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The strange-quark vector current form factors of the nucleon are analyzed within the framework of disper-
sion relations. Particular attention is paid to contributions made byKK̄ intermediate states to the form factor
spectral functions. It is shown that, when theKK̄→NN̄ amplitude is evaluated in the Born approximation, the
KK̄ contributions are identical to those arising from a one-loop calculation and entail a serious violation of
unitarity. The mean square strangeness radius and magnetic moment are evaluated by imposing unitarity
bounds on the kaon-nucleon partial wave amplitudes. The impact of including the kaon’s strangeness vector
current form factor in the dispersion integrals is also evaluated.@S0556-2821~97!05605-1#

PACS number~s!: 14.20.Dh, 11.55.Fv, 12.38.Lg, 14.65.Bt

I. INTRODUCTION

The low-energy structure of the nucleon’sss̄ sea has be-
come a topic of serious study in the hadron structure com-
munity @1#. While deep inelastic scattering~DIS! has pro-
vided information about the light-cone momentum
distribution of the strange sea@2#, little is known about the
corresponding spatial and spin distributions or about the role
played by the sea in the nucleon’s response to a low-energy
probe. In an effort to study some of these low-energy char-
acteristics of the sea, several semileptonic scattering experi-
ments are underway and/or planned at MIT-Bates, TJNAF
~formerly CEBAF!, MAMI, and LANL. Parity-violating ex-
periments using polarized electrons@3–8# are aimed primar-
ily at probing nucleon matrix elements of the strange-quark
vector current, which is parametrized by the strangeness
electric and magnetic form factorsGE

(s) andGM
(s) , respec-

tively. Additionally, one expects the neutrino scattering data
from LANL @9# to yield new limits on the strange-quark
axial vector matrix element, characterized by the axial form
factorGA

(s) .
The corresponding problem for hadron structure theory is

to compute these form factors and their leading moments,
which depend crucially on nonperturbative aspects of QCD,
in a credible manner. To this end, one may choose from a
number of different strategies, each with its particular merits
and limitations.

~a! Lattice QCD. To date, lattice calculations of the
strangeness axial chargeDs5GA

(s)(0) @10# and strangeness
magnetic momentms5GM

(s)(0) @11# have been carried out in
the quenched approximation. The results forDs are essen-
tially consistent with the experimental value extracted from
polarized DIS measurements@12#. The first lattice results for
ms , however, differ in sign from the preliminary experimen-
tal value obtained by the SAMPLE Collaboration@13#. With

the future development of more sophisticated lattice meth-
ods, one would anticipate better agreement between calcu-
lated and experimental values for these strangeness mo-
ments. The primary attraction of lattice calculations is that
they provide the most direct, first principles, nonperturbative
computations using QCD. By themselves, however, they
may not provide as much insight as one would like into the
mechanisms which govern the sign and scale of the strange-
ness form factors. Moreover, obtaining results for the non-
leadingQ2 dependence of the form factors may prove to be
a formidable task.

~b! Effective theory. A complementary approach is to
work with effective hadronic degrees of freedom rather than
the quark and gluons of QCD, incorporating the underlying
symmetries of the QCD Lagrangian into the effective had-
ronic Lagrangian. This approach, in the guise of chiral per-
turbation theory~CHPT!, has seen considerable success in a
variety of contexts@14#. A particular advantage of CHPT is
its reliance on chiral symmetry and existing data, rather than
on microscopic calculations, to determine quantities~chiral
counterterms! whose values reflect the impact of short-
distance hadronic interactions. Moreover, CHPT provides
one with a useful language in which to describe the strong
interaction dynamics responsible for the magnitude and sign
of a particular quantity. In the case of the strangeness vector
current form factors, however, CHPT cannot be used to
make a model-independent prediction, as discussed in detail
in Ref. @15#.

~c! Hadronic models. A variety of model calculations for
the strangeness form factors have been carried out@16–26#,
among which there appears little consensus as to the magni-
tude or sign of the different strangeness moments. Some
models start from the effective theory framework and invoke
additional model assumptions in order to arrive at predic-
tions. Others, such as the cloudy bag model or nonrelativistic
quark model, attempt to provide a more microscopic descrip-
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tion of the form factors. The appeal of models is that they
attempt to incorporate one’s intuition about the physics
which drives a particular aspect of hadron structure. Never-
theless, the correspondence between any model and the dy-
namics of QCD is open to debate. In the case of nucleon
strangeness, this situation is reflected in the wide range of
model predictions for strangeness form factors. If one wishes
to understand the spin and spatial distribution of thess̄sea in
terms of QCD, then models would appear to have a limited
usefulness.

~d! Dispersion relations. In the present paper, we turn to
this approach to try to derive insight into the strangeness
form factors. The use of dispersion relations~DR’s! has sev-
eral merits, some of which are similar to those of effective
theory. Like CHPT, DR’s employ effective hadronic degrees
of freedom rather than the quarks and gluons of QCD. Simi-
larly, DR’s offer a rigorous and, in principle, model-
independent framework in which to understand the hadronic
mechanisms which govern form factors. Both approaches at-
tempt to relate experimental hadronic amplitudes to the form
factors of interest, relying in the one case on chiral symmetry
~CHPT! and in the other on analyticity and causality~DR’s!.
Although DR’s and CHPT are not QCD in a microscopic
sense, they nevertheless embody QCD insofar as it is respon-
sible for the experimental strong interaction observables used
as input for a calculation.

For the present purposes, DR’s offer additional advan-
tages not afforded by CHPT. First, ultraviolet divergences
can be eliminated using unitarity bounds rather than subtrac-
tion constants. In the case of the strangeness form factors, it
is one’s inability to determine the finite part of these coun-
terterms which renders CHPT unpredictive@15#. Second,
DR’s can be used to convert a given body of experimental
data into predictions for the behavior of form factors over a
range of momentum transfer. This situation contrasts with
that of CHPT, which involves an expansion in powers of the
external momentum and requires the determination of addi-
tional counterterms at each order in the expansion. The limi-
tations of DR’s, as an effective hadronic framework, are es-
sentially set by the availability of sufficient data on strong
and electroweak amplitudes. In the absence of such available
data, one is forced, within this framework, to resort to ancil-
lary approximations.

The application of DR’s to the study of nucleon form
factors is not new. Well before the discovery of QCD, DR’s
were used to analyze the nucleon electromagnetic~EM! form
factors@27–29#. In addition to shedding light on the nucleon
EM structure, dispersion relation analyses have allowed one
to extract the couplings of various mesons to the nucleon
@30,31#. More recently, DR’s have been employed to make
predictions for the nucleon’s strange-quark vector current
form factors@16,17,15#. These predictions have generally in-
voked the assumption of vector meson dominance, which,
based on experience with the nucleon isovector EM form
factor as well as on general grounds, is debatable. In prin-
ciple, any nucleon form factor receives both resonant and
nonresonant~continuum! contributions. In the case of the
nucleon isovector EM charge radius, for example, the con-
tinuum contribution is non-negligible. While one can make a
case for resonance dominance in the case of the nucleon
mean square strangeness radius based on a model-dependent

extension of the effective theory approach@15#, the logic
rests on untested assumptions about the continuum contribu-
tions. Indeed, arriving at a rigorous, consistent, and model-
independent analysis which incorporates both continuum and
resonance contributions to the strangeness form factors re-
mains an open problem for effective hadronic approaches.

