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Using methods developed for hard exclusive QCD processes, we calculate the asymptotic behavior of
heavy-meson form factors at large recoil. It is determined by the leading- and subleading-twist meson wave
functions. For 1!uv•v8u!mQ /L, the form factors are dominated by the Isgur-Wise function, which is deter-
mined by the interference between the wave functions of leading and subleading twist. Atuv•v8u@mQ /L, they
are dominated by two functions arising at order 1/mQ in the heavy-quark expansion, which are determined by
the leading-twist wave function alone. The sum of these contributions describes the form factors in the whole
region uv•v8u@1. As a consequence, there is an exact zero in the form factor for the scattering of longitudi-
nally polarizedB* mesons at some valuev•v8;mb /L, and an approximate zero in the form factor ofB
mesons in the timelike region (v•v8;2mb /L). We obtain the evolution equations and sum rules for the wave
functions of leading and subleading twist as well as for their moments. We briefly discuss applications to
heavy-meson pair production ine1e2 collisions.@S0556-2821~97!03201-3#

PACS number~s!: 12.38.Bx, 12.39.Hg, 13.40.Gp, 14.40.Nd

I. INTRODUCTION

In heavy-quark effective theory~HQET! @1–5# ~see
@6–11# for reviews!, the heavy-quark spin does not interact
with gluons to leading order in 1/mQ ~where mQ is the
heavy-quark mass!. Therefore, this spin can be rotated~spin
symmetry! or even switched off~superflavor symmetry
@12,13#! without affecting the dynamics. In the heavy-quark
limit, the properties of the doublet of the ground-state pseu-
doscalar and vector mesons (qQ̄) are therefore characterized
by the spin-parity quantum numbersj P5 1

2
1 of the light de-

grees of freedom@1,14#. In this paper, we shall use the su-
perflavor symmetry to describe the ground-state mesons by a
Dirac wave function. However, we collect in Appendix A the
most important formulas using a more conventional formal-
ism.

Let Qv* be a scalar field describing a heavy antiquark
moving at four-velocityv with its spin switched off. Then
the decay constantf of a heavy meson~moving at the same
velocity! is defined as

^ 0uQv* quM ~v !&5 f u~v !, ~1.1!

whereu(v) is the Dirac wave function of the meson, which
satisfies

v”u~v !5u~v !. ~1.2!

A nonrelativistic ~i.e., mass-independent! normalization of
u(v) and uM (v)& is assumed. In the heavy-quark limit, the
relation betweenf and the usual meson decay constants
reads

f M5 f M*5
2 f

AmQ

. ~1.3!

To leading order in 1/mQ , current-induced transitions be-
tween two ground-state mesons are described by a single
Isgur-Wise form factor@1,15#:

^M ~v8!uQv*Qv8uM ~v !&5j~v•v8!ū~v8!u~v !, ~1.4!

wherev, v8 are the meson velocities. At next-to-leading or-
der, there appear 1/mQ corrections to the currents and to the
Lagrangian of the HQET@16#. The first type of corrections
can be expressed via the matrix element of a dimension-four
operator:1

^M ~v8!u~ iDm†Qv* !Qv8uM ~v !&5ū~v8!jm~v,v8!u~v !,
~1.5!

where

jm~v,v8!5j1~v•v8!~v1v8!m1j2~v•v8!~v2v8!m

1j3~v•v8!gm. ~1.6!

The equations of motion,iv•DQv50, can be employed to
relatej6 to j3 @16#. The result is

j15
~1/2!~v•v821!L̄ j2j3

v•v811
, j25 1

2 L̄ j , ~1.7!

where L̄ is the ‘‘binding energy,’’ i.e., the difference be-
tween the meson mass and the heavy-quark mass. Hence,
there is only one new independent form factor. The 1/mQ
corrections to the Lagrangian give rise to the matrix elements
of two nonlocal operators:

1We useDm5]m2 iAm andDm†5]m1 iAm†, whereAm5gstaAa
m

is the gluon field.
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^M ~v8!u i E dxT$Qv*Qv8~0!,Qv* ~ iD !2Qv~x!%uM ~v !&

52x1~v•v8!ū~v8!u~v !,

^M ~v8!u i E dxT$Qv*Qv8~0!,Qv* iG
mnQv~x!%uM ~v !&

52ū~v8!xmn~v,v8!u~v !, ~1.8!

where iGmn5@ iDm,iD n#5 igstaGa
mn is the gluon field

strength, and (smn5( i /2)@gm,gn#)

xmn~v,v8!5x2~v•v8!~gmv8n2gnv8m!12ix3~v•v8!smn.
~1.9!

In the second matrix element in Eq.~1.8!, the indicesm and
n are restricted to the subspace orthogonal tov. Explicit
expressions for the meson form factors in terms of the func-
tionsj, j3 andx i can be found in@9,16#. At moderate values
of v•v8, these functions have been studied extensively in the
framework of QCD sum rules, both at leading@17–21# and
next-to-leading@22–24# order in the heavy-quark expansion.
In the present paper, we shall consider the behavior of the
form factors in the large-recoil regionuv•v8u@1. This region
is inaccessible in the weak semileptonic decays, but it can be
explored ~at least in principle! in the production reaction
e1e2→M (* )M̄ (* ). Using methods developed for hard ex-
clusive processes, we calculate the asymptotic behavior of
the form factors in a model-independent way.

Our results can be summarized as follows: For
uv•v8u@1, there is a large momentum transfer to the light
quark:qlight

2 ;2L2v•v8, whereL is of the order of a typical
hadronic mass scale. As shown in Fig. 1~a!, this momentum
is transferred by the exchange of a hard gluon, and the meth-
ods developed for hard exclusive processes in QCD@25–28#
~see @29–31# for reviews! are applicable.2 In the ‘‘brick
wall’’ frame, wherevW 852vW , the projection of the total an-
gular momentum on thez axis ~directed alongvW ) is equal to
the projection of the meson spin.~Recall that the heavy-
quark spin has been switched off.! Since it is conserved, the
meson helicity changes its sign@33#. The asymptotic behav-
ior of the Isgur-Wise form factor is thus determined by the
interference between the leading-twist~quark-antiquark!

wave function and the subleading-twist~quark-antiquark and
quark-antiquark-gluon! wave functions. It is given by

j~v•v8!;
asf

2

L3~v•v8!2
. ~1.10!

Indeed, the situation is similar to the well-known case of the
p-r form factor@29#. At order 1/mQ in the heavy-quark ex-
pansion, there are however contributions involving the
leading-twist wave function only. They conserve the meson
helicity and behave as

j3~v•v8!

mQ
;
v•v8x2~v•v8!

mQ
;

asf
2

mQL2v•v8
. ~1.11!

The leading contribution in the heavy-quark expansion,
which is given by the Isgur-Wise function, dominates as long
asuv•v8u!mQ /L. For uv•v8u@mQ /L, however, the contri-
butions of j3 and x2 in Eq. ~1.11! become the dominant
ones. Note that they violate the heavy-quark spin symmetry;
i.e., they contribute in a nonuniversal way to the various
meson form factors. Higher-order terms in the heavy-quark
expansion~of order 1/mQ

2 and higher! cannot fall off slower
than 1/(v•v8) because this behavior corresponds to the lead-
ing twist, and hence they always remain small corrections.

It is instructive to consider the same situation from an
opposite point of view. At asymptotically large values
uq2u.2mQ

2 uv•v8u@mQ
2 /x ~whereq is the momentum trans-

ferred to the mesons, andx;L/mQ is the momentum frac-
tion carried by the light quark!, the form factor of a heavy
meson behaves like that of the pion@25–31#:

F~q2!;
asf M

2

x2q2
, ~1.12!

which exactly corresponds to Eq.~1.11!. However, there is a
contribution to the subleading-twist (1/q4) correction which
is proportional tomQ

2 . It becomes important for moderate
values ofq2:

F~q2!;
asmQ

2 f M
2

x3q4
. ~1.13!

This contribution exactly corresponds to Eq.~1.10!. It domi-
nates foruq2u!mQ

2 x. Higher-twist (1/q6 and higher! correc-
tions cannot be more enhanced thanmQ

2 because otherwise
the form factor would diverge in the heavy-quark limit, and
hence they always remain small corrections.

Until now, we considered form factors for transitions in-
duced by a current containing heavy quarks only. In the case
of, say, the electromagnetic current, which also contains
light-quark fields, contributions of the type shown in Fig.
1~b! appear. However, they lead to the behavior

asf
2

mQ
3 v•v8

;
asf M

2

q2
~1.14!

and can thus be safely neglected, sincemQ@L for a heavy
quark.

In summary, for 1!uv•v8u!mQ /L the dominant contri-
bution to meson form factors comes from the universal

2There are also soft endpoint contributions@32#, which are diffi-
cult to estimate.

FIG. 1. Hard-gluon exchange contributions to heavy-meson
form factors. The external current is presented by the wave line; the
heavy antiquark is represented by a double line.
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Isgur-Wise function. It involves the exchange of a longitudi-
nal hard gluon and a change of the meson helicity, corre-
sponding to the interference between the leading- and
subleading-twist wave functions. Foruv•v8u@mQ /L, on the
other hand, the situation is the same as in massless QCD; the
asymptotic behavior of meson form factors is determined by
leading-twist contributions, which are not universal. They
are governed by the exchange of a hard transverse gluon,
which conserves the meson helicity. The sum of these two
contributions describes the asymptotic behavior of the form
factors in the whole regionuv•v8u@1. The simple picture
described here is only slightly modified by the emission of
gluon bremsstrahlung, which can be dealt with in
renormalization-group improved perturbation theory. It leads
to an additional, moderate power suppression of the form
factors at large recoil.

