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Asymptotics of heavy-meson form factors
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Using methods developed for hard exclusive QCD processes, we calculate the asymptotic behavior of
heavy-meson form factors at large recoil. It is determined by the leading- and subleading-twist meson wave
functions. For K|v»v’|<mQIA, the form factors are dominated by the Isgur-Wise function, which is deter-
mined by the interference between the wave functions of leading and subleading tWistv > mg /A, they
are dominated by two functions arising at ordemg/in the heavy-quark expansion, which are determined by
the leading-twist wave function alone. The sum of these contributions describes the form factors in the whole
region|v-v’|>1. As a consequence, there is an exact zero in the form factor for the scattering of longitudi-
nally polarizedB* mesons at some value- v’ ~my/A, and an approximate zero in the form factor Bf
mesons in the timelike regiow (v’ ~ —m,/A). We obtain the evolution equations and sum rules for the wave
functions of leading and subleading twist as well as for their moments. We briefly discuss applications to
heavy-meson pair production &' e~ collisions.[S0556-282(97)03201-3

PACS numbeps): 12.38.Bx, 12.39.Hg, 13.40.Gp, 14.40.Nd

I. INTRODUCTION To leading order in Mg, current-induced transitions be-
tween two ground-state mesons are described by a single
In heavy-quark effective theoryHQET) [1-5] (see Isgur-Wise form factof1,15]:

[6—11] for reviews, the heavy-quark spin does not interact o
with gluons to leading order in fly (where mq is the (M)|QX¥Qyu M(v)y=E&(w-v ) u(v u(v), (1.9
heavy-quark magsTherefore, this spin can be rotatéspin
symmetry or even switched off(superflavor symmetry wherev, v’ are the meson velocities. At next-to-leading or-
[12,13)) without affecting the dynamics. In the heavy-quark der, there appear i, corrections to the currents and to the
limit, the properties of the doublet of the ground-state pseutagrangian of the HQET16]. The first type of corrections
doscalar and vector mesons@) are therefore characterized can be expressed via the matrix element of a dimension-four
by the spin-parity quantum numbei®=1* of the light de-  operator:
grees of freedoni1,14]. In this paper, we shall use the su- o
perflavor symmetry to describe the ground-state mesons by a (M(v")|(iD*'Q¥)Q,/[M(v))=u(v") & (v,v")u(v),

Dirac wave function. However, we collect in Appendix A the (1.9
most important formulas using a more conventional formal-
ism. where

Let Q) be a scalar field describing a heavy antiquark , ) , , ,
moving at four-velocityv with its spin switched off. Then v )= (v-v)o+v ) +E(v-v)(v—v)”
the decay constarft of a heavy mesofmoving at the same +&5(v-v" )Y, (1.6

velocity) is defined as
The equations of motiorip -DQ,=0, can be employed to

(0[QFalM(v))="fu(v), (LD relatet. to & [16]. The result is
whereu(v) is the Dirac wave function of the meson, which (12)(v-v'— 1)K§_§3 _
satisfies L= e . E=3AE, (1D
du(v)=u(v). (1.2

where A is the “binding energy,” i.e., the difference be-

A nonrelativistic (i.e., mass-independénhormalization of ~tween the meson mass and the heavy-quark mass. Hence,
u(v) and|M(v)) is assumed. In the heavy-quark limit, the there is only one new independent form factor. Theng/
relation betweenf and the usual meson decay constantscorrections to the Lagrangian give rise to the matrix elements

reads of two nonlocal operators:
2f 1 | |
fu=fusr=—. (1.3 We useD#=g*—iA* andD#T=g*+iA*T, whereA*=g4t,A
VMq is the gluon field.
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wave function and the subleading-twiguark-antiquark and
quark-antiquark-gluonwave functions. It is given by

af?

Ewv')~ f3 2 TR (1.10

Indeed, the situation is similar to the well-known case of the
(a) (b) m-p form factor[29]. At order 1ing in the heavy-quark ex-
pansion, there are however contributions involving the
FIG. 1. Hard-gluon exchange contributions to heavy-mesorl€ading-twist wave function only. They conserve the meson
form factors. The external current is presented by the wave line; th@€licity and behave as

heavy antiquark is represented by a double line. )
a(v-v) vu'xvv)  af

mQ mQ - mQAZU'U, ’

(1.1

<M(v’)|if dxT{Q; Q,(0),Q} (iD)*Q,(X)}[M(v))

The leading contribution in the heavy-quark expansion,

=2x,(v-v)uv’)u(v), which is given by the Isgur-Wise function, dominates as long
aslv-v'|<mg/A. For|v-v'|>mq/A, however, the contri-

butions of ¢; and x, in Eq. (1.11) become the dominant
(M(U')|if dxT{Q; Q,(0),QiG*"Q,(X)}[M(v)) ones. Note that they violate the heavy-quark spin symmetry;
i.e., they contribute in a nonuniversal way to the various
=2u(v")x*"(v,v")u(v), (1.8 meson form factors. Higher-order terms in the heavy-quark

expansion(of order 1m5 and highey cannot fall off slower
where iG*"=[iD*,iD"]=ig4,G5" is the gluon field than 1/¢-v’) because this behavior corresponds to the lead-

strength, and ¢“"= (i/2)[ y*,¥"]) ing twist, and hence they always remain small corrections.
_ It is instructive to consider the same situation from an
X (v,0")=xo(v-v" ) (Y v = yv" )+ 2i x3(v-v ) o opposite point of view. At asymptotically large values

(1.9 |g?|=2md|v-v’'|>md/x (whereq is the momentum trans-
ferred to the mesons, and-A/mg is the momentum frac-

In the second matrix element in EQ..8), the indicesu and  tjon carried by the light quajk the form factor of a heavy
v are restricted to the subspace orthogonabtoExplicit  1,as0n behaves like that of the pif26—31];
expressions for the meson form factors in terms of the func-

tions ¢, &5 andy; can be found in9,16]. At moderate values asffﬂ
of v-v’, these functions have been studied extensively in the F(9%)~ P (1.12

framework of QCD sum rules, both at leadifti7—21] and

next-to-leading 22—24 order in the heavy-quark expansion. \hich exactly corresponds to E¢L.11). However, there is a

In the present paper, we shall consider the behavior of thgonripution to the subleading-twist (i) correction which
form factors in the large-recoil regidn-v'[>1. This region 5 proportional toma . It becomes important for moderate

is inaccessible in the weak semileptonic decays, but it can bg, \ag ofq?:

explored (at least in principlg in the production reaction

e"e"—M®IM®™), Using methods developed for hard ex- amyfy

clusive processes, we calculate the asymptotic behavior of F(q2)~X3—q4- (113

the form factors in a model-independent way.