With this problem in mind, we focus on the behavior of
the multimeson continuum, emphasizing in particular the
two-kaon contribution. The continuum contribution has been
studied previously, with both CHPT and models, using one-
loop kaon-strange baryon (B) calculations@15,18–21,25#. In
the t channel, such loops represent approximations to the
KK̄ andBB̄ intermediate state contributions. Although the
lightest intermediate state which can contribute to the form
factors contains three pions, theKB loop calculations have
been justified under the ansatz that hadronic states having
valence s and s̄ quarks—the so-called ‘‘kaon cloud’’—
should give the dominant contribution. Using theKK̄ inter-
mediate state as an illustrative example, we show how one-
loop estimates of the continuum contribution can entail a
serious violation of unitarity and evaluate the bounds on the
continuum contribution which result from the imposition of
unitarity. Our results indicate that effects which go beyond
one-loop order—in effect, kaon rescattering corrections—
cannot be neglected. We also analyze the impact on predic-
tions for the nucleon strangeness form factors made by one’s
choice for the kaon strangeness form factorFK

(s) . We find
that this impact is nontrivial. Consequently, sinceFK

(s) has
not been measured, one’s choice for its form necessarily in-
troduces a certain degree of model dependence into the dis-
persion relation analysis. Finally, we note that the conclu-
sions of the present study are provisional. We are unable to
make any rigorous statements about contributions to the dis-
persion integrals in the kinematic regime where unitarity
does not apply. In a subsequent paper we will report on our
attempt to estimate these contributions by drawing upon ex-
isting kaon-nucleon scattering data. Similarly, we postpone
to a future discussion any treatment of other multimeson
continuum and baryon intermediate state contributions. In
essence, our study follows the spirit of the analysis of Ref.
@27#. In that work, the impact of unitarity constraints and
inclusion of a pseudoscalar electromagnetic form factor were
treated for thepp contribution to the nucleon isovector EM
form factors.

Our discussion of these points is organized as follows. In
Sec. II, we review the dispersion relation formalism as it
applies to nucleon form factors. We also specify this formal-
ism to the two-kaon continuum case, introducing our own
version of theKK̄ partial waves to make unitarity constraints
transparent. In Sec. III, we compare the two-kaon contribu-
tion in the Born approximation, which is equivalent to a
one-loop calculation, with a calculation which incorporates
the unitarity bounds andFK

(s) . In Sec. IV we discuss our
results for the mean-square strangeness radius and magnetic
moment. Section V summarizes our conclusions and is fol-
lowed by an appendix.

II. FORMALISM

In writing down dispersion relations for the nucleon
strangeness form factors, we find it useful to follow the treat-
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ments of Drell and Zachariasen@32# and Federbush, Gold-
berger, and Treiman@27#. We also choose to work with the
standard Dirac and Pauli form factorsF1

(s) andF2
(s) , respec-

tively, defined as

^N~p8!us̄gmsuN~p!&5Ū~p8!FF1
~s!~ t !gm

1
iF 2

~s!~ t !

2mN
smnQ

nGU~p!, ~1!

whereU(p) is a spinor associated with the nucleon state
uN(p)&. Since the nucleon has no net strangeness, one has
F1
(s)(0)50. The form factorsFi

(s) ( i51,2) are related to the
Sachs electric and magnetic form factors@33# via

GE
~s!5F1

~s!2tF2
~s! , ~2!

GM
~s!5F1

~s!1F2
~s! ,

wheret5Q25(p82p)2, t52t/4mN
2 andp (p8) is the ini-

tial ~final! nucleon four-momentum. We are particularly in-
terested in the leading moments associated with theFi

(s) : the
mean square strangeness radius and magnetic moment, de-
fined as

rD
s 5

dF1
~s!

dt
U

t50

, ~3!

ms5F2
~s!~0!. ~4!

We have chosen a dimensionless version of the mean-square
radius, which is related to the corresponding dimensionful
quantity as

^r s
2&56

dF1
~s!

dQ2 U
Q250

52
3

2
mN

22rD
s . ~5!

In order to obtain a dispersion relation for one of the
Fi
(s)(t) ( i51,2), wheret is real, one must assume that there

exists an analytic continuationFi
(s)(z) which approaches

Fi
(s)(t) asz→t1 i e, which is analytic in the upper half plane

and which has a branch cut on the real axis fort greater than
some thresholdt0. In addition, one must assume that

Fi
~s!~z!

zn
→0, ~6!

as z→`, anywhere in the upper half plane for some non-
negative integern. In this case, a straightforward application
of Cauchy’s theorem~using a circular contour excluding the
branch cut! leads to the relations

Fi
~s!~ t !5

1

pEt0
` ImFi

~s!~ t8!

t82t2 i e
dt8 ~7!

in the case ofn50,

Fi
~s!~ t !2Fi

~s!~0!5
t

pEt0
` ImFi

~s!~ t8!

t8~ t82t2 i e!
~8!

in the case ofn51, and so forth.
Employing as large a value ofn as possible is desirable in

order to improve the convergence of the function
Fi
(s)(z)/zn on the circular part of the contour at infinity. One

has no way of knowing,a priori, which is the minimum
value ofn needed to guarantee that this contribution to the
contour integral vanishes. The appropriate choice therefore
remains one of the inherent uncertainties in the dispersion
relation approach. It is conventional to use a subtracted dis-
persion relation@Eq. ~8!# for the Dirac form factor (i51),
since one knows on general grounds that the value of the
form factor at t50 is just the charge associated with the
corresponding current. In the case of^N(p8)us̄gmsuN(p)&,
one hasF1

(s)(0)50 since the nucleon carries no net strange-
ness. In the case of the magnetic form factor, one would like
to predict its value att50 rather than using it as a subtrac-
tion constant. Hence, we use the unsubtracted dispersion re-
lation @Eq. ~7!# for F2

(s)(t).
The essential physics content entering the DR’s enters

through the spectral functions ImFi
(s)(t). To analyze these

spectral functions, we follow Refs.@27,32# and work in the
NN̄ production channel, where the corresponding current
matrix element is

^N~p!;N̄~ p̄!us̄gmsu0&5Ū~p!FF1
~s!~ t !gm

1
iF 2

~s!~ t !

2mN
smnP

nGV~ p̄!, ~9!

with Pm5( p̄1p)m, t5P2, andV( p̄) being an antinucleon
spinor. In order to obtain the imaginary parts of theFi

(s) , we
reduce the antinucleon using the LSZ formalism and take the
absorptive part. As in Refs.@27,32# the resulting contribution
to the spectral functions arises from

Im^N~p!;N̄~ p̄!us̄gmsu0&

→
p

AZ
~2p!3/2N(

n
^N~p!uJ̄N~0!un&

3^nus̄gmsu0&V~ p̄!d4~p1 p̄2pn!, ~10!

whereN is a nucleon spinor normalization factor,Z is the
nucleon’s wave function renormalization constant, and
J̄N(x)5JN

† (x)g0 with JN(x) being a nucleon source satisfy-
ing

~ i ]/ 2mN!ĉN~x!5JN~x! ~11!

and with ĉN being the nucleon field. The content of the
spectral function, as expressed in Eq.~10!, has a useful dia-
grammatic representation as shown in Fig. 1.

The statesun& of momentumpn appearing in the sum are
stable~with respect to the strong interaction!. Consequently,
no resonances appear in the sum, only asymptotic final
states. In addition, the statesun& must carry the same quan-
tum numbers as the currents̄gms: I G(JPC)502(122).
Moreover, owing to the presence of the sourceJN(0), they
can have no net baryon number. In the purely mesonic sec-
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tor, the lightest such states are 3p, 5p, 7p, 2K, 9p,
KKp, . . . . In the case of the baryons, one hasNN̄, LL̄,
. . . . One may also consider states containing both mesons
and baryons, such asNN̄pp. From this enumeration of
states and thed function appearing in Eq.~10!, one sees that
the first cut in the dispersion integral appears at the 3p pro-
duction thresholdt059mp

2 . Higher-mass intermediate states
generate additional cuts in the complex plane.

