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A unique description avoiding confusion is presented for all flavor oscillation experiments in which particles
of a definite flavor are emitted from a localized source. The probability for finding a particle with the wrong
flavor must vanish at the position of the source for all times. This condition requires flavor-time and flavor-
energy factorizations which determine uniquely the flavor mixture observed at a detector in the oscillation
region, i.e., where the overlaps between the wave packets for different mass eigenstates are almost complete.
Oscillation periods calculated for ‘‘gedanken’’ time-measurement experiments are shown to give the correct
measured oscillation wavelength in space when multiplied by the group velocity. Examples of neutrino propa-
gation in a weak field and in a gravitational field are given. In these cases the relative phase is modified
differently for measurements in space and time. Energy-momentum~frequency-wave number! and space-time
descriptions are complementary, equally valid, and give the same results. The two identical phase shifts
obtained describe the same physics; adding them together to get a factor of 2 is double counting.
@S0556-2821~97!02105-X#

PACS number~s!: 14.60.Pq, 03.65.Sq

I. INTRODUCTION

Flavor oscillations are observed when a source creates a
particle which is a mixture of two or more mass eigenstates,
and a different mixture is observed in a detector. Such oscil-
lations have been observed in the neutral kaon and
B-meson systems. In neutrino experiments it is still unclear
whether the eigenstates indeed have different masses and
whether oscillations can be observed.

A flavor eigenstate with a sharp momentum is a mixture
of mass eigenstates with different energies. It will oscillate in
time with a well-defined oscillation period. A flavor eigen-
state with a sharp energy is a mixture of mass eigenstates
with different momenta. It will oscillate in space with a well-
defined oscillation wavelength. Many calculations describe
‘‘gedanken’’ experiments which begin with states having ei-
ther a sharp momentum or a sharp energy. They require
some recipe for applying the results to a real experiment
@1–5# which is always performed with wave packets having
neither sharp momenta nor sharp energies.

Considerable confusion has arisen in the description of
such experiments in quantum mechanics@1,2#, with ques-
tions arising about time dependence and production reactions
@3#, and defining precisely what is observed in an experiment
@4#. Combining features of both the space and time oscilla-
tions can lead to double counting. Further confusion and
controversy arise in the presence of external fields such as
gravitational fields@6–8#. The question of whether a weak
external field ‘‘speeds up’’ or ‘‘slows down’’ the oscillation
can have correct opposite answers, depending upon whether
the oscillation is observed in space or in time@6#, and on
how distances and times are defined. The relevant correct

answer depends upon the precise conditions of the real ex-
periment.

We resolve this confusion by noting and applying one
simple general feature of all practical experiments. The size
of the source is small in comparison with the oscillation
wavelength to be measured, and a unique well-defined flavor
mixture is emitted by the source, e.g., electron neutrinos in a
neutrino oscillation experiment. The particles emitted from
the source must leave the source before their flavor begins to
oscillate. They are, therefore, described by a wave packet
which satisfies a simple general boundary condition: the
probability amplitude for finding a particle having the wrong
flavor at the source must vanish at all times.

This boundary condition requires factorization of the fla-
vor and time dependence at the position of the source. Since
the energy dependence is the Fourier transform of the time
dependence, this factorization also implies that the flavor de-
pendence of the wave packet is independent of energy at the
position of the source. In a realistic oscillation experiment
the relative phase is important when the oscillation length is
of the same order as the distance between the source and the
detector. In that case this flavor-energy factorization holds
over the entire distance between the source and detector. The
boundary condition then determines the relative phase of
components in the wave function with different mass having
the same energy but different momenta. Thus, any flavor
oscillations observed as a function of the distance between
the source and the detector are described by considering only
the interference between a given set of states having the
same energy. All questions of coherence, relative phases of
components in the wave function with different energies, and
possible entanglements with other degrees of freedom are
thus avoided.
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Many formulations describe flavor oscillations in time
produced by interference between states with equal momenta
but different energies. These ‘‘gedanken’’ experiments have
flavor oscillations in time over all space including the source.
We show rigorously that the ratio of the wavelength of the
real spatial oscillation to the period of the gedanken time
oscillation is just the group velocity of the wave packet.