Oyr results can be summarized as follows: Forthis contribution exactly corresponds to Ed.10. It domi-
lv-v |>21, there2|s a large momentum transfer to the_ lightpates for|q2|<méx. Higher-twist (16° and highey correc-
quark:gjign~ — A“v-v’, whereA is of the order of a typical  {ions cannot be more enhanced tha§) because otherwise

hadronic mass scale. As shown in Figa)l this momentum e form factor would diverge in the heavy-quark limit, and
is transferred by the exchange of a hard gluon, and the mettygonce they always remain small corrections.

ods developed for hard exclusive processes in QZ%>-29 Until now, we considered form factors for transitions in-
(see[29-31 for reviews are applicablé. In the “brick  qced by a current containing heavy quarks only. In the case
wall” frame, wherev' = —v, the projection of the total an- of, say, the electromagnetic current, which also contains
gular momentum on the axis (directed along) is equal to  light-quark fields, contributions of the type shown in Fig.
the projection of the meson spiiRecall that the heavy- 1(b) appear. However, they lead to the behavior

quark spin has been switched @f§ince it is conserved, the

L o . 2
meson helicity changes its si¢83]. The asymptotic behav- asf? _ asfy, (114
ior of the Isgur-Wise form factor is thus determined by the m%vq)' q° :
interference between the leading-twistiuark-antiquark
and can thus be safely neglected, singg> A for a heavy
quark.
2There are also soft endpoint contributidi®2], which are diffi- In summary, for &[v-v'|<mg/A the dominant contri-

cult to estimate. bution to meson form factors comes from the universal
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Isgur-Wise function. It involves the exchange of a longitudi- equal masses was considered48]. There it was noted that
nal hard gluon and a change of the meson helicity, corresome form factors must have zeros in the physical region.
sponding to the interference between the leading- andlVe confirm this interesting observation, although we dis-
subleading-twist wave functions. Fpr-v'[>mgq/A, on the ~ agree with some other results of this wdsee Sec. Y. A
other hand, the situation is the same as in massless QCD; tisénilar model was considered §#6-48. There, a single
asymptotic behavior of meson form factors is determined byspin structure of the heavy-meson wave function was used,
leading-twist contributions, which are not universal. Theywhich is determined from the condition that the light quark
are governed by the exchange of a hard transverse gluoRg at rest in the meson rest frame. Hence, all quark-antiquark
which conserves the meson helicity. The sum of these twavave functions were taken to have the same shape, and this
contributions describes the asymptotic behavior of the fornshape was assumed to béw— u), with u being the con-
factors in the whole regiofw -v’|>1. The simple picture stituent mass of the light quark. As we shall see later, for a
described here is only slightly modified by the emission offealistic heavy meson the wave functions, (w) and
gluon bremsstrahlung, which can be dealt with in¢_(®) do not coincide, and they are not well approximated
renormalization-group improved perturbation theory. It leadsdy sharply peaked functions. Integrals for the form factors
to an additional, moderate power suppression of the fornieceive important contributions from the region of law

factors at large recaoil. values, which are missing in the peaking approximation.
The remainder of the paper is organized as follows: InTherefore, the results obtained using such a static quark
Sec. I, we introduce th&quark-antiquark meson wave model can at best be taken as a crude estimate. Perturbative

functions of leading and subleading twist, (»). Unlike in ~ QCD and the constituent quark model were recently applied
QCD, wave functions defined in the HQET depend on aalso to the semileptonic decags—D *)[v [49], for which
dimensional argumen&. We investigate the moments of 1<v-v’<1.6. In our opinion, such small valuesmfv are
these wave functions and derive the symmetry relations befar too low to treat the gluon Wltlk2~ —A?%v-v' perturba-
tween the various meson wave functions, which arise in thévely. Moreover, the calculations |h48] are done using a
heavy-quark limit. In Sec. Ill, we derive the evolution equa- model wave function with an ad hdg dependence, whose
tions for ¢.(w), which are analogous to the Brodsky- |ongitudinal momentum dependence contradicts the expecta-
Lepage equationg28]. This calculation extends the calcula- tions based on the HQET.

tion of the HQET anomalous dimension of local heavy-light

current 0perat0r§34—3g. A new kind of ultraviolet diver- Il. QUARK-ANTIQUARK WAVE FUNCTIONS

gence appears in the relation between the local operators and

the operators defining the wave function. Therefore, the We shall define the quark-antiquark wave functions
Brodsky-Lepage kernels do not determine the renormaliza¢-(t) of a heavy meson in terms of the matrix element of
tion properties of the local operators completely. A similarthe bilocal operator

situation is encountered in the case of tdtarelli-Parisij -

equations describing the evolution of distribution functions O(H)=Q*(0)E(02)q(2), t=v-z, 2.1

in the HQET([40]. In Sec. IV, we investigate the properties
of the wave functionsp.. (w) using the QCD sum-rule ap-
proach. This extends the heavy-meson sum rul8s41-43 y
to the case of nonlocal operators. After considering the sum E(x,y)= Pexp( —iJ dz*A,(2)
rules for the lowest moments, we construct the sum rules for X

the wave functions themselves, taking into account the non-
locality of the quark condensafd4]. In Sec. V, we apply

our results to derive the leading asymptotic behavior of mefone gauge A, =0), one simply ha£(0z)=1. Since in
son form factors at large recoil. First, we calculate the Conthls section we are considering operators containing a single

tribution of the interference between the leading-twist andﬁeavy antiquark fieldQy We_ shall for simplicity ,Om't the

the (quark-antiquarksubleading-twist wave functions to the Velocity label on the field. Similarly, we shall writél and

asymptotic behavior of the Isgur-Wise functibthen we U insteéad ofM(v) andu(v). The meson matrix element of

calculate the leading-twist contributions to the form factorsthe operatorO(t) has two independent Dirac structures,

appearing at order t, in the heavy-quark expansion. Fi- andzu, and we define

nally, in Sec. VI we discuss the implications of our results

for the reactionse™e” —B®*)B™*) and e*e” —~D®*)D™). (0O()|MY=F| B, (1) + ;[E_(t)—5+(t)]t)u.

