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The strange-quark vector current form factors of the nucleon are analyzed within the framework of disper-
sion relations. Particular attention is paid to contributions mad& Kyintermediate states to the form factor
spectral functions. It is shown that, when & — NN amplitude is evaluated in the Born approximation, the
KK contributions are identical to those arising from a one-loop calculation and entail a serious violation of
unitarity. The mean square strangeness radius and magnetic moment are evaluated by imposing unitarity
bounds on the kaon-nucleon partial wave amplitudes. The impact of including the kaon'’s strangeness vector
current form factor in the dispersion integrals is also evalud®d556-282(197)05605-1

PACS numbsgs): 14.20.Dh, 11.55.Fv, 12.38.Lg, 14.65.Bt

[. INTRODUCTION the future development of more sophisticated lattice meth-
ods, one would anticipate better agreement between calcu-

The low-energy structure of the nucleorss sea has be- .
) : ; lated and experimental values for these strangeness mo-
come a topic of serious study in the hadron structure com-

itv [11. While d inelasti tterin®IS) h ments. The primary attraction of lattice calculations is that
muntty [. l ie deep inelastic scatter @!S) has pro- they provide the most direct, first principles, nonperturbative
vided information about the light-cone momentum

e e computations using QCD. By themselves, however, they
distribution of the strange sd&], little is known about the may not provide as much insight as one would like into the

corresponding spatial and spin distributions or about the rolgyechanisms which govern the sign and scale of the strange-
played by the sea in the nucleon’s response to a low-energyess form factors. Moreover, obtaining results for the non-
probe. In an effort to study some of these low-energy charteadingQ? dependence of the form factors may prove to be
acteristics of the sea, several semileptonic scattering expeti formidable task.

ments are underway and/or planned at MIT-Bates, TINAF (b) Effective theory. A complementary approach is to
(formerly CEBAB, MAMI, and LANL. Parity-violating ex-  work with effective hadronic degrees of freedom rather than
periments using polarized electrof®-8] are aimed primar- the quark and gluons of QCD, incorporating the underlying
ily at probing nucleon matrix elements of the strange-quarksymmetries of the QCD Lagrangian into the effective had-
vector current, which is parametrized by the strangeneskonic Lagrangian. This approach, in the guise of chiral per-
electric and magnetic form facto®® and G, respec- turbation theorfCHPT), has seen considerable success in a
tively. Additionally, one expects the neutrino scattering datavariety of context§14]. A particular advantage of CHPT is
from LANL [9] to yield new limits on the strange-quark its reliance on chiral symmetry and existing data, rather than

axial vector matrix element, characterized by the axial form" Microscopic calculations, to determine quantitiessiral
factor G( countertermp whose values reflect the impact of short-
A .

The corresponding problem for hadron structure theory iSdlstance hadronic interactions. Moreover, CHPT provides

. . one with a useful language in which to describe the strong
to _compute these form factors and the_lr leading moment%nteraction dynamics responsible for the magnitude and sign
which depend crucially on nonperturbative aspects of QCDy¢ 5 particular quantity. In the case of the strangeness vector
in a credible manner. To this end, one may choose from @ rent form factors, however, CHPT cannot be used to
numper_ of_dlfferent strategies, each with its particular merit§;,5ke a model-independent prediction, as discussed in detalil
and limitations. in Ref. [15].

(@) Lattice QCD. To date, lattice calculations of the (c) Hadronic models. A variety of model calculations for
strangeness axial charges=G$’(0) [10] and strangeness the strangeness form factors have been carried 826,
magnetic momentS= G{(0) [11] have been carried out in among which there appears little consensus as to the magni-
the quenched approximation. The results &% are essen- tude or sign of the different strangeness moments. Some
tially consistent with the experimental value extracted frommodels start from the effective theory framework and invoke
polarized DIS measuremerjts2]. The first lattice results for additional model assumptions in order to arrive at predic-
s, however, differ in sign from the preliminary experimen- tions. Others, such as the cloudy bag model or nonrelativistic
tal value obtained by the SAMPLE Collaboratipit8]. With  quark model, attempt to provide a more microscopic descrip-

0556-2821/97/5%)/2741(15)/$10.00 55 2741 © 1997 The American Physical Society



2742 M. J. MUSOLF, H.-W. HAMMER, AND D. DRECHSEL 55

tion of the form factors. The appeal of models is that theyextension of the effective theory approaktb], the logic
attempt to incorporate one’s intuition about the physicsrests on untested assumptions about the continuum contribu-
which drives a particular aspect of hadron structure. Nevertions. Indeed, arriving at a rigorous, consistent, and model-
theless, the correspondence between any model and the dpdependent analysis which incorporates both continuum and
namics of QCD is open to debate. In the case of nucleofiésonance contributions to the strangeness form factors re-
strangeness, this situation is reflected in the wide range dpains an open problem for effective hadronic approaches.
model predictions for strangeness form factors. If one wishes With this problem in mind, we focus on the behavior of
to understand the spin and spatial distribution ofdeeea in  the multimeson continuum, emphasizing in particular the

terms of QCD, then models would appear to have a ”miteotwo-kaon contribution. The continuum contribution has been
usefulness ’ studied previously, with both CHPT and models, using one-

(d) Dispersion relations. In the present paper, we turn td®°P kaon-strange baryorij calculationg15,18-21,2% In
this approach to try to derive insight into the strangenesi€t channel, such loops represent approximations to the
form factors. The use of dispersion relatidiR’s) has sev- KK and BB intermediate state contributions. Although the
eral merits, some of which are similar to those of effectivelightest intermediate state which can contribute to the form
theory. Like CHPT, DR’s employ effective hadronic degreesfactors contains three pions, tiB loop calculations have
of freedom rather than the quarks and gluons of QCD. Simibeen justified under the ansatz that hadronic states having
larly, DR’s offer a rigorous and, in principle, model- valences and s quarks—the so-called “kaon cloud"—
independent framework in which to understand the hadronishould give the dominant contribution. Using tK& inter-
mechanisms which govern form factors. Both approaches athediate state as an illustrative example, we show how one-
tempt to relate experimental hadronic amplitudes to the fornloop estimates of the continuum contribution can entail a
factors of interest, relying in the one case on chiral symmetryerious violation of unitarity and evaluate the bounds on the
(CHPT) and in the other on analyticity and causaliR’s).  continuum contribution which result from the imposition of
Although DR’s and CHPT are not QCD in a microscopic unitarity. Our results indicate that effects which go beyond
sense, they nevertheless embody QCD insofar as it is respoane-loop order—in effect, kaon rescattering corrections—
sible for the experimental strong interaction observables usegannot be neglected. We also analyze the impact on predic-
as input for a calculation. tions for the nucleon strangeness form factors made by one’s

