavia, Illinois 60510

Joachim Kambor†

Division de Physique The´orique, Institut de Physique Nucle´aire, F-91406 Orsay Cedex, France
~Received 22 February 1996!

We study the semileptonic decays of heavy mesons into light pseudoscalars by making use of dispersion
relations. Constraints from heavy quark symmetry, chiral symmetry, and perturbative QCD are implemented
into a dispersive model for the form factors. Large deviations fromB* -pole dominance are observed in
B→p ln. We discuss the model prediction for this mode and its possible impact on the extraction ofuVubu.
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I. INTRODUCTION

Semileptonic decays of heavy hadrons are of great interest
given that they are the cleanest way to probe the mixing
between quarks of the third generation with those of the
lighter families. The extraction of the Cabibbo-Kobayashi-
Maskawa~CKM! matrix elementVcb from theb→cln tran-
sitions is largely freed from theoretical uncertainties since
the advent of the heavy quark symmetries@1#. This is the
case for exclusive decays@2# as well as for the inclusive
lepton spectrum@3#. On the other hand, theb→uln transi-
tions involving the CKM elementVub are still plagued with
large theoretical uncertainties. The inclusive lepton spectrum
above theb→cln end point, from whichuVubu/uVcbu can be
extracted, is still the realm of models because of the break-
down of the heavy quark operator product expansion. For the
exclusive decays, the use of heavy quark symmetry~HQS! is
reduced to relating theD andB decays to light hadrons at
fixed values of the recoil energy. The main shortcoming of
this prediction forB decays is that it only covers recoil en-
ergies available inD decays. This is particularly troublesome
in thep mode, for which most of the rate might be at large
recoil energies. It would thus be very useful to have a full
calculation of theB→p ln decay consistent with the con-
straints from HQS as well as from chiral symmetry for heavy
hadrons. The information from HQS is contained in the scal-
ing behavior of the form factors with the heavy masses as
well as in the spin symmetry relations for members of the
same HQS spin multiplet. In the decaysH→p ln, chiral per-
turbation theory for heavy hadrons~CPTHH! @4–6# promotes
nearest singularity~pole! dominance to the leading contribu-
tion in the chiral and heavy quark expansions when the pion
is soft. The validity of nearest pole dominance in the soft
pion limit is not a surprising result given the proximity of the
pole to the physical region where the pion recoil is small.
However, there is no reason to believe that this is also true at

higher recoil momenta. Deviations from the pure pole behav-
ior at pion recoil energies above'1 GeV inB→p ln result
in large modifications in the branching ratio. Conversely, the
physical region in the case of theD modes is confined to be
closer to the pole and, therefore, one expects the approxima-
tion of the form factors by the single pole to be a rather good
one over a large fraction of phase space. In this paper, we
establish the theoretical constraints to be obeyed by the dis-
persion relations for the form factors. These include chiral
symmetry, HQS, and perturbative QCD as the asymptotic
behavior. The latter will result in a sum rule for the nonper-
turbative, mostly resonant, contributions. We then construct
a model which reflects pole dominance at low pion energies
but at the same time includes other effects that are poten-
tially important, mostly inB decays. These will include the
effect of resonances other than theB* pole as well as the
continuum. A natural model emerges from the dispersion
relations for the form factors@7#. Their properties in the
physical region are determined not only by the isolated poles
but also by the singularities above the (mH1mp)

2 threshold.
The contributions from resonances above threshold can be
parametrized in a way compatible with HQS. This allows us
to fix the parameters of the model inD decays and have a
prediction forall the available phase spacein B→p ln.

Recently, CLEO has observed this decay for the first time
and measured its branching ratio@8#. It is, therefore, impera-
tive to realistically assess the theoretical uncertainties asso-
ciated with this mode and their impact on the extraction of
uVubu. The present work is an attempt to address this issue.
We expect the contributions to the dispersion relations gov-
erning these transitions to be highly constrained by chiral
symmetry, HQS, and perturbative QCD, to the point of hav-
ing a rather complete picture of the relevant physics in-
volved. The remaining model dependence is used to con-
struct an example of a model satisfying all the
aforementioned constraints. This defines a class of models
with distinct features, most notably the shape of the pion
distribution.

In the next section we discuss the various contributions to
the form factors inH→p ln, with H5(D,B), in the lan-
guage of dispersion relations. In Sec. III we derive con-
straints from chiral symmetry, HQS, and perturbative QCD
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which will highly determine those contributions. In Sec. IV
we present a model that naturally emerges from all the theo-
retical constraints, discuss its predictions, and compare them
with other calculations. We summarize our results and con-
clude in Sec. V.