Technical details of our calculations are presented in four t

appendices. 23
Before we proceed, some comments on the existing litera-

ture on the application of perturbative QCD to the calcula

tion of heavy-meson form factors are in order. A S|mple

model of a meson made out of two heavy quarks with un-

wherez is a null vector on the light conezf=0), and

(2.2

IS a string operator ensuring gauge invariance. In the light-

It is convenient to introduce two light-cone vectors
=(1,0,0,+1) such tha’n2 0 andn,-n_=2. Any vec-
tor a# can be decomposed a'=j(a . n“+a_n*)+a’,
where a.=a-n.. This implies a-b=3(a,b_
+a_b,)—a, - 6L We shall also use the light-cone compo-
2The properties of quark-antiquark-gluon subleading-twist wavenents of the Dirac matrices, defined as=n%y,=#n. . If

functions and their contribution té(v-v') will be discussed else- the meson is at rest, them*=(1/2)(n% +n*), i.e.,
where. v,=v_=1. Usingdu=u, we can then rewrite Eq2.3) as
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(0OMIM)=3[3. ()Y +B (Dy Ju. (24 5.0-S om it
+ - - + n' 1
For a meson with an arbitrary velocity in time —n_ plane, n=o
this formula becomes (—it)"
~ L B (=2 (@), (2.13
(0O(1)IM)=3f[o, (v, y-+o_(Hv_y,]u. n=0 :
where
If we introduce the rapidityd by writing
O(f):Jda)O+ w)ow"=Q*y.(iD,)"q,
v*=(coshy,0,0,sinhy), (2.6 - =(w) Q"7=(iD.)V'q
then'v+=e‘9 and U_:S*ﬁ'_ This shqws th'at for a fast- <wn>i:f dog.(w) " (2.14
moving meson {>0), ¢, is the leading-twist wave func-

tion, whereasp_ has subleading twist. It is convenient to

project onto these wave functions by writing Equation(2.11) then implies a relation between the moments

of the momentum-space wave functions and the local,
- _ - - . A . (n)

(0[O (H)|M)=FF () y=U, O-(t)=7y.0(1). higher-dimensional operato3” :

@7 (0[O M)y=H(w". yu. 2.15

This result is valid in an arbitrary reference frame, as can be

. . Using the equations of motion, the first moments of the
seen by using the relations

wave functions can be calculated in terms of the parameter

> A encountered in Eq1.7) [50]. In general, we may write

2— N
v2=0, yey== Tyt 29 ( 0/Q*iD#q|M)=f(av”+by")u. (2.16

The wave functiong .. (t) depend on the separatioron ~ The equations of motion for the light quarikd q=0, imply

the light cone. We define the corresponding wave functionghat (a+4b)=0. The equations of motion for the heavy
in momentum space by quark,iv-DQ=0, can be used to write

10 (0]Q*iv-Dg[M)=iv-d( 0]Q*q|M)=A( 0|Q*gM),
(Pi(w)zﬁj dte.(t)e'", (2.17

whereA= my — Mg is the effective mass of the mesbhin
~ _ —iw the HQET[51]. This relation implies thatg+b)= A, and,
%(t)—deso:(w)e et (2.9

therefore,

The variablew has the meaning of the light-cone projection ( 0|Q*iD*g|M)= 3 fA(4v*— y*)u. (2.18

p, of the light-quark momentum in the heavy-meson rest

frame. The positions of the singularities in the comptex Using this result, we find that the first moments of the wave
plane are such that. (w) vanish foro<0. The wave func- functions are given by

tions are normalized such that

(@)+=4A, (w)_=2A. (2.19
?+(0)= fo dog.(w)=1. (2.10 A similar analysis can be performed for the second mo-
ments. Consider the matrix element
We can formally introduce operato€. (w) such that ( 0|Q*iD#ID"q|M)=fO*"u, (2.20
(0|0 (w)[M)=fp.(w)y-u. (2.1 where the most general form 6f~* is
This implies OF=cv*v”+Cog*"+ca(YHu '+ y'uH)

1 _ _ +Cu(yH*vV— y'v#)+icgot?. (2.21)
O.(w)= —f dtO..(t)e'*'=Q*(0)y. &(iD y — )q(0),

2m The equations of motion impose three independent relations
among the five parametecs, which imply that the matrix
element in Eq(2.20 is completely determined by its anti-
symmetric parf{52], i.e., by the matrix element of the gluon
field iG#*=[iD*,iD"]. For reasons to become clear below,
Expanding in powers df in the definitions(2.9) and(2.12,  we find it convenient to introduce two hadronic parameters
we obtain A2 and\3 by

6i(t)=J dwO. (w)e 1, (2.12



276 A. G. GROZIN AND M. NEUBERT 55

Ca=1N2—\2), c.=1\2. 29 light-cone gaugeA, =0. In the heavy-quark limit, we ob-
sMTAE) Cs= ey (2.2 tain, using the results of Appendix A:

6
~ ei(OHt+e_(t) _  _
QDP:%, pa1=o@4 (1),

In terms of these quantities, we obtain

(0|Q*iGHqIM)= FFL(NZ—AB) (y*v”— y"v ™)

+iNZ oMU, ~ o~ e (o (1)
R Pr= Ty T (2.27)

(0|Q* Lip~ iD"g|M)
AID*ID"}q| For t=0, we obtain in this limit the normalization condi-

= L[(BAZ+ 202+ N2 v 0" — (AP+ A2+ A2)gH” tions:
A2 2 v v ~ ~ —_~ —~ A
~(AS DR (Y u. (223 p(0)=3a(0)=1, Ba(0)=1(0)=7, (2.28
From the second relation, it follows that the second moments .
of the wave functions are given by \;v:de(rg ;g)e second relation is a consequence of Ef&3
2\ _oA24 232 132 For a vector mesomM* with polarization vectore, the
(0?)+ =2A%+ SAg+ 5N, X .
matrix elements of the scalar, vector, axial vector, and tensor
) 275, 1.2 currents are nonzero, and we introduce a set of six wave
(0% -=35A%+ 3. (224 functions as follows:
According to the first equation in Eq2.23, the moments ( O|&O)q(z)|M*)=ifM*mM*'gEsz-e,
(w?). are thus related to normalization integrals of quark-
antiquark-gluon wave functions. 010(0) v#a(z)|M*
Our definition in Eq.(2.22) is such that, in the rest frame (01Q(0) y*a(2)M*)
of the heavy meson, the quantitizg and A} parametrize = f s [Myx Py1€4+ i Pya(p- 284 —e-zpH)],
the matrix elements of the chromoelectric and chro-
momagnetic fields, respectively. DefinthgE;=Gy, ( 0@0) 7’“7’5Q(Z)|M*>=fM*A@AE““BVZapgey,
Hi: — % Eijijkv anda’i: ’)/O‘yi, we find