For the present purposes, DR’s offer additional advanchoice for the kaon strangeness form fadfcﬁj). We find
tages not afforded by CHPT. First, ultraviolet divergencesthat this impact is nontrivial. Consequently, singff’ has
can be eliminated using unitarity bounds rather than subtragot been measured, one’s choice for its form necessarily in-
tion constants. In the case of the strangeness form factors, titoduces a certain degree of model dependence into the dis-
is one’s inability to determine the finite part of these coun-persion relation analysis. Finally, we note that the conclu-
terterms which renders CHPT unpredictiy#5]. Second, sions of the present study are provisional. We are unable to
DR’s can be used to convert a given body of experimentainake any rigorous statements about contributions to the dis-
data into predictions for the behavior of form factors over apersion integrals in the kinematic regime where unitarity
range of momentum transfer. This situation contrasts withdoes not apply. In a subsequent paper we will report on our
that of CHPT, which involves an expansion in powers of theattempt to estimate these contributions by drawing upon ex-
external momentum and requires the determination of addisting kaon-nucleon scattering data. Similarly, we postpone
tional counterterms at each order in the expansion. The limito a future discussion any treatment of other multimeson
tations of DR’s, as an effective hadronic framework, are escontinuum and baryon intermediate state contributions. In
sentially set by the availability of sufficient data on strongessence, our study follows the spirit of the analysis of Ref.
and electroweak amplitudes. In the absence of such availabj@7]. In that work, the impact of unitarity constraints and
data, one is forced, within this framework, to resort to ancil-inclusion of a pseudoscalar electromagnetic form factor were
lary approximations. treated for thers contribution to the nucleon isovector EM

The application of DR’s to the study of nucleon form form factors.
factors is not new. Well before the discovery of QCD, DR's  Our discussion of these points is organized as follows. In
were used to analyze the nucleon electromagriEfi¢) form  Sec. II, we review the dispersion relation formalism as it
factors[27-29. In addition to shedding light on the nucleon applies to nucleon form factors. We also specify this formal-
EM structure, dispersion relation analyses have allowed ongm to the two-kaon continuum case, introducing our own
to extract the couplings of various mesons to the nucleoResion of theK K partial waves to make unitarity constraints
[30,31. More recently, DR’s have been employed to makegansparent. In Sec. Ill, we compare the two-kaon contribu-
predictions for the nucleon’s strange-quark vector currenfion in the Born approximation, which is equivalent to a

form factors[16,17,13. These predictions have generally in- 5ne_joop calculation, with a calculation which incorporates
voked the assumption of vector meson dominance, whichy, . unitarity bounds antﬂ:ff’. In Sec. IV we discuss our

based on experience with the nucleon isovector EM form.g, ¢ for the mean-square strangeness radius and magnetic

factor as well as on general grounds, is debatable. In prin
ciple, any nucleon form factor receives both resonant an
nonresonanicontinuun) contributions. In the case of the
r]ucleon isovector EM charge _radms, fOI’. example, the con- Il FORMALISM

tinuum contribution is non-negligible. While one can make a

case for resonance dominance in the case of the nucleon In writing down dispersion relations for the nucleon
mean square strangeness radius based on a model-dependstrdangeness form factors, we find it useful to follow the treat-

moment. Section V summarizes our conclusions and is fol-
ﬁjowed by an appendix.
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ments of Drell and Zacharias¢B82] and Federbush, Gold-
berger, and Treimaf27]. We also choose to work with the
standard Dirac and Pauli form factde§® andF$”, respec-
tively, defined as

<N<p'>|s_yus|N<p>>=u_<p'>[F(ﬁ(tm

. iFS(t)
2my

0,,Q" oY)

U(p),
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in the case oh=1, and so forth.

Employing as large a value ofas possible is desirable in
order to improve the convergence of the function
Fi(s‘)(z)/zn on the circular part of the contour at infinity. One
has no way of knowinga priori, which is the minimum
value ofn needed to guarantee that this contribution to the
contour integral vanishes. The appropriate choice therefore
remains one of the inherent uncertainties in the dispersion
relation approach. It is conventional to use a subtracted dis-
persion relatior[Eq. (8)] for the Dirac form factor (=1),
since one knows on general grounds that the value of the

where U(p) is a spinor associated with the nucleon stateform factor att=0 is just the charge associated with the
IN(p)). Since the nucleon has no net strangeness, one hasrresponding current. In the case @(p’)[s7,s|N(p)),

F{(9(0)=0. The form factor(® (i=1,2) are related to the
Sachs electric and magnetic form factf88] via

GY=FF—rFY, (2)
Gy =F®+FY,

wheret=Q?=(p’ —p)?, 7=—t/4mZ andp (p’) is the ini-
tial (final) nucleon four-momentum. We are particularly in-
terested in the leading moments associated wittF{fle the

one haQ:gS)(O):O since the nucleon carries no net strange-
ness. In the case of the magnetic form factor, one would like
to predict its value at=0 rather than using it as a subtrac-
tion constant. Hence, we use the unsubtracted dispersion re
lation [Eq. (7)] for F$(t).

The essential physics content entering the DR’s enters
through the spectral functions Ff®(t). To analyze these
spectral functions, we follow Ref§27,32 and work in the
NN production channel, where the corresponding current

mean square strangeness radius and magnetic moment, dBatrix element is

fined as
. _dFy .
Fo dr T:O,
we=F5(0). (4)

We have chosen a dimensionless version of the mean-squ

guantity as

dF{

AN S
<rs>_6dQ2

©)

- -2
=7 5Mn PD -
Q20

In order to obtain a dispersion relation for one of the
FO(t) (i=1,2), wheret is real, one must assume that there

exists an analytic continuatiof(®(z) which approaches
F®)(t) asz—t+ie, which is analytic in the upper half plane
and which has a branch cut on the real axistfgreater than
some threshold,. In addition, one must assume that

Fi¥(2)
T

(6)

as z—o, anywhere in the upper half plane for some non-
negative integen. In this case, a straightforward application

of Cauchy’s theorenfusing a circular contour excluding the
branch cuk leads to the relations

1 (=ImF®(t")
Oy — |
FI(D) wftot’—t—iedt ™
in the case oh=0,
t (= ImFt)
()Y _ (s PR I B R
0o Sy ®

are
radius, which is related to the corresponding dimensionfufP!nor.

(N(p);N(p)[s7,.5/0) =U_(p)[ FO) Y,

iIFS(t) -
+2—I'T1NO-’U“VP V(p), (9

\with P#=(p+p)*, t=P? andV(p) being an antinucleon

In order to obtain the imaginary parts of FF}‘é) , we
reduce the antinucleon using the LSZ formalism and take the
absorptive part. As in Ref§27,37 the resulting contribution

to the spectral functions arises from

Im(N(p);N(p)[57,,5/0)
ST (N O

X(n[sy,s0)V(p)&*(p+p—pn), (10
where A is a nucleon spinor normalization facté,is the
nucleon’s wave function renormalization constant, and
JN(x)zJL(x) vo With Jy(X) being a nucleon source satisfy-

ing

(1d —my) ¢hn(X) = In(X) 11
and with s being the nucleon field. The content of the
spectral function, as expressed in Ef0), has a useful dia-
grammatic representation as shown in Fig. 1.