Many of the predictions for theFi
(s) reported in the litera-

ture are based on approximations to the spectral functions
appearing in Eqs.~7! and ~8!. In the work of Ref.@16#, and
updated in Ref.@17#, a vector meson dominance approxima-
tion was employed, which amounts to assuming that one
may write the spectral function as

ImFi
~s!~ t !5p(

j
ajd~ t2mj

2!, ~12!

where j denotes a particular vector meson resonance~e.g.,
v, f) and where the sum runs over a finite number of reso-
nances. In terms of the formalism of Sec. II, this approxima-
tion omits any explicit mention of multimeson intermediate
states un& and assumes that collectively the products
^N(p)uJ̄N(0)un&^nus̄gmsu0&V( p̄) are strongly peaked in the
regions near one or more vector meson masses.

In contrast, a variety of hadronic effective theory and
model calculations have focused on contributions from the
two-kaon intermediate state@15,18–21,25# even though it is
not the lightest state appearing in the sum. The reason is
based primarily on an intuition that kaons, which contain
valences or s̄ quarks, ought to give larger contributions to
the matrix element̂nus̄gmsu0& than a purely pionic state in
which there are no valences or s̄ quarks. The validity of this
ansatz is open to question for at least two reasons. First, the
3p threshold is significantly below theKK̄ threshold. Con-
sequently, the 3p contribution will be weighted more
strongly in the dispersion integral than theKK̄ contribution
@owing to the denominators in Eqs.~7! and ~8!#. Second,
three pions can resonate into a state having the same quan-

tum numbers as thef ~nearly puress̄) and, thereby, generate
a nontrival contribution to the current matrix element@34#.
Indeed, thef has roughly a 15% branch to multipion final
states~largely via arp resonance!. Although no resonances
appear explicitly in the sum over states in Eq.~10!, the im-
pact of resonances nevertheless enters via the current
matrix element^nus̄gmsu0& and NN̄ production amplitude
^N(p)uJ̄N(0)un&V( p̄). It is noteworthy that the kaon cloud
predictions forrD

s are typically smaller in magnitude than
the vector meson dominance predictions and have the oppo-
site sign.

We leave the relative size of the multipion and two-kaon
contributions to a future study, and focus in the present paper
on the two-kaon state. In doing so, our goal is to indicate
how one-loop effective theory and model calculations which
assume two-kaon dominance violate unitarity. In addition,
we seek to illustrate the impacts onFi

(s) predictions made by
~a! the imposition of unitarity and~b! the inclusion of a form
factor in the matrix element^nus̄gmsu0&. To that end, we first
decompose theKK̄→NN̄ amplitude into partial waves and
relate them to the form factor spectral functions. We subse-
quently discuss possible parametrizations of the kaon
strangeness form factor.

A. Spectral functions, partial waves, and unitarity

By expanding theKK̄→NN̄ amplitude in partial waves,
we are able to identify the pieces which contribute to the
absorptive part of the nucleon current matrix element@Eq.
~10!# and impose the constraints of unitarity in a straightfor-
ward manner. In doing so, it is convenient to follow the
helicity amplitude formalism of Jacob and Wick@35#. We
correspondingly assign the nucleon and antinucleon helici-
ties l1 and l2, respectively, and write the corresponding
S-matrix element as

^N~p,l1!N̄~ p̄,l2!uŜuK~k1!K~k2!&

5~2p!4d4~p1 p̄2k12k2!~2p!2F 64t

t24mK
2 G1/2

3^u,f,l1 ,l2uŜ~P!u00&, ~13!

whereP5p1 p̄5k11k2, t5P2, andmK is the kaon mass.
Defining

q1
m5 1

2 ~k12k2!
m,

~14!
q2

m5 1
2 ~ p̄2p!m,

we have (u,f) as the polar and azimuthal angles made by
qW 2 with respect toqW 1 ~the ‘‘u00& ’’ indicates that the incoming
mesons have no helicities and that we have chosen thez axis
to be alongqW 1).

Following Ref. @35#, we expand the matrix element

^u,f,l1 ,l2uŜ(P)u00& in partial waves as

Sl1 ,l2
[^u,f,l1 ,l2uŜ~P!u00&

5(
J

S 2J11

4p DbJl1l2D0m
J ~f,u,2f!* , ~15!

FIG. 1. Diagrammatic representation of the spectral decomposi-
tion for the nucleon strangeness vector current form factors given in
Eq. ~10!. The right-hand part of the diagram denotes the matrix
element to produce aI G(JPC)502(122) state from the vacuum
through the strangeness vector current. The left-hand side denotes
then→NN̄ scattering amplitude.
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whereDnn8
J (a,b,g) is the standard Wigner rotation matrix,

wherem5l12l2 in Eq. ~15! and where thebJ
l1l2 define the

partial waves of angular momentumJ.
Using the above definitions and imposing the requirement

of unitarity on theSmatrix,

S†S51, ~16!

one has that

ubJ
l1 ,l2u<1 ~17!

for t>4mN
2 .

In the expression for the spectral function appearing in
Eq. ~13!, only theJ51 partial waves appear since the states
un& must carry the same quantum numbers as the current
s̄gms. Moreover, it is well known that one has only two
independent amplitudes for the scattering reaction
KN→KN and its crossed channel versionKK̄→NN̄. These
amplitudes are commonly chosen to be theA andB ampli-
tudes defined by theT-matrix element

T~2 p̄l1 ,k1 ;pl2 ,2k2!

5Ū~pl2!@A1 1
2B~k/12k/2!#V~ p̄l1!,

~18!

where we have employed crossing symmetry to obtain the
t-channel version of theKN→KN scattering amplitude. It is
a straightforward exercise to relate theA andB amplitudes to
theb1

l1l2 @36#. We choose the two independent partial waves
to correspond to (l1 ,l2)5( 12,

1
2) and (12,2

1
2). We obtain

b1
1/2, 1/252S 1

2p D S t24mK
2

64t D 1/2H p

mN
E

21

1

dxxA

2
k

2E21

1

dx~3x221!B1
k

2E21

1

dx~x221!BJ ,
~19!

b1
1/2,21/25S 1

2pA2D S t24mK
2

64t D 1/2E
21

1

dxS EkmN
D ~12x2!B,

~20!

where x5cosu, k5ukW1u5ukW2u, and p5upW u5u p̄W u in the NN̄
c.m. frame, andE5Ap21mN

2 .
For future reference, we also note the followingNN̄ pro-

duction threshold relation between the partial waves:

b1
1/2,21/25A2b11/2, 1/2, ~21!

as t→4mN
2 ~or P→0). The origin of this relation is easy to

understand. Since theN and N̄ have opposite intrinsic pari-
ties while the intrinsic parities of theK andK̄ are the same,
the spin3 spatial part of theKK̄→NN̄ amplitude must
transform as a pseudoscalar. In theKK̄ c.m. frame, one may
therefore write the two independent amplitudes as

Sl1 ,l2
5xl1

† @ f 1sW •kW1 f 2sW •pW #xl2
, ~22!

wherekW[kW1 andpW [pW 1 and where the functionsf i may de-
pend onk2, kW•pW , etc. At the threshold, one haspW 50, so that
only the amplitude proportional tof 1 survives. From Eq.
~22! we obtain

S1/2,1/2→ f 1kz5 f 1kA4p

3
Y10* ~u,f!, ~23!

S1/2,21/2→ f 1~kx2 iky!52 f 1kA8p

3
Y11* ~u,f!, ~24!

at the threshold (f 1 may now only depend onk). The partial
waves are obtained by inverting Eq.~15!, yielding

b1
1/2, 1/254pAp

3E21

1

d cosuY10~u,f!S1/2,1/2, ~25!

b1
1/2,21/2524pAp

3E21

1

d cosuY11~u,f!S1/2,21/2.

~26!

The foregoing expressions imply that theb1
l1 ,l2 are now in-

dependent of the anglef. Using the orthonormality of the
spherical harmonics, one sees immediately from Eqs.~23!–
~26! that the two partial waves are related at the threshold as
indicated in Eq.~21!.