( O|&0)U”VQ(Z)|M*>=fM*[i5T1(e"p”—e”p")
— My pro(e42"—e’z4)].
—(0|Q*a-Hg|M)=f\2u. (2.29 (2.29

(0|Q*ia-Eq|M)=f\Eu,

To finish this section, let us switch the heavy-quark spinin the heavy-quark limit, we find the relations
on and relate the numerous quark-antiquark wave functions

of the ground-state pseudoscalar and vector meddnand Pvi=e11= ¢+ (1),
M*, to the HQET wave functiong.. . These relations are i B.(0—F_(D)
very conveniently obtained using the covariant tensor for- 5s:5v2:§5A:5T2=§ %, (2.30

malism described in Appendix A. For a pseudoscalar meson
M, the matrix elements of the pseudoscalar, axial, and tensornd the corresponding normalization conditions
currents are nonzero, and we define a set of four wave fun@ P 9

tions in the following way* Pv1(0)=371(0)=1

( 0Q(0) ysa(2)|M)=—if ymyp,

B

— . - ?p?s(O)=?Evz(0)='<EA(0)=?ﬁTz(0)= 3" (2.3)
(01Q(0)y*y5a(2)[M)= fyl[ia1p* — My eaz"],

Py P = The QCD wave functions in momentum space are defined
(0]Q(0)d*”y5q(2)|M) =if yor(p z"—p’z ),(2 2 as

- ~ - L 1 ~ i
where ¢;=¢;(p-z)=¢i(myt). For simplicity, we have (pi(X)=2—f d(p-2)ei(p-2)e”*P7 (2.32
omitted the string operatd£(0,2), i.e., we have adopted the 77

so thatx=w/m,, . On the basis of the behavior of the eigen-

3 _ o = - o= functions of the evolution equations as well as sum-rule in-
It we define D*=(D",—D), then E=i[D".D] and  gpjred arguments, it is usually assumed that for pseudoscalar
H=—iD XD. mesonsea;(X)~x and ¢p(x)~1 asx—0 [29]. For the

4Contrary to the notation used in the rest of this paper, here and IMQET wave functions, this implies the behavior
Eqg. (2.29 we use the standard relativistic normalization of states,

which adds a factox/my, on the right-hand side of the equations. oi(w)~w, ¢_(w)~1 (2.33
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ing such a singular gauge and work instead in the Feynman
gauge> To obtain the Feynman rules for vertices involving
. \ the operator9..(w), we start from their definition as the
Fourier transforms of the nonlocal operat@s (t) and ob-
(b) (c)

tain, to first order in the gauge field,

1 . .
FIG. 2. One-loop diagrams contributing to the matrix elements ~ O=(@)= EJ' dte'wt[ Q*(0)y~€"+q(0)
( 0/0%qw)|w'). The bare current operators are represented by a
circle. i * T4 (t—7)d 4
i | drQ*(0)y.e™+A,(0)e a(0)
asw—0. In Sec. IV, we will indeed find these scaling laws
from an explicit calculation of the wave functions using

QCD sum rules. +ee b

(3.5

IIl. EVOLUTION EQUATIONS !t ilsé_theg straightforward to derive the Feynman rules shown
in Fig. 3.
The definitions of the previous section are somewhat for- Let us then sketch the calculation of the diagrams in Fig.
mal, because the operators involved require renormalizatior2. The contribution of the first diagram is

In this section we discuss how the ultraviolet divergences in -
— L&

operator matrix elements can be removed in a consistent L Qs 5 L

way. After doing this, however, we shall ignore renormaliza- _'CFZ“ j dk+dk_(27T)2_28

tion effects in the further course of this paper. The reader not

interested in the conceptual problem of renormalization can y o(ky —w)y-ku 3.6
thus proceed directly with Sec. IV. (k°—i0)(k?+i0)[(k—p)2+i0]" '

We use the modified minimal subtractioM$) scheme in , _ o
(d=4-2¢)-dimensional space-time. The bare and renorWhereCg=(Ng—1)/(2N;). Thek, integral is trivial to per-

malized operators are related by form, and thek_ integral is readily calculated by the method
of residues. The poles of the integrand are located at
. "2 . "2 .
opar :fd 7 (0.0")0 ('), 3 K =—0+i0, k =(k-i0)w, and k_ =(ki-i0)/
£ 1) ©'Zs(w,0")0x(") 31 (w—w"). If ®<0, all poles lie in the upper half plane, and

the integral vanishes. Fa>0, it is necessary to distinguish
the casesv™>w’' andw<w'. For w>w’, we close the con-
1 tour in the upper half plane and det= — w. Foro<ow', we
Z(w,0)=8w—o0')— sz(w,w')Jf o, (32 closea the contour in the lower half plane and set
k_=kf/w. Only in the second case and for the minus pro-

operatorsO.. (w) and hence their matrix elements . (w)  thek, integration. Keeping only the singular term, we obtain
obey the renormalization-group equations for the contribution t&Z . (w,w’):

where

as 1 )
= (15 1) (0~ o). @7

Cez

dfe.(w)

din +f do'T (w,0")fei(w')=0, (3.3
® The other two diagrams in Fig. 2 are evaluated in a similar

where the anomalous dimensiohis (w,w’) are given by way. For the second one, we find an ultraviolet divergence
N for the plus projection ifk,<w’. Its contribution to
Z. (w,0")is
d
Fi(w,w’)=a5&72i(w,w’). (3.9 ki 8ky—w)—8(w'—w)
S

!