The remainder of the paper is organized as follows: In
Sec. II, we introduce the~quark-antiquark! meson wave
functions of leading and subleading twist,w6(v). Unlike in
QCD, wave functions defined in the HQET depend on a
dimensional argumentv. We investigate the moments of
these wave functions and derive the symmetry relations be-
tween the various meson wave functions, which arise in the
heavy-quark limit. In Sec. III, we derive the evolution equa-
tions for w6(v), which are analogous to the Brodsky-
Lepage equations@28#. This calculation extends the calcula-
tion of the HQET anomalous dimension of local heavy-light
current operators@34–39#. A new kind of ultraviolet diver-
gence appears in the relation between the local operators and
the operators defining the wave function. Therefore, the
Brodsky-Lepage kernels do not determine the renormaliza-
tion properties of the local operators completely. A similar
situation is encountered in the case of the~Altarelli-Parisi!
equations describing the evolution of distribution functions
in the HQET@40#. In Sec. IV, we investigate the properties
of the wave functionsw6(v) using the QCD sum-rule ap-
proach. This extends the heavy-meson sum rules@18,41–43#
to the case of nonlocal operators. After considering the sum
rules for the lowest moments, we construct the sum rules for
the wave functions themselves, taking into account the non-
locality of the quark condensate@44#. In Sec. V, we apply
our results to derive the leading asymptotic behavior of me-
son form factors at large recoil. First, we calculate the con-
tribution of the interference between the leading-twist and
the ~quark-antiquark! subleading-twist wave functions to the
asymptotic behavior of the Isgur-Wise function.2 Then we
calculate the leading-twist contributions to the form factors
appearing at order 1/mQ in the heavy-quark expansion. Fi-
nally, in Sec. VI we discuss the implications of our results
for the reactionse1e2→B(* )B̄(* ) and e1e2→D (* )D̄ (* ).
Technical details of our calculations are presented in four
appendices.

Before we proceed, some comments on the existing litera-
ture on the application of perturbative QCD to the calcula-
tion of heavy-meson form factors are in order. A simple
model of a meson made out of two heavy quarks with un-

equal masses was considered in@45#. There it was noted that
some form factors must have zeros in the physical region.
We confirm this interesting observation, although we dis-
agree with some other results of this work~see Sec. V!. A
similar model was considered in@46–48#. There, a single
spin structure of the heavy-meson wave function was used,
which is determined from the condition that the light quark
be at rest in the meson rest frame. Hence, all quark-antiquark
wave functions were taken to have the same shape, and this
shape was assumed to bed(v2m), with m being the con-
stituent mass of the light quark. As we shall see later, for a
realistic heavy meson the wave functionsw1(v) and
w2(v) do not coincide, and they are not well approximated
by sharply peaked functions. Integrals for the form factors
receive important contributions from the region of lowv
values, which are missing in the peaking approximation.
Therefore, the results obtained using such a static quark
model can at best be taken as a crude estimate. Perturbative
QCD and the constituent quark model were recently applied
also to the semileptonic decaysB̄→D (* )l n̄ @49#, for which
1,v•v8,1.6. In our opinion, such small values ofv•v8 are
far too low to treat the gluon withkg

2;2L2v•v8 perturba-
tively. Moreover, the calculations in@48# are done using a
model wave function with an ad hock' dependence, whose
longitudinal momentum dependence contradicts the expecta-
tions based on the HQET.

II. QUARK-ANTIQUARK WAVE FUNCTIONS

We shall define the quark-antiquark wave functions
w̃6(t) of a heavy meson in terms of the matrix element of
the bilocal operator

Õ~ t !5Q* ~0!E~0,z!q~z!, t5v•z, ~2.1!

wherez is a null vector on the light cone (z250), and

E~x,y!5PexpS 2 i E
x

y

dzmAm~z! D ~2.2!

is a string operator ensuring gauge invariance. In the light-
cone gauge (A150), one simply hasE(0,z)51. Since in
this section we are considering operators containing a single
heavy-antiquark fieldQv* , we shall for simplicity omit the
velocity label on the field. Similarly, we shall writeM and
u instead ofM (v) andu(v). The meson matrix element of
the operatorÕ(t) has two independent Dirac structures,u
andz”u, and we define

^ 0uÕ~ t !uM &5 f S w̃1~ t !1
1

2t
@w̃2~ t !2w̃1~ t !#z” Du.

~2.3!

It is convenient to introduce two light-cone vectors
n6

m 5(1,0,0,71) such thatn6
2 50 andn1•n252. Any vec-

tor am can be decomposed asam5 1
2(a1n2

m 1a2n1
m )1a'

m ,
where a65a•n6 . This implies a•b5 1

2(a1b2

1a2b1)2aW'•bW' . We shall also use the light-cone compo-
nents of the Dirac matrices, defined asg65n6

m gm5n”6 . If
the meson is at rest, thenvm5(1/2)(n1

m 1n2
m ), i.e.,

v15v251. Usingv”u5u, we can then rewrite Eq.~2.3! as

2The properties of quark-antiquark-gluon subleading-twist wave
functions and their contribution toj(v•v8) will be discussed else-
where.
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^ 0uÕ~ t !uM &5 1
2 f @w̃1~ t !g21w̃2~ t !g1#u. ~2.4!

For a meson with an arbitrary velocity in then1–n2 plane,
this formula becomes

^ 0uÕ~ t !uM &5 1
2 f @w̃1~ t !v1g21w̃2~ t !v2g1#u.

~2.5!

If we introduce the rapidityq by writing

vm5~coshq,0,0,sinhq!, ~2.6!

then v15eq and v25e2q. This shows that for a fast-
moving meson (q@0), w̃1 is the leading-twist wave func-
tion, whereasw̃2 has subleading twist. It is convenient to
project onto these wave functions by writing

^ 0uÕ6~ t !uM &5 f w̃6~ t !g6u, Õ6~ t !5g6Õ~ t !.
~2.7!

This result is valid in an arbitrary reference frame, as can be
seen by using the relations

g6
2 50, g6g75

2

v6
g6v” . ~2.8!

The wave functionsw̃6(t) depend on the separationt on
the light cone. We define the corresponding wave functions
in momentum space by

w6~v!5
1

2pE dtw̃6~ t !eivt,

w̃6~ t !5E dvw6~v!e2 ivt. ~2.9!

The variablev has the meaning of the light-cone projection
p1 of the light-quark momentum in the heavy-meson rest
frame. The positions of the singularities in the complext
plane are such thatw6(v) vanish forv,0. The wave func-
tions are normalized such that

w̃6~0!5E
0

`

dvw6~v!51. ~2.10!

We can formally introduce operatorsO6(v) such that

^ 0uO6~v!uM &5 fw6~v!g6u. ~2.11!

This implies

O6~v!5
1

2pE dtÕ6~ t !eivt5Q* ~0!g6d~ iD12v!q~0!,

Õ6~ t !5E dvO6~v!e2 ivt. ~2.12!

Expanding in powers oft in the definitions~2.9! and~2.12!,
we obtain

Õ6~ t !5 (
n50

`

O6
~n!

~2 i t !n

n!
,

w̃6~ t !5 (
n50

`

^vn&6

~2 i t !n

n!
, ~2.13!

where

O6
~n!5E dvO6~v!vn5Q* g6~ iD1!nq,

^vn&65E dvw6~v!vn. ~2.14!

Equation~2.11! then implies a relation between the moments
of the momentum-space wave functions and the local,
higher-dimensional operatorsO6

(n) :

^ 0uO6
~n!uM &5 f ^vn&6g6u. ~2.15!

Using the equations of motion, the first moments of the
wave functions can be calculated in terms of the parameter
L̄ encountered in Eq.~1.7! @50#. In general, we may write

^ 0uQ* iDmquM &5 f ~avm1bgm!u. ~2.16!

The equations of motion for the light quark,iD” q50, imply
that (a14b)50. The equations of motion for the heavy
quark, iv•DQ50, can be used to write

^ 0uQ* iv•DquM &5 iv•]^ 0uQ* quM &5L̄^ 0uQ* quM &,
~2.17!

whereL̄5mM2mQ is the effective mass of the mesonM in
the HQET @51#. This relation implies that (a1b)5L̄, and,
therefore,

^ 0uQ* iDmquM &5 1
3 f L̄~4vm2gm!u. ~2.18!

Using this result, we find that the first moments of the wave
functions are given by

^v&15 4
3L̄, ^v&25 2

3L̄. ~2.19!

A similar analysis can be performed for the second mo-
ments. Consider the matrix element

^ 0uQ* iDmiD nquM &5 fQmnu, ~2.20!

where the most general form ofQmn is

Qmn5c1v
mvn1c2g

mn1c3~gmvn1gnvm!

1c4~gmvn2gnvm!1 ic5s
mn. ~2.21!

The equations of motion impose three independent relations
among the five parametersci , which imply that the matrix
element in Eq.~2.20! is completely determined by its anti-
symmetric part@52#, i.e., by the matrix element of the gluon
field iGmn5@ iDm,iD n#. For reasons to become clear below,
we find it convenient to introduce two hadronic parameters
lE
2 andlH

2 by
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c45 1
6~lH

2 2lE
2 !, c55

1
6lH

2 . ~2.22!

In terms of these quantities, we obtain

^ 0uQ* iGmnquM &5 1
3 f @~lH

2 2lE
2 !~gmvn2gnvm!

1 ilH
2smn#u,

^ 0uQ* 1
2$ iD

m,iD n%quM &

5 1
3 f @~6L̄212lE

21lH
2 !vmvn 2~L̄21lE

21lH
2 !gmn

2~L̄21 1
2lE

2 !~gmvn1gnvm!#u. ~2.23!