The stategn) of momentump,, appearing in the sum are
stable(with respect to the strong interactiorConsequently,
no resonances appear in the sum, only asymptotic final
states. In addition, the stat@s) must carry the same quan-
tum numbers as the currersty,s: 19(JP9)=0"(1"").
Moreover, owing to the presence of the soudgg0), they
can have no net baryon number. In the purely mesonic sec-
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tum numbers as thé (nearly puress) and, thereby, generate
a nontrival contribution to the current matrix elem¢a4].
Indeed, the¢ has roughly a 15% branch to multipion final
states(largely via ap# resonance Although no resonances
appear explicitly in the sum over states in Efj0), the im-
pact of resonances nevertheless enters via the current
CW S Vs matrix_element(n[sy,s|0) and NN production amplitude
(N(p)|In(0)|nYV(p). It is noteworthy that the kaon cloud
predictions forpy are typically smaller in magnitude than
In><nl the vector meson dominance predictions and have the oppo-
site sign.
We leave the relative size of the multipion and two-kaon
contributions to a future study, and focus in the present paper
FIG. 1. Diagrammatic representation of the spectral decomposi9n the two-kaon state. In doing so, our goal is to indicate

tion for the nucleon strangeness vector current form factors given irrl1OW one-loop effective theory and model calculations which

Eqg. (10). The right-hand part of the diagram denotes the matrixassume twg-kaon domlrlance VIOlz)te unl.tarlty. In addition,
element to produce 8(JP€)=0"(1"") state from the vacuum W€ Seek to illustrate the impacts &1 predictions made by

through the strangeness vector current. The left-hand side denotéd) the imposition of unitarity angb) the inclusion of a form
the n— NN scattering amplitude. factor in the matrix elemer{n|sy,s|0). To that end, we first

decompose th&K— NN amplitude into partial waves and
tor, the lightest such states arer35m, 7w, 2K, 97, relate them to the form factor spectral functions. We subse-

KKar, ... . In the case of the baryons, one AA. Quently discuss possible parametrizations of the kaon
... . One may also consider states containing both mesoriéfangeness form factor.

and baryons, such alNw7. From this enumeration of
states and thé function appearing in Eq10), one sees that

)
/

A. Spectral functions, partial waves, and unitarity

the first cut in the dispersion integral appears at thepgo- By expanding the<K—NN amplitude in partial waves,
duction threshold,=9m? . Higher-mass intermediate states we are able to identify the pieces which contribute to the
generate additional cuts in the complex plane. absorptive part of the nucleon current matrix elemj,.

Many of the predictions for thEi(S) reported in the litera- (10)] and impose the constraints of unitarity in a straightfor-
ture are based on approximations to the spectral functiomsard manner. In doing so, it is convenient to follow the
appearing in Eqs(7) and (8). In the work of Ref[16], and  helicity amplitude formalism of Jacob and Wi¢B5]. We
updated in Ref[17], a vector meson dominance approxima- correspondingly assign the nucleon and antinucleon helici-
tion was employed, which amounts to assuming that ondies \; and \,, respectively, and write the corresponding
may write the spectral function as S-matrix element as

(N(PADN(PA)[SIK (kK (Ky))

ImFi(S)(t)zw; a;5(t—mj), (12 12

=(2m)*s*(p+p—ki—kp)(2m)?

2
wherej denotes a particular vector meson resonafecs., t=4mic
w, ¢) and where the sum runs over a finite number of reso- X {6, $,N1,\,|S(P)|00), (13)
nances. In terms of the formalism of Sec. ll, this approxima-
tion omits any explicit mention of multimeson intermediate whereP=p+p=k;+k,, t=P2, andmy is the kaon mass.
states |n) and assumes that collectively the productsDefining

(N(p)|In(0)|n)(n[sy,s|0)V(p) are strongly peaked in the

(k. —
regions near one or more vector meson masses. a1=z(ki—ka)*,
In contrast, a variety of hadronic effective theory and h 1 (14)
model calculations have focused on contributions from the az=3(P—p)*,

two-kaon intermediate staf@5,18—21,25even though it is ,
not the lightest state appearing in the sum. The reason ive have 0,4) as the polar and azimuthal angles made by

based primarily on an intuition that kaons, which containdz With respect taj, (the “|00)” indicates that the incoming
valences or's quarks, ought to give larger contributions to Mesons have no helicities and that we have chosen éixés
the matrix elemengn[sy,s|0) than a purely pionic state in to be alongq;).

which there are no valeneeor s quarks. The validity of this Following Ref. [35], we expand the matrix element
ansatz is open to question for at least two reasons. First, the, ¢,\;,\,|S(P)|00) in partial waves as

3 threshold is significantly below thiKK threshold. Con-

sequently, the & contribution will be weighted more Sk, 1, =(0,6.\1,12|S(P)|00)

strongly in the dispersion integral than tK& contribution

[owing to the denominators in Eq§7) and (8)]. Second, :E 2J+1)b>\1>\2DJ (6,0, — p)* (15)
three pions can resonate into a state having the same quan- 7\ 4w |9 T '
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WhereDJW,(a,,B,y) is the standard Wigner rotation matrix, wherek=Kk, andp=p, and where the function§ may de-

whereu=\1—\, in Eq. (15 and where thebglxz define the
partial waves of angular momentuin

pend onk?, k- p, etc. At the threshold, one h@s=0, so that
only the amplitude proportional té, survives. From Eq.

Using the above definitions and imposing the requirement22) we obtain

of unitarity on theS matrix,
Sfs=1, (16)
one has that
b7 <1

7

for t=4m2.

4 .
Sy, 17 F1k,=Tf1k ?Ylo(awﬁ),

) 8w
Sy, - 12— Fr(ky—iky) = —f1k N3 11(60,0), (24)

(23

at the thresholdf(; may now only depend ok). The partial

In the expression for the spectral function appearing inwaves are obtained by inverting E@.5), yielding
Eq. (13), only theJ=1 partial waves appear since the states

|n) must carry the same quantum numbers as the current
Sy,S. Moreover, it is well known that one has only two
reaction

independent amplitudes for the scattering
KN—KN and its crossed channel versigiK —NN. These
amplitudes are commonly chosen to be thendB ampli-
tudes defined by th&-matrix element

T(—pN1.Kg;phz, —ky)

=U(pAo)[A+2B(Ky—HKp)IV(PXy),
(18)

P
bl Yoz g7 \@Jld COHY 1o 60,0)S112,172. (25

bi2~ Y= — 47 \/;jld coY11(0,0)S112.— 12
(26)

The foregoing expressions imply that tb?’)‘2 are now in-
dependent of the anglé. Using the orthonormality of the
spherical harmonics, one sees immediately from E23—

(26) that the two partial waves are related at the threshold as

where we have employed crossing symmetry to obtain théndicated in Eq.(21).

t-channel version of thEN— KN scattering amplitude. It is
a straightforward exercise to relate thendB amplitudes to

the b’l‘1X2 [36]. We choose the two independent partial wave

to correspond toX;,\,)=(3,3) and (3,— 3). We obtain

1\ (t—4mg\ Y p (1
12,12 _ | _—_ K L
by (277)( 6t ) { mNf_ldxxA

k (1 k (1
——f dx(3x2—1)B+—f dx(xz—l)B],
2) 4 2) 1

(19
1 \[t—-ami\ "1 [EK
pli2—12_ K j dx| — | (1-x?)B,
! 2n2) | e | ) MmO
(20

where x=cos, k=|Kky|=|k,|, and p=|p|=|p[ in the NN
c.m. frame, andE = \/p?+m3.