—Cr

Qg
(1= 1)f dk,
4ire

F k+ —w
Equation(3.3) is analogous to the Brodsky-Lepage evolution

equation in QCO28]. -—C, @s (1t1){ e —w)
In order to obtain the anomalous dimensidhs(w,w’) Ame '  (0-')
at the one-loop order, we consider the matrix elements
( 0|0 w)|w'), where|w') represents a state consisting of — (o' — w)], (3.9
a scalar heavy antiquark at rest and a light quark with mo-

mentump . =w’. According to Eq.(3.1), these matrix ele-

ments equal. (w,o')y~U. The relevant one-particle irre-  We have repeated the calculationIdf (w, ') in the light-cone
ducible loop diagrams are shown in Fig. 2. Although thegauge and obtained the same result as in the Feynman gauge; how-
operatorsO-(w) in Eg. (2.12 take a particularly simple ever, we could not find an easy way to recover the correct result for
form in the light-cone gaugé , =0, we refrain from adopt- T _(w,0').
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The distribution 1/ — ') . is defined such that of local operators defined analogous@" in Eq. (2.14.
f(w) flw)—f(w') Accordingly, the renormalization of the wave functions
f dwm=f P (3.9  ¢i(x) renders their momentx"); finite. Unfortunately, this

situation does not hold in the case of wave functions for
for any smooth functionf(w). The third diagram has an heavy mesons defined in the HQET. The reason for this un-

ultraviolet divergence ik, > w’. Its contribution is expected fact is that in the HQET the wave functions depend
o on the dimensional variabke, which takes values between 0
> dw—w'). (3.10 and~. As a consequence, E(.14, which defines the op-

Fo e (i — )
2me (0= ')y eratorsO'" in terms of weighted integrals @. (w), does

Finally, we have to add the contributions from the wave-Not hold for the renormalized operators; the integral aver
function renormalization of the external lines, which givesas an additional ultraviolet divergence not yet removed by
[36] the renormalization 00 (w). This divergence must be re-

moved separately.
Consider, as an example, the simplest cas®. Then the
a , bare operator© ) P¥e=Q* y_ q are local heavy-light cur-
1+CF% Slw=w’). (31D rent operators with dimension three, which are renormalized
in the following way:
Collecting all terms, we obtain, for the quantities

25°Z2%8(w— ') =

Zz.(w,w’) defined in Eq(3.2), O(iO),bare:ZOO(i?):(l_ Zi[‘0+... 0(19)’ (3.19
Nee ag +0(w’—w) w—w") &
Z:(w0,07)= Pl o’ (w—w') 4 where
_3 —w' )+ 11+ 3 «
10(w—w')+35(1£1) Fo:—ZCFf (3.19
(o' —w) ,
(w—w'), — o=l (312 s the well-known one-loop hybrid anomalous dimension

[34-34. On the other hand, the bare operators can be ex-
To one-loop order, the anomalous dimensions are given bgressed in terms of integrals over the renormalized operators

the same expression. We thus obtain 0. (w) using Eq.(3.1). This gives
, ag 1 o' —w)
Prloe)=Cr | oo, T o o;‘”’ba"éf dodo’Z.(0,0)0. (o)
—30w—w')|, = f deJw,w'))J dwO.(w). (3.1
As mentioned above, the last integral over the renormalized
as] Hw—0') o' —w) operatorsO. (w) is ultraviolet divergent from the region
I (w,0")=Cg—|——F—— ; w—o, and we define
T (w—w')y 0}
1
=72'00={1—-—T7"+...|00
(3.17

In the familiar case of QCD wave functions for light- Combining Eqs(3.14), (3.16, and(3.17), we find that
guark systems, the renormalization of the nonlocal operators ’ ' '

analogous td- (w) would suffice to renormalize the tower , ,
2,=2. | doZ.(0,0),

01 (w)

*\ F0=F'i+f dol (w,0). (3.18
k P = 8(ky ~w
ks -) With our explicit expressions in Eq3.13, we obtain
Z,=1+Cr—2, TL=FCpot 3.1
0+ (w) =TT P age =T TR (3.19
(ks — ) — o ) To see in detail how this works, we calculate the ultravio-
k poo= gsta"iVi% let divergences of the matrix element®|0?*¥4w’) to

one-loop order, leaving the integration ower until the end.
wa Since now we are dealing with local operators, the only one-
particle irreducible diagram is a vertex diagram analogous to
FIG. 3. Feynman rules for vertices involvir@. (o). that in Fig. Za). Its contribution is
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o , _,_JOCd d2—2€kL 1
agy-uuty = 0w —s = =
FasY=H o 2mM7 % (R + 02— i0)[K2 + w(w—w')—i0]
N 1 jw/d dZ*ZSkL ki (3 2@
-7 0w —Z2g > . > . ! :
®'Jo (2% (K2 + w?—i0)(k2—i0)

where in the numerator of the second integral we have tQuherex, contains the components wforthogonal taw. The

two types of ultraviolet divergences. Tlke integral in the ground-state  meson. Next, we analytically continue

first term is convergent, but there is a logarithmic divergencqy_(, . x) to v - x= —i . The correlator can be expressed via
in the remaining integral oves. In the second term, the  jts spectral densityg(w):

integral is cut off in the ultraviolet; however, the integral
diverges for the minus projection. Keeping only the poles in

1/e, we obtain Mg(7)= J;) depe(e)e™ 7, (4.3

o ® 1
Cpﬁyiu[ iw'zsf /dww_l_zs-l-(li 1)5—}— cee

w

which contains the contributiorfz)\éé(s—/T) from the
ground-state meson, as well as contributions from excited
states, which we will refer to as the continuum. Hence, the

o X . .
—Cp 47:8 y.u. (3.2 phenomenological expression for the correlator is

Adding to this the contributions from the wave-function HE(T)=f2)\Ee‘E+Hf§°“YT). (4.4
renormalization of the external lines, we recover the expres-
sions forZ, and I’y given in Eqgs.(3.14 and (3.19. The

contribution in _Eq.(3.2]? arising from the logarithmic iner- culated in QCD using the operator product expan$isi.
gence of thew integral is removed by the factar’. defined  The theoretical spectral densiplf(¢), contains perturbative
in Eq. (3.17), whereas all other contributions are removed byas well as nonperturbative contributions, where the latter are

For sufficiently small values of, the correlator can be cal-

the renormalization of the operato@s. (). proportional to vacuum condensates of local, gauge-invariant
operators. The continuum contributions in E4.4) are usu-
IV. QCD SUM RULES ally modeled by the theoretical spectral density above a

threshold ., which is called the continuum threshold.
Equating the two expressions féig(7) obtained in this
way, we derive the sum rule

The first moments of the wave functions.(w) are
known exactly from the equations of motion, as shown in
Eq. (2.19. However, they only set the scale of In order to
obtain information about the shape of the wave functions, we
need to consider some of the higher moments. In this section, ’ 1 ec " -
we use QCD sum rules to investigate the paramet@rand fAnge A7= fo depg(e)e°". 4.9
A2 , which according to Eq(2.24) determine the second mo-
ments ofp. (w).