From the second relation, it follows that the second moments
of the wave functions are given by

^v2&152L̄21 2
3lE

21 1
3lH

2 ,

^v2&25 2
3 L̄21 1

3lH
2 . ~2.24!

According to the first equation in Eq.~2.23!, the moments
^v2&6 are thus related to normalization integrals of quark-
antiquark-gluon wave functions.

Our definition in Eq.~2.22! is such that, in the rest frame
of the heavy meson, the quantitieslE

2 and lH
2 parametrize

the matrix elements of the chromoelectric and chro-
momagnetic fields, respectively. Defining3 Ei5G0i ,

Hi52 1
2 e i jkGjk , anda i5g0g i , we find

^ 0uQ* iaW •EW quM &5 flE
2u,

2^ 0uQ*sW •HW quM &5 flH
2 u. ~2.25!

To finish this section, let us switch the heavy-quark spin
on and relate the numerous quark-antiquark wave functions
of the ground-state pseudoscalar and vector mesons,M and
M* , to the HQET wave functionsw6 . These relations are
very conveniently obtained using the covariant tensor for-
malism described in Appendix A. For a pseudoscalar meson
M , the matrix elements of the pseudoscalar, axial, and tensor
currents are nonzero, and we define a set of four wave func-
tions in the following way:4

^ 0uQ̄~0!g5q~z!uM &52 i f MmMw̃P ,

^ 0uQ̄~0!gmg5q~z!uM &5 f M@ i w̃A1p
m2mMw̃A2z

m#,

^ 0uQ̄~0!smng5q~z!uM &5 i f Mw̃T~p
mzn2pnzm!,

~2.26!

where w̃ i5w̃ i(p•z)5w̃ i(mMt). For simplicity, we have
omitted the string operatorE(0,z), i.e., we have adopted the

light-cone gaugeA150. In the heavy-quark limit, we ob-
tain, using the results of Appendix A:

w̃P5
w̃1~ t !1w̃2~ t !

2
, w̃A15w̃1~ t !,

w̃A25w̃T5
i

2

w̃1~ t !2w̃2~ t !

t
. ~2.27!

For t50, we obtain in this limit the normalization condi-
tions:

w̃P~0!5w̃A1~0!51, w̃A2~0!5w̃T~0!5
L̄

3
, ~2.28!

where the second relation is a consequence of Eqs.~2.13!
and ~2.19!.

For a vector mesonM* with polarization vectore, the
matrix elements of the scalar, vector, axial vector, and tensor
currents are nonzero, and we introduce a set of six wave
functions as follows:

^ 0uQ̄~0!q~z!uM* &5 i f M*mM* w̃Sz•e,

^ 0uQ̄~0!gmq~z!uM* &

5 f M* @mM* w̃V1e
m1 i w̃V2~p•ze

m2e•zpm!#,

^ 0uQ̄~0!gmg5q~z!uM* &5 f M* w̃Aemabgzapbeg ,

^ 0uQ̄~0!smnq~z!uM* &5 f M* @ i w̃T1~e
mpn2enpm!

2mM* w̃T2~e
mzn2enzm!#.

~2.29!

In the heavy-quark limit, we find the relations

w̃V15w̃T15w̃1~ t !,

w̃S5w̃V25w̃A5w̃T25
i

2

w̃1~ t !2w̃2~ t !

t
, ~2.30!

and the corresponding normalization conditions

w̃V1~0!5w̃T1~0!51,

w̃S~0!5w̃V2~0!5w̃A~0!5w̃T2~0!5
L̄

3
. ~2.31!

The QCD wave functions in momentum space are defined
as

w i~x!5
1

2pE d~p•z!w̃ i~p•z!e2 ixp•z, ~2.32!

so thatx5v/mM . On the basis of the behavior of the eigen-
functions of the evolution equations as well as sum-rule in-
spired arguments, it is usually assumed that for pseudoscalar
mesonswA1(x);x and wP(x);1 as x→0 @29#. For the
HQET wave functions, this implies the behavior

w1~v!;v, w2~v!;1 ~2.33!

3If we define Dm5(D0,2DW ), then EW 5 i @D0,DW # and

HW 52 iDW 3DW .
4Contrary to the notation used in the rest of this paper, here and in

Eq. ~2.29! we use the standard relativistic normalization of states,
which adds a factorAmM on the right-hand side of the equations.
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asv→0. In Sec. IV, we will indeed find these scaling laws
from an explicit calculation of the wave functions using
QCD sum rules.

III. EVOLUTION EQUATIONS

The definitions of the previous section are somewhat for-
mal, because the operators involved require renormalization.
In this section we discuss how the ultraviolet divergences in
operator matrix elements can be removed in a consistent
way. After doing this, however, we shall ignore renormaliza-
tion effects in the further course of this paper. The reader not
interested in the conceptual problem of renormalization can
thus proceed directly with Sec. IV.

We use the modified minimal subtraction (MS) scheme in
(d5422«)-dimensional space-time. The bare and renor-
malized operators are related by

O6
bare~v!5E dv8Z6~v,v8!O6~v8!, ~3.1!

where

Z6~v,v8!5d~v2v8!2
1

2«
z6~v,v8!1•••, ~3.2!

and the ellipses represent poles of higher order in 1/«. The
operatorsO6(v) and hence their matrix elementsfw6(v)
obey the renormalization-group equations

d fw6~v!

dlnm
1E dv8G6~v,v8! fw6~v8!50, ~3.3!

where the anomalous dimensionsG6(v,v8) are given by

G6~v,v8!5as

]

]as
z6~v,v8!. ~3.4!

Equation~3.3! is analogous to the Brodsky-Lepage evolution
equation in QCD@28#.

In order to obtain the anomalous dimensionsG6(v,v8)
at the one-loop order, we consider the matrix elements
^ 0uO6

bare(v)uv8&, whereuv8& represents a state consisting of
a scalar heavy antiquark at rest and a light quark with mo-
mentump15v8. According to Eq.~3.1!, these matrix ele-
ments equalZ6(v,v8)g6u. The relevant one-particle irre-
ducible loop diagrams are shown in Fig. 2. Although the
operatorsO6(v) in Eq. ~2.12! take a particularly simple
form in the light-cone gaugeA150, we refrain from adopt-

ing such a singular gauge and work instead in the Feynman
gauge.5 To obtain the Feynman rules for vertices involving
the operatorsO6(v), we start from their definition as the
Fourier transforms of the nonlocal operatorsÕ6(t) and ob-
tain, to first order in the gauge field,

O6~v!5
1

2pE dteivtHQ* ~0!g6e
t]1q~0!

2 i E dtQ* ~0!g6e
t]1A1~0!e~ t2t!]1q~0!

1•••J . ~3.5!

It is then straightforward to derive the Feynman rules shown
in Fig. 3.

Let us then sketch the calculation of the diagrams in Fig.
2. The contribution of the first diagram is

2 iCF

as

2p
m2«E dk1dk2

d222«k'

~2p!222«

3
d~k12v!g6k”u

~k02 i0!~k21 i0!@~k2p!21 i0#
, ~3.6!

whereCF5(Nc
221)/(2Nc). Thek1 integral is trivial to per-

form, and thek2 integral is readily calculated by the method
of residues. The poles of the integrand are located at
k252v1 i0, k25(kW'

22 i0)/v, and k25(kW'
22 i0)/

(v2v8). If v,0, all poles lie in the upper half plane, and
the integral vanishes. Forv.0, it is necessary to distinguish
the casesv.v8 andv,v8. Forv.v8, we close the con-
tour in the upper half plane and setk252v. Forv,v8, we
close the contour in the lower half plane and set
k25kW'

2 /v. Only in the second case and for the minus pro-
jection there is an ultraviolet divergence, which arises from
thek' integration. Keeping only the singular term, we obtain
for the contribution toZ6(v,v8):

CF

as

4p«
~171!

1

v8
u~v82v!. ~3.7!

The other two diagrams in Fig. 2 are evaluated in a similar
way. For the second one, we find an ultraviolet divergence
for the plus projection if k1,v8. Its contribution to
Z6(v,v8) is

2CF

as

4p«
~161!E dk1

k1

v8

d~k12v!2d~v82v!

k12v8

52CF

as

4p«
~161!H F 1v8

1
1

~v2v8!1
Gu~v82v!

2d~v82v!J . ~3.8!

5We have repeated the calculation ofG1(v,v8) in the light-cone
gauge and obtained the same result as in the Feynman gauge; how-
ever, we could not find an easy way to recover the correct result for
G2(v,v8).

FIG. 2. One-loop diagrams contributing to the matrix elements
^ 0uO6

bare(v)uv8&. The bare current operators are represented by a
circle.
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The distribution 1/(v2v8)1 is defined such that

E dv
f ~v!

~v2v8!1
5E dv

f ~v!2 f ~v8!

v2v8
~3.9!

for any smooth functionf (v). The third diagram has an
ultraviolet divergence ifk1.v8. Its contribution is

CF

as

2p«

1

~v2v8!1
u~v2v8!. ~3.10!

Finally, we have to add the contributions from the wave-
function renormalization of the external lines, which gives
@36#

ZQ
1/2Zq

1/2d~v2v8!5S 11CF

as

8p« D d~v2v8!. ~3.11!

Collecting all terms, we obtain, for the quantities
z6(v,v8) defined in Eq.~3.2!,

z6~v,v8!5CF

as

p H 6
u~v82v!

v8
2

u~v2v8!

~v2v8!1

2 3
4 d~v2v8!1 1

2 ~161!

3F u~v82v!

~v2v8!1
2d~v2v8!G J . ~3.12!

To one-loop order, the anomalous dimensions are given by
the same expression. We thus obtain

G1~v,v8!5CF

as

p F2
1

uv2v8u1
1

u~v82v!

v8

2 5
4 d~v2v8!G ,

G2~v,v8!5CF

as

p F2
u~v2v8!