II. DISPERSION RELATIONS

The hadronic matrix element for theB0→p2l1n transi-
tion can be written as

^p~pp!uūgmbuH~P!&5 f1~q2!~P1pp!m

1 f2~q2!~P2pp!m , ~1!

where q25(P2pp)
2 is the momentum transferred to the

leptons. In the approximation where the leptons are massless,
only the form factorf1(q

2) enters the partial rate. This form
factor obeys a dispersion relation of the form

f1~ t !5
2g

~mH*
2

2t !
1
1

pEs0
` Im@ f1~s!#ds

~s2t2 i e!
, ~2!

wheres05(mH1mp)
2. The isolated pole atmH*,s0 is ac-

tually present in theB meson case, whereas for theD→p
transition theD* pole is located almost exactly at threshold.
There are no anomalous thresholds in theH→p ln transi-
tions, although there might be inH→r ln. Contributing to
the imaginary part in Eq.~2! are all possible intermediate
states that couple toHp and are annihilated by the weak
vertex, as shown schematically in Fig. 1. These include the
multiparticle continuum as well as resonances. The latter
must beradially excitedJP512 states in order to contribute
to f1(t), and are expected to be located at about'1 GeV
above the ground state@9#. The first contribution appearing
aboves0 corresponds to theH

(* )p continuum. Other contri-
butions to the continuum include states withH (* ) mesons
and various light mesons~e.g., multipion states!. We will
neglect them at these values ofs because they involve higher
order terms in the chiral expansion. Finally, we consider the
contributions of orbitally excitedH mesons with one pion. In
principle, these could be important given that theL51,
P-wave states are only about'500 MeV above the ground
state@10#. The lightestL51 states correspond to (01,11)
and (11,21) doublets. The second doublet, however, does
not couple to the ground state to leading order in CPTHH
@11#. The doublet (01,11) does couple to the ground state
doublet, but the vertexHp→(01,11)p vanishes to leading

order. Therefore, not far from threshold, the continuum con-
tribution to the dispersive integral~2! can be approximated
by theH (* )p intermediate states. We will estimate this con-
tribution in CPTHH in Sec. III A.

The contributions from the radial excitations of theH*
dominate the imaginary part at intermediate values ofs.
Separating them from the continuum, one can express Eq.~2!
as

f1~ t !5
2g

~mH*
2

2t !
1
1

pEs0
L2 Im@ f1

cont~s!#ds

~s2t2 i e!
1(

i
aiRi~ t !,

~3!

where the cutoff in the continuum integral defines the maxi-
mum center-of-mass energy inHp scattering for which the
main contribution comes from the continuum. This also cor-
responds to the beginning of the resonance-dominated re-
gion. Typically,L defines an energy about 0.7–1 GeV above
threshold. Therefore, the use of CPTHH to compute the con-
tinuum contribution to the dispersive integral is justified.

In the narrow width approximation,

Ri~ t ![
1

Mi
22t

, ~4!

whereas if finite width effects are taken into account these
functions take the form

Ri~ t ![
1

p S p

2
2arctan

s02Mi
2

MiG i
D ~Mi

22t !

~Mi
22t !21Mi

2G i
2 , ~5!

with Mi the mass of thei th radial excitation. In deriving Eq.
~5! the widthsG i were assumed to be constant. Theai ’s are
the couplings analogous tog of the nearest resonanceH* ,
the residues at the poles. They involve the strong coupling
between thei th resonance andHp, as well as the decay
constant of the resonance.

The physical region for the decayH→p ln is given by the
interval t5(0,tmax), with tmax5(mH2mp)

2. Thus, theH*
pole, the first term in Eq.~3!, corresponds to the singularity
closest to this region and will be the dominant contribution
for values oft close totmax. However, the question of how
good this approximation is in each case is not a simple one.
For instance, neglecting the continuum contribution, it is
likely that theH* -pole approximation will be a good one as
long as the three-momentum of the recoiling pionpp is not
larger thanD1[M12mH(* ), the gap between the ground
state and the first radially excited state. This intuitive picture
suggests that theH* -pole term in Eq.~3! should be a rea-
sonable approximation tof1(t) for D semileptonic decays,
given that almost all its phase space falls in this region.
However, this is certainly not the case forB→p ln. Al-
though the spacings between resonances and the ground state
are independent of the heavy quark mass to a very good
approximation, now the recoil momentum of the pion can be
as large aspp

max'mB/2. As pp increases and we move away
from theH* pole, the relative influence of the higher reso-
nances grows. These deviations from the pureH* -pole be-
havior at large values ofpp are particularly important given
that the pion momentum distribution goes aspp

3 . As we will
see below, large changes in the total rate and the shape of the

FIG. 1. Contributions to the imaginary part of theH→p ln form
factor f1(t). The squares represent the action of the weak current
and the circles imply strong interactions. The dashed lines are pions
and the solid lines are pseudoscalar heavy mesonsH unless indi-
cated otherwise.
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t distribution occur when the corrections to theH* -pole be-
havior at largepp are taken into account.

In what follows, we will consider the theoretical con-
straints that can be imposed onf1(t). These constitute the
basis for a model calculation of theB→p transition form
factor, which will incorporate all of these constraints.

III. THEORETICAL CONSTRAINTS

Although the form factorf1(t) is not calculable in per-
turbation theory, it must satisfy several constraints. These
result from the application of HQS, chiral symmetry, and the
asymptotic behavior imposed by perturbative QCD for ex-
clusive processes.

A. Chiral symmetry

Chiral perturbation theory for heavy hadrons~CPTHH!
provides a formal framework for the approximation that only
keeps the first term in Eq.~2! @4,5#. In the effective theory
that couples heavy hadrons to Goldstone bosons respecting
HQS and chiral symmetry, the heavy meson fields are repre-
sented by the 434 matrices

H5
~11v” !