. . 2
Let us consider the operators A similar sum rule holds for the produ¢erf, .

The leading contributions in the operator product expan-
.. sion of the correlators are shown in Fig. 4. We include the
Oe=Q*ia-Eq=v,0"Q*G*"r,,q, leading perturbative contribution, as well as the contributions
of the quark condensat@q) (dimensiond=3), the gluon
condensatéG?) =(G,,,G4") (d=4), and the mixed quark-
gluon condensatégo,,G**q)=mj(qq) (d=5). In the cal-
culation of the nonperturbative contributions, it is convenient
to use the fixed-point gauge,A*(x) =0; then the heavy
quark does not interact with gluons. After a straightforward
calculation, we obtain the sum rules

On=-Q*c-Ha=(39%—v,v))Q*G""s,,q, (4.1)

whose matrix elements givb\é and fAZ, respectively. To
obtain the sum rule fox2 (the sum rule fonZ is obtained in
a similar way, we investigate the correlator

(O T{Oe(x),q3(1+4)Q(0)}| 0)
5The procedure of analytic continuation of the coordinate-space
144 correlator to imaginary time is equivalent to the Borel transforma-
+ . .
_ > tion of the corresponding momentum-space correlator. Thus, our
=——0(v-x)d(x, )[Ig(v-X), 4.2 I .
2 (%) 60x, )Tg(v - x) (4.2 sum rules coincide with the usual Laplace sum rules.
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FIG. 4. Nonvanishing diagrams for the correlatdds and 04
I1, . The higher-dimensional current operat@gs andOy are rep- - E E
resented by a gray circle; the interpolating current is represented by 0.35 ' '
a white circle. 03 ! :
2<_> N% 0.25 ) :
- [ mp(qqg O 02F £.=0.85 GeV !
N2 —Ar_ S 0 >, F ' '
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ag(G?) me(aq)
+ 16 60(807-)_ 16 ' (46)
T FIG. 5. Sum-rule results for2 (upper ploi and\? (lower plob
where as a function of M, for three values of the continuum threshold
e.. The stability window lies in between the dashed lines.
n m
X
On(X)= 9(X)( 1-e XmE:O W) (47 0.3 Ge\k1/r<0.5 GeV, which is called the stability win-

dow. Our numerical results for2 and\? as a function of

The fact that the sum rule forZ2 does not contain contribu- 1/7 are shown in Fig. 5. We observe a sizable dependence of
tions from the quark and gluon condensates is a consequenti€ results on the parameteras it is not unexpected for the
of the fact that, in the fixed-point gauge, the light quarkmatrix elements of higher-dimensional local operators such
interacts only with the magnetic components of the gluor@s Og and Oy . Nevertheless, taking an average over the
field [54]. In Appendix B, we also list the contributions of stability window determined from the sum ruld.g), we
higher-dimensional quark-gluon condensatds-7) to the  obtain as a rough estimate:
sum rules. For the range of values considered below, we
expect that the contributions of these condensates are very A2=(0.11=0.06 Ge\?,
small. Since their values are moreover unknown, they will be
neglected in the numerical analysis.

It is convenient to divide the sum rules in E4.6) by the
sum rule for the meson decay constant derivefdi$18,20Q:

@, 8
4 16

\3=(0.18+0.07 Ge\2.
(4.10

In units of A~055 GeV [40,49, this implies
N2/A%2=0.36+0.20 andr3/A%=0.60+0.23.

According to Eq(2.24), the parametersZ and\7 deter-
mined, together with\?, the second moments of the meson
wave functions. In order to learn more about the shape of the
wave functions, we shall now go a step further and construct
sum rules for the functiong..(w) themselves. To this end,
we start from the correlatbr

N¢

f2efAT:
27°7

Ox(&cT)— . (4.8

This procedure leads to expressionsX@rand\? as a func-
tion of 7, the continuum threshold,, and the vacuum con-
densates. For our analysis we use the standard vEb3és

(qq)=—(0.23 GeV}°,

a(G2)=0.04 GeV,

"Expanding this correlator in powers ofone recovers, according
to Egs. (2.13 and (2.195, the sum rules for the moments
f2(0". . To lowest order, this gives the sum rule for the decay
constantf considered i{42,18,2Q. The sum rule forf?(w), has
been considered ifb5]; however, the mixed-condensate contribu-
as well asas=0.4. The value of the continuum threshold tion had the wrong sign. Note that, because of @19, the sum
extracted from the analysis of the sum rul@.8) is rules forf?(w). can be obtained by taking derivatives with respect
£.=1.00=0.15 GeV[18,20. Moreover, stability of this sum to 7 in the sum rule forf2. Taking linear combinations of the sum
rule requires that the parameter be in the range rules forf%(w?). , we recover the sum rules farz and\j .

m3=0.8 Ge, (4.9
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terms would acquire a finite width if the nonlocality of the

G\ gluon condensate would be taken into accd&. Below,
,/ we shall neglect the gluon condensate. The Fourier transform
, ] N o
ﬁi é — :3 of the quark-condensate contribution in E4.13 is given

by
(b) (c)

(2) —
FIG. 6. Leading diagrams for the correlators of the bilocal op- I (r0)=—

erators 6i(t) (gray circle$ with the local currentqQ (white
circle).