For future reference, we also note the foIIowiNgT pro-
duction threshold relation between the partial waves:

b%/Z,*l/Z= \/Ebi/Z, 1/2’ (21)

ast—4mg (or P—0). The origin of this relation is easy to

understand. Since thé¢ andN have opposite intrinsic pari-
ties while the intrinsic parities of thi¥ andK are the same,
the spin X spatial part of theKK—NN amplitude must
transform as a pseudoscalar. In K c.m. frame, one may
therefore write the two independent amplitudes as

Sk, = Xa,[f10- K+ f20-plxa,, (22)

We may now write the Ii{9(t) in terms of the two
independenbi‘l'“. Starting from the general expression in

SEq. (10), specifying the statel) to contain two kaons only,

and replacing the sumB,, by appropriate integrals over two-
kaon phase space, we obtain expressions for the spectral
functions:

myQ E
|m|:(s)(t)= Re{ (_ N b ) b1/2,71/2_ bl/2, 1/2]
1 # )| \m,t
><F<KS><t)*] (27)
ImF(S)(t)ZR myQ pli2 12_ My pl2-12 F(S)(t)*
2 4P2 1 \/EE 1 K y
(28)
where
P=\t/4—mZ, (29)
Q= t/4—mz. (30)

The kaon strangeness form fact®§)(t), appearing in Egs.

(27) and (28), is defined through the matrix elements
(0[s7,,8|K ™ (kK" (ko)) = (ky— ko) JFE(1),  (3D)

(0[5,:5/K(kp)K(ky)) = (ks —ky) FE(1),  (32)

with F&(0)=—1.
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B. Kaon strangeness form factor F (1), including the shape of the peak, requires more so-
The appearance of the kaon strangeness form fdt'éf())r phisticated parame_trizations than th_atpoﬂominance[41].

in expression€27) and(28) necessarily implies the introduc- Nevertheless, one is able to approximate the results of such
tion of some model dependence into the dispersion relatioANalyses in the region using a VDM parametrization with
analysis. The reason is that there exist no data=f¥(t). ~ values form, andl',, in good agreement with those ob-
Consequently, the best we can do is illustrate the impact dgined from other observablg1,43. In the case of the kaon
choosing a reasonable parametrization of this form factor. T6&M form factor F(t), one has information in the timelike
this end, we first make a few general observations regardingggion from o(ee” —KK) data[44]. As extracted from
F(& and its relationship to thK partial waves. In the prod- these dataF(t) displays a peak near thgK threshold,
uct of FP(t)* and the partial waves,'"? appearing in ~which is also close to the value=mj Conventional treat-
Egs. (27) and (28), the real part will depend on both the ments of F¢(t) have correspondingly employed extended
magnitudes of these two factors as well as on their relativgersions of the VDM, including poles associated with not

phase. Specifically, defining the phases as only the ¢(1020), but also the and w [44]. For values of
e x U VIR t=2(GeV/c)?, one begins to observe a bump-dip structure
byt "2=|b, "% e, (33 which cannot be reproduced using the three lightest vector
_ mesons, and one is apparently forced to include poles asso-
Fio'=[Fd]e'%, (34 ciated with higher-mass vector mesddg,45.

For our present purpose, it is sufficient to choose a param-

one has etrization forF(KS)(t) which produces behavior in the timelike
Re{bglmzpﬁ(t)*}: |b§1'*2||FE<S>|cos( 81— 8¢) region in reasonable accord with the gross structures of the
pseudscalar EM form factors. Indeed, we are not interested

= (b} ™2 F (14 i), (35 in obtaining airtight numerical predictions for the nucleon

strangeness form factors, but rather in illustrating the impact

where we define a phase difference correctionn  which the use of a realistiE()(t) has on these predictions.
=cos(6— ) —1. Hence, choosing a parametrization which produces the cor-
The lack of data orF(’ is particularly problematic in  rect structure in detail is not necessary. Because the current

seeking to determingy . Here, the situation stands in con- sy s is purely isoscalar, we expect no significant contribu-
trast to the case of two-pion contributions to the nucleon’sjon from 1*(1~~) mesond such as thep. The lightest

isovector EM form factor$30,31]. In the latter instance, the 0~ (1~ ") meson which might contribute is the. However
phase of ther partial wave must be identical to that of the \\,o \would expect the matrix elemefw[sy,s|0) to be small
d gy 7

L 2 2 ; —
pion’s isovector EM form factor for #i, <t=16m; . This .0 e, is nearly a pure |} +|dd))/2 state having a
feature follows from the fact that in this kinematic range, . —

small admixture of|ss) at the level ofe~0.05. Conse-

there is only one final staténvolving two ='s) having the Iquently, we employ models whida) are normalized to give

same quantum numbers as the isovector EM current. Unital Y .
ity then implies that the phase of the form factor and that of.N€ COITect strangeness chargf)(0)= -1, and(b) contain

the scattering amplitude must be identical, that is, that thé Strong resonance enhancement in the vicinity of the
phase difference correctiop, =0 [37]. In dispersion rela- ¢(1020). The simplest such model is thatg»meson domi-
tion analyses of the isovector form factors one typically ashance, which yields
sumes thaty,=0 everywhere below thédN production
threshold, since the phases associated with 87, etc., po 2 12
final states are smdB8]. This latter practice falls under the ) @)l
rubric of “extended unitarity” [32,39,4Q. In the case of IF'(Hvou|= [(£2—1)%+ mbeZ] ' (36)
KK scattering, however, there exist several multipion final
states which can be reached fer4mZ . Hence, there exists
no regime int for which y,=0. At this time, we are unable where gZEmfb_rzm andT is the width of the$(1020)
to make any statements aboyt, and we take its value to be resonance. An alternative is to adopt the Gounaris-Sakurai
one of the uncertainties in our analysis. We note, howeverGs) parametrization, which is reasonably successful in
that |1+ yg|<1. Thus, for purposes of setting an upper mogelingF (t) in the p-peak region. When employing the
bound on the magnitude of the spectral function, we may segg form, we replace the mass and width with those of the
7k=0. . o 9 ¢. This parametrization can be found in Ref6] and we do

In choosing our model parametrizations Eﬁ () we ot reproduce it here. It is interesting nevertheless to com-

draw upon what is known about the lightest pseudoscala‘t_*)are the VDM and GS forms near thie pole. Both can be
meson form factors in the timelike region. First, it is well shown to yield '

known that the pion EM form factdf _(t) is dominated by
the p resonance for b2<t<(m,+m,)? [41]. Moreover,
more than 90% of the pion charge radius can be accounted

for by the presence of a pole[42]. The simplest parametri-

zation which reproduces these gross features is that of thelin short, we neglect isospin-breaking effects, suclp-as mix-
vector dominance modé€VDM). The detailed structure of ing.
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FIG. 2. One-loop diagrams for the strange vector form factors of
the nucleon; the strange vector currajr]'us is denoted by the curly
line, the dashed lines correspond to kaons, and the solid lines cor- (b)
respond to nucleon@xternal or strange baryon@nternal to loop.