~v2v8!1
2

u~v82v!

v8

2 1
4 d~v2v8!G . ~3.13!

In the familiar case of QCD wave functions for light-
quark systems, the renormalization of the nonlocal operators
analogous toO6(v) would suffice to renormalize the tower

of local operators defined analogous toO6
(n) in Eq. ~2.14!.

Accordingly, the renormalization of the wave functions
w i(x) renders their momentŝx

n& i finite. Unfortunately, this
situation does not hold in the case of wave functions for
heavy mesons defined in the HQET. The reason for this un-
expected fact is that in the HQET the wave functions depend
on the dimensional variablev, which takes values between 0
and`. As a consequence, Eq.~2.14!, which defines the op-
eratorsO6

(n) in terms of weighted integrals ofO6(v), does
not hold for the renormalized operators; the integral overv
has an additional ultraviolet divergence not yet removed by
the renormalization ofO6(v). This divergence must be re-
moved separately.

Consider, as an example, the simplest casen50. Then the
bare operatorsO6

(0),bare5Q* g6q are local heavy-light cur-
rent operators with dimension three, which are renormalized
in the following way:

O6
~0!,bare5Z0O6

~0!5S 12
1

2«
G01••• DO6

~0! , ~3.14!

where

G052
3

4
CF

as

p
~3.15!

is the well-known one-loop hybrid anomalous dimension
@34–36#. On the other hand, the bare operators can be ex-
pressed in terms of integrals over the renormalized operators
O6(v) using Eq.~3.1!. This gives

O6
~0!,bare5E dvdv8Z6~v,v8!O6~v8!

5S E dvZ6~v,v8! D E dvO6~v!. ~3.16!

As mentioned above, the last integral over the renormalized
operatorsO6(v) is ultraviolet divergent from the region
v→`, and we define

E dvO6~v!5Z68 O6
~0!5S 12

1

2«
G68 1••• DO6

~0! .

~3.17!

Combining Eqs.~3.14!, ~3.16!, and~3.17!, we find that

Z05Z68 E dvZ6~v,v8!,

G05G68 1E dvG6~v,v8!. ~3.18!

With our explicit expressions in Eq.~3.13!, we obtain

Z68 516CF

as

4p«
, G68 57CF

as

2p
. ~3.19!

To see in detail how this works, we calculate the ultravio-
let divergences of the matrix elements^ 0uO6

(0),bareuv8& to
one-loop order, leaving the integration overk1 until the end.
Since now we are dealing with local operators, the only one-
particle irreducible diagram is a vertex diagram analogous to
that in Fig. 2~a!. Its contribution isFIG. 3. Feynman rules for vertices involvingO6(v).
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2CFasg6um2«H 6E
v8

`

dvvE d222«k'

~2p!222«

1

~kW'
21v22 i0!@kW'

21v~v2v8!2 i0#

1
1

v8
E
0

v8
dvvE d222«k'

~2p!222«

k6

~kW'
21v22 i0!~kW'

22 i0!
J , ~3.20!

where in the numerator of the second integral we have to
substitutek25kW'

2 /v. This expression shows the origin of the
two types of ultraviolet divergences. Thek' integral in the
first term is convergent, but there is a logarithmic divergence
in the remaining integral overv. In the second term, thev
integral is cut off in the ultraviolet; however, thek' integral
diverges for the minus projection. Keeping only the poles in
1/«, we obtain

CF

as

2p
g6uH 6v82«E

v8

`

dvv2122«1~171!
1

2«
1•••J

5CF

as

4p«
g6u. ~3.21!

Adding to this the contributions from the wave-function
renormalization of the external lines, we recover the expres-
sions forZ0 and G0 given in Eqs.~3.14! and ~3.15!. The
contribution in Eq.~3.21! arising from the logarithmic diver-
gence of thev integral is removed by the factorZ68 defined
in Eq. ~3.17!, whereas all other contributions are removed by
the renormalization of the operatorsO6(v).

IV. QCD SUM RULES

The first moments of the wave functionsw6(v) are
known exactly from the equations of motion, as shown in
Eq. ~2.19!. However, they only set the scale ofv. In order to
obtain information about the shape of the wave functions, we
need to consider some of the higher moments. In this section,
we use QCD sum rules to investigate the parameterslE

2 and
lH
2 , which according to Eq.~2.24! determine the second mo-

ments ofw6(v).
Let us consider the operators

OE5Q* iaW •EW q5vnv
aQ*Gmnsmaq,

OH52Q*sW •HW q5~ 1
2gn

a2vnv
a!Q*Gmnsmaq, ~4.1!

whose matrix elements giveflE
2 and flH

2 , respectively. To
obtain the sum rule forlE

2 ~the sum rule forlH
2 is obtained in

a similar way!, we investigate the correlator

^ 0uT$OE~x!,q̄ 1
2 ~11v” !Q~0!%u 0&

5
11v”
2

u~v•x!d~xW'!PE~v•x!, ~4.2!

wherexW' contains the components ofx orthogonal tov. The
operator q̄ 1

2 (11v” )Q has the quantum numbers of the
ground-state meson. Next, we analytically continue
PE(v•x) to v•x52 i t.6 The correlator can be expressed via
its spectral densityrE(v):

PE~t!5E
0

`

d«rE~«!e2«t, ~4.3!

which contains the contributionf 2lE
2d(«2L̄) from the

ground-state meson, as well as contributions from excited
states, which we will refer to as the continuum. Hence, the
phenomenological expression for the correlator is

PE~t!5 f 2lE
2e2L̄t1PE

cont~t!. ~4.4!

For sufficiently small values oft, the correlator can be cal-
culated in QCD using the operator product expansion@53#.
The theoretical spectral density,rE

th(«), contains perturbative
as well as nonperturbative contributions, where the latter are
proportional to vacuum condensates of local, gauge-invariant
operators. The continuum contributions in Eq.~4.4! are usu-
ally modeled by the theoretical spectral density above a
threshold «c , which is called the continuum threshold.
Equating the two expressions forPE(t) obtained in this
way, we derive the sum rule

f 2lE
2e2L̄t5E

0

«c
d«rE

th~«!e2«t. ~4.5!

A similar sum rule holds for the productf 2lH
2 .

The leading contributions in the operator product expan-
sion of the correlators are shown in Fig. 4. We include the
leading perturbative contribution, as well as the contributions
of the quark condensatêq̄q& ~dimensiond53), the gluon
condensatêG2&5^GamnGa

mn& (d54), and the mixed quark-
gluon condensatêq̄smnG

mnq&[m0
2^q̄q& (d55). In the cal-

culation of the nonperturbative contributions, it is convenient
to use the fixed-point gaugexmA

m(x)50; then the heavy
quark does not interact with gluons. After a straightforward
calculation, we obtain the sum rules

6The procedure of analytic continuation of the coordinate-space
correlator to imaginary time is equivalent to the Borel transforma-
tion of the corresponding momentum-space correlator. Thus, our
sum rules coincide with the usual Laplace sum rules.
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f 2lE
2e2L̄t52NcCF

as

p3t5
d4~«ct!2

m0
2^q̄q&
16

,

f 2lH
2 e2L̄t52NcCF

as

2p3t5
d4~«ct!2CF

3as

4pt2
^q̄q&d1~«ct!

1
as^G

2&
16pt

d0~«ct!2
m0
2^q̄q&
16

, ~4.6!

where

dn~x!5u~x!S 12e2x (
m50

n
xm

m! D . ~4.7!

The fact that the sum rule forlE
2 does not contain contribu-

tions from the quark and gluon condensates is a consequence
of the fact that, in the fixed-point gauge, the light quark
interacts only with the magnetic components of the gluon
field @54#. In Appendix B, we also list the contributions of
higher-dimensional quark-gluon condensates (d57) to the
sum rules. For the range oft values considered below, we
expect that the contributions of these condensates are very
small. Since their values are moreover unknown, they will be
neglected in the numerical analysis.

It is convenient to divide the sum rules in Eq.~4.6! by the
sum rule for the meson decay constant derived in@43,18,20#:

f 2e2L̄t5
Nc

2p2t3
d2~«ct!2

^q̄q&
4 S 12

m0
2t2

16 D . ~4.8!

This procedure leads to expressions forlE
2 andlH

2 as a func-
tion of t, the continuum threshold«c , and the vacuum con-
densates. For our analysis we use the standard values@53#

^q̄q&52~0.23 GeV!3,

as^G
2&50.04 GeV4,

m0
250.8 GeV2, ~4.9!

as well asas50.4. The value of the continuum threshold
extracted from the analysis of the sum rule~4.8! is
«c51.0060.15 GeV@18,20#. Moreover, stability of this sum
rule requires that the parametert be in the range

0.3 GeV,1/t,0.5 GeV, which is called the stability win-
dow. Our numerical results forlE

2 andlH
2 as a function of

1/t are shown in Fig. 5. We observe a sizable dependence of
the results on the parametert, as it is not unexpected for the
matrix elements of higher-dimensional local operators such
as OE and OH . Nevertheless, taking an average over the
stability window determined from the sum rule~4.8!, we
obtain as a rough estimate:

lE
25~0.1160.06! GeV2, lH

2 5~0.1860.07! GeV2.
~4.10!