II. UNIVERSAL BOUNDARY CONDITION

We now show how the results of a flavor oscillation ex-
periment are completely determined by the propagation dy-
namics and the boundary condition that the probability of
observing a particle of the wrong flavor at the position of the
source at any time must vanish. We choose, for example, a
neutrino oscillation experiment with a source of neutrinos of
a given flavor, say electron neutrinos.1 The dimensions of the
source are sufficiently small in comparison with the distance
to the detector so that it can be considered a point source at
the origin. The neutrino wave function for this experiment
may be a very complicated wave packet, but a sufficient
condition for our analysis is to require it to describe a pure
ne source atx50, i.e., the probability of finding anm or
nt at x50 is zero.

We first consider propagation in free space, where the
masses and momentapi satisfy the usual condition

pi
25E22mi

2 . ~2.1!

We expand the neutrino wave function in energy eigenstates

c5E g~E!dEe2 iEt(
i51

3

cie
ipixun i&, ~2.2!

whereun i& denote the three neutrino mass eigenstates and the
coefficientsci are energy independent. Each energy eigen-
state has three terms, one for each mass eigenstate. In order
to avoid spurious flavor oscillations at the source the particu-
lar linear combination of these three terms required to de-
scribe this experiment must be a purene state atx50 for
each individual energy component. Thus, the coefficientsci
satisfy the conditions

(
i51

3

ci^n i unm&5(
i51

3

ci^n i unt&50 . ~2.3!

The momentum of each of the three components is deter-
mined by the energy and the neutrino masses. The propaga-
tion of this energy eigenstate, the relative phases of its three
mass components, and its flavor mixture at the detector are
completely determined by the energy-momentum kinematics
for the three mass eigenstates.

The exact form of the energy wave packet described by
the functiong(E) is irrelevant at this stage. The components
with different energies may be coherent or incoherent, and
they may be ‘‘entangled’’ with other degrees of freedom of

the system. For the case where a neutrino is produced to-
gether with an electron in a weak decay the functiong(E)
can also be a functiong(pW e ,E) of the electron momentum as
well as the neutrino energy. The neutrino degrees of freedom
observed at the detector will then be described by a density
matrix after the electron degrees of freedom have been prop-
erly integrated out, taking into account any measurements on
the electron. However, none of these considerations can in-
troduce a neutrino of the wrong flavor at the position of the
source.

Since the momentapi are energy dependent, the factor-
ization does not hold at finite distance. At very large values
of x the wave packet must separate into individual wave
packets with different masses traveling with different veloci-
ties @10,1#. However, for the conditions of a realistic oscilla-
tion experiment this separation has barely begun and the
overlap of the wave packets with different masses is essen-
tially 100%. Under these conditions, the flavor-energy fac-
torization introduced at the source is still an excellent ap-
proximation at the detector.

The flavor mixture at the detector given by substituting
the detector coordinate into Eq.~2.2! can be shown to be the
same for all the energy eigenstates except for completely
negligible small differences. For example, for the case of two
neutrinos with energyE and mass eigenstatesm1 andm2, the
relative phase of the two neutrino waves at a distancex is

df~x!5~p12p2!x5
~p1

22p2
2!

~p11p2!
x5

Dm2

~p11p2!
x, ~2.4!

whereDm2[m2
22m1

2. Since the neutrino mass difference is
very small compared to all neutrino momenta and energies,
we useum22m1u!p[(1/2)(p11p2). Thus, we can rewrite
Eq. ~2.4!, keeping terms only of first order inDm2,

df~x!5
Dm2

2p
x52S ]p

]~m2! D
E

Dm2x, ~2.5!

where the standard relativistic energy-momentum relation
~2.1! gives the change in energy or momentum with mass
when the other is fixed:

S 2E]E

]~m2! D
p

52S 2p]p

]~m2! D
E

51 . ~2.6!