FIG. 3. Approximations for thex—NN scattering amplitude
appearing in Fig. 1 and Eq10). Panel(a) gives the Born approxi-
mation for the KK—NN amplitude, while (b) represents the
BB—NN amplitude in the one-meson exchange approximation
where m, /T'~255, 6,py=<0.01, anddzg~—38. We also (B is a baryon
note that both models fall off to unity from their peak values
at roughly the same place & (t) [t=2 (GeV/c)?]. In the tors using the nonlinear SB) o model[47,48. We choose
following discussion, we compare predictions for thethis model as it constitutes the standard paradigm of a chiral
F(t) using the VDM and GS parametrizations with thoseeffective theory. We also show how, for theK contribution

m
R (t=m})| ==+, (37)

obtained assuming pointlike behavitﬁff)(t)z -1. [Figs. 2a) and 3a)], the one-loop approximation is a rather
drastic one.
IIl. BORN APPROXIMATION AND BEYOND In order to proceed, we first compute tbél'Az in the

Born approximation(BA), using the amplitudes associated
with the diagrams in Fig.@). In the case of the baryon pole
®iagrams, we include only th& intermediate state since, in

Thus far, all calculations of the “kaon cloud” continuum
contribution have been restricted to one-loop order. In th

case of the nonlinear SB) ¢ model, for example, the rel- the limit of good SU3) symmetry, the strondiSK coupling

evant diagrams are shqwn in Fig. 2. Performing such a ongg highly suppressed with respect to R K coupling[49].
loop calculation is equivalent t¢a) computing the ampli- We obtain

tudes(N|Jy|n)V(p) and(n|sy,s|0) entering the expression
in Eq. (10) under specific approximations aifo) using the

resultant spectral functions in the appropriate dispersion in- K
tegral of Eqs(7) and(8). In particular, for loop contributions AN
where the current is inserted on the kaon I{fég. 2(a)], KK> —_ OorvuxX  —> U
these approximations amount to computing hﬁé‘kz in the
Born approximation[see Fig. 8)] and taking the kaon K

strange form factor to be pointlik&®=—1 [see Fig. 4a)].
For diagrams where the current is inserted on the strange

(@
baryon line[Fig. 2(b)], the corresponding approximations B
entail evaluating théd8B— NN amplitude in the one-meson
exchange approximatiofFig. 3(b)] and taking the strange BB> — OrwuX
B
(b)

baryon strangeness form factor to be urjifig. 4b)]. The

remaining one-loop diagrams appearing in Fidc)2are

needed to guarantee that the one-loop amplitudes satisfy the

Ward-Takahashi identity and have no analogue within the

framework of DR’s. This equivalence between loops and

DR’s has been discussed previously for the pion loop contri- F|G. 4. Pointlike approximation for the matrix elements
bution to the nucleon isovector EM form factors in the con-(n[sy,s|0) entering the spectral functions as in Eg0) and Fig. 1.
text of the linear SR) o model[27,28,32. In what follows,  Panel(a) corresponds to the pointlike kaon strangeness form factor,
we demonstrate the equivalence for the strangeness form faahile (b) denotes the same for a baryon.
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1 (2mQ?\[3 1 1 M2
bl/2 1/2:—12771‘2 —\;%Q {5_6(3F+D)2+ §(3F+D)2 P_Q> [Qo(xg—i€) = Qa(Xg—ie€)]
M2 , M2AM .
+(3F+D)? P_Q Qax(xg—ie€)+(3F+D)? QT Qi(xg—ie)(, (38)
) 1 (2V2EQ¥\ (3 1 1 M2 _ .
b}/ 1/2:—127Tf2(T>[5—6(3F+D)2+ §(3F-|—D)2 %)[QO(XBﬂG)_Qz(XB_'é)]J, (39

where

XB:Vp/VO, Vp:VB+ M_AM, VB:(t_zmi)/4mN

vo=PQImy, M=(my+my)/2, AM=(m,—my)/my, (40)

wheref~93 MeV is the pion decay constant, and where @h§z) are Legendre functions of the second kind. The constants
F andD are just the usual S@) reduced matrix elements, wilb+F=1.26 andF/D =0.64. Substituting these expressions
into the formulas of Eqs(27) and (28) yields

(s) QS (s) 3 1 2 1 2 M2
ImF (=152 N REF(D]) 5~ g(3F+D)"+ 3 (3F+D) PO [Qo(xs) — Q2(Xg)]
—(3F+D 2m§‘ M2 + MEAM 41
( ) pz PO Q2(Xg) o7 Qu(Xg) | (. (41
© 3 © LMy M2 M2AM
ImF (t):127rf2 _2\/? R F’(1)](3F+D) 72| | Po Q2(xp) + o7 Qi(Xs) (. (42

where we have made use of the fact thathiie™2 are realin  the use of one-loop amplitudes and the use of @@} with
the BA fort=4mj. the BA for theKK— NN amplitudes are equivalent.

After settingFEf)(t)E —1 in Egs.(41) and (42), one ob- _With expli_cit formulas for the spectral functio_ns _in hand,
tains expressions for the spectral functions which are identilt IS NOW straightforward to carry out the dispersion integrals.
cal to those obtained from the Feynman amplitudes assoclVhen the nonlinear S@) o model is used to perform one-
ated with the diagrams in Fig.(®. To see how this loop calc-ulat|ons for these Ieadlng momer!ts, one finds Fhat
equivalence comes about, we refer to the analytic structure ¢fo contains a UV divergence. Using the dispersion relation
the matrix eIemen(N(p);N(E|s_yMs|O). Any discontinui-  framework, we correspondingly find that ti&< contribu-
ties across the redl axis must arise from integration over tion to pg is divergent in the dispersive variatiavhen the
poles associated with the presence of one of the physicBA is used to compute th@il'“ and a pointlike kaon
stategn) appearing in Eq(10). The Cutkosky rule$50,51  strangeness form factor is employed. In the case of loops,
give a procedure for extracting these discontinuities fromypis Uv divergence can be handled in a variety of ways.
Feynman amplitudes. In particular, we may obtain the correwhen one attempts an analysis using CHPT, the divergence
sponding discontintuity from the Feynman amplitudes byis removed by the corresponding counterterm. This counter-
making the following replacement for each propagator assoerm, however, contains a finite remainder which cannot be
ciated with one of the particles appearing in the given stat@jetermined in any model-independent way from existing
In): measurement§l5]. Consequently, one must invoke addi-

tional model-dependent assumptions in order to make predic-
tions using loops. A variety of such scenarios are discussed
—mPrie 27 6(po) S(p*—m?). (43)  and evaluated in Ref15]. These alternatives include assum-
ing that the finite low-energy constants in CHPT are satu-
rated by vector meson resonances or assuming that the loop
Since the only statfn) contained in the loops of Fig(& is  integrals are cut off by form factors and the meson-baryon
|KK), we make the replacement of E¢23) for the two-kaon  vertices. Each involves a departure from Q@bthe level of
propagators in the loop integrals. Doing so, and carrying ouhadronic effective theojyto a greater or lesser extent and
the loop integration, yields the formulas in Eq4l) and entails a certain amount of ambiguity. Ideally, one would
(42). The details of this procedure are shown in the Appeniike to find a less model-dependent way of regulating the UV
dix. Thus, insofar as the DR’s of Eq&7) and(8) are valid,  behavior of the integrals and obtaining a finite prediction.
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FIG. 5. Partial wavei;;il’)‘2 for KN scattering in the nonlinear FIG. 6. Spectral functions in the nonlinearmodel and naive
SU(3) o model. The solid and dotted lines correspondb{§ Y2 unitarity bounds. A pointlike strangeness form factor for the kaon
and b}2~12 respectively. The dashed line shows the unitarityhas been used. The solid and dotted lines show the results for
bound onbi?~2; the bound orb’* ¥2, which is not shown, isa ImF{(t) and InF{(t), respectively. The corresponding naive
factor of 1A/2 smaller at thé\N threshold, indicated by the vertical unitarity bounds are indicated by the dashed and dash-dotted lines,
dotted line. respectively. The vertical dotted line indicates the two-nucleon

threshold.

In the present context, the unitarity bound on the partial
waves [Egs. (190 and (20)] provides such a model- together with the BA where a pointlike strangeness form
independent regulator. The physical amp"tuuéyz must factor for the kaon has been applied. The divergence in these
satisfy the boundEq. (17)], regardless of one’s model for bounds appearing at tH¢N threshold arises from the R?