We may now write the ImFi
(s)(t) in terms of the two

independentb1
l1 ,l2 . Starting from the general expression in

Eq. ~10!, specifying the statesun& to contain two kaons only,
and replacing the sum(n by appropriate integrals over two-
kaon phase space, we obtain expressions for the spectral
functions:

ImF1
~s!~ t !5ReH SmNQ

4P2 D F E

A2mN

b1
1/2,21/22b1

1/2, 1/2G
3FK

~s!~ t !* J ~27!

ImF2
~s!~ t !5ReH SmNQ

4P2 D Fb11/2, 1/22 mN

A2E
b1
1/2,21/2GFK

~s!~ t !* J ,
~28!

where

P5At/42mN
2 , ~29!

Q5At/42mK
2 . ~30!

The kaon strangeness form factorFK
(s)(t), appearing in Eqs.

~27! and ~28!, is defined through the matrix elements

^0us̄gmsuK2~k1!K
1~k2!&5~k12k2!mFK

~s!~ t !, ~31!

^0us̄gmsuK̄0~k1!K
0~k2!&5~k12k2!mFK

~s!~ t !, ~32!

with FK
(s)(0)521.
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B. Kaon strangeness form factor

The appearance of the kaon strangeness form factorFK
(s)

in expressions~27! and~28! necessarily implies the introduc-
tion of some model dependence into the dispersion relation
analysis. The reason is that there exist no data onFK

(s)(t).
Consequently, the best we can do is illustrate the impact of
choosing a reasonable parametrization of this form factor. To
this end, we first make a few general observations regarding
FK
(s) and its relationship to theKK̄ partial waves. In the prod-

uct of FK
(s)(t)* and the partial wavesb1

l1 ,l2 appearing in
Eqs. ~27! and ~28!, the real part will depend on both the
magnitudes of these two factors as well as on their relative
phase. Specifically, defining the phases as

b1
l1 ,l25ub1

l1 ,l2ueid1, ~33!

FK
~s!5uFK

~s!ueidK, ~34!

one has

Re$b1
l1 ,l2FK

~s!~ t !* %5ub1
l1 ,l2uuFK

~s!ucos~d12dK!

5ub1
l1 ,l2uuFK

~s!u~11gK!, ~35!

where we define a phase difference correctiongK
[cos(d12dK)21.

The lack of data onFK
(s) is particularly problematic in

seeking to determinegK . Here, the situation stands in con-
trast to the case of two-pion contributions to the nucleon’s
isovector EM form factors@30,31#. In the latter instance, the
phase of thepp partial wave must be identical to that of the
pion’s isovector EM form factor for 4mp

2<t<16mp
2 . This

feature follows from the fact that in this kinematic range,
there is only one final state~involving two p ’s! having the
same quantum numbers as the isovector EM current. Unitar-
ity then implies that the phase of the form factor and that of
the scattering amplitude must be identical, that is, that the
phase difference correctiongp50 @37#. In dispersion rela-
tion analyses of the isovector form factors one typically as-
sumes thatgp50 everywhere below theNN̄ production
threshold, since the phases associated with 4p, 6p, etc.,
final states are small@38#. This latter practice falls under the
rubric of ‘‘extended unitarity’’ @32,39,40#. In the case of
KK̄ scattering, however, there exist several multipion final
states which can be reached fort>4mK

2 . Hence, there exists
no regime int for which gK50. At this time, we are unable
to make any statements aboutgK , and we take its value to be
one of the uncertainties in our analysis. We note, however,
that u11gKu<1. Thus, for purposes of setting an upper
bound on the magnitude of the spectral function, we may set
gK50.

In choosing our model parametrizations ofFK
(s)(t) we

draw upon what is known about the lightest pseudoscalar
meson form factors in the timelike region. First, it is well
known that the pion EM form factorFp(t) is dominated by
the r resonance for 4mp

2<t<(mp1mv)
2 @41#. Moreover,

more than 90% of the pion charge radius can be accounted
for by the presence of ar pole @42#. The simplest parametri-
zation which reproduces these gross features is that of the
vector dominance model~VDM !. The detailed structure of

Fp(t), including the shape of ther peak, requires more so-
phisticated parametrizations than that ofr dominance@41#.
Nevertheless, one is able to approximate the results of such
analyses in ther region using a VDM parametrization with
values formr and Gr , in good agreement with those ob-
tained from other observables@41,43#. In the case of the kaon
EM form factorFK(t), one has information in the timelike
region from s(e1e2→KK̄) data @44#. As extracted from
these data,FK(t) displays a peak near theKK̄ threshold,
which is also close to the valuet5mf

2 Conventional treat-
ments ofFK(t) have correspondingly employed extended
versions of the VDM, including poles associated with not
only thef(1020), but also ther andv @44#. For values of
t>2(GeV/c)2, one begins to observe a bump-dip structure
which cannot be reproduced using the three lightest vector
mesons, and one is apparently forced to include poles asso-
ciated with higher-mass vector mesons@44,45#.

For our present purpose, it is sufficient to choose a param-
etrization forFK

(s)(t) which produces behavior in the timelike
region in reasonable accord with the gross structures of the
pseudscalar EM form factors. Indeed, we are not interested
in obtaining airtight numerical predictions for the nucleon
strangeness form factors, but rather in illustrating the impact
which the use of a realisticFK

(s)(t) has on these predictions.
Hence, choosing a parametrization which produces the cor-
rect structure in detail is not necessary. Because the current
s̄gms is purely isoscalar, we expect no significant contribu-
tion from 11(122) mesons1 such as ther. The lightest
02(122) meson which might contribute is thev. However,
we would expect the matrix element^vus̄gmsu0& to be small
since thev is nearly a pure (uuū&1udd̄&)/A2 state having a
small admixture ofuss̄& at the level of e'0.05. Conse-
quently, we employ models which~a! are normalized to give
the correct strangeness charge,FK

(s)(0)521, and~b! contain
a strong resonance enhancement in the vicinity of the
f(1020). The simplest such model is that off-meson domi-
nance, which yields

uFK
~s!~ t !VDMu5H ~j2!21mf

2G2

@~j22t !21mf
2G2# J

1/2

, ~36!

where j2[mf
22G2/4 and G is the width of thef(1020)

resonance. An alternative is to adopt the Gounaris-Sakurai
~GS! parametrization, which is reasonably successful in
modelingFp(t) in the r-peak region. When employing the
GS form, we replace ther mass and width with those of the
f. This parametrization can be found in Ref.@46# and we do
not reproduce it here. It is interesting nevertheless to com-
pare the VDM and GS forms near thef pole. Both can be
shown to yield

1In short, we neglect isospin-breaking effects, such asr-v mix-
ing.

2746 55M. J. MUSOLF, H.-W. HAMMER, AND D. DRECHSEL



uFK
~s!~ t5mf

2 !u5
mf

G
1d, ~37!

wheremf /G'255, dVDM<0.01, anddGS'238. We also
note that both models fall off to unity from their peak values
at roughly the same place asFK(t) @t'2 (GeV/c)2#. In the
following discussion, we compare predictions for the
Fi
(s)(t) using the VDM and GS parametrizations with those

obtained assuming pointlike behavior,FK
(s)(t)[21.