Thus, we have a complete solution to the oscillation problem
and can give the neutrino flavor as a function of the distance
to the detector by examining the behavior of a single energy
eigenstate. The flavor-energy factorization enables the result
to be obtained without considering any interference effects
between different energy eigenstates. The only information
needed to predict the neutrino oscillations is the behavior of
a linear combination of the three mass eigenstates having the
same energy and different momenta. All effects of interfer-
ence or relative phase between components of the wave
function with different energies are time dependent and are
required to vanish at the source, where the flavor is time
independent. This time independence also holds at the detec-
tor as long as there is a significant overlap between the wave
packets for different mass states. The conditions for the va-
lidity of this overlap condition are discussed below.

1For simplicity, we do not consider possible effects of physics
beyond the standard model on neutrino interactions@9#. The gener-
alization to this case is straightforward.
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Neutrino states with the same energy but different mo-
menta are relevant rather than vice versa because the mea-
surement is in space, not in time, and flavor-time factoriza-
tion holds in a definite region in space.

III. RELATION BETWEEN REAL
AND GEDANKEN EXPERIMENTS

We now derive the relation between our result~2.4! which
comes from interference between states with the same energy
but different momenta and the standard treatments using
states with the same momentum but different energies@11#.
For the case of two neutrinos with momentump and mass
eigenstatesm1 andm2, the relative phase of the two neutrino
waves at a timet is

df~ t !5~E22E1!t5S ]E

]~m2! D
p

Dm2t

52S ]p

]~m2! D
E

Dm2
p

E
t, ~3.1!

where we have substituted Eq.~2.6!. This is equal to the
result ~2.5! if we make the commonly used substitution

x5
p

E
t5vt. ~3.2!

This is now easily generalized to include cases where exter-
nal fields can modify the relation~2.1!, but where the mass
eigenstates are not mixed. The extension to propagation in a
medium which mixes mass eigenstates, e.g., by the
Mikheyev-Smirnov-Wolfenstein~MSW! effect @12#, is, in
principle, the same, but more complicated in practice and not
considered here. The relation between energy, momentum,
and mass is described by an arbitrary dispersion relation

f ~E,p,m2!50 , ~3.3!

where the functionf can also be a slowly varying function of
the distancex. In that case, the momentump for fixed E is
also a slowly varying function ofx. We take this into ac-
count by expressing Eq.~2.5! as a differential equation, and
defining the velocityv by the conventional expression for
the group velocity:

]2f~x!

]x]~m2!
52S ]p

]~m2! D
E

5
1

v S ]E

]~m2! D
p

, v[S ]E

]p D
~m2!

.

~3.4!

Treatments describing real experiments measuring distances
and ‘‘gedanken’’ experiments measuring time are seen to be
rigorously equivalent if the group velocity~3.4! relates the
two results. Note that the group velocity and not the phase
velocity enters into this relation. The relations~3.4! are
trivial and obvious for the case of neutrinos propagating in
free space, and give Eq.~3.2!. However, it becomes non-
trivial for more complicated cases. Two such cases are pre-
sented in the following.

IV. DESCRIPTION IN TERMS OF TIME BEHAVIOR

The specific form of the wave packet given by the func-
tion g(E) in Eq. ~2.2! describes the Fourier transform of the
time behavior as seen atx50. This time behavior changes as
the packet moves from source to detector. Components cor-
responding to different mass eigenstates move with different
velocities. When the centers of the wave packets have moved
a distancexc they have separated by a distance:

dxc5
dv
v
x'

dp

p
x5

Dm2

2p2
x, dv[v12v2 , dp[p12p2 ,

~4.1!

wherev1, v2, andv denote the individual group velocities of
the two wave packets and an average group velocity, and we
have assumed thatmi

25Ei
22pi

2!pi
2 . This separation be-

tween the wave packet centers produces a phase displace-
ment between the waves at the detector,df(x)5pdxc ,
which is seen to give exactly the same phase shift as Eq.
~2.4!. The group velocity which determines the separation
between the wave packets is relevant and not the phase ve-
locity.