KN scattering. To illustrate the impact of the unitarity factor appearing in Eq€45) and(46). The presence of this
bound, we plot in Fig. 5 the partial waves computed in thesingularity renders the functions appearing in the right-hand
BA as a function oft and the corresponding unitarity bound Side (RHZS) of Egs. (45 and (46) nonintegrable over the
above the two-nucleon threshold. One sees thab}kd2in  range 4ny<t<. Thus, the naive bounds are not meaning-
the BA violate the unitarity bound by a factor of 4 or more athI'A ful licati ¢ unit . that

the threshold and that this violation grows with more careful appiication of unitary requires %\Zone

When translating the unitarity bound into a bound on thedlso take into account the threshold relation on ije
spectral functions, some care is required. The most naiv@ppearing in Eq(21). This relation forces the linear combi-
approach is to begin with Eq$27) and (28), apply the tri-  nations ofbil'”"’ appearing in Eqgs(27) and (28) to go as
angle inequality, and taklebil'kﬂzl, viz., P2 near the threshold, thereby ensuring that the spectral

functions are finite a®—0. Hence, when imposing unitar-

myQ E ity, one must enforce the threshold relation. For simplicity,
(s) N 12,-1/2__ | 1/2, 1/ (s) >
|Ime(t)|s( 42 || m by b1 #FKS(UH we choose to také}? Y2=pl2-1% 2 everywhere above
N 4mﬁ, even though this relation rigorously applies only at
— 2 1/2,—1/2 H
_ myQ E 1212 1 |12, 1 t=4my, and takegby |<1. This leads to the bounds
4P2 \/EmN 1 1 Q
IMFS(t)|< —=————|FS(1)], (47)
<[FE(], (42) IMF Ol S S zmy © O
and similarly for|[ImF{(t)|. In arriving at the first line of MO
Eq. (44) we have set the phase difference correctjg=0 IMFS (t)|< +|F&S)(t) , (48)
as discussed previously. Setting)*™?|=1 and using V2t(\t+2my)

t=12E in the NN c.m. frame, we obtain the naive unitarity which now can be used in the dispersion relatiGisand(8)

bounds without ambiguity. Furthermore, the bounds with the correct
Q threshold behavior built in are always more stringent than the
ImF & (t)|< S(2 V2my+ b |FE(t)|, (45  naive ones for alt=0. Figure 7 shows these pou_n[ﬁqs.
8.\2P (47) and (48)] together with the BA and a pointlike kaon

strangeness form factor in both cases. We show only the
mnQ © bound on|ImF{(t)[, since|ImF(t)|<|ImFE(t)|m/E. It
4\/EP2(\/Z+ 2my)[FiI(M]. (46) is clear from the curves in Fig. 7 that unitarity has a signifi-
cant impact on the spectral functions above H¢ thresh-
These naive bound&gs.(45) and(46)] are shown in Fig. 6 old.

IMFS (t)|<
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20 - TABLE I. Contributions from kaon intermediate state to the

: nucleon strangeness radius and magnetic moment, computed using
dispersion relations. Results are given using three different sce-
narios as discussed in the text) BA/PFF, partial waved)™?
computed in BA and kaon strangeness form faEtﬁj}(t)E -1;(b)
BA/U/PFF, same a&) but with unitarity limit from Eqs.(47) and

T (48) applied fort>4m§,; (c) BA/U/GS, same agb) but with
i Gounaris-Sakurai parametrization f6t)(t). To convertp$ to
- (r2), multiply p3 by —0.066 fn?.

05 Moment Scenario  4m2<t<4m? 4mi<t Total
D BA/PFF 0.18 div div

BA/U/PFF 0.18 0.03 0.21

0 BA/U/GS 0.26 0.01 0.27

us BA/PFF —-0.07 —-0.40 —-0.47

) ) o BA/U/PFF —-0.07 —-0.07 -0.14

FIG. 7. Same as Fig. 6 but with tferrectunitarity bounds of BA/U/GS —0.09 —001 -0.10

Egs. (47) and (48). The bound on IR (t) is not displayed be-
cause it is even more stringent than the bound oR {f(t).

In addition to correcting th&K—NN in the BA for uni-  N€ss momentsp and®. For purposes of later discussion, it
tarity, we also attempt a more realistic treatment of the kaors useful to write down the DR's for these two quantities:
strangeness form factor appearing in E@¥) and (28). As

discussed above, we do so by choosing two parametrizations am? = ImFP(t)

strongly peaked in the vicinity of theé(1020) resonance. In pp=—— yAt—7—, (49

Fig. 8 we plot the same quantities as in Fig. 7 but using the ™ Jam

GS form factor. For mzsts4mﬁ,, the ¢ peak in the GS

parametrization leads to a strong enhancement of the spectral 1 (= ImFS)(t)

functions as compared with the use of a pointlike form fac- ,us=; w2 (50)
K

tor. Ast increases beyond theN threshold, the GS form
factor eventually suppresses the spectral functions when ei-
ther the BA or unitarity bounds are used. The impact of Using these expressions, we compare three scenarios for
using the simpler VDM parametrization is similar to that of computing the<K contribution to the momentsa) a calcu-
the GS form factor. Although we could have attempted toOjation using the BA for thebi“z and pointlike kaon
carry out a more detailed analysis®f’(t), the plot in Fig.  strangeness form factdBA/PFP), (b) the same aga) but
8 makes the essential point clear: The impact of choosing gnposing the unitarity bounds of Eq$47) and (48) for
reasonable nonpointlike form fdﬁfff)(t) can be nontrivial. t>4mﬁ (BAJU/PFB, and(c) the same asb) but using the
GS parametrization foF(®(t) (BA/U/GS). Of these sce-
narios, we recall that) is equivalent to computing the one-
In this section, we explore the numerical consequences dPop amplitudes of Fig. @). We further delineate between
unitarity andF®(t) parametrization for the leading strange- theé contributions to the dispersion integrals in E@.and
(7) arising from the integration regionsmk<t<4mj and
06 y T : ' 4mZ<t. In applying the unitarity bounfiscenarios(b) and
: (c)], we assume for simplicity that the spectral functions do
not change sign across the two-nucleon threshold and that
5 this sign is given by the phase of the spectral function for
04T : 1 t<4m? . The results are given in Table I. From the entries in
the table, the numerical impact of imposing unitarity and
choosing a nonpointlike form factor is evident. In the case of
pp , unitarity eliminates the UV divergence and sets a bound
021 I 1 on the contribution from the region above tN&\ threshold
T which is small. In terms of the dimensionful Dirac radius,
this contribution is about-0.002 fi?. The use of the GS
parametrization foFff‘)(t), on the other hand, increases the
contribution from the region m2$t$4mﬁ, by about 50%,
t[GeVH] owing largely to the¢ peak near the two-kaon threshold.
Even though thé,; spectral function with the GS form fac-
FIG. 8. Same as Fig. 7 but using the GS parametrization for thdor falls below the corresponding spectral function with a

kaon strangeness form factor, peaked fbr=m,, . Note the differ-  pointlike form factor fort>2 (GeV/)?, the 1t* appearing
ence in vertical scale as compared to Figs. 6 and 7. in the integrand of Eq(49) favors the contribution from the