@

_ |a—wTl2
27_> e , (4.16

e., it is directly determined by the virtuality distribution of
_ quarks in the vacuum.
(0] T{O.(1),q3(1+¥)Q(—x)}| 0) In order to perform the continuum subtraction for the per-
turbative contributions, we calculate the inverse Laplace
transforms of the expressions in BEg.15, which give the

=7+ 00 X)) (v-x0), (41D corresponding spectral densities. We finally arrive at the sum
_ rules
whereO..(t) has been defined in E.7), and analytically
continue Il (v-x,t) to v-x=—ir. Using the light-quark 0]
propagator in coordinate spaf®4], it is straightforward to (SC_ E) 4
obtain the contribution of the diagrams in Figéa)gand Gb). o
The result is _ (qq) ~ (3) — w2
8r Sl\2r € ’

— N
f2¢+(w)efAT:SWZTwefwTIZ(SO

- N mayG?) r?t?
0= 5y 1 TS TE )
277 7r( 7+ 2it) 48N, - N
f2¢_(w)e7AT: 2C 2870)7/251 (SC_ 2) T
ow _ N¢ mag(G?) 7t T ’
- (T,t)—zszz(TJFZit) T 48N, ' Q) ~ (@) _ 12
(4.12 BT PR

The contribution with the cut light-quark line shown in Fig.
6(c) involves the trilocal, non-collinear quark condensateThe contributions from the nonlocal quark condensate fall
[56]. This object is discussed in detail in Appendix B. Keep-off quickly for both «—0 and w—. The first statement
ing for simplicity only the leading term in the operator prod- follows from a general property of the funcndg (see Ap-
uct expansion, we obtain pendix B. However, the precise functional form of these
contributions is unknown. The leading perturbative contribu-
ﬁ(f)(r,t)— _ _(qq>j dvfs( vye Al (413 tions vanish foro>2¢.. They suggest the model shapes

wherefg(v) describes the distribution of quarks with virtu- oi(w)= —2 e v o (w)= ie“"""O, (4.18

ality v in the vacuum. Unfortunately, little is known about “o @o

the shape of this function. A simple ansatz is discussed in

Appendix B. which do indeed exhibit the correct behavior for—0 [cf.

Next we perform the Fourier transform of the correlator in EQ. (2.33]. These functions are shown in Fig. 7. The param-

Eq. (4.11) with respect ta, which leads to eterwo= 2A is fixed by Eq.(2.19. In this simple model, we
. obtain for the second moment®?) . =3(w?)_= §A2. This

(O T{0.(®),q3(1+¥)Q(—x)}| 0) corresponds taZ=\2=2A2, which does not contradict our

sum-rule estimates obtained earlier in this section.

1+9 -
=725 00 X)X (v-X 0). (4.14
V. ASYMPTOTICS OF FORM FACTORS

The leading perturbative terms in E@.12 give We shall now use the results obtained in the previous
sections to analyze, in a model-independent way, the asymp-

H(j)(r,w)= ; we @72, totic behavior at large recoil of the form factors describing
T the current matrix elements between two heavy mesons. The

contribution of the quark-antiquark wave functions to the
Isgur-Wise form factor is depicted by the diagrams in Figs.
8(a) and 8b). To deal with two heavy mesons moving at
different velocitiesy andv’, it is convenient to choose the
The contributions proportional to the gluon condensate leadreit frame, in which the two mesons move in opposite di-
to singular behavior of the fornd(w) and &' (w). These rections with rapiditiest 9/2, so that

e @2 (4.15

N
H(_l)(T,(U) = 47T2C7_2
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FIG. 7. Model wave functiong. () defined in Eq(4.18.

o= ( cosl%?,o,o,sinlag),

0 O
v”‘z(coshz—,o,o,— sinh—), (5.2

2

andv -v'=coshd. In terms of the light-cone vectorg , we
have

D
v“+v’“:coshz— (n%+n*),

&
v“—v”‘:—sinhz(n‘j_—n’i). (5.2

It follows thatv . =e*? andv_=e 72 butv’ =e?? and
v =e "2 Similarly, in the large-recoil limit >0) the
light quark in the initial meson has large, = we®? and

Ce,, 72’9J’ dodew' __

2'7Ta’SN—Cf e PYNL:

whered = 3(y_e??+ y, e~ ?). The factor 1N, arises from

U e (o) yie"+o (o) y-e "¢, (0)y-e"*+o_(w)y,e” "u(v),

(b)

SN

(d)

FIG. 8. Hard-gluon exchange contributions to heavy-meson
form factors. The external current is represented by the wave line
attached to the gray circle. The white square(di represents an
insertion of 1ing-suppressed operators from the effective Lagrang-
ian of the HQET.

small p_, whereas the light quark in the final meson has
largep’ = w’e”? and smallp’, . Thus, the roles of the plus/
minus directions for the final meson are opposite to those for
the initial meson. The virtuality of the gluon and of the
heavy quark are both largéZ=(p’—p)?~—-ww'e”’, and
v-ko=v-p’'=30'e” [Fig. 8a)] or v’ -ko=v'-p=3we’
[Fig. 8(b)], respectively.

For larged, the contribution of the diagram in Fig(a to
the matrix element in Eq1.4), which defines the Isgur-Wise
function, is

(5.3

the 7r-p form factor in QCD[29]. This infrared sensitivity

the normalization of the color wave functions of the mesonresults in an additional enhancement of the form factor, as

states, which is such that the matrix element in 8ql) is

can be seen by replaciraf by g>—A? in the gluon propa-

normalized to the decay constdntUsing the relations in Eq. gator (where A is of the order of a typical hadronic scale
(2.8 together with Eq(5.2), we find that the leading contri- which leads to the replacement:

bution contains the producty,(w')e_(w), i.e., the
subleading-twist wave function is taken on the side where
the gluon exchange occurs. Adding the contribution of the

diagram in Fig. &), we arrive at

C
&(coshy) = 167TaSN—Ff2<w72>+(w71>,e72‘9. (5.9

dowdw’ ,
m%(w)@f(w’)
192
=¢1(0)¢(0) 5 +0O().

(072 (oY)

(5.5

Unfortunately, however, the subleading terms of order

Based on our assumptions about the behavior of the waveannot be calculated without knowing details of the infrared
functions for w—0 [cf. Eq. (2.33], we expect that both cutoff.