Further insight into the relation between different treat-
ments is seen by rewriting the phase shift equation~2.4! in
terms of the distancej[x2xc between the pointx and the
center of the wave packet as the sum of the relative phase
shift between the centers of the two wave packetsdf(xc) at
a fixed time and a ‘‘correction’’ to this phase shift because
the centers of the wave packets arrive at the detector at dif-
ferent times. To first order in the small quantitiesdx and
dp,

dxc1dj50,

df~x!5d~xp!5xdp1pdxc1pdj5df~xc!1pdj,
~4.2!

df~xc![xdp1pdxc5
Dm2

p
x, pdj52pdxc52

Dm2

2p
x.

~4.3!

Writing the phase shift in this form and neglecting the ‘‘cor-
rection’’ leads to an overestimate of the phase by a factor of
2, while adding the ‘‘correction’’ to the correct interpretation
~3.1! of the gedanken experiment can lead to double count-
ing.

We see here simply another description of the same phys-
ics used in the derivation of Eq.~2.4!, using the complemen-
tarity of energy-momentum and space-time formulations.
They are two ways of getting the same answer, not two dif-
ferent effects that must be added.

The same complementarity is seen in the interference be-
tween two classical wave packets moving with slightly dif-
ferent velocities. Even without using the quantum-
mechanical relations with energy and momentum there are
two possible descriptions, one using space and time variables
and other using frequency and wavelength. The two descrip-
tions are Fourier transforms of one another and give the same
result. Adding the two results is double counting.

We now apply this picture of two wave packets traveling
with slightly different velocities to examine the time-
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dependent probability amplitude for a neutrino wave seen at
the detector when it is emitted from the source in a flavor
eigenstate denoted byu f 1&. Thex dependences of the ampli-
tude and other parameters are suppressed since we only need
their values at the position of the detector:

uC~ t !&5eifo~ t !@cosuA~ t !um1&1sinuA~ t1t!eif~t!um2&],
~4.4!

where um1& and um2& denote the two mass eigenstates and
u is a mixing angle defining the flavor eigenstates denoted by
u f 1& and u f 2& in terms of the mass eigenstates,

u f 1&5cosuum1&1sinuum2&, u f 2&5sinuum1&2cosuum2&,
~4.5!

t~x!5
x

v2
2

x

v1
'

dv
v2

x'
Dm2

2p2v
x, ~4.6!

wheredv/v is always defined for components in the differ-
ent mass eigenstates having the same energy and the small
variation in dv/v over the wave packet is neglected. We
express each mass eigenstate wave function as the product of
a magnitudeA(x) and a phase. The universal boundary con-
dition requiresA to be the same for both mass eigenstates at
the source. The wave functions spread with distance and may
become much broader at the detector. However, the differ-
ence in shape between the two mass eigenstates is shown
below to be negligible at the detector under experimental
conditions where oscillations are observable. Their center
difference is described by the time displacementt.

The probability amplitudes for observing the flavor eigen-
states at the detector are

^ f 1uC~ t !&5eifo~ t !@cos2uA~ t !eif~t!1sin2uA~ t1t!#,
~4.7!

^ f 2uC~ t !&5eifo~ t !sinucosu@A~ t !eif~t!2A~ t1t!#.
~4.8!

The relative probabilities that flavorsf 1 and f 2 are observed
at the detector are

P~ f 1 ,t!5E dtu^ f 1uC~ t !&u2

512
sin2~2u!

2
@12O~t!cosf~t!#, ~4.9!

P~ f 2 ,t!5E dtu^ f 2uC~ t !&u25
sin2~2u!

2
@12O~t!cosf~t!#,

~4.10!

where the amplitude normalization and the overlap function
O(t) are given by

E dtuA~ t !u251, O~t![E dtA~ t1t!A~ t !.

~4.11!

When the overlap is complete,O(t)'1, the results~4.9! and
~4.10! reduce to the known result obtained by assuming
plane waves@11# and using

f~t!5pdxc5pvt'
Dm2

2p
x. ~4.12!

An explicit example for the calculation of the overlap func-
tion can be found in Ref.@13# where the shape functionA
was taken to be a Gaussian.