In units of L̄'0.55 GeV @40,49#, this implies
lE
2/L̄250.3660.20 andlH

2 /L̄250.6060.23.
According to Eq.~2.24!, the parameterslE

2 andlH
2 deter-

mined, together withL̄2, the second moments of the meson
wave functions. In order to learn more about the shape of the
wave functions, we shall now go a step further and construct
sum rules for the functionsw6(v) themselves. To this end,
we start from the correlator7

7Expanding this correlator in powers oft, one recovers, according
to Eqs. ~2.13! and ~2.15!, the sum rules for the moments
f 2^vn&6 . To lowest order, this gives the sum rule for the decay
constantf considered in@42,18,20#. The sum rule forf 2^v&1 has
been considered in@55#; however, the mixed-condensate contribu-
tion had the wrong sign. Note that, because of Eq.~2.19!, the sum
rules for f 2^v&6 can be obtained by taking derivatives with respect
to t in the sum rule forf 2. Taking linear combinations of the sum
rules for f 2^v2&6 , we recover the sum rules forlE

2 andlH
2 .

FIG. 4. Nonvanishing diagrams for the correlatorsPE and
PH . The higher-dimensional current operatorsOE andOH are rep-
resented by a gray circle; the interpolating current is represented by
a white circle.

FIG. 5. Sum-rule results forlE
2 ~upper plot! andlH

2 ~lower plot!
as a function of 1/t, for three values of the continuum threshold
«c . The stability window lies in between the dashed lines.
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^ 0uT$Õ6~ t !,q̄ 1
2 ~11v” !Q~2x!%u 0&

5g6

11v”
2

u~v•x!d~xW'!P̃6~v•x,t !, ~4.11!

whereÕ6(t) has been defined in Eq.~2.7!, and analytically
continue P̃6(v•x,t) to v•x52 i t. Using the light-quark
propagator in coordinate space@54#, it is straightforward to
obtain the contribution of the diagrams in Figs. 6~a! and 6~b!.
The result is

P̃1
~1!~t,t !5

Nc

2p2t~t12i t !2 S 12
pas^G

2&t2t2

48Nc
D ,

P̃2
~1!~t,t !5

Nc

2p2t2~t12i t ! S 12
pas^G

2&t2t2

48Nc
D .

~4.12!

The contribution with the cut light-quark line shown in Fig.
6~c! involves the trilocal, non-collinear quark condensate
@56#. This object is discussed in detail in Appendix B. Keep-
ing for simplicity only the leading term in the operator prod-
uct expansion, we obtain

P̃6
~2!~t,t !52 1

4 ^q̄q&E dn f̃ S~n!e2nt~t12i t !, ~4.13!

where f̃ S(n) describes the distribution of quarks with virtu-
ality n in the vacuum. Unfortunately, little is known about
the shape of this function. A simple ansatz is discussed in
Appendix B.

Next we perform the Fourier transform of the correlator in
Eq. ~4.11! with respect tot, which leads to

^ 0uT$O6~v!,q̄ 1
2 ~11v” !Q~2x!%u 0&

5g6

11v”
2

u~v•x!d~xW'!P6~v•x,v!. ~4.14!

The leading perturbative terms in Eq.~4.12! give

P1
~1!~t,v!5

Nc

8p2t
ve2vt/2,

P2
~1!~t,v!5

Nc

4p2t2
e2vt/2. ~4.15!

The contributions proportional to the gluon condensate lead
to singular behavior of the formd(v) and d8(v). These

terms would acquire a finite width if the nonlocality of the
gluon condensate would be taken into account@57#. Below,
we shall neglect the gluon condensate. The Fourier transform
of the quark-condensate contribution in Eq.~4.13! is given
by

P6
~2!~t,v!52

^q̄q&
8t

f̃ SS v

2t De2vt/2, ~4.16!

i.e., it is directly determined by the virtuality distribution of
quarks in the vacuum.

In order to perform the continuum subtraction for the per-
turbative contributions, we calculate the inverse Laplace
transforms of the expressions in Eq.~4.15!, which give the
corresponding spectral densities. We finally arrive at the sum
rules

f 2w1~v!e2L̄t5
Nc

8p2t
ve2vt/2d0F S «c2

v

2 D tG
2

^q̄q&
8t

f̃ SS v

2t De2vt/2,

f 2w2~v!e2L̄t5
Nc

4p2t2
e2vt/2d1F S «c2

v

2 D tG
2

^q̄q&
8t

f̃ SS v

2t De2vt/2. ~4.17!

The contributions from the nonlocal quark condensate fall
off quickly for both v→0 andv→`. The first statement
follows from a general property of the functionf̃ S ~see Ap-
pendix B!. However, the precise functional form of these
contributions is unknown. The leading perturbative contribu-
tions vanish forv.2«c . They suggest the model shapes

w1~v!5
v

v0
2 e

2v/v0, w2~v!5
1

v0
e2v/v0, ~4.18!

which do indeed exhibit the correct behavior forv→0 @cf.
Eq. ~2.33!#. These functions are shown in Fig. 7. The param-
eterv05

2
3L̄ is fixed by Eq.~2.19!. In this simple model, we

obtain for the second moments^v2&153^v2&25 8
3L̄

2. This
corresponds tolE

25lH
2 5 2

3L̄
2, which does not contradict our

sum-rule estimates obtained earlier in this section.

V. ASYMPTOTICS OF FORM FACTORS

We shall now use the results obtained in the previous
sections to analyze, in a model-independent way, the asymp-
totic behavior at large recoil of the form factors describing
the current matrix elements between two heavy mesons. The
contribution of the quark-antiquark wave functions to the
Isgur-Wise form factor is depicted by the diagrams in Figs.
8~a! and 8~b!. To deal with two heavy mesons moving at
different velocitiesv andv8, it is convenient to choose the
Breit frame, in which the two mesons move in opposite di-
rections with rapidities6q/2, so that

FIG. 6. Leading diagrams for the correlators of the bilocal op-
erators Õ6(t) ~gray circles! with the local currentq̄Q ~white
circle!.
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vm5S coshq2,0,0,sinhq2 D ,
v8m5S coshq2,0,0,2sinh

q

2 D , ~5.1!

andv•v85coshq. In terms of the light-cone vectorsn6
m , we

have

vm1v8m5cosh
q

2
~n1

m 1n2
m !,

vm2v8m52sinh
q

2
~n1

m 2n2
m !. ~5.2!

It follows that v15eq/2 and v25e2q/2, but v28 5eq/2 and
v18 5e2q/2. Similarly, in the large-recoil limit (q@0) the
light quark in the initial meson has largep15veq/2 and

small p2 , whereas the light quark in the final meson has
largep28 5v8eq/2 and smallp18 . Thus, the roles of the plus/
minus directions for the final meson are opposite to those for
the initial meson. The virtuality of the gluon and of the
heavy quark are both large:kg

25(p82p)2.2vv8eq, and
v•kQ.v•p8. 1

2v8eq @Fig. 8~a!# or v8•kQ.v8•p. 1
2ve

q

@Fig. 8~b!#, respectively.
For largeq, the contribution of the diagram in Fig. 8~a! to

the matrix element in Eq.~1.4!, which defines the Isgur-Wise
function, is

2pas

CF

Nc
f 2e22qE dvdv8

vv82
ū~v8!@w1~v8!g1e

q/21w2~v8!g2e
2q/2#v” @w1~v!g2e

q/21w2~v!g1e
2q/2#u~v !, ~5.3!

wherev”5 1
2(g2e

q/21g1e
2q/2). The factor 1/Nc arises from

the normalization of the color wave functions of the meson
states, which is such that the matrix element in Eq.~1.1! is
normalized to the decay constantf . Using the relations in Eq.
~2.8! together with Eq.~5.2!, we find that the leading contri-
bution contains the productw1(v8)w2(v), i.e., the
subleading-twist wave function is taken on the side where
the gluon exchange occurs. Adding the contribution of the
diagram in Fig. 8~b!, we arrive at

j~coshq!516pas

CF

Nc
f 2^v22&1^v21&2e

22q. ~5.4!

Based on our assumptions about the behavior of the wave
functions for v→0 @cf. Eq. ~2.33!#, we expect that both
^v22&1 and^v21&2 diverge logarithmically at lowv. This
divergence is cut off by the transverse momenta and virtu-
alities of the light quarks in the mesons, similar to the case of

the p-r form factor in QCD@29#. This infrared sensitivity
results in an additional enhancement of the form factor, as
can be seen by replacingq2 by q22L2 in the gluon propa-
gator ~whereL is of the order of a typical hadronic scale!,
which leads to the replacement:

^v22&1^v21&2→E dvdv8

vv81L2e2q w18 ~v!w2~v8!

5w18 ~0!w2~0!
q2

2
1O~q!. ~5.5!

Unfortunately, however, the subleading terms of orderq
cannot be calculated without knowing details of the infrared
cutoff.

Consider now the form factorsj i andx i defined in Eqs.
~1.5!–~1.9!, which appear at order 1/mQ in the heavy-quark
expansion. Since their contributions to the meson form fac-

FIG. 7. Model wave functionsw6(v) defined in Eq.~4.18!.

FIG. 8. Hard-gluon exchange contributions to heavy-meson
form factors. The external current is represented by the wave line
attached to the gray circle. The white square in~d! represents an
insertion of 1/mQ-suppressed operators from the effective Lagrang-
ian of the HQET.
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tors are suppressed by a power ofL/mQ with respect to the
contribution of the Isgur-Wise function, they can only be-
come important if they have a slower falloff at largeq.
Therefore, it is sufficient to retain only those contributions
where the leading-twist wave function appears on both sides
of the diagrams. Then the light-quark helicity is conserved,
and the gluon polarization is orthogonal to thev-v8 plane.
Let us first focus on the functionsj i . The only way to get
the leading-twist wave function on both sides of the diagram
is to attach the gluon to the current operator, as shown by the
diagram in Fig. 8~c!. Simplifying the resulting spinor product
using Eqs.~2.8! and ~5.2!, we obtain

4pas

CF

Nc
f 2e2qū~v8!gmu~v !E dvdv8

vv8
w1~v!w1~v8!,

~5.6!

which means that only the functionj3 receives a leading-
twist contribution. It is given by

j3~coshq!54pas

CF

Nc
f 2^v21&1

2 e2q. ~5.7!