IV. STRANGENESS MOMENTS

Im F,’|
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region containing thes-resonance enhancement. Conse-violation of unitarity in the BAb}™2. A comparison of the
quently, the reduction for 2 (Gewj2<t<4mj is not sig- BA/U/PFF and BAU/GS results in Table | shows that the
nificant. inclusion of a reasonable parametrizatiorF@P(t), display-
For the strange magnetic moment, the BA contributioning an enhancement in the vicinity of th¢(1020), can
with a pointlike F{§)(t) yields a finite result, in contrast to change magnitudes @ and xS by as much as 30%. While

the situation withp$ . Nevertheless, the imposition of uni- our rationale for choosing such a parametrization is not

tarity reduces the>4mﬁ contribution to one-sixth of its BA based on any rigorous argument, we nevertheless believe that

value. Insofar as the contribution from this region was theit constitutes a more realistic input than does the use of a
o . : o gron. .. _pointlike form factor. We correspondingly expect most one-
dominant one in the BA, this unitarity reduction is quite

N . loop calculations employing the pointlike approximation to
significant. The use of the GS form factor reduces this conpe physically unrealistic.

tribution even further, whereas its impact in the region As a final Obser\/ation, we make a Comparison between
4mz<t<4m3 is small. In the latter instance, the enhance-the DR calculation and the one-kaon loop calculation of
ment from the¢ peak is not as important as in the case of CHPT. To be concrete, we focus on the strangeness radius.
pS ., since the integrand in EG50) only weights the lowt  Within the framework of CHPT, the only well-defined piece
behavior as 1/ of a one-kaon loop contribution tpp is that which is

We emphasize that, although the results listed in the lagionanalytic in the strange quark mass. The remaining piece
column of Table | may be instructive, one should not take'S mdlstmgqlshable fror_n tree-levgl contr|but|.ons arising
the precise numerical values too seriously. It is clear from{fom the chiral Lagrangian, at a given order in the chiral
the results in the fourth column, as well as from the curves irpc@€: A, ~4f. Consequently, one subsumes all analytic
Figs. 5, 7, and 8, that the consequences of the unitarity corPntributions into the counterterms. In the casegft only
straints are significant. The physical mechanisms responsibf@e ampl|tud2es of F'gt @) contrlbu_te a term nonanalytic in
for the reduction of thmil'xz and InF? from their BA val- m at O(1/A}). Specificially, one findg15]
ues to the unitarity limits—primarily nonresonant and reso- s s (ZmN)2 .
nant kaon rescattering—cannot be neglected in a physically PO~ Ploop— | A | &
realistic calculation. Although the unitarity bounds give an X
explicit indication of the importance of these rescatteringwhere

(51

terms in the regiort=4m3, one has no reason to assume 2 5[/3r+p\2 3

they are any less important in the regiomZ<t<4mj. s _ @) > ( ) + 2(D-F)2 }
Whether rescattering effects increase or decrease the contri- %\ Ay 3 6 2

bution from this region is not known at present, and one may 5

only speculate. For example, the presence ¢{#020) reso- x| c,— m_g , (52)
nance in thetKK— NN partial waves could, in principle, en- M

N1iAo . . .

hance thd?l from-thelr BA values N Some region ofin where(,, contains the UV regulator and is the renormal-

fact, previous experience withrar contributions to nucleon i74tion scalé The counterterne® contains a piece canceling
isovector form factors suggests that rescattering may lead g, v divergence appearing ji,,, plus a finite remainder,

enhanced low- cqntribution_s. In the work of Re_1{27_], it containing all the analytic contributions at ordey\;/. The
was found that, in comparison to the BA contribution, re- finite part ofc® can be further decomposed as

scattering contributions enhanced the4m? contribution to
the isovector magnetic moment by roughly the same magni- c®=co—2[c_—(c,/3)], 53

. . 2 .
tude as the unitarity bounds reduced tre4my contribu- e thes, can be determined from the neutron and proton

tion. _ EM charge radii and where the constaptis associated with
Given the equivalence between the BA/PFF treatment ofe S1y3) singlet current. It is the latter constant which can-

the dispersion relation and the one-loop contribution of Figyot pe determined from any existing data, since measure-
2(a), the results of the foregoing analysis should lead one tgnents have only been made of @Y octet vector current
question the credibility of any one-loop prediction for the matrix elements. Consequently, CHPT cannot be used to
strangeness moments. Even model calculations which emnake a model-independent prediction fd.
ploy form factors to regulate the integrals do not include all  The correspondence between the results in Eg.and
of the rescattering corrections required by unitarity. Indeed(52) and those obtained using the dispersion relation can be
such form factors apply only to the meson-nucleon verticesunderstood as follows. In the BA with a pointlike kaon form
and not to the fullkK—NN (or KN—KN) scattering am- factor, one finds an identicalrin;z< IR singularity as that ap-
plitude. Moreover, meson-nucleon form factors are ofterpearing inpﬁmp. The origin of this Imni is a branch cut
taken to be functions df?, wherek, is the four-momentum singularity ~ in  the BA  partial waves for
of the kaon, and are normalized to reproduce thé3p\al- ts4mﬁ(1— mﬁ/4mﬁ) [31,32. The dispersion relation result
ues for the meson-nucleon coupling whifi= mﬁ. Thus  contains no renormalization scale dependence since the uni-
hadronic form factors have no impact on the BA violation of
unitarity for scattering amplitudes in the physical region.

In a similar vein, we note that the use of a pointlike kaon 2In Ref.[15] contributions from3 K intermediate states were also
strangeness form factor, as is used in most loop calculationacluded, yielding the term proportional tdF)? in Eq. (52).
reported to date, could represent as serious an error as tf@is contribution has been omitted in the present analysis.
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tarity bound removes the UV divergence. As the nucleon P

mass is the only other scale which enters the calculation, one \

finds u—my in the leading logarithmic contribution. Pre-

sumably, the remaining contributions in the BA, as well as k+q/2
those generated by resonant and nonresonant rescattering \_

terms in thebil’xz (as necessitated by unitaritgnd the ef-
pka2 NN UX

fects of the physicaF(t), should be accounted for in B

CHPT by the counterterre®. Unfortunately, since&® cannot 7«" q
be determined from existing data using symmetry, one must T kg2
resort to other strategies for including the rescattering and

FO(t) effects. /

-p

V. SUMMARY FIG. 9. Our choice of the internal and external momenta for the

In the present paper, we have made an initial study of thé:alcglat.ion of the .imaginary partg arising from thehannel dis-
continuum contribution to the nucleon strangeness vectotontinuity of the diagrams from Fig.(2.
gurrent form faf:tors using the framewgrk of d|sper5|9n rela'scale of this contribution, along with those NN and BB
tions. In focusing on th&KK contribution, we have illus-  intermediate states, awaits the result of future work.
trated how a leading order loop prediction for the strangeness
radius and magnetic moment entails a substantial violation of ACKNOWLEDGMENTS
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though we have specified our analysis to the case of thg,an aAcademic Exchange Servi¢Boktorandenstipendium
nonlinear SU3) o model, our conclusions regarding unitar- ygp |/ AUFB). M.J.M. has been supported in part under
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bound is general. We have also illustrated how the use of a
reasonable, realistic kaon strangeness form factor can signifi- APPENDIX: IMAGINARY PARTS TO ONE LOOP

cantly affect one's prec_;lic_tions fp® and u°. We concIL_lde We show here the equivalence between the one-loop dia-
that most model predictions for the two-kaon continuum