(0™ ?), and(w~!)_ diverge logarithmically at lows. This

Consider now the form factor§ and y; defined in Egs.

divergence is cut off by the transverse momenta and virtu¢1.5—(1.9), which appear at order ihg, in the heavy-quark
alities of the light quarks in the mesons, similar to the case oéxpansion. Since their contributions to the meson form fac-
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tors are suppressed by a power/ofmg with respect to the £2 In2(v-v")

contribution of the Isgur-Wise function, they can only be- §v-v')=3mas— ——7,

come important if they have a slower falloff at large A% (v-07)

Therefore, it is sufficient to retain only those contributions

where the leading-twist wave function appears on both sides 2 1

of the diagrams. Then the light-quark helicity is conserved, §3(U'v')%277a5=2 —. (5.10
and the gluon polarization is orthogonal to the' plane. Acvv

Let us first focus on the function§. The only way to get

the leading-twist wave function on both sides of the diagranmi_et us discuss the applicability regions for these asymptotic

is to attach the gluon to the current operator, as shown by theesults. QCD sum rules suggest that there are “soft” contri-

diagram in Fig. &). Simplifying the resulting spinor product butions to the Isgur-Wise function which fall of like

using Egs(2.8) and(5.2), we obtain 1/(v-v')? [17-20. If this is correct, the asymptotic behavior

given by Egs.(5.4 and (5.5 would dominate only if

, In(v-v")>1 and agn®v-v')>1. If the “soft” contributions

e+(@)p(wf), vanish faster than I#( v')?, the second requirement is re-
(5.9 moved. The fact that Im(v’) is, in most practical applica-

tions, not a large parameter implies that the asymptotic result
which means that only the functiog receives a leading- for the Isgur-Wise function may be considered as a rough

C dodw’
47TaSN—Ffze_‘9u_(v ’)y’“u(v)f Toal
C

twist contribution. It is given by estimate only. To reach the asymptotic regime would require
c v-v'=0(100). QCD sum rules also suggest that the “soft”
— SFeo 12 -9 contributions to&; fall off like 1/(v-v')? [22—24], meaning
és(coshd) =4mas ch (o77)%e " ©.2 that the leading hard contribution given in E&.7) is en-

hanced by a power af -v’. As a consequence, our predic-
Here the integral is infrared convergent, as in the case of thgons for the functionst; and y, are much more accurate
pion from factor in QCD[25-31. Next consider the func- than for the Isgur-Wise function. The asymptotic behavior
tions y; . The conservation of the light-quark helicity implies should set in when aw-v'>1, which requires
that there must be an odd numberjofatrices in the matrix ,.,’~0(10).

element. Indeed, only the functigp in Eq. (1.9) receives a An important aspect of physics is still missing from our
leading contribution. Calculating the diagram in FigdB  discussion of the asymptotic behavior of meson form factors
we find at large recoil. Since the quarks receive a large acceleration

during the transition process, they emit gluon bremsstrah-
lung, which leads to an additional damping of the transition
8ra &fze_zﬁj dodw’ (0)@. (o) amplitudes(Sudakov form factgr Because the mesons are
SN, ww'2 PO colorless, the double logarithms of the typeJn?(v-v’)]"
cancel in the expressions for the meson form factors; how-
Xu(v')(y*kg—y"ki)u(v), (5.9  ever, single logarithms af-v' remain, which are enhanced
by logarithms of the heavy-quark mass. They arise from the
whereky=w'v’'—wv is the gluon momentum. Since, by emission of gluon bremsstrahlung with energies in the range
definition, the indicegx and v are restricted to the subspace u<E;<mg (u<mgq, see below Thus, in perturbation
orthogonal tov, only the first term inky has to be kept. theory there are large double-logarithmic contributions of the
Taking into account the definition of, in Egs.(1.8) and  type[ agn(mg/w)Iin(v-v')]" to the form factors. The situation
(1.9, we obtain is similar to the case of the contributions to the pion form
factor coming from the regiorn— 0, where almost all of the
pion momentum is carried by one qud&8].
X2(coshd) = — &5(coshy)e™ 7. (5.9 Because of the explicit dependence on the heavy-quark
mass, these large logarithms are not contained in the form
Note that in the expressions for the meson form facigris ~ factors of the HQET, which are renormalized at a scale
multiplied by cosH [9,16], so that its contributions are of ,u<mQ.8 However, they appear when we relate the form
the same order as the contributionségf factors of the HQET to physical meson form factors using a
We can compare our asymptotic results for the leadingperturbative matching procedure. In this relation, there ap-
and subleading Isgur-Wise functions in E¢s.4), (5.7) and  pear short-distance coefficient functio@(mq/u,v-v’),
(5.9 with the larged limit of the two-loop QCD sum-rule which can be calculated in renormalization-group improved
expressions for these functions, which have been obtained iperturbation theorysee[9] for a review. In the case of
[21,24). We find that the results of the sum-rule calculationstransitions between two heavy hadrons, the reparametrization
do indeed reproduce the correct asymptotic behavior; in painvariance[59] of the HQET ensures that the coefficients
ticular, the relation(5.9) betweeny, and &; is satisfied. multiplying the subleading functiong, and &5 are the same
Moreover, the sum rules allow us to determine the normal-
ization factors appearing in the expressions&an Eq. (5.4)
and for&; in Eq. (5.7). This is explained in detail in Appen-  8in practice, the scalg should be chosen such that there are no
dix C. For later convenience, we also present the expressionsrge logarithms contained in the form factors of the HQET, but yet
obtained using the model wave functio@@s18. They are large enough for perturbation theory to be valid.
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as the coefficients multiplying the leading-order Isgur-Wise
function £ [60]. Indeed, in leading logarithmic approxima-
tion (which is sufficient to control the large logarithms men-
tioned abovg all HQET form factors are multiplied by a

4 2
h+:C( &E— m—bcoszZ) =C| &+ m—bgg),

universal coefficient

as(mQ))a(U'U’)
C(mg/u,v-v')= , 5.1
( QIfLLTE ) ( as(m) (613
where @ -v’=cosh9) [15,61,63
2Ck 2Ck B
a(v-v')=——(dcothd—1)= ——[9—1+0(e” V)].
Bo Bo
(5.12
For large recoil, we find that
e |’ (9-1)
N = NI—
C (2v-v’ e , (5.13
where
2Ck  ag(p)
=——In . 51
7" By May(mo) (514

This expression sums the large Sudakov logarithms correctl
to all orders in perturbation theory. The effect of this brems
strahlung correction is an additional powerlike suppressio
of the physical meson form factors for large values of
v-v'. Usingu=~1 GeV, we find that foB-meson decays the
power 5 is given by »~0.2-0.3, i.e., the overall effect of

bremsstrahlung emission is rather small