We now examine the spreading of the wave functions
while traveling from the source to the detector. The length of
the wave packet in spaceLw(0) in the vicinity of the source
must be sufficiently large to contain a large numberNw of
wavelengths| in order to define a phase. This then deter-
mines the spread of the momentumdpw and velocitydvw in
the wave packet

Lw~0!5Nw|5
Nw

p
,

dpw
p

5
dvw
v

5
1

Nw
. ~4.13!

The spreading of the wave packet in traveling from the
source to the pointx is

Lw~x!2Lw~0!

Lw~0!
5

dvw
v

x

Lw~0!
5

dpw
p

xp

Nw
5
xp

Nw
2 .

~4.14!

The difference in the spreading of the wave packets for the
different mass eigenstates is then seen to be negligible for
distancesx where the oscillation phase shiftdf(x) is of
order unity

]

]~m2! S Lw~x!2Lw~0!

Lw~0! DDm25
]p

]~m2!
Dm2

x

Nw
2 5

df~x!

Nw
2 .

~4.15!

The different mass eigenstates separate as a result of the
velocity differences. Eventually, the wave packet separates
into distinct packets, one for each mass, moving with differ-
ent velocities. The separation destroys the flavor-energy and
flavor-time factorizations and introduces a time dependence
in the flavor observable, in principle, at a given large dis-
tance. In practice, the detailed time dependence is not mea-
surable and only the attenuation of the oscillation expressed
by the overlap functionO(t) is seen. When the wave pack-
ets for different masses no longer overlap there is no longer
any coherence and there are no further oscillations@10#. The
result~2.4! applies for the case where the separation~4.1! is
small compared to the length in space of the wave packet,
i.e., when the eventual separation of the wave packets has
barely begun and can be neglected.

V. FUZZINESS IN TIME

The oscillations can be described either in space or in
time. But the distance between the source and the detector is
known in a realistic experiment to a much higher accuracy
than the time interval. Thus, the interval between the two
events of creation and detection has a sharp distance and a
fuzzy time in the laboratory system. A Lorentz transforma-
tion to a different frame necessarily mixes distance and time
and makes both fuzzy in a complicated manner. For this
reason one must be careful in interpreting any results ob-
tained in other frames than those in the laboratory system.
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The proper time interval between the two events is always
fuzzy.

The fuzziness of the time is an essential feature of the
experiment since the wave packet has a finite lengthLw in
space. The probability of observing the particle at the detec-
tor is spread over the time interval

2dt[
Lw
v

5
LwE

p
. ~5.1!

The proper time intervalt between emission and detection is
given by

t25~ t6dt !22x25x2Fm2

p2
1
Lw
2E2

4x2p2
6
LwE

2

xp2 G
5x2

m2

p2 F11
E2

m2 S Lw24x2 6
Lw
x D G . ~5.2!

This uncertainty in the proper time interval due to the finite
length of the wave packet cannot be neglected.

The waves describing the propagation of different mass
eigenstates can be coherent at the detector only if the overlap
functionO(t) given by Eq.~4.11! is nearly unity. Thus, the
time interval between creation and detection is not precisely
determined and is subject to quantum-mechanical fluctua-
tions. The lengthLw of the wave packet created at the source
must be sufficiently long to prevent the determination of its
velocity by a time measurement with the precision needed to
identify the mass eigenstate.

The small dimensions of the source introduce a momen-
tum uncertainty essential for the coherence of the waves of
different mass eigenstates. The wave packet describing the
experiment must necessarily contain components from dif-
ferent mass eigenstates with the same energy but different
momenta.

Conventional experiments measure distances to a preci-
sion with an error tiny in comparison with the oscillation
wavelength to be measured. This is easily achieved in the
laboratory. In a ‘‘gedanken’’ experiment where oscillations
in time are measured, the experimental apparatus must mea-
sure times to a precision with an error tiny in comparison
with the oscillation period to be measured. One might envi-
sion an experiment which measures the time the oscillating
particle is created by observing another particle emitted at
the same time, e.g., an electron emitted in ab decay together
with the neutrino whose oscillation is observed. But if both
the time and position of the created particle are measured
with sufficient precision a very sharp wave packet is created
and the mass eigenstates moving with different velocities
quickly separate, the overlap functionO(t) approaches zero,
and there is no coherence and no oscillation.