2
$H” *2Hg5%, ~6!

whereHm and H are the 12 and 02 ground state fileds,
respectively, andvm is the heavy meson four-velocity. The
Goldstone bosons enter through

j5exp@ ipa~x!Ta / f #, ~7!

with Ta , (a51, . . . ,N221) the SU(N) generators and
pa(x) the Goldstone boson fields. To leading orderf5 f p ,
the pion decay constant. The leading order Lagrangian, in-
variant under HQS and chiral symmetry, is given by@4,5#

Leff5 iTr@H̄v•DH#1gTr@H̄A”Hg5#. ~8!

The coupling constantg is independent of the heavy mass
and the axial-vector field is defined by

Am5
2 i

2
~j†]mj2j]mj†!. ~9!

Requiring that the weak current transforms as a left-handed
doublet implies

Jweak
m 52 i

AmHfH
2

Tr@H̄j†gm~12g5!#, ~10!

with f H the heavy pseudoscalar decay constant. This com-
pletes the description to leading order both in 1/mH and
1/Lx , whereLx is the scale of chiral symmetry breaking.
The H→p ln transition receives a direct contribution from
Eq. ~10!, as well as anH* -pole term resulting from the
H*Hp interaction governed by the couplingg in Eq. ~8!
followed by theH* -vacuum transition governed by Eq.~10!.
The latter dominates the former in the 1/mH expansion.
Thus, for soft pion momentum, the transition form factor can
be approximated by

f1~ t !.2
g fHmH

2 / f p

~mH
2 2t !

. ~11!

Therefore, CPTHH tells us that to leading order the form
factor is approximated by the first term in the dispersion
relation ~2! with

g5
g fHmH

2

f p
. ~12!

In this way CPTHH provides an approximate normalization
of f1(t) at low pion recoil momentum,upp

W u&1 GeV.
On the other hand, CPTHH can be used to compute the

continuum contribution in Eq.~3! for values of the integrand
close to threshold. At these values ofs, unitarity implies

Im@ f1
cont~s!#5s~s!T†~s! f1~s!, ~13!

where the threshold factor is

s~s![S 12
~mH

2 2mp!2

s D 1/2S 12
~mH

2 1mp!2

s D 1/2 ~14!

and T(s) is the Hp→Hp-scattering amplitude projected
onto theJ51 partial wave. We neglect the contribution of
theH*p intermediate state which is suppressed by a factor
of pp /mH relative toHp. Therefore, aboves0 but below the
resonance region in the cut, the phase off1(s) is given by
theHp→Hp-scattering phase shift

sind1~s!5s~s!uT~s!u. ~15!

The computation from Eq.~8! is straightforward. After pro-
jecting to the correct partial wave and isospin channels, the
phase, to leading order, is given by

sind1~s!.2
1

24p S gf p
D 2pp

3 S 3

v•pp2D
1

1

v•pp1D D ,
~16!

whereD[mH*2mH is the mass splitting within the ground
state and

v•pp5
s2mH

2 2mp
2

2mH
~17!

is the pion energy in theH rest frame. The dominant effect,
once again, comes from theH* -pole exchange, both in the
s and t channels. These are governed by the same coupling
g entering in theH*Hp vertex in Eq.~8! and, therefore, do
not introduce any new parameter. The phase in Eq.~16! to-
gether with the leading order expression foru f1(s)u yields
Im@ f1

cont#(s), in the threshold region. The corresponding dis-
persive part provides, in a next-to-leading singularity ap-
proximation, the first correction to theH* -pole behavior.
However, as we will see below, this is not the most impor-
tant modification to pole dominance coming from the cut.
The presence of radially excited states, coupling to both the
ground state and the weak current, turns out to be a more
significant correction.
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B. Heavy quark symmetry

Although HQS is an ingredient of the CPTHH formula-
tion, the applicability of the flavor symmetry is very limited
in practice, as it was mentioned above, if the scaling of
f1(t) with mH is used to relateD→p ln to B→p ln. How-
ever, we will show here that the application of HQS to the
dispersion relation of Eq.~3! does not suffer from such limi-
tations. The first two terms in Eq.~3! already have a defined
behavior withmH built in CPTHH. On the other hand, the
residuesai governing the resonant contributions scale as
mH
3/2, the same way asg does. This allows us to write

ai
g

5
gi
g
r i , ~18!

wheregi is a dimensionless constant characterizing the cou-
pling of the radially excited resonanceHi toH

(* )p, andr i is
essentially the ratio of the mass-independent decay constant
of Hi to that of the ground statef H . On the other hand, the
spacing among resonances and also the gap to the ground
state is independent ofmH , to leading order in the heavy
mass. Therefore, if we knew theai ’s and the masses of the
resonances for the charm system, we would knowf1(t) for
B→p ln in the whole physical region. This is an important
departure from the application of the flavor HQS to semilep-
tonic decays. The HQS is applied to the resonances in the
cut, which have excitation energies independent of the heavy
mass as long as both thec and theb quark are considered to
be sufficiently heavy. Of course, we do not knowa priori the
values of theai ’s and the spacings among resonances and the
ground state. The latter can be calculated in potential models
that have been successful in predicting the spectrum of the
orbitally excited heavy mesons@10# and are expected to
yield a good approximation also for the radial excitations.
Regarding the couplingsai , if the sum in Eq.~3! has a small
number of terms, we will show below that the asymptotic
behavior off1(t) plus theD decay data can be used to fix
their values, resulting in a fully predictive model for theB
decay. This procedure assumes that the effect of the heaviest
resonances can be absorbed in the values of the lighter radial
excitations in such a way that the ‘‘effective’’ couplings still
obey the heavy mass scaling given above. For instance, trun-
cating the sum over resonances ati52, the effect of the
heavier resonances can be absorbed, for instance, bya2, de-
fining

a2
eff [a21(

i53
ai S 12

d i
v•pp1D2

D S 12
d i
2mH

D , ~19!