III. BORN APPROXIMATION AND BEYOND

Thus far, all calculations of the ‘‘kaon cloud’’ continuum
contribution have been restricted to one-loop order. In the
case of the nonlinear SU~3! s model, for example, the rel-
evant diagrams are shown in Fig. 2. Performing such a one-
loop calculation is equivalent to~a! computing the ampli-
tudes^NuJ̄Nun&V( p̄) and^nus̄gmsu0& entering the expression
in Eq. ~10! under specific approximations and~b! using the
resultant spectral functions in the appropriate dispersion in-
tegral of Eqs.~7! and~8!. In particular, for loop contributions
where the current is inserted on the kaon line@Fig. 2~a!#,
these approximations amount to computing theb1

l1 ,l2 in the
Born approximation@see Fig. 3~a!# and taking the kaon
strange form factor to be pointlike:FK

(s)[21 @see Fig. 4~a!#.
For diagrams where the current is inserted on the strange
baryon line @Fig. 2~b!#, the corresponding approximations
entail evaluating theBB̄→NN̄ amplitude in the one-meson
exchange approximation@Fig. 3~b!# and taking the strange
baryon strangeness form factor to be unity@Fig. 4~b!#. The
remaining one-loop diagrams appearing in Fig. 2~c! are
needed to guarantee that the one-loop amplitudes satisfy the
Ward-Takahashi identity and have no analogue within the
framework of DR’s. This equivalence between loops and
DR’s has been discussed previously for the pion loop contri-
bution to the nucleon isovector EM form factors in the con-
text of the linear SU~2! s model@27,28,32#. In what follows,
we demonstrate the equivalence for the strangeness form fac-

tors using the nonlinear SU~3! s model @47,48#. We choose
this model as it constitutes the standard paradigm of a chiral
effective theory. We also show how, for theKK̄ contribution
@Figs. 2~a! and 3~a!#, the one-loop approximation is a rather
drastic one.

In order to proceed, we first compute theb1
l1 ,l2 in the

Born approximation~BA!, using the amplitudes associated
with the diagrams in Fig. 3~a!. In the case of the baryon pole
diagrams, we include only theL intermediate state since, in
the limit of good SU~3! symmetry, the strongNSK coupling
is highly suppressed with respect to theNLK coupling@49#.
We obtain

FIG. 2. One-loop diagrams for the strange vector form factors of
the nucleon; the strange vector currents̄gms is denoted by the curly
line, the dashed lines correspond to kaons, and the solid lines cor-
respond to nucleons~external! or strange baryons~internal to loop!.

FIG. 3. Approximations for then→NN̄ scattering amplitude
appearing in Fig. 1 and Eq.~10!. Panel~a! gives the Born approxi-
mation for the KK̄→NN̄ amplitude, while ~b! represents the
BB̄→NN̄ amplitude in the one-meson exchange approximation
(B is a baryon!.

FIG. 4. Pointlike approximation for the matrix elements
^nus̄gmsu0& entering the spectral functions as in Eq.~10! and Fig. 1.
Panel~a! corresponds to the pointlike kaon strangeness form factor,
while ~b! denotes the same for a baryon.
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b1
1/2, 1/25

1

12p f 2S 2mNQ
2

At D H 322
1

6
~3F1D !21

1

3
~3F1D !2S M̄2

PQD @Q0~xB2 i e!2Q2~xB2 i e!#

1~3F1D !2S M̄2

PQDQ2~xB2 i e!1~3F1D !2S M̄2DM̃

Q2 DQ1~xB2 i e!J , ~38!

b1
1/2,21/25

1

12p f 2 S 2A2EQ2

At D H 322
1

6
~3F1D !21

1

3
~3F1D !2S M̄2

PQD @Q0~xB2 i e!2Q2~xB2 i e!#J , ~39!

where

xB5np /n0 , np5nB1M̄DM̃ , nB5~ t22mK
2 !/4mN

n05PQ/mN , M̄5~mN1mL!/2, DM̃5~mL2mN!/mN , ~40!

where f'93 MeV is the pion decay constant, and where theQn(z) are Legendre functions of the second kind. The constants
F andD are just the usual SU~3! reduced matrix elements, withD1F51.26 andF/D50.64. Substituting these expressions
into the formulas of Eqs.~27! and ~28! yields

ImF1
~s!~ t !5

1

12p f 2 S Q3

2At DRe@FK
~s!~ t !#H 322

1

6
~3F1D !21

1

3
~3F1D !2S M̄2

PQD @Q0~xB!2Q2~xB!#

2~3F1D !2
mN
2

P2 F S M̄2

PQDQ2~xB!1S M̄2DM̃

Q2 DQ1~xB!G J , ~41!

ImF2
~s!~ t !5

1

12p f 2 S Q3

2At DRe@FK
~s!~ t !#~3F1D !2

mN
2

P2 H S M̄2

PQDQ2~xB!1S M̄2DM̃

Q2 DQ1~xB!J , ~42!

where we have made use of the fact that theb1
l1 ,l2 are real in

the BA for t>4mK
2 .

After settingFK
(s)(t)[21 in Eqs.~41! and ~42!, one ob-

tains expressions for the spectral functions which are identi-
cal to those obtained from the Feynman amplitudes associ-
ated with the diagrams in Fig. 2~a!. To see how this
equivalence comes about, we refer to the analytic structure of
the matrix element̂N(p);N( p̄)us̄gmsu0&. Any discontinui-
ties across the realt axis must arise from integration over
poles associated with the presence of one of the physical
statesun& appearing in Eq.~10!. The Cutkosky rules@50,51#
give a procedure for extracting these discontinuities from
Feynman amplitudes. In particular, we may obtain the corre-
sponding discontintuity from the Feynman amplitudes by
making the following replacement for each propagator asso-
ciated with one of the particles appearing in the given state
un&:

1

p22m21 i e
→22p iu~p0!d~p22m2!. ~43!

Since the only stateun& contained in the loops of Fig. 2~a! is
uKK̄&, we make the replacement of Eq.~43! for the two-kaon
propagators in the loop integrals. Doing so, and carrying out
the loop integration, yields the formulas in Eqs.~41! and
~42!. The details of this procedure are shown in the Appen-
dix. Thus, insofar as the DR’s of Eqs.~7! and ~8! are valid,

the use of one-loop amplitudes and the use of Eq.~10! with
the BA for theKK̄→NN̄ amplitudes are equivalent.

With explicit formulas for the spectral functions in hand,
it is now straightforward to carry out the dispersion integrals.
When the nonlinear SU~3! s model is used to perform one-
loop calculations for these leading moments, one finds that
rD
s contains a UV divergence. Using the dispersion relation
framework, we correspondingly find that theKK̄ contribu-
tion to rD

s is divergent in the dispersive variablet when the
BA is used to compute theb1

l1 ,l2 and a pointlike kaon
strangeness form factor is employed. In the case of loops,
this UV divergence can be handled in a variety of ways.
When one attempts an analysis using CHPT, the divergence
is removed by the corresponding counterterm. This counter-
term, however, contains a finite remainder which cannot be
determined in any model-independent way from existing
measurements@15#. Consequently, one must invoke addi-
tional model-dependent assumptions in order to make predic-
tions using loops. A variety of such scenarios are discussed
and evaluated in Ref.@15#. These alternatives include assum-
ing that the finite low-energy constants in CHPT are satu-
rated by vector meson resonances or assuming that the loop
integrals are cut off by form factors and the meson-baryon
vertices. Each involves a departure from QCD~at the level of
hadronic effective theory! to a greater or lesser extent and
entails a certain amount of ambiguity. Ideally, one would
like to find a less model-dependent way of regulating the UV
behavior of the integrals and obtaining a finite prediction.
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In the present context, the unitarity bound on the partial
waves @Eqs. ~19! and ~20!# provides such a model-
independent regulator. The physical amplitudesb1

l1 ,l2 must
satisfy the bound@Eq. ~17!#, regardless of one’s model for
KN scattering. To illustrate the impact of the unitarity
bound, we plot in Fig. 5 the partial waves computed in the
BA as a function oft and the corresponding unitarity bound
above the two-nucleon threshold. One sees that theb1

l1 ,l2 in
the BA violate the unitarity bound by a factor of 4 or more at
the threshold and that this violation grows witht.

When translating the unitarity bound into a bound on the
spectral functions, some care is required. The most naive
approach is to begin with Eqs.~27! and ~28!, apply the tri-
angle inequality, and takeub1

l1 ,l2u51, viz.,

uImF1
~s!~ t !u<SmNQ

4P2 D U E

A2mN

b1
1/2,21/22b1

1/2, 1/2UuFK
~s!~ t !* u

<SmNQ

4P2 D H E

A2mN

ub1
1/2,21/2u1ub1

1/2, 1/2uJ
3uFK

~s!~ t !u, ~44!

and similarly for uImF2
(s)(t)u. In arriving at the first line of

Eq. ~44! we have set the phase difference correctiongK50
as discussed previously. Settingub1

l1 ,l2u51 and using

t5A2E in theNN̄ c.m. frame, we obtain the naive unitarity
bounds

uImF1
~s!~ t !u<

Q

8A2P2
~2A2mN1At !uFK

~s!~ t !u, ~45!

uImF2
~s!~ t !u<

mNQ

4A2tP2
~A2t12mN!uFK

~s!~ t !u. ~46!