Here the integral is infrared convergent, as in the case of the
pion from factor in QCD@25–31#. Next consider the func-
tionsx i . The conservation of the light-quark helicity implies
that there must be an odd number ofg matrices in the matrix
element. Indeed, only the functionx2 in Eq. ~1.9! receives a
leading contribution. Calculating the diagram in Fig. 8~d!,
we find

28pas

CF

Nc
f 2e22qE dvdv8

vv82
w1~v!w1~v8!

3ū~v8!~gmkg
n2gnkg

m!u~v !, ~5.8!

where kg5v8v82vv is the gluon momentum. Since, by
definition, the indicesm andn are restricted to the subspace
orthogonal tov, only the first term inkg has to be kept.
Taking into account the definition ofx2 in Eqs. ~1.8! and
~1.9!, we obtain

x2~coshq!52j3~coshq!e2q. ~5.9!

Note that in the expressions for the meson form factorsx2 is
multiplied by coshq @9,16#, so that its contributions are of
the same order as the contributions ofj3.

We can compare our asymptotic results for the leading
and subleading Isgur-Wise functions in Eqs.~5.4!, ~5.7! and
~5.9! with the large-q limit of the two-loop QCD sum-rule
expressions for these functions, which have been obtained in
@21,24#. We find that the results of the sum-rule calculations
do indeed reproduce the correct asymptotic behavior; in par-
ticular, the relation~5.9! betweenx2 and j3 is satisfied.
Moreover, the sum rules allow us to determine the normal-
ization factors appearing in the expressions forj in Eq. ~5.4!
and forj3 in Eq. ~5.7!. This is explained in detail in Appen-
dix C. For later convenience, we also present the expressions
obtained using the model wave functions~4.18!. They are

j~v•v8!'3pas

f 2

L̄3

ln2~v•v8!

~v•v8!2
,

j3~v•v8!'2pas

f 2

L̄2

1

v•v8
. ~5.10!

Let us discuss the applicability regions for these asymptotic
results. QCD sum rules suggest that there are ‘‘soft’’ contri-
butions to the Isgur-Wise function which fall of like
1/(v•v8)2 @17–20#. If this is correct, the asymptotic behavior
given by Eqs. ~5.4! and ~5.5! would dominate only if
ln(v•v8)@1 andasln

2(v•v8)@1. If the ‘‘soft’’ contributions
vanish faster than 1/(v•v8)2, the second requirement is re-
moved. The fact that ln(v•v8) is, in most practical applica-
tions, not a large parameter implies that the asymptotic result
for the Isgur-Wise function may be considered as a rough
estimate only. To reach the asymptotic regime would require
v•v85O(100). QCD sum rules also suggest that the ‘‘soft’’
contributions toj3 fall off like 1/(v•v8)2 @22–24#, meaning
that the leading hard contribution given in Eq.~5.7! is en-
hanced by a power ofv•v8. As a consequence, our predic-
tions for the functionsj3 and x2 are much more accurate
than for the Isgur-Wise function. The asymptotic behavior
should set in when asv•v8@1, which requires
v•v8;O(10).

An important aspect of physics is still missing from our
discussion of the asymptotic behavior of meson form factors
at large recoil. Since the quarks receive a large acceleration
during the transition process, they emit gluon bremsstrah-
lung, which leads to an additional damping of the transition
amplitudes~Sudakov form factor!. Because the mesons are
colorless, the double logarithms of the type@asln

2(v•v8)#n

cancel in the expressions for the meson form factors; how-
ever, single logarithms ofv•v8 remain, which are enhanced
by logarithms of the heavy-quark mass. They arise from the
emission of gluon bremsstrahlung with energies in the range
m,Eg,mQ (m!mQ , see below!. Thus, in perturbation
theory there are large double-logarithmic contributions of the
type@asln(mQ /m)ln(v•v8)#

n to the form factors. The situation
is similar to the case of the contributions to the pion form
factor coming from the regionx→0, where almost all of the
pion momentum is carried by one quark@58#.

Because of the explicit dependence on the heavy-quark
mass, these large logarithms are not contained in the form
factors of the HQET, which are renormalized at a scale
m!mQ .

8 However, they appear when we relate the form
factors of the HQET to physical meson form factors using a
perturbative matching procedure. In this relation, there ap-
pear short-distance coefficient functionsCn(mQ /m,v•v8),
which can be calculated in renormalization-group improved
perturbation theory~see @9# for a review!. In the case of
transitions between two heavy hadrons, the reparametrization
invariance@59# of the HQET ensures that the coefficients
multiplying the subleading functionsx2 andj3 are the same

8In practice, the scalem should be chosen such that there are no
large logarithms contained in the form factors of the HQET, but yet
large enough for perturbation theory to be valid.
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as the coefficients multiplying the leading-order Isgur-Wise
function j @60#. Indeed, in leading logarithmic approxima-
tion ~which is sufficient to control the large logarithms men-
tioned above!, all HQET form factors are multiplied by a
universal coefficient

C~mQ /m,v•v8!5S as~mQ!

as~m! D a~v•v8!

, ~5.11!

where (v•v85coshq) @15,61,62#

a~v•v8!5
2CF

b0
~qcothq21!5

2CF

b0
@q211O~e2q!#.

~5.12!

For large recoil, we find that

C→S e

2v•v8D
h

5e2h~q21!, ~5.13!

where

h5
2CF

b0
ln

as~m!

as~mQ!
. ~5.14!

This expression sums the large Sudakov logarithms correctly
to all orders in perturbation theory. The effect of this brems-
strahlung correction is an additional powerlike suppression
of the physical meson form factors for large values of
v•v8. Usingm'1 GeV, we find that forB-meson decays the
powerh is given byh'0.2–0.3, i.e., the overall effect of
bremsstrahlung emission is rather small.

Using the results obtained in this section, it is straightfor-
ward to derive the asymptotic behavior of all form factors
describing current-induced transitions between any two
pseudoscalar or vector mesons containing a heavy quark.
The relevant formulas, which relate the meson form factors
to the Isgur-Wise functions, can be found, e.g., in@9,16,52#.
Here we restrict ourselves to the results obtained for the ma-
trix elements of the vector currentVm5b̄gmb between
B-meson states. We find9

^B~v8!uVmuB~v !&5h1~v1v8!m,

^B* ~e8,v8!uVmuB~v !&5hVemnaben8* va8vb ,

^BL* ~v8!uVmuBL* ~v !&5hL~v1v8!m,

^BT* ~e8,v8!uVmuBT* ~e,v !&52hT e•e8* ~v1v8!m,

^BT* ~e8,v8!uVmuBL* ~v !&5sinhqhTLe8*
m, ~5.15!

whereL andT refer to longitudinal~i.e., in thev-v8 plane!
and transverse~i.e., orthogonal to that plane! polarization
states. We find that, asymptotically,

h15CS j2
4

mb
coshqx2D5CS j1

2

mb
j3D ,

hV5CFj2
1

mb
~j312coshqx2!G5Cj,

hL5CS j1
4

mb
coshqx2D5CS j2

2

mb
j3D ,

hT5Cj,

hTL5CFj1
1

mb
~j312coshqx2!G5Cj, ~5.16!

with C given in Eq.~5.13!. The most striking feature of these
results is the fact that the form factor for two longitudinally
polarizedB* mesons, which is positive for coshq!mb /L,
becomes negative for coshq@mb /L, and hence has a zero at
some intermediate value coshq;mb /L. Since for spacelike
~negative! values ofq2, corresponding tov•v8.1, all form
factors are real, the existence of this zero is an exact state-
ment not affected by subleading corrections. We should
stress that this observation is not specific to heavy-light me-
sons. The form factor of, say, longitudinally polarizedr me-
sons also has a zero at some negative value ofq2 @29#. For
timelike ~positive! values ofq2, on the other hand, it is the
form factor of pseudoscalarB mesons which has a zero, and
this zero is situated inside the physical region of the produc-
tion of BB̄ pairs in e1e2 collisions. Strictly speaking, be-
cause form factors at timelike values ofq2, corresponding to
v•v8,21, are complex, this zero is not absolutely exact.
However, in our approximation the imaginary part is
negligible.10

The model-independent results obtained in this section
can be checked in the simple model where a meson is built
out of two heavy quarks with massesm and m such that
m@m@L. This is discussed in detail in Appendix D. The
same model has been considered by Brodsky and Ji@45#,
who observed for the first time the zero of the pseudoscalar
form factor in the physical region of large positiveq2. How-
ever, their claim that the form factor of longitudinally polar-
ized vector mesons would have the same behavior is incor-
rect. Our analysis shows that this form factor has a zero in
the region of spacelike momentum transfer, i.e., for large
negativeq2.

VI. APPLICATIONS

We finally apply our results to calculate the cross section
for the reactione1e2→B(* )B̄(* ) in the regions@4mB

2 . Re-
call from the introduction that the part of the electromagnetic
current that couples to light quarks does not give a leading
contribution in the asymptotic regime. Hence, it is justified to
use the relations in Eq.~5.16! for the relevant form factors.
As usual, we define

9To obtain the conventional relativistic normalization of meson
states, the right-hand sides in these equations have to be multiplied
by mB(* ).

10Note also that any mechanism that leads to a common phase
factor of the form factors, such as final-state interactions, does not
spoil the existence of the zero.
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RX5
s~e1e2→X!

s~e1e2→m1m2!
. ~6.1!