In reality, when bothx and t are measured there are fluc-
tuations in their values. Usingv5x/t, the fluctuations inx
andt must be large enough to make the velocity fuzzy. Then,
in order to have oscillation we need the fuzziness in velocity
to be much larger than the difference between the two group
velocities,dvw@dv. This is the case in a real experiment.
Typical values are@14# E;10 MeV,x;102 m, t;1026 sec,
and the relevant masses that can be probed areDm2;1eV2.
Then, dv;10212. Sincedvw'dx/x1dt/t we see that the

accuracies needed to measure the separate velocities are
dx;10210 m and dt;10218 sec, far from the ability of
present technology. This calculation can also be performed
for all terrestrial experiments, finding that the present tech-
nology is not yet sufficiently precise to destroy coherence
and prevent oscillations from being observed.

VI. EXAMPLES

The relations~3.4! are trivial and obvious for the case of
neutrinos propagating in free space. However, it becomes
nontrivial for more complicated cases. In this section we
present two nontrivial examples: Neutrino in a~flavor-blind!
weak field and neutrino in a gravitational field. These are
only examples, in real life the effects we discuss tend to be
very small and, consequently, negligible. Yet, these ex-
amples demonstrate how to get the phase shift, and how to
move from the description in terms of time to those of space
using the group velocity.

In these examples we calculate the phase difference for a
known beam with known energy. We consider a source and
a detector in vacuum and investigate the effect of inserting a
field ~either weak or gravitational! between them.

A. Neutrino in a weak field

We consider neutrino travel in a flavor-blind medium.
The medium changes the dispersion relation@12# by intro-
ducing the potentialV describing the scattering in the me-
dium

~E1V!22p25m2. ~6.1!

For simplicity, we assume thatV is independent ofx but can
depend uponE. The phase difference in space and in time
are then given by

df~x!52S ]p

]~m2! D
E

Dm2x5
Dm2

2p
x'

Dm2

2po
~12e!x,

~6.2!

df~ t !52S ]E

]~m2! D
p

Dm2t5
Dm2

2~E1V!S 11
dV

dED t

'
Dm2

2E

12e

11e8
t, ~6.3!

wherep'E1V and po'E are the momentum in the me-
dium and in free space, respectively. We work to first order
in e ande8 defined as

e[
V

E
, e8[

dV

dE
. ~6.4!

We learn that the medium effect isdifferent for the two
cases

df~x!

dfo~x!
512e,

df~ t !

dfo~ t !
5

12e

11e8
, ~6.5!
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wheredfo(x) anddfo(t) denote the values, respectively, of
df(x) anddf(t) for the case whereV50. To move from
one description to the other we need the group velocity

v5S ]E

]p D
~m2!

5
p

~E1V!S 11
dV

dED 5
1

11e8
. ~6.6!

Using t→x/v5x(11e8) in Eq. ~6.3! we get Eq.~6.2!. We
see that by using the correct velocity one can relate the two
descriptions and the results are the same.

Note that our example is not realistic. In the standard
model the neutral current interactions~that are flavor blind!
are energy independent. Then,e850 and the group velocity
is not changed from its vacuum value.

This example has a simple optical analogue. Consider an
optical interference experiment~e.g., a two-slit experiment!
with a glass inserted in the light path. A measurement in
space will gain a larger phase shift due to the travel in the
medium. The light travels slower in the medium and when it
reaches the detector the optical path is longer.

B. Neutrino in a gravitation field

We consider neutrino travel in a gravitational field. This
has recently been treated in Refs.@6–8#. We compare two
cases: one when the neutrino travel is in free space, a second
when a gravitational field is inserted in the path. We assume
that the gravitational field is sufficiently small to leave the
~Newtonian! distance unaffected by its insertion. One ex-
ample is the possible effect of the moon on solar neutrinos
when the moon is close to solar eclipse. Then, we shall see
that the gravitational field of the moon affects the phase.