These naive bounds@Eqs.~45! and~46!# are shown in Fig. 6

together with the BA where a pointlike strangeness form
factor for the kaon has been applied. The divergence in these
bounds appearing at theNN̄ threshold arises from the 1/P2

factor appearing in Eqs.~45! and ~46!. The presence of this
singularity renders the functions appearing in the right-hand
side ~RHS! of Eqs. ~45! and ~46! nonintegrable over the
range 4mN

2<t<`. Thus, the naive bounds are not meaning-
ful.

A more careful application of unitary requires that one
also take into account the threshold relation on theb1

l1 ,l2

appearing in Eq.~21!. This relation forces the linear combi-
nations ofb1

l1 ,l2 appearing in Eqs.~27! and ~28! to go as
P2 near the threshold, thereby ensuring that the spectral
functions are finite asP→0. Hence, when imposing unitar-
ity, one must enforce the threshold relation. For simplicity,
we choose to takeb1

1/2, 1/25b1
1/2,21/2/A2 everywhere above

4mN
2 , even though this relation rigorously applies only at

t54mN
2 , and takeub1

1/2,21/2u<1. This leads to the bounds

uImF1
~s!~ t !u<

Q

2A2~At12mN!
uFK

~s!~ t !u, ~47!

uImF2
~s!~ t !u<

mNQ

A2t~At12mN!
uFK

~s!~ t !u, ~48!

which now can be used in the dispersion relations~7! and~8!
without ambiguity. Furthermore, the bounds with the correct
threshold behavior built in are always more stringent than the
naive ones for allt>0. Figure 7 shows these bounds@Eqs.
~47! and ~48!# together with the BA and a pointlike kaon
strangeness form factor in both cases. We show only the
bound onuImF1

(s)(t)u, sinceuImF2
(s)(t)u<uImF1

(s)(t)um/E. It
is clear from the curves in Fig. 7 that unitarity has a signifi-
cant impact on the spectral functions above theNN̄ thresh-
old.

FIG. 5. Partial wavesb1
l1 ,l2 for KN scattering in the nonlinear

SU~3! s model. The solid and dotted lines correspond tob1
1/2, 1/2

and b1
1/2,21/2, respectively. The dashed line shows the unitarity

bound onb1
1/2,21/2; the bound onb1

1/2, 1/2, which is not shown, is a
factor of 1/A2 smaller at theNN̄ threshold, indicated by the vertical
dotted line.

FIG. 6. Spectral functions in the nonlinears model and naive
unitarity bounds. A pointlike strangeness form factor for the kaon
has been used. The solid and dotted lines show the results for
ImF1

(s)(t) and ImF2
(s)(t), respectively. The corresponding naive

unitarity bounds are indicated by the dashed and dash-dotted lines,
respectively. The vertical dotted line indicates the two-nucleon
threshold.
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In addition to correcting theKK̄→NN̄ in the BA for uni-
tarity, we also attempt a more realistic treatment of the kaon
strangeness form factor appearing in Eqs.~27! and ~28!. As
discussed above, we do so by choosing two parametrizations
strongly peaked in the vicinity of thef(1020) resonance. In
Fig. 8 we plot the same quantities as in Fig. 7 but using the
GS form factor. For 4mK

2<t<4mN
2 , thef peak in the GS

parametrization leads to a strong enhancement of the spectral
functions as compared with the use of a pointlike form fac-
tor. As t increases beyond theNN̄ threshold, the GS form
factor eventually suppresses the spectral functions when ei-
ther the BA or unitarity bounds are used. The impact of
using the simpler VDM parametrization is similar to that of
the GS form factor. Although we could have attempted to
carry out a more detailed analysis ofFK

(s)(t), the plot in Fig.
8 makes the essential point clear: The impact of choosing a
reasonable nonpointlike form forFK

(s)(t) can be nontrivial.

IV. STRANGENESS MOMENTS

In this section, we explore the numerical consequences of
unitarity andFK

(s)(t) parametrization for the leading strange-

ness momentsrD
s andms. For purposes of later discussion, it

is useful to write down the DR’s for these two quantities:

rD
s 52

4mN
2

p E
4mK

2

`

dt
ImF1

~s!~ t !

t2
, ~49!

ms5
1

pE4mK
2

`

dt
ImF2

~s!~ t !

t
. ~50!

Using these expressions, we compare three scenarios for
computing theKK̄ contribution to the moments:~a! a calcu-
lation using the BA for theb1

l1 ,l2 and pointlike kaon
strangeness form factor~BA/PFF!, ~b! the same as~a! but
imposing the unitarity bounds of Eqs.~47! and ~48! for
t>4mN

2 ~BA/U/PFF!, and ~c! the same as~b! but using the
GS parametrization forFK

(s)(t) ~BA/U/GS!. Of these sce-
narios, we recall that~a! is equivalent to computing the one-
loop amplitudes of Fig. 2~a!. We further delineate between
the contributions to the dispersion integrals in Eqs.~8! and
~7! arising from the integration regions 4mK

2<t<4mN
2 and

4mN
2<t. In applying the unitarity bound@scenarios~b! and

~c!#, we assume for simplicity that the spectral functions do
not change sign across the two-nucleon threshold and that
this sign is given by the phase of the spectral function for
t<4mN

2 . The results are given in Table I. From the entries in
the table, the numerical impact of imposing unitarity and
choosing a nonpointlike form factor is evident. In the case of
rD
s , unitarity eliminates the UV divergence and sets a bound
on the contribution from the region above theNN̄ threshold
which is small. In terms of the dimensionful Dirac radius,
this contribution is about20.002 fm2. The use of the GS
parametrization forFK

(s)(t), on the other hand, increases the
contribution from the region 4mK

2<t<4mN
2 by about 50%,

owing largely to thef peak near the two-kaon threshold.
Even though theF1 spectral function with the GS form fac-
tor falls below the corresponding spectral function with a
pointlike form factor fort.2 (GeV/c)2, the 1/t2 appearing
in the integrand of Eq.~49! favors the contribution from the

FIG. 7. Same as Fig. 6 but with thecorrectunitarity bounds of
Eqs. ~47! and ~48!. The bound on ImF2

(s)(t) is not displayed be-
cause it is even more stringent than the bound on ImF1

(s)(t).

FIG. 8. Same as Fig. 7 but using the GS parametrization for the
kaon strangeness form factor, peaked forAt'mf . Note the differ-
ence in vertical scale as compared to Figs. 6 and 7.

TABLE I. Contributions from kaon intermediate state to the
nucleon strangeness radius and magnetic moment, computed using
dispersion relations. Results are given using three different sce-
narios as discussed in the text:~a! BA/PFF, partial wavesb1

l1 ,l2

computed in BA and kaon strangeness form factorFK
(s)(t)[21; ~b!

BA/U/PFF, same as~a! but with unitarity limit from Eqs.~47! and
~48! applied for t>4mN

2 ; ~c! BA/U/GS, same as~b! but with
Gounaris-Sakurai parametrization forFK

(s)(t). To convert rD
s to

^r s
2&, multiply rD

s by 20.066 fm2.

Moment Scenario 4mK
2<t<4mN

2 4mN
2<t Total

rD
s BA/PFF 0.18 div div

BA/U/PFF 0.18 0.03 0.21
BA/U/GS 0.26 0.01 0.27

ms BA/PFF 20.07 20.40 20.47
BA/U/PFF 20.07 20.07 20.14
BA/U/GS 20.09 20.01 20.10
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region containing thef-resonance enhancement. Conse-
quently, the reduction for 2 (GeV/c)2<t<4mN

2 is not sig-
nificant.