Using crossing symmetry and the matrix elements given in
Eq. ~5.15!, we obtain forx5As/mB@1:

R1[RBB*1B
T* BL*

5
zb
2

2
x2uCu2uju2,

R2[RBB5
zb
2

4
uCu2Uj1

2

mb
j3U2,

R3[RB
L* BL*

5
zb
2

4
uCu2Uj2

2

mb
j3U2,

R4[RB
T* BT*

5
zb
2

2
uCu2uju2, ~6.2!

where the form factors are functions ofv•v8.2 1
2x

2, and

uCu5(e/x2)2h with h given in Eq.~5.14!. Herezb52 1
3 is

the electric charge of theb quark. As an illustration, we
show in Fig. 9 our predictions for the variousB(* )B̄(* ) pro-
duction cross-sections as a function ofx obtained using the
model wave functions in Eq.~4.18!, for which @cf. Eq.
~5.10!#

j~x!'48p
asf

2

L̄3

ln2x

x4
,

j3~x!'24p
asf

2

L̄2

1

x2
. ~6.3!

For simplicity, we have neglected bremsstrahlung effects set-
ting C51 in Eq. ~6.2!. Because of the kinematic enhance-
ment factorx2, the ratioR1 generally dominates at largex.
This means that mostlyBB* andBT*BL* pairs are produced,
with R;1/s3 and angular distribution 11cos2u @63,64#.
More interesting from the point of view of the present work
are the three other ratios. TheBB̄ production cross section

vanishes at some valuex0;Amb /L, since j; ln2x/x4 and
j3;2L/x2. In our simple model, we find that

x0'A6mb

L̄
lnx0'25. ~6.4!

We stress again that the accuracy of this prediction is not
high, because of our poor knowledge of the asymptotic be-
havior of the Isgur-Wise function.~In particular, if there is a
soft contribution;1/x4 to j that still dominates at such large
values ofx2, then the turnover point is delayed untilx0

21

;Amb/L̄as.) For 1!x!x0, the ratiosR2, R3, andR4 are
all of the same magnitude and scale like 1/x8. This situation
had been studied previously in the context of the HQET
@63,64#. For x@x0, however, another pattern sets in. Then
the contribution ofj3 to the ratiosR2 andR3 dominates over
the contribution from the Isgur-Wise functionj, so thatR2
andR3 scale like 1/x

4 and dominate overR4. In principle, at
very largex the ratiosR2 andR3 should even dominate over
R1, which scales like 1/x

6. However, because of the double-
logarithmic enhancement of the Isgur-Wise function this
would require enormous valuesx.x1, where in our model
x1 is given by

x1'
6mb

L̄
ln2x1'3500. ~6.5!

In the ultra-asymptotic regionx@x1, mostlyBB andBL*BL*
pairs would be produced, withR;1/s2 and angular distribu-
tion sin2q.

These qualitative features, which are independent of the
particular choice adopted for the meson wave functions, are
clearly exhibited in Fig. 9. Unfortunately, however, the cross
sections forB(* )B̄(* ) production at largex are so small that
they will most likely be irrelevant to experiments. The situ-
ation is somewhat more favorable in the case of the pair
production of charm mesons. We can apply our results to this
case by performing obvious substitutions (mb→mc ,

zb→zc5
2
3 , etc.! in the above formulas. We then find that

x0'8 in the case of charm pair production, corresponding to
moderate energies of order 15 GeV. The second turnover
point is, however, still too high (x1'650) to be of any in-
terest. The resulting cross sections are shown in Fig. 10.

In summary, we have applied methods developed for hard
exclusive QCD processes to calculate the asymptotic behav-
ior of heavy-meson form factors at large recoil. We find that
this behavior is determined by the leading- and subleading-
twist meson wave functions. For 1!uv•v8u!mQ /L, the
form factors are dominated by the Isgur-Wise functionj,
which is determined by the interference between the wave
functions of leading and subleading twist. At
uv•v8u@mQ /L, they are dominated by the two functions
j3 andx2 arising at order 1/mQ in the heavy-quark expan-
sion, which are determined by the leading-twist wave func-
tion alone. The sum of these contributions describes the form
factors in the whole regionuv•v8u@1. Central objects of our
study are the meson wave functionsw6(v), which are de-
fined in terms of the Fourier transforms of the matrix ele-
ment of bilocal operators on the light cone. We have derived

FIG. 9. Cross-section ratiosRi for BB̄ pair production in
e1e2 collisions at largex. We use the form factors in Eq.~6.3! with
L̄5550 MeV andasf

2/L̄350.06.
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the ~Brodsky-Lepage! evolution equations obeyed by these
wave functions, and we have investigated the properties of
the wave functions~such as their moments! using QCD sum
rules. Finally, we have discussed as an application the impli-
cations of our results for the production of heavy-meson
pairs ine1e2 collisions.
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APPENDIX A: COVARIANT TRACE FORMALISM

The most convenient way to calculate the matrix elements
of operators between the physical pseudoscalar and vector
(qQ̄) meson states~rather than the spin-12 mesons obtained
when the heavy-quark spin is switched off! is provided by
the covariant tensor formalism introduced in@15#. In the
HQET, the spin wave function of the ground-state meson
doublet is described by the 434 Dirac matrix

M~v !5
11v”
2 H 2 ig5, pseudoscalar mesonM ~v !,

e” , vector mesonM* ~e,v !, ~A1!

where v is the meson velocity, ande is the polarization
vector of the vector meson (e•v50). The matrixM(v)
simply contains the appropriate spin-parity projections of the
spinor productuq(v) v̄Q(v) @14#. It satisfies

v”M~v !5M~v !52M~v !v” . ~A2!

Operator matrix elements between meson states can be
represented by traces over these wave functions. Consider
first the matrix elements of heavy-light operators of the type

Q̄vGO( iD )q, where G is an arbitrary Dirac matrix, and
O( iD ) is a differential operator acting on the light-quark
field, between a meson state and the vacuum. Their represen-
tation is

^ 0uQ̄vGO~ iD !quM ~v !&5Tr$O~v !M~v !G%, ~A3!

whereO(v) is the most general matrix with the same trans-
formation properties~under the Lorentz group and heavy-
quark symmetry! as the operatorO. In the spinor formalism
adopted in our paper, the same matrix element would read

^ 0uQv*O~ iD !quM ~v !&5O~v !u~v ! ~A4!

with the same matrixO(v). The covariant decomposition of
this matrix determines the number of reduced matrix ele-
ments~generalized Isgur-Wise form factors! that appear in
the heavy-quark expansion. As an example, we give the ex-
pressions in the trace formalism which correspond to the
definitions in Eqs.~1.1!, ~2.18!, and~2.20!:

^ 0uQ̄vGquM ~v !&5 f Tr$M~v !G%,

^ 0uQ̄vG iD
mquM ~v !&5 1

3 f L̄Tr$~4v
m2gm!M~v !G%,

^ 0uQ̄vG iD
miD nquM ~v !&5 f Tr$Qmn~v !M~v !G%,

~A5!

whereQmn(v) is given in Eq.~2.21!.
In the end of Sec. II, we need the generalization of Eq.

~2.3! in the trace formalism. It reads

^ 0uQ̄v~0!GE~0,z!q~z!uM ~v !&

5 f TrH F w̃1~ t !1
1

2t
@w̃2~ t !2w̃1~ t !#z” GM~v !GJ .

~A6!

Evaluating the trace for various choices ofG, we recover the
results given in Eqs.~2.26!–~2.31!.

The trace formalism is readily extended to more compli-
cated cases, such as transition matrix elements between two
meson states. For instance, the expressions corresponding to
the definitions in Eq.~1.4! and ~1.5! read

^M ~v8!uQ̄vGQv8uM ~v !&5j~v•v8!Tr$M~v !GM~v8!%,

^M ~v8!u~ iDm†Q̄v!GQv8uM ~v !&

5Tr$jm~v,v8!M~v !GM~v8!%, ~A7!

where the covariant decomposition ofjm(v,v8) is given in
Eq. ~1.6!. Note that as a consequence of the fact that in this
paper we work with (qQ̄) rather than (Qq̄) mesons, the
trace formalism is slightly different from the one usually
employed in the literature@9,16,52#. Crossing symmetry im-
plies that the form factors for (qQ̄) mesons are related to
those for (Qq̄) mesons by Hermitean conjugation followed
by the substitutionsv→2v andv8→2v8. We have defined
the invariant functions in the HQET (j, j3, x i , etc.! in such
a way that the resulting expressions for the physical matrix
elements look the same as in the conventional formalism.

FIG. 10. Cross-section ratiosRi for DD̄ pair production in
e1e2 collisions at largex.
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APPENDIX B: NONLOCAL CONDENSATES

The contributions of higher-order nonperturbative correc-
tions to the sum rules forlE

2 and lH
2 in Eq. ~4.6! can be

included by introducing two functions,f (1)(x2) and
f (2)(x2), which parametrize the following nonlocal conden-
sates@56#:

f ~1!~x2!5
^q̄~0!E~0,x!smnG

mn~x!q~x!&

^q̄smnG
mnq&

511
Q12Q222Q3

m0
2^q̄q&

x2

8
1•••,

f ~2!~x2!5
4xaxb

x2
^q̄~0!E~0,x!smaG

mb~x!q~x!&

^q̄smnG
mnq&

511
2Q12Q223Q3

m0
2^q̄q&

x2

12
1•••. ~B1!

The quantitiesQi form a basis of dimension-seven quark-
gluon condensates and are defined as (G̃mn5 1

2e
mnabGab)

Q15^q̄GmnG
mnq&,

Q25 i ^q̄GmnG̃
mng5q&,

Q35 i ^q̄smnG
mlGn

lq&,

Q45^q̄smn~DmDaG
na!q&. ~B2!