We assume:~1! The semiclassical limit;~2! The weak
field limit; ~3! Nearly Newtonian gravitational fields. The
first assumption@15# says that gravity is not quantized and its
effect is introduced by a nonflat space-time metricgmn

Þhmn , wherehmn5diag(1,21,21,21) is the flat metric.
The second assumption@16# says that we can use the linear
approximation. Then, gravity is treated as an external field
on a flat space-time and we expand

gmn5hmn1hmn , ~6.7!

with uhmnu!1. The third assumption@16# says that the gravi-
tational field originates from a massive static source. Then,

hmm52F~xW !, hmn50 for mÞn, ~6.8!

where F(xW ) is the Newtonian potential @e.g.,
F(xW )52GM/uxW u for a spherically symmetric object with
massM #. We emphasize thath005hii but h0052h i i . This
sign difference turns out to be important.

The dispersion relation in a curved space-time is@16#

gmnp
mpn5m2, ~6.9!

wherepm5mdxm/ds is the local momentum, andds is the
distance element of general relativity:ds25gmndx

mdxn. We
consider neutrinos that travel in space-time fromA to B. The
wave function is then@15#

c5exp~ if!, f5E
A

B

gmnp
mdxn. ~6.10!

The phase difference in space and in time are then given by

df~x!5E
A

B

g11~p22p1!dx5E
A

BS g11]p]~m2! D
E

Dm2dx,

~6.11!

df~ t !5E
A

B

g00~E22E1!dt5E
A

BS g00]E]~m2! D
p

Dm2dt.

~6.12!

The velocity is then obtained by generalizing Eq.~3.4!:

v52S g00]Eg11]p
D

~m2!

. ~6.13!

Applying this to the dispersion relation we get

df~x!5E
A

BDm2

2p
dx'E

A

B

@12F~xW !#
Dm2

2po
dx, ~6.14!

df~ t !5E
A

BDm2

2E
dt'E

A

B

@11F~xW !#
Dm2

2Eo
dt, ~6.15!

where po
m5mdxm/dso is the usual momentum of special

relativity ~global momentum! @15#. We work to first order in
F(xW ) and we use@16,15#

p'po@11F~xW !#, E'Eo@12F~xW !#. ~6.16!

Our result~6.14! is the one obtained in@6#.
We learn that the gravitational effect isdifferent for the

two cases

df~x!

dfo~x!
5

lo

l
512e,

df~ t !

dfo~ t !
5

to
t

511e, ~6.17!

wherel andlo denote the wavelength of the oscillation in
space for the case with and without the gravitational field,
respectively, and similarlyt andto denote the period of the
oscillation in time for the two cases and we define

e[E
A

B

F~xW !
Dm2

2po
dx'E

A

B

F„xW~ t !…
Dm2

2Eo
dt. ~6.18!

Note that the effect of the gravitational field on the oscilla-
tion wavelengthl in space is exactly opposite to the effect
on the oscillation periodt in time. In order to move from one
description to the other we need the velocity. From Eq.
~6.13! we get

v5
p

E
'112F~xW !, ~6.19!

which is the known result of the speed of light in a gravita-
tional field @16#. Using t→x/v'x(122F(xW )) in Eq. ~6.15!
we get Eq.~6.14!.
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It is important to understand the meaning of this shift. We
work in the example given before, and examine the effect of
moon gravity on solar neutrinos. Since we assume that the
Earth-Sun distance is not changed the effect can be viewed in
two equivalent ways. One is the point of view of the linear-
ized theory of gravity@16#. Then, space-time is flat and grav-
ity is treated as a tensor field. In this approach, taken by@6#,
the neutrino travels the same distance with and without the
moon, but gravity slows down the neutrino, thus it has a
longer ‘‘optical’’ path and a larger phase is acquired. The
second point of view is to work within the framework of
general relativity. Then gravity is treated by changing the
metric into curved space-time. In this approach, taken by@7#,
the neutrino always travels in free space. However, when the
moon comes close to the Sun-Earth line the distance the
neutrino has to travel is larger. The effect of gravity is then
moved into the boundary of the integral, and we see that a
larger phase is acquired. Of course, if one compares two
experimental setups with and without gravity with the same
curved distance in both cases there is no effect@7#.