For the strange magnetic moment, the BA contribution
with a pointlikeFK

(s)(t) yields a finite result, in contrast to
the situation withrD

s . Nevertheless, the imposition of uni-
tarity reduces thet>4mN

2 contribution to one-sixth of its BA
value. Insofar as the contribution from this region was the
dominant one in the BA, this unitarity reduction is quite
significant. The use of the GS form factor reduces this con-
tribution even further, whereas its impact in the region
4mK

2<t<4mN
2 is small. In the latter instance, the enhance-

ment from thef peak is not as important as in the case of
rD
s , since the integrand in Eq.~50! only weights the low-t
behavior as 1/t.

We emphasize that, although the results listed in the last
column of Table I may be instructive, one should not take
the precise numerical values too seriously. It is clear from
the results in the fourth column, as well as from the curves in
Figs. 5, 7, and 8, that the consequences of the unitarity con-
straints are significant. The physical mechanisms responsible
for the reduction of theb1

l1 ,l2 and ImFi
s from their BA val-

ues to the unitarity limits—primarily nonresonant and reso-
nant kaon rescattering—cannot be neglected in a physically
realistic calculation. Although the unitarity bounds give an
explicit indication of the importance of these rescattering
terms in the regiont>4mN

2 , one has no reason to assume
they are any less important in the region 4mK

2<t<4mN
2 .

Whether rescattering effects increase or decrease the contri-
bution from this region is not known at present, and one may
only speculate. For example, the presence of af(1020) reso-
nance in theKK̄→NN̄ partial waves could, in principle, en-
hance theb1

l1 ,l2 from their BA values in some region oft. In
fact, previous experience withpp contributions to nucleon
isovector form factors suggests that rescattering may lead to
enhanced low-t contributions. In the work of Ref.@27#, it
was found that, in comparison to the BA contribution, re-
scattering contributions enhanced thet<4mN

2 contribution to
the isovector magnetic moment by roughly the same magni-
tude as the unitarity bounds reduced thet>4mN

2 contribu-
tion.

Given the equivalence between the BA/PFF treatment of
the dispersion relation and the one-loop contribution of Fig.
2~a!, the results of the foregoing analysis should lead one to
question the credibility of any one-loop prediction for the
strangeness moments. Even model calculations which em-
ploy form factors to regulate the integrals do not include all
of the rescattering corrections required by unitarity. Indeed,
such form factors apply only to the meson-nucleon vertices,
and not to the fullKK̄→NN̄ ~or KN→KN) scattering am-
plitude. Moreover, meson-nucleon form factors are often
taken to be functions ofk2, wherekm is the four-momentum
of the kaon, and are normalized to reproduce the SU~3! val-
ues for the meson-nucleon coupling whenk25mK

2 . Thus
hadronic form factors have no impact on the BA violation of
unitarity for scattering amplitudes in the physical region.

In a similar vein, we note that the use of a pointlike kaon
strangeness form factor, as is used in most loop calculations
reported to date, could represent as serious an error as the

violation of unitarity in the BAb1
l1 ,l2. A comparison of the

BA/U/PFF and BA/U/GS results in Table I shows that the
inclusion of a reasonable parametrization ofFK

(s)(t), display-
ing an enhancement in the vicinity of thef(1020), can
change magnitudes ofrD

s andms by as much as 30%. While
our rationale for choosing such a parametrization is not
based on any rigorous argument, we nevertheless believe that
it constitutes a more realistic input than does the use of a
pointlike form factor. We correspondingly expect most one-
loop calculations employing the pointlike approximation to
be physically unrealistic.

As a final observation, we make a comparison between
the DR calculation and the one-kaon loop calculation of
CHPT. To be concrete, we focus on the strangeness radius.
Within the framework of CHPT, the only well-defined piece
of a one-kaon loop contribution torD

s is that which is
nonanalytic in the strange quark mass. The remaining piece
is indistinguishable from tree-level contributions arising
from the chiral Lagrangian, at a given order in the chiral
scale,Lx'4p f . Consequently, one subsumes all analytic
contributions into the counterterms. In the case ofrD

s , only
the amplitudes of Fig. 2~a! contribute a term nonanalytic in
ms atO(1/Lx

2). Specificially, one finds@15#

rD
s 5r loop

s 2S 2mN

Lx
D 2cs, ~51!

where

r loop
s 5SmN

Lx
D 2H 11

5

3 F S 3F1D

A6 D 21 3

2
~D2F !2G J

3FC`2 ln
mK
2

m2 G , ~52!

whereC` contains the UV regulator andm is the renormal-
ization scale.2 The countertermcs contains a piece canceling
the UV divergence appearing inr loop

s plus a finite remainder,
containing all the analytic contributions at order 1/Lx

2 . The
finite part ofcs can be further decomposed as

cs5c022@c22~c1/3!#, ~53!

where thec6 can be determined from the neutron and proton
EM charge radii and where the constantc0 is associated with
the SU~3! singlet current. It is the latter constant which can-
not be determined from any existing data, since measure-
ments have only been made of SU~3! octet vector current
matrix elements. Consequently, CHPT cannot be used to
make a model-independent prediction forrD

s .
The correspondence between the results in Eqs.~51! and

~52! and those obtained using the dispersion relation can be
understood as follows. In the BA with a pointlike kaon form
factor, one finds an identical lnmK

2 IR singularity as that ap-
pearing inr loop

s . The origin of this lnmK
2 is a branch cut

singularity in the BA partial waves for
t<4mK

2 (12mK
2 /4mN

2 ) @31,32#. The dispersion relation result
contains no renormalization scale dependence since the uni-

2In Ref. @15# contributions fromSK intermediate states were also
included, yielding the term proportional to (D2F)2 in Eq. ~52!.
This contribution has been omitted in the present analysis.
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tarity bound removes the UV divergence. As the nucleon
mass is the only other scale which enters the calculation, one
finds m→mN in the leading logarithmic contribution. Pre-
sumably, the remaining contributions in the BA, as well as
those generated by resonant and nonresonant rescattering
terms in theb1

l1 ,l2 ~as necessitated by unitarity! and the ef-
fects of the physicalFK

(s)(t), should be accounted for in
CHPT by the countertermcs. Unfortunately, sincecs cannot
be determined from existing data using symmetry, one must
resort to other strategies for including the rescattering and
FK
(s)(t) effects.

V. SUMMARY

In the present paper, we have made an initial study of the
continuum contribution to the nucleon strangeness vector
current form factors using the framework of dispersion rela-
tions. In focusing on theKK̄ contribution, we have illus-
trated how a leading order loop prediction for the strangeness
radius and magnetic moment entails a substantial violation of
unitarity. At the same time, we have derived a unitarity
bound on this continuum contribution from the region in the
dispersion integral above theNN̄ production threshold. Al-
though we have specified our analysis to the case of the
nonlinear SU~3! s model, our conclusions regarding unitar-
ity violation should hold for any chiral model which yields a
similar structure for theKK̄→NN̄ scattering amplitude in
the Born approximation. Our statement of the unitarity
bound is general. We have also illustrated how the use of a
reasonable, realistic kaon strangeness form factor can signifi-
cantly affect one’s predictions forrs andms. We conclude
that most model predictions for the two-kaon continuum
contributions are physically unrealistic. We further suspect
that our conclusions regarding theKK̄ intermediate state
ought to apply as well to other leading order loop calcula-
tions, whether they involve higher-mass strange mesons and
baryons, as in the quark model calculation of Ref.@26#, or
states containing three or more pseudoscalar mesons.