If these corrections are included, the sum rules~4.6! are
modified in the following way:

f 2lE
2e2L̄t52NcCF

as

p3t5
d4~«ct!2

m0
2^q̄q&
16

f ~2!~2t2!,

f 2lH
2 e2L̄t52NcCF

as

2p3t5
d4~«ct!2CF

3as

4pt2
^q̄q&d1~«ct!

1
as^G

2&
16pt

d0~«ct!2
m0
2^q̄q&
16

3@2 f ~1!~2t2!2 f ~2!~2t2!#. ~B3!

Next we give some details of the calculation of the quark-
condensate contributions to the QCD sum rules for the me-
son wave functions. The contribution with the cut light-quark
line shown in Fig. 6~c! involves a trilocal object, the noncol-
linear quark condensate@56#:

^q̄b~y!E~y,0!E~0,x!qa~x!&

5
^q̄q&
4 F f S~x,y!1

m0
2

48
@x” ,y” # f T~x,y!

2
i

4
@x” f V~x,y!2y” f V~y,x!#G

ab

. ~B4!

Neglecting the functionf V(x,y), whose operator product ex-
pansion contains even-dimensional quark condensates with
d>6 and whose contribution to heavy-meson sum rules is
negligible @18,41–43#, we obtain

P6
~2!~v•x,t !52 1

4 ^q̄q&@ f S~z,2x!6 1
24m0

2v•xt fT~z,2x!#,
~B5!

wherez250, x25(v•x)2, andz•x5v•xt.
The noncollinear condensate in Eq.~B4! can be expanded

in x at fixedy. One finds@56#

f S~x,y!5 f S@~y2x!2#1
4

3

~xy!22x2y2

y2 F f S8~y2!1
y2

2
f S9~y

2!2
m0
2

16
f ~1!~y2!G1O~x3!,

f T~x,y!5
16

m0
2 H f S8~y2!2

xy

y2 F f S8~y2!12y2f S9~y
2!2

m0
2

16
f ~2!~y2!G J 1O~x2!, ~B6!

where the functionf S(x
2) parametrizes the bilocal quark condensate and is given by@43,55#

f S~x
2!5

^q̄~0!E~0,x!q~x!&

^q̄q&
511

m0
2x2

16
1
6Q123Q226Q312Q4

^q̄q&

x4

1152
1O~x6!. ~B7!

A convenient representation of the bilocal quark condensate
is @44#

f S~x
2!5E dn f̃ S~n!enx2, ~B8!

where

E dn f̃ S~n!51, E dnn f̃ S~n!5
m0
2

16
, ~B9!

and so on. The functionf̃ S(n) can be interpreted as the dis-
tribution quarks with virtualityn in the QCD vacuum. The
local expansion in Eq.~B7! corresponds to the expansion

f̃ S~n!5d~n!2
m0
2

16
d8~n!1•••. ~B10!
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Because the factorE(0,x) in Eq. ~B7! can be interpreted as
the heavy-quark propagator, the asymptotic behavior of
f S(x

2) at large2x2 is

f S~x
2!;e2L̄A2x2. ~B11!

This fixes the behavior off̃ S(n) for n→0. A simple ansatz
for the distribution function, which satisfies this constraint,
was proposed in@65#:

f̃ S~n!5NexpS 2
L̄2

4n
2sn D , ~B12!

whereN ands are fixed by the conditions~B9!.

APPENDIX C: FORM-FACTOR ASYMPTOTICS
FROM QCD SUM RULES

It is instructive to compare our asymptotic results for the
leading and subleading Isgur-Wise functions with the large-
q limit of the two-loop ~order-as) QCD sum-rule expres-
sions for these functions, which have been obtained in
@21,24#. For very large recoil, the three-point correlators con-
sidered in these sum rules factorize into the convolution of
the two-point correlators~4.14! with hard-scattering ampli-
tudes. In this limit, only diagrams with a gluon exchange
between a heavy quark and the light quark remain. We find
that the results of the sum-rule calculations do indeed repro-
duce the correct asymptotic behavior; in particular, the rela-
tion ~5.9! betweenx2 andj3 is satisfied. For the normaliza-
tion factors appearing in the expressions forj in Eq. ~5.4!
and forj3 in Eq. ~5.7!, we obtain, from@21,24#,

f 2w18 ~0!w2~0!5
Nc
2

4p4f 2t3
eL̄td2~«ct!,

f 2^v21&1
2 5

Nc
2

p4f 2t4
eL̄td3~«ct!. ~C1!

We have retained the leading perturbative contributions only,
since the relevant nonlocal condensates have not yet been
calculated to orderas . Note, in particular, that the leading
quark-condensate contribution to the sum rule for the Isgur-
Wise function is constant and seems to dominate for large
recoil. However, once the nonlocality of the quark conden-
sate is taken into account, one finds that this contribution
actually vanishes quickly at large recoil@17,18#.

It is straightforward to reproduce the expressions in Eq.
~C1! starting from the sum-rule results for the wave func-
tionsw6(v) obtained in Sec. IV. The sum rule for the prod-
uct w1(v)w6(v8) at equal Borel parameters has the form

f 4w1~v!w6~v8!e2L̄t5E d«d«8r1~v,«!r6~v8,«8!

3e2~«1«8!t/2, ~C2!

wherer6(v,«) are the spectral densities of the correlators
~4.14!, and the integral is taken over the complement of the
continuum region. The precise form of the result will depend
on the particular way in which the continuum subtraction is
performed. The spectral densities for three-point correlators

depend on two variables,« and«8; see Fig. 11. The ‘‘square
model’’ of the continuum subtraction amounts to cutting off
the integrals over these variables at the threshold«c . This
leads to an exact factorization of the integrals in Eq.~C2!.
Using the appropriate products of the sum rules for the wave
functions given in Eq.~4.17!, and retaining the leading per-
turbative contributions only, we then obtain

f 2w18 ~0!w2~0!5
Nc
2

4p4f 2t3
eL̄td0~

1
2«ct!d1~

1
2«ct!,

f 2^v21&1
2 5

Nc
2

p4f 2t4
eL̄t @d1~

1
2«ct!#2. ~C3!

On the other hand, it is well known that for small recoil the
square model of the continuum subtraction is inconsistent, as
it leads to an unphysical infinite slope of the Isgur-Wise
function atv•v851 @18#. This deficiency is removed by us-
ing the ‘‘triangle model,’’ where 0,«1«8,2«c , while the
difference «2«8 is unconstrained@18,19#. The triangle
model was adopted in the calculations in@21,24#. If we use it
to evaluate Eq.~C2!, we indeed recover Eq.~C1!. This is a
strong check of both, the present approach and the two-loop
calculations performed in@21,24#. However, in this case the
resulting sum rule for the product of the wave functions is no
longer exactly factorizable, meaning that the triangle model
is not fully consistent at large recoil, and so the square model
is preferrable. Comparing Eq.~C1! with ~C3!, we observe
that both results agree in the limit«c→`, when the choice of
the continuum model becomes irrelevant (dn→1).

The sum rule for the Isgur-Wise function@18# has a
built-in model of the infrared cutoff, and therefore it allows
us to estimate the subleadingO(q) term to the Isgur-Wise
function in Eq.~5.5!. The result is

j~coshq!;e22q$q21@4L~«ct!25#q1•••%, ~C4!

where

L~xc!5

E
0

xc
dxx2e2xln2x

E
0

xc
dxx2e2x

. ~C5!

FIG. 11. Square model~solid line! and triangle model~dashed
line! for the continuum subtraction in QCD sum rules for three-
point correlation functions.
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In the relevant region of values of«ct'2.5, we find that
(4L25)'20.7, meaning that the subleading term is nega-
tive and has a coefficient of order unity.

APPENDIX D: STATIC QUARK MODEL

Our model-independent results in Eqs.~5.4!, ~5.7!, ~5.9!,
and~5.15! can be checked in the simple model where a me-
son is composed of two heavy quarks with massesm and
m, such that m@m@L @47#. In this case,
w1(v)5w2(v)5d(v2m), and^vn&65mn. Note that for-
mulas~2.19! and~2.24! for the lowest moments are based on
the equation of motion for a massless quark, and are thus no
longer applicable.

Let us consider the pseudoscalar form factorh1 in Eq.
~5.15!. It is convenient to calculate it from the relation
(coshq11)h15^B(v8)uvmV

muB(v)&. A simple evaluation of
the diagrams in Figs. 8~a! and 8~b! gives

h152pas

CF

Nc

f 2

m2e
22qTr@gmFgmSv” F̄81Fv”S8gmF̄8gm#,

~D1!

where F5g5(12v” ) and F̄852(12v” 8)g5 are the spin

structures arising for pseudoscalar mesons. The heavy-quark
propagators in Figs. 8~a! and 8~b! are given by

S5
m~12v” !1mv” 8

2mmeq ~D2!

and S85S(v↔v8). If we retain the leading term propor-
tional tom in the numerator of Eq.~D2!, then the gluon is
longitudinally polarized; the two diagrams contribute
equally, and we recover the contribution of the functionj in
Eq. ~5.4! to the form factorh1 in Eq. ~5.16!. If, on the other
hand, we retain the term withv” 8, we lose a factorm/m but
gain a factoreq from the trace. Then only the first diagram
contributes; the gluon is transversely polarized, and we re-
cover the contribution of the functionj3 in Eq. ~5.7! to the
form factor h1 . In this model, the form factor of pseudo-
scalar mesons has a zero atq252m3/m. The calculation can
be repeated for vector mesons using the spin structures
F5e” (12v” ) andF̄85(12v” 8)e” 8. In particular, we find that
the form factor of longitudinally polarized vector mesons has
a zero atq2522m3/m. Other form factors can be calculated
in a similar way; our results agree with@47#.
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