The analogue of the two points of view is the famous
‘‘bending of light.’’ When light travels near the Sun it is
bent. This can be understood in two equivalent ways. Either
that gravity acts on the light and curves its path, or that the
space near the sun is curved. With either point of view, the
final result is the same, we observe the bending of the light.

It is instructive to see how the effect can be obtained from
the description in terms of time behavior. Then, we just need
the distance between the centers of the wave packets~4.1!, or
equivalently, the time between their arrivals. This time dif-
ference can be calculated by taking two classical relativistic
particles with the same energy and different masses leaving
the source. Then, the time difference of their arrival can be
calculated. The result shows the gravitational effect. The
time delay is sensitive to the presence of the gravitational
field in the path.

Finally, we comment about the interplay between the
gravitational and the MSW effects. In order for the gravita-
tional effect to be appreciable a very strong gravitational
field must be present. This may be the case in supernova. In
this case there is also a weak field originating from the mat-
ter in the star, or from the neutrinos themselves@12#. In
general, this tends to significantly reduce the mixing angles
@17# very near to the value zero in which the flavor eigenstate
ne is also a mass eigenstate. In the adiabatic limit a neutrino
created in matter in a mass eigenstate remains a single mass
eigenstate throughout its career. Its flavor can flip in a man-
ner that explains the solar neutrino puzzle@11#, but there are
no oscillations and the gravitational phase cannot be ob-
served. Of course, gravity effects can be important beyond
the effect on the coherent phase. We do not study such ef-
fects here.

VII. CONCLUSIONS

The complete description of a flavor oscillation experi-
ment requires knowledge of the density matrix for the flavor-
mixed state. This depends upon the production mechanism
and possible entanglements with other degrees of freedom as
well as on other dynamical factors which are often ignored.
A proton in a fixed-target experiment is not really free but

bound by some kind of effective potential with characteristic
lattice energies such as Debye temperatures, which are of the
order of tens of millivolts. This energy scale is no longer
negligible in comparison with mass differences between fla-
vor eigenstates@18#. The bound proton is not strictly on shell
and has potential as well as kinetic energy. Arguments of
Galilean and Lorentz invariance and separation of center-of-
mass motion may not hold for the kinematics of the produc-
tion process if the degrees of freedom producing the binding
are neglected.

In this paper all these complications are avoided and a
unique prescription has been given for the relative phases of
the contributions from different mass eigenstates to a flavor
oscillation experiment with a localized source having a well-
defined flavor. The boundary condition that the probability of
observing a particle of the wrong flavor at the source posi-
tion must vanish for all times requires a factorization in fla-
vor and energy of the wave function at the position of the
source. This uniquely determines the wavelength of the os-
cillations observed at the detector as long as the overlap be-
tween wave packets for different mass eigenstates is main-
tained at the position of the detector.

Whether this wave-packet overlap is sufficiently close to
100% at the detector depends upon other parameters in the
experiment which determine the detailed time behavior of
the wave packet. If this overlap is appreciable but no longer
nearly complete, the time behavior of the flavor mixture at
the detector can be extremely complicated with leading and
trailing edges of the wave packet being pure mass eigenstates
and the intermediate region having a changing flavor mixture
depending upon the relative magnitudes of the contributing
mass eigenstates as well as the relative phases. This detailed
behavior is not observable in practice; only the time integral
is measured.

A unique prescription has been given for interpreting re-
sults of calculations for ‘‘gedanken’’ experiments which
measure oscillations in time for components in the wave
packets having the same momentum but different energies.
The period of oscillation in time is related to the wavelength
of oscillation in space by the group velocity of the waves.

Results are simple in the laboratory system where the po-
sitions of the source and detector are sharp in comparison
with all other relevant distances, and times and proper times
must be fuzzy to enable coherent oscillations to be observed.

Two nontrivial examples were given, neutrinos propagat-
ing in weak fields and in gravitational fields. In both cases
the relative phase is modified by the presence of the field.
The phase shift is different for a real experiment with mea-
surements in space, and for ‘‘gedanken’’ experiments done
in time. We show how the group velocity relates the two
descriptions.
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