We emphasize that the contribution about which we have
yet to make a definitive statement is theKK̄ contribution
from the region below theNN̄ threshold. At present, the best
we can do is make an estimate based on the BA for the
b1

l1 ,l2 and a nonpointlike kaon strangeness form factor. The
feasibility of making a refined analysis of this contribution
by continuing fits to physicalKN→KN or KK̄→NN̄ scat-
tering data will be discussed in a forthcoming study. Never-
theless, we are able to show how the contribution from this
region to rD

s can be significantly enhanced if the kaon
strangeness form factor is strongly peaked in the vicinity of
thef(1020), as one would reasonably expect based on anal-
ogy with e1e2→KK̄ data and on the flavor content of the
lowest-lying 02(122) mesons. What remains to be resolved
is the discrepancy between predictions forrD

s using a VDM
approach and those obtained using models for the con-
tinuum. The key may lie in a better understanding of the
subthreshold behavior of theb1

l1 ,l2 as well as of the contri-
bution from the three-pion continuum. Although it contains
no valence strange quarks, the latter is the lightest state
which may contribute to the DR’s forF1

(s) and F2
(s) . The

scale of this contribution, along with those ofNN̄ andBB̄
intermediate states, awaits the result of future work.
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APPENDIX: IMAGINARY PARTS TO ONE LOOP

We show here the equivalence between the one-loop dia-
grams of Fig. 2~a! and the Born approximation for theKN
scattering amplitudes in conjunction with the dispersion re-
lation approach@see Fig. 3~a!#. To that end, we calculate the
imaginary part of the one-loop diagrams from Fig. 2~a!
which arises from thet-channel discontinuity. The equality is
then easily checked by comparing our results with Eqs.~41!
and ~42!. It does not depend on one’s choice for the kaon
strangeness form factor. For simplicity, we therefore assume
pointlike kaons. Any nonpointlike kaon strangeness form
factor would simply multiply the resulting spectral functions.

In the following, we refer to the diagram with the propa-
gatingL ~the triangle diagram! as diagram~1!. We assign
the momenta to the particle lines as shown in Fig. 9. For the
other diagram with the kaon loop@refered as diagram~2!#,
we assign the momenta in the same way and leave out
theL momentum. Since we produce a nucleon-antinucleon
pair, q has to be timelike, i.e.,q25t>0. We work in the
center-of-momentum frame of the nucleon-antinucleon
pair, whereq5(v,0W ). Using momentum conservation, we
have p85(v/2,p8W ) and p5(v/2,2p8W ) with up8W u5P
5At/42mN

2 . We define the contribution of a particular
Feynman diagram to the vertex functionGm by

Mm
~ i !52 iŪ ~p8!Gm

~ i !V~p!, ~A1!

where the strangeness charge of the kaonsQs[21 has been
absorbed inGm

( i ) . Using the nonlinear SU(3)s model and
calculating the isoscalar contribution, we obtain the follow-
ing contributions to the vertex functions:

FIG. 9. Our choice of the internal and external momenta for the
calculation of the imaginary parts arising from thet-channel dis-
continuity of the diagrams from Fig. 2~a!.
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Gm
~1!5 iQs

~3F1D !2

6 f 2 E d4k

~2p!4
km~k/1q//2!~p/82k/2q//22mL!~k/2q//2!

@~k2q/2!22mK
21 i e#@~k1q/2!22mK

21 i e#@~p82k2q/2!22mL
2 #
, ~A2!

Gm
~2!5 iQs

3

f 2E d4k

~2p!4
km k/

@~k2q/2!22mK
21 i e#@~k1q/2!22mK

21 i e#
. ~A3!

Since the denominator of theL propagator does not vanish
in the t-channel physical region, thei e can be dropped. The
Gm
( i ) have branch cuts on the real axis fort>4mK

2 . We cal-
culate now the imaginary parts stemming from the disconti-
nuity associated with these cuts:

ImGm5
1

2i
DGm5

1

2i
lim
d→0

@Gm~v1 id!2Gm~v2 id!#.

~A4!

It is convenient to use the so-called Cutkosky rules@50,51#,
which give a compact expression for the discontinuities as-
sociated with physical region singularities of Feynman am-
plitudes. In particular, we obtain the discontinuitiesDGm

( i ) by
cutting the kaon lines in diagrams~1! and ~2! and replacing
their propagators byd functions~A5!,

1

p22m21 i e
→22p iu~p0!d~p22m2!. ~A5!

As a consequence, the discontinuity arises for the intermedi-
ate particles on the mass shell. Note the equivalence to the
dispersion relation approach, in which the intermediate states
are also on shell. Because of thed functions, thed4k inte-
gration now covers only a finite part of thek space, leading
to a finite value of the integral. Consequently, the diver-
gences of the integrals, Eqs.~A2! and~A3!, do not contribute
to the discontinuity across the cut. The imaginary part is
finite, and only the real part has to be regulated. Next we
write d4k asdk0k

2dkdVk and use thed functions to carry
out thedk0 anddk integrations. As a consequence, we ob-
tain k5(0,kW ) with ukW u5Q5At/42mK

2 . Moreover, thedVk

integration involves only the cosinex of the angle between
kW andp8W . We obtain

ImGm
~1!5Qs

~3F1D !2

48p f 2
Q

At
1

2E21

1

dxS km~k/12M̄ !

2
2M̄2

PQ

km~k/1mNDM̃ !

xB2x D , ~A6!

ImGm
~2!52Qs

3

8p f 2
Q

At
1

2E21

1

dxkm k/, ~A7!

where

xB5
t22mK

214mNM̄DM̃

4PQ
.1. ~A8!

Finally, ImGm
( i ) can be expressed in terms of the integrals

Lm5
1

2E21

1

dxkm , ~A9!

Lmn5
1

2E21

1

dxkmkn , ~A10!

Im5
1

2E21

1

dx
km

xB2x
, ~A11!

Imn5
1

2E21

1

dx
kmkn

xB2x
, ~A12!

and these integrals can be decomposed intogmn and sym-
metrical combinations of the independent four-vectors
D5(p82p)/2 andq5p1p8. Their coefficients can be ob-
tained in a standard manner by evaluating the integrals
qmI

m,DmI
m, and so on. Furthermore, theI integrals can be

expressed through Legendre functions of the second kind.
For example, we find

Imn5
1

3
Q2@Q2~xB!2Q0~xB!#gmn2

1

3

Q2

t

3@Q2~xB!2Q0~xB!#qmqn1
Q2

P2Q2~xB!DmDn .

~A13!

Using the relation

ImGm
~ i !5gmImF1

~ i !1 i
smn

2m
qnImF2

~ i ! , ~A14!

we can identify the contributions to the imaginary parts of
the Dirac and Pauli form factors fort>4mN

2 , respectively.
We add now the contributions of the two diagrams and the
spectral functions emerge as

ImF1
~s!~ t !5

Qs

24p f 2
Q3

At
H 322

1

6
~3F1D !2

1
1

3
~3F1D !2S M̄2

PQD @Q0~xB!2Q2~xB!#

2~3F1D !2
mN
2

P2 F S M̄2

PQDQ2~xB!

1S M̄2DM̃

Q2 DQ1~xB!G J , ~A15!
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ImF2
~s!~ t !5

Qs

24p f 2
Q3

At
~3F1D !2

mN
2

P2 H S M̄2

PQDQ2~xB!

1S M̄2DM̃

Q2 DQ1~xB!J . ~A16!

Up to the kaon strangeness form factor, these expressions are
exactly the same as obtained by the Born approximation for

the b1
l1 ,l2 and the dispersion relation approach@compare

with Eqs. ~41! and ~42!#. The imaginary parts, Eqs.~A15!
and ~A16!, are defined fort>4mN

2 . Since the discontinuity
starts at 4mK

2 , they have to be analytically continued into the
unphysical region 4mK

2<t,4mN
2 . This is easily done by re-

placing the momentumP5At/42mN
2 by ip25 iAmN

22t/4.
Consequently, the variable xB becomes complex
(xB→2 i jB), and the Legendre functions of the second kind
have to be analytically continued, too.
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