with D2[M22mH andd i[Mi2M2. As long as the spacing
between successive resonances becomes smaller, one can ne-
glect d i /(2mH) corrections. This implies thata2

eff has the
samemH dependence asa2 so themH scaling is still valid for
the truncated case. The interpretation ofa2

eff is not straight-
forward. In particular, there is no clear correspondence of
this quantity with the product of the couplingg2 times the
decay constant of the resonanceH2. This, however, is not a
problem as we will fit the effective parameters to data. Be-

fore doing so, there is a last theoretical constraint we can
impose onf1(t), regarding its behavior at large values of
utu.

C. Asymptotic behavior

The behavior of the form factorf1(t) for very large val-
ues ofutu can be estimated reliably in perturbative QCD for
exclusive processes~PQCD! @12#. In this approach the had-
ronic matrix element is described by the hard scattering tran-
sition amplitude folded into an overlap integral between the
two hadron state wave functions. To leading order, the hard
scattering amplitude is approximated by the one-gluon ex-
change diagrams. The gluon momentum satisfies

Q25~12x!2mH
2 1~12y!2mp

262~12x!~12y!P•pp ,
~20!

wherex andy are the momentum fractions of the nonspec-
tator quarks in the initial and final hadron, respectively. The
positive sign in the last term in Eq.~20! corresponds to the
s-channel processln→Hp, whereas the negative sign cor-
responds to thet channel, e.g.,lH→np as well as to the
decayH→p ln. In order for PQCD to be safely applicable
we needQ2@1GeV2. However, the wave function of a me-
son containing a heavy quark peaks atx.(12e), with

e;OS LQCD

mQ
D . ~21!

This implies that in the physical region for the decay
H→p ln, the gluon momentum isQ2&1GeV2, with the ex-
ception of a negligible large-Q2 tail of the wave function.
This casts a serious shadow over the applicability of the one-
gluon exchange approximation in computingf1(t) in the
physical region for the semileptonic decay, signaling pos-
sible large corrections@13#. However, outside the physical
region and for large enough values ofutu, the condition
Q2@1GeV2 is satisfied. In these two regions, fort!0 and
for t much larger than the typical mass of heavy resonances,
PQCD should yield a very good approximation to the form
factor. The known asymptotic behavior off1(t) constitutes
an important constraint to be satisfied by any calculation. We
rewrite the dispersion relation as

f1~ t !52
g

~mH*
2

2t !
1
1

pEs0
L2 Im@ f1

cont~s!#ds

s2t2 i e

1
1

pEL2

L82 Im@ f1~s!#ds

s2t2 i e
1
1

pEL82

` Im@ f1~s!#ds

s2t2 i e
.

~22!

The second term in Eq.~22! contains the continuum contri-
bution, whereas the third one accounts for the region domi-
nated by resonances, forL2,s,L82. The last term in Eq.
~22! can be calculated perturbatively providedL8 is suffi-
ciently large. Its contribution is small for values oft in the
physical region. At very largeutu, for instance fort!0, the
form factor can also be calculated perturbatively. Thus, the
asymptotic behavior of Eq.~22! gives
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f1~ t !→
21

t H 2g1
1

pEs0
L2

Im@ f1
cont~s!#ds

1
1

pEL2

L82

Im@ f1~s!#ds1p1~ t,L8!J→ f1
PQCD~ t !,

~23!

where the last term in the brackets in Eq.~23! is the leading
asymptotic contribution from the last term in Eq.~22!. For
utu@mH

2 , the form factor in PQCD is given by@12,14#

f1
PQCD~ t !5

16p

3

as~ t ! f H f p

t

1

e
. ~24!

As mentioned earlier, we see from Eq.~24! that the pertur-
bative form factor is generated by the tail of the heavy meson
wave function characterized bye. We do not attempt a cal-
culation ofe here@13#. However, it should be noted that the
smallere is the smaller is the region of validity of the PQCD
approximation. Most importantly, the nonperturbative contri-
butions in Eq. ~23! are, individually, much larger than
t3 f1

PQCD(t) due to theas suppression. Therefore, because
f1
PQCD(t) is a reliable approximation to the form factor for
t→2`, there must be large cancellations among the nonper-
turbative contributions. This leads to a convergence condi-
tion or ‘‘sum rule’’ of the form

g2
1

pEs0
L2

Im@ f1
cont~s!#ds2

1

pEL2

L82

Im@ f1~s!#ds.0,

~25!

where the equality corresponds tof1
PQCD(t)52p1(t,L8)/t.

This sum rule translates our knowledge of the asymptotic
behavior off1(t) as a constraint on the nonperturbative con-
tributions, which in turn dominatef1(t) in the physical re-
gion. In order to actually implement this constraint, we can
write the integral over the resonant region as a sum over the
individual resonances. In the narrow width approximation,
we have

1

pEL2

L82 Im@ f1~s!#ds

s2t2 i e
5(

i51

ai
M i

22t
, ~26!

where theai ’s are defined in Sec. II. In this way the conver-
gence condition now reads

g2c2(
i51

ai.0, ~27!

where we defined

c[
1

pEs0
L2

Im@ f1
cont~s!#ds. ~28!

Finite width effects are taken into account by the replace-
mentai→ai I i , with the I i ’s defined by

I i[
1

p S p

2
2arctan

s02Mi
2

MiG i
D . ~29!

The convergence relation of Eq.~27! is a model-independent
result and constitutes a very binding constraint for model
building. In the next section we will explore a specific model
for the resonant contribution in order to understand the effect
of Eq. ~27! on the behavior off1(t) in the physical region.

IV. CONSTRAINED DISPERSIVE MODEL OF f1„t…

In the rest of the paper we will specify a model that sat-
isfies the theoretical constraints of the previous section. In
order to translate them into a calculation off1(t) we need to
specify the resonant contributions. This will introduce model
dependence in the calculation. However, as we will see be-
low, the most defining aspect of the form factor is provided
by the constraint of Eqs.~25! and ~27!. The imposition of
this constraint will lead to a very distinct behavior of the
pion momentum distribution, independently of how many
resonances we choose to keep in the branch cut.

The first step to specify the form factor is to truncate the
sum over resonances in Eq.~3!. As the radial excitations of
theH* become heavier, they are less relevant tof1(t). On
the one hand, heavier resonances contribute with a smaller
value ofRi even in the narrow width approximation. Fur-
thermore, as finite widths are considered, the contributions of
heavier and thus broader excitations are additionally sup-
pressed, as can be seen in Eq.~5!. On the other hand, the
couplings of the excitations to the ground stategi are con-
strained to obey an Adler-Weisberger sum rule@15#

1*g21g1
21g2

21•••, ~30!

where gi is the coupling the thei th radial excitation to
Hp, and additional terms, e.g., from orbitally excited states,
are not shown. This implies that one cannot add a large num-
ber of resonances in the cut with large couplings to the
ground state. This, together with the mass and width suppres-
sion, shows that the truncation of the sum over resonances is
a controlled approximation.

In what follows, we will study a constrained dispersive
model~CDM! where only the first two terms in the sum over
resonances are kept. This is partly motivated by the fact that
only two 12 radially excited states are known in the light
quark sector. On the other hand, the ‘‘minimal’’ choice of
keeping only one term will turn out to be incompatible with
the data on exclusive charm semileptonic decays and the
convergence condition~27!, as we will see below.

The other necessary ingredient to specify the model is the
knowledge of the spectrum of radial excitations. These reso-
nances@~2S! and ~3S! excitations ofD* andB* # have not
been observed in theD or B systems. We will then rely on
potential model calculations of their masses@9#. These mod-
els have been very successful in predicting the masses of
orbitally excited states and, therefore, we are confident that
the position of the radial excitations in the cut does not in-
troduce a sizable uncertainty. The resulting spectrum explic-
itly shows that the spacings among the 1S, 2S, and 3S states
are, to leading order, independent of the heavy quark mass
and, therefore, constitute a property of the light degrees of
freedom. We take the spectrum of radial excitations to be@9#
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M1
D52.7 GeV, M2

D53.3 GeV,

M1
B56.0 GeV, M2

B56.6 GeV, ~31!

where the subindex 1 corresponds to the 2S excitation of the
H* , etc. In this model, the convergence condition~27! now
reads

g2c2a12a2.0. ~32!

This condition, together with Eq.~12! for g and the CPTHH
calculation for the continuum termc defined in Eq.~28!,
leaves only one free parameter in the model. This parameter
can be fixed by fitting to the observedD0→p2e1ne branch-
ing ratio. Given thata1 /g anda2 /g are independent of the
heavy quark mass, this procedure results in a prediction for
B0→p2l1n. The result not only has the correct scaling of
f1(t) with the heavy meson mass but also implements the
HQS properties of the resonances in the cut, namely, the
scaling of theai ’s with mH .

The form factor emerging in this picture has the form

f1~ t !5
2g

mH*
2

2t
SM2

22mH*
2

M2
22t

D 1
a1~M2

22M1
2!

~M1
22t !~M2

22t !

1
1

~M2
22t !

1

pEs0
L2 ~M2

22s!Im@ f1
cont~s!#

s2t2 i e
ds,

~33!

where we made use of the narrow width approximation. The
cutoff in the integral in Eq. ~33! is given by
L.(mH10.7 GeV), which corresponds to the maximum
center-of-mass energy inHp scattering for which CPTHH
can be used to compute the phase off1(s), and at the same
time coincides with the beginning of the resonance-
dominated region in the cut.

In order to fit Eq.~33! to theD0→p2e1ne data we need
values for f D and g entering in the expression~12! for g.
Currently, there is only an upper limit on the decay constant
from D→mn, f D,0.310 GeV@16#. On the other hand, the
CLEO Collaboration measurement ofDs→mn gives
f Ds

5(0.28460.03060.03060.016) GeV @17#. We com-
bine this with the predictions from lattice calculations@18#
for the ratio of decay constants, to obtain the value
f D50.24 GeV, to be used in the fit. TheH*Hp coupling
gets an upper bound from the upper limit on theD* lifetime
@19# plus theD*→Dp branching fraction@16#. It is also
possible to derive a lower limit ong from D*→Dg @20#.
These two combined give 0.3,g,0.7. We takeg50.50 for
some of our numerical estimates. Finally, the prediction for
B0→p2l1n will depend on theB meson decay constant
f B . Lacking experimental information on this quantity, we
make use of the scaling with heavy meson masses and, from
the value forf D , we obtainf B50.15 GeV. In any event the
values off D , f B, andg are external input parameters and not
model parameters. Eventually, they will be experimentally
determined.

We are now ready to fit Eq.~33! to D0→p2e1ne and fix
the value ofa1 /g. A recent CLEO measurement@21#, com-
bined with the value in@16# for D0→K2e1ne , gives

BCLEO(D0→p2e1ne)5(3.9061.5)31023. We do not
make use of the more precisely measuredD0→K2l1n mode
due to the presence of potentially large SU(3)-breaking ef-
fects, which we do not take into consideration. Thus, at this
point, the largest uncertainty in the model prediction comes
from the experimental uncertainty in theD0→p2e1ne
branching ratio. It is expected that this will be known to
within 5% in the near future@22#. With the present precision
we obtain

a1
g

5~21.0521.04
11.25!, ~34!

where the central value corresponds to the one in
B(D0→p2l1n), and the errors in Eq.~34! reflect its 1s
fluctuations. This, together with the choice of external pa-
rameters mentioned above, gives the form factor of Eq.~33!
shown in the solid line of Fig. 2 for theB0→p2l1n mode.
Also shown for comparison are the first term in the disper-
sion relations~2! ~dashed line!, corresponding to theB* pole
with g given by Eq.~12! ~chiral B* pole!, as well as the
prediction from the Bauer-Stech-Wirbel~BSW! model @23#
~dotted line!. The pion momentum distributions for these
cases are shown in Fig. 3. As expected, the chiralB* pole is
a good approximation to the full form factor up to pion mo-

FIG. 2. The form factorf1(t) as a function of the momentum
transfer t. The solid line is the CDM prediction forg50.5,
f D50.24 GeV,f B50.15 GeV, andBD→p53.931023. The dashed
line is theB* -pole prediction as normalized by CPTHH in Eq.~12!
~chiral pole! and corresponds to the first term in the dispersion
relation ~2!. The dotted line is the BSW model prediction of Ref.
@23#.

FIG. 3. The pion momentum distribution in units ofuVubu2 as
a function of the pion momentum. The caption is the same as in
Fig. 2.
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menta of;1 GeV. Above this momentum, large deviations
from theB* -pole behavior are observed. On the other hand,
with the choice of parameters made, the model interpolates
between the soft momentum region, predicted by CPTHH,
and the BSW calculation of the form factor att50. This
type of procedure was first suggested in@24#. After all, the
relativistic quark model calculation off1(0) in the BSW
model constitutes the most reliable prediction of quark mod-
els for charmless decays ofB mesons. Thus, one alternative
within our model to the need of knowing the external param-
eter, is to normalize the prediction inB→p ln to agree with
the prediction from@23# at t50. As seen in Fig. 3, choosing
the central values of all the external parameters provides us
with a good extrapolation. On the other hand, the Isgur-
Scora-Grinstein-Wise~ISGW2! model@25# is a modification
of the nonrelativistic quark model of@26# which has a harder
pion momentum spectrum than the original calculation in
order to give a better fit to the pion electromagnetic form
factor Fp(Q

2). Thus, the shape of the spectrum in the
ISGW2 model is a parametrization of the soft physics gov-
erningFp . The shapeof the resultingf1(t) resembles the
one obtained in our calculation and is yet another reason to
believe that the convergence relation captures the correct
physics at large values oft. In the future, the precise mea-
surement ofg, f D , and f B will provide an independent pre-
diction within our model and will help us understand the
relation between this simple dispersive approach and quark
models.

We now address the possible sources of corrections to this
calculation of the form factor. The widths of the resonances
are expected to be rather large. When finite width effects are
taken into account, the form factor is that given by Eq.~3!
keeping only the first two terms in the sum over resonances,
with R1,2 given by Eq.~5! and the convergence relation

g2c2a1I 12a2I 2.0, ~35!

whereI 1 and I 2 are defined by Eq.~29!. The widthsG1 and
G2 are, in principle, not fixed. However, they can be esti-
mated by calculating the partial widths to the ground state as
well as to orbital excitations. To leading order in CPTHH,
these interactions are governed by

L5(
i51

2

giTr@ ĒiA”Hg5#1(
i51

2

f iTr@ ĒiA” Sg5#, ~36!

whereH is defined in Eq.~6! and represents the ground state
doublet,Ei represents the two radial excitation doublets and
have the same form asH, and the (01,11) P-wave doublet
is given by@11#

S[
~11v” !

2
@S”g52S0* #, ~37!

with S0* and Sm the 01 and 11 fields, respectively. The
couplingsg1, g2, f 1, and f 2 are unknown. In order to obtain
a conservative estimate of the widths we take the values
g15g25 f 15 f 250.50. This choice will probably result in an
overestimate of the widths given it does not respect the con-
dition Eq. ~30!. Finally, we account for the the softening of
the vertices with momentum by the factor@10#

e2pp
2 /k2

1

~11pp
2 /mr

2!
, ~38!

wherek is a typical hadronic scale;1 GeV. This results in

G1
D.~0.25–0.35! GeV, G2

D.~0.40–0.50! GeV,

G1
B.~0.30–0.40! GeV, G2

B.~0.40–0.50! GeV. ~39!

The resulting prediction for the pion momentum distribution
in B0→p2l1n is given by the dashed line in Fig. 4, together
with the narrow width approximation result. The reason for
the effect being small lies on the fact that, when the widths
are incorporated into the fit of the model to the
D0→p2l1n branching ratio, the heavy mass-independent
parametera1 /g must be slightly modified to upset the width
effect. Thus, the same type of cancellation takes place in the
B→p ln case. The procedure to obtain a prediction for the
B→p transition is built in a way that is nearly independent
of the widths. The model dependence on the cutoffL in the
continuum integral is also marginally small. This is partly
because of the fitting to the charm meson decay data, but
mostly because the continuum plays a small role overall.

Finally, the mass independence ofai /g receives correc-
tions that go like powers ofLQCD/mc . Although these are
formally small, they could be numerically significant. Here,
to be consistent we only take the leading order in the heavy
mass expansion throughout the paper. It should be noted that
in order for the corrections toai /g to be large, the correc-
tions toai andg must be large and very different.

In Fig. 5 we show the pion momentum distribution for the
D0→p2l1n decay. The solid line represents the CDM pre-
diction, whereas the dashed line corresponds to the chiral
pole term and the dotted line is the BSW model. The CDM
prediction agrees well with both, the first term in the disper-
sion relations and the BSW model. The maximum pion mo-
mentum is not large enough to cause a disagreement, which
arises atpp*1 GeV and to which only the CDM model is
sensitive.

As stated above, our results depend on the external pa-
rametersg, f D , f B , andB

D→p, the D0→p l1n branching
ratio. In Table I we present the results for theB0→p2l1n
branching ratio in units ofuVubu2 for a particular choice of
these external parameters and for two sets of masses for the

FIG. 4. The pion momentum distribution in units ofuVubu2 as a
function of the pion momentum. The solid line is the CDM predic-
tion in the narrow width approximation. The dashed line is the
result taking into account finite widths, as given by Eq.~37!.

55 2823DISPERSIVE APPROACH TO SEMILEPTONIC FORM . . .



resonances, as well as for the finite width case. The set of
radial excitation masses we call Set 1 is the one presented in
the text, whereas Set 2 corresponds to a shift of1100 MeV
in the masses. As it can be seen, the result is rather stable
under this type of modifications. In Table II we show results
in the narrow width approximation forf D50.24 GeV and for
various values ofg and f B . As expected, the predicted
branching ratio is rather sensitive to the values of these two
external parameters, which hopefully will be determined in
the near future by experiment and/or lattice calculations.

Although the normalization of the model prediction for
B0→p2l1n depends on poorly known or still unmeasured
quantities, one characteristic feature of the model that
emerges independently of these is the shape of the momen-
tum distribution. As is seen in Figs. 3 and 4, at pion mo-
menta above'1 GeV the CDM model predicts that the dis-
tribution flattens out, as opposed to the characteristic almost-
linear growth of the pureB* -pole behavior. This feature
persists when varying the value ofa1 /g over the 1s interval
as well as when considering models with more resonances.
This reflects the fact that this is a model-independent feature
resulting from the application of the convergence relation
~25!, a direct consequence of the validity of PQCD at large
values of the momentum transfer outside the physical region.
In particular, the CDM prediction for the shape at maximum
recoil momentum (q250) is consistent with theshapeof the
perturbative form factor in the Brodsky-Lepage formalism.
Considering that the CDM shape is a result of imposing the

perturbative behavior in the asymptotic region, e.g., for large
2q2, this coincidence is interesting and deserves to be stud-
ied further. We expect the shape of the pion momentum dis-
tribution to be greatly constrained by the future CLEO data
@27#. This will allow one to discriminate between the CDM
approach and the pureB* -pole model. From Table I it can be
seen that the intrinsic uncertainty of the model is small. This
is due to the fact that each change in a model parameter leads
to a new value ofa1 /g to keep a good fit ofBD→p. This
procedure, built in the model, makes the predictions for
B0→p2l1n very stable. However, an extraction ofuVubu
from the CLEO data is not possible at this point given the
large uncertainties in external parameters, namely,g, f B ,
andBD→p.

V. CONCLUSIONS

We have presented an approach to semileptonic form fac-
tors that bridges the gap between low and high pion momen-
tum recoil. The dispersion relation described in Sec. II is a
suitable framework to identify the various contributions. Fur-
thermore, the imposition of model-independent theoretical
constraints leads to either complete calculations or an impor-
tant reduction in model dependence in calculating the vari-
ous pieces entering in these transitions.

First, chiral symmetry tells us that, forpp&1 GeV, the
first term in the dispersion relation~2! is a good approxima-
tion to f1(t), with g given by Eq. ~12!. The singularity
closest to this region of theH→p ln decay is the leading
term entering inf1(t) in CPTHH. The next contribution to
Eq. ~2! comes from theH (* )p continuum, which dominates
the Im@ f1(s)# from threshold~the branch point! up to a
scale where individual resonances start dominating. The
phase off1(s) in this region is computed in CPTHH, which
is a valid tool up to this energy scale. We conclude that the
resulting contribution is not the chief modification of the
H* -pole behavior.

On the other hand, the radial excitations dominate the
Im@ f1(s)# above the scaleL, and result in large deviations
from theH* -pole behavior at values ofpp larger than.1
GeV. Their contributions to the branch cut obey a definite
HQS scaling withmH . This imposes a constraint that allows
us to relate theB→p ln form factor to that entering in the
D→p ln mode forall values of the pion momentum. This
represents a considerable improvement over the simplemH
scaling of the form factors, which only allows a prediction of
theB mode up to pion momenta smaller than 1 GeV.

Finally, requiring that the form factor has the correct as-
ymptotic behavior as dictated by perturbative QCD, we de-

TABLE I. CDM prediction of the B(B0→p2l1n) for
g50.50, f D50.24 GeV, andf B50.15 GeV. Set 1 corresponds to
the spectrum of radial excitations of Eq.~30!, whereas Set 2 is
obtained by a common shift of1100 MeV. The first two results are
in the narrow width approximation. The third one includes the ef-
fects of the widths as discussed in Sec. IV, with widths given by Eq.
~37!.

B(B0→p2l1n)/uVubu2

NWA ~Set 1! 14.00
NWA ~Set 2! 14.40
FW ~Set 1! 13.40

TABLE II. CDM prediction of theB(B0→p2l1n) in the nar-
row width approximation, forf D50.24 GeV and with the Set 1 of
radial excitation masses. The values chosen forg cover the allowed
region. The results are shown for two typical values off B .

B(B0→p2l1n)/uVubu2

g fB50.15 GeV f B50.20 GeV

0.30 19.50 35.00
0.50 14.00 25.00
0.70 7.30 12.80

FIG. 5. The pion momentum distribution inD0→p2l1n as a
function of the pion momentum. The solid line is the CDM fit to
BD→p53.931023 for g50.5 andf D50.24 GeV. Also shown are
the chiral pole~dashed line! and the BSW prediction~dotted line!.
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rive the convergence relation or sum rule of Eq.~25!. This
translates into an additional constraint to be obeyed by the
couplings of the radial excitations, as seen in Eq.~27!.

The model presented in Sec. IV has two active resonances
in the branch cut, leaving only one free parameter, which is
fixed by fitting to the observedBD→p. The resulting form
factor, as seen for instance in Eq.~33! in the narrow width
approximation, presents several interesting features. First, it
respects the constraints from chiral symmetry, HQS, and per-
turbative QCD. Second, it is a realization of the intuitive idea
that theH* -pole behavior must be softened by an effective
suppression of the couplingg. In our model this suppression
is provided by the radial excitations in Eq.~33!. This can be
readily seen if we write the first term in Eq.~33! as

g

mH*
2

2t
SMi

22mH*
2

Mi
22t

D .
g

mH*
2

2t
S 1

11v•pp /D i
D , ~40!

whereD i[Mi2mH is the gap between the ground state and
the i th excitation, and provides the scale of suppression
which in this case is of about~0.8–1! GeV. Therefore, the
resonances in the cut give the scale for the effective suppres-
sion of theH* -pole behavior at large pion recoil. The model
presents a natural explanation for the softening ofg @24,28#.
It also provides us with a simple rule for the validity of pole
dominance in semileptonic transitions in general: nearest
pole dominance is a good approximation for values of the
hadronic recoil energy small compared to the gap between
the first excitations of the pole and the ground state. This is
the reason why pole dominance is a good approximation in
D semileptonic decays as well as inB→D (* )ln decays, but
not in B→p ln, where large portions of the rate come from
v•pp.D i .

As discussed in Sec. IV, the intrinsic uncertainty of the
model is small. This implies that a determination ofuVubu
from the measurement of theB→p ln branching ratio will
only be limited by the experimental precision with which
B(D→p ln), g, f D, and f B are determined.

The shape of the pion momentum distribution is a very
distinctive feature of the model, as can be appreciated in
Figs. 3 and 4. The comparison with theB* pole as normal-

ized in CPTHH confirms that pole dominance is a good ap-
proximation for pp&1 GeV. However, at larger values of
pp the model deviates largely from the characteristic
B* -pole distribution. For the same normalization at low
pp , the branching ratio is about a factor of 2 smaller than
that if the pureB* pole is assumed. The flat distribution at
large pion momentum is a consequence of the cancellations
that result when imposing perturbative QCD as the asymp-
totic behavior. Interestingly, this shape resembles the one
that is obtained by computing the form factor directly in
perturbative QCD for exclusive processes, characteristic of a
dipole falloff with t @14#, rather than a monopole falloff.
Although, as we argued in Sec. III C, the PQCD formalism is
not expected to give the right answer, this coincidence in
shape is an important point to bear in mind in an attempt to
fully match the nonperturbative and perturbative regimes.
Present and future CLEO measurements of the pion momen-
tum distribution will test this aspect of the model, indepen-
dently of the values of external parameters. Lattice calcula-
tions will also provide a powerful test once systematic errors
are better understood@29#.

Another important test of this approach and the natural
next step, is the prediction ofB→r ln. In this case the con-
straints from chiral symmetry are not so clear. However, the
HQS and perturbative QCD constraints are still present and
largely define the behavior of the form factors, as in the
B→p ln case. Understanding theB→r ln to B→p ln ratio
of branching ratios, as well as the polarization in the vector
mode will turn into a definite test of this approach and a
major step towards the extraction ofuVubu from exclusive
decays in the comingB factory era.
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