oo ) . rams of Fig. 2a) and the Born approximation for tHeN
contributions are physically unrealistic. We further SUS|°ecgcattering amplitudes in conjunction with the dispersion re-

that our conclusions regarding th€K intermediate state |ation approachisee Fig. 8a)]. To that end, we calculate the
ought to apply as well to other leading order loop calcula-imaginary part of the one-loop diagrams from Figa)2
tions, whether they involve higher-mass strange mesons anghich arises from the-channel discontinuity. The equality is
baryons, as in the quark model calculation of R@6], or  then easily checked by comparing our results with E4s)
states containing three or more pseudoscalar mesons.  and (42). It does not depend on one’s choice for the kaon
We emphasize that the contribution about which we havetrangeness form factor. For simplicity, we therefore assume
yet to make a definitive statement is the< contribution  pointlike kaons. Any nonpointlike kaon strangeness form
from the region below th&I N threshold. At present, the best factor would simply multiply the resulting spectral functions.
we can do is make an estimate based on the BA for the In the following, we refer to the diagram with the propa-
b)*™2 and a nonpointlike kaon strangeness form factor. TheJating A (the triangle diagranas diagram(1). We assign
feasibility of making a refined analysis of @S CO_ntI’ibUtiOﬂ the momenta to the particle lines as shown in Fig. 9. For the

by continuing fits to physicakN—KN or KK—NN scat- other diagram with the kaon lodpefered as diagran)],

tering data will be discussed in a forthcoming study. Never-V€ assign the mO”T'e”ta in the same way and Igave out
.gheA momentum. Since we produce a nucleon-antinucleon

- . - . 2_ .
region to pp can be significantly enhanced if the kaon pair, g has to be timelike, i.eq =t=0. We work in the

stran - . - fcenter—of—momentum frame of the nucleon-antinucleon
geness form factor is strongly peaked in the vicinity o - i )

the $(1020), as one would reasonably expect based on andP@l. whereq=(w,0). Using momentum conservation, we
ogy with ete” KK data and on the flavor content of the have p’=(w/2,p") and p=(w/2,—p’) with |p'[=P
lowest-lying 0" (1~ ~) mesons. What remains to be resolved = Vt/4—mjy. We define the contribution of a particular
is the discrepancy between predictions ¢y using a VDM  Feynman diagram to the vertex functibi, by

approach and those obtained using models for the con- - T

tir?Sum. The key may lie in a bettergunderstanding of the ML')=—|U(p )FL”V(p), (AL)
subthreshold behavior of trtez}l‘l‘)‘2 as well as of the contri- where the strangeness charge of the ka@gs — 1 has been
bution from the three-pion continuum. Although it contains absorbed (). Using the nonlinear SU(3) model and
no valence strange quarks, the latter is the lightest statealculating the isoscalar contribution, we obtain the follow-
which may contribute to the DR’s foF{® and F$Y. The ing contributions to the vertex functions:
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rO_; (3F+D)? [ d* k,(K+d/2)(p' —K—d/2—m,)(K—d/2)

w =1Qs 6f2 (2m)* [(k—q/2)®—mi+ie][(k+q/2)>—mZ+iel[(p’ —k—0q/2)>—m3]’ (A2)
roI_, 3 d% k,, K A3
i ~1Qsp2 (2m)* [(k—ql2)°—mg+iel[(k+q/2)2—mz+ie] (A3)

Since the denominator of th& propagator does not vanish 11

in the t-channel physical region, tfie can be dropped. The LMZEJ’ dxk,, (A9)
I') have branch cuts on the real axis fer4mg . We cal- o

culate now the imaginary parts stemming from the disconti-

nuity associated with these cuts: L,LV=%J'1 axk k.. (AL0)
-1
I F“—lAF“—l Iim[ T (w+is)—T* io
m =5 =5 §|m0[ (w+id) (w—16)]. 11 K
- | ,== f x—= (A11)
(A4) wo2)-1  xg—Xx’
It is convenient to use the so-called Cutkosky ryes,51], L K K
which give a compact expression for the discontinuities as- I :EJ dx—~2Y (A12)
sociated with physical region singularities of Feynman am- KYo2) -1 Xg=X'

plitudes. In particular, we obtain the discontinuitieE ) by
cutting the kaon lines in diagran$) and(2) and replacing and these integrals can be decomposed g)tp and sym-
their propagators by functions(A5), metrical combinations of the independent four-vectors
A=(p'—p)/2 andg=p+p’. Their coefficients can be ob-
tained in a standard manner by evaluating the integrals
q,l*,A,1*, and so on. Furthermore, theintegrals can be
expressed through Legendre functions of the second kind.
As a consequence, the discontinuity arises for the intermediFor example, we find

ate particles on the mass shell. Note the equivalence to the

dispersion relation approach, in which the intermediate states 1, 1Q?
are also on shell. Because of tAefunctions, thed*k inte- Ly =3 QTQ2(Xe) = Qo(Xe) 19y~ 3 7~
gration now covers only a finite part of tikespace, leading
to a finite value of the integral. Consequently, the diver-

2

gences of the integrals, Eqé2) and(A3), do not contribute X[Qa2(xp) = Qo(X8) 10,9, + 52 Q2(Xe)A LA, .
to the discontinuity across the cut. The imaginary part is
finite, and only the real part has to be regulated. Next we (A13)

write d*k asdk,k?dkd(), and use the5 functions to carry
out thedky, and dk integrations. As a consequence, we 0
tain k=(0k) with |k|=Q= \t/4—mZ. Moreover, thed(, .
integration involves only the cosineof the angle between ImI'}) = yMImF(li)Jriz—’r‘r:q”lmFg), (A14)
k andp’. We obtain

p-Using the relation

we can identify the contributions to the imaginary parts of
dx( kM(KJFZM_) the Dirac and Pauli form factors fae=4mg, respectively.

1 We add now the contributions of the two diagrams and the
spectral functions emerge as

MM =Q——7— —=

(3F+D)2 Q 1 (1
48mf2 \ﬁif

2M2 K, (K+myAM
e e Py — ol 1 3F+D)?
s o1p MF O =21 g2 6 FD)
2_ _ 22 _
ImFM QSW\/EZJ_lka#K’ (A?) 1 , M2
+ 7 (BF+D)% 55/[Qo(Xs) —Qa(Xp)]
3 PQ
where o
— ,Mu [ M2
t—2mg+4myMAM ~(BF+D) 57| | pg) QalXe)
M2AM ALS
Finally, ImI") can be expressed in terms of the integrals + Q? Qu(Xe) |1 (A15)
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M2

PQ

the bil'“ and the dispersion relation approaptompare

Qa(Xg) with Egs. (41) and (42)]. The imaginary parts, Eq$A15)

o and (A16), are defined fo[>4m§. Since the discontinuity

MZ2AM starts at 4n2 , they have to be analytically continued into the

—Qz—) Ql(XB)+- (A16)  unphysical region m2<t<4mjZ. This is easily done by re-
placing the momentun® = /t/4— mzN by ip,=i\/m2N—t/4.
Consequently, the variablexg becomes complex

Up to the kaon strangeness form factor, these expressions anes— —iég), and the Legendre functions of the second kind

exactly the same as obtained by the Born approximation fohave to be analytically continued, too.

Q. @ my
IMF& (1) =5, W(3|:+D)2P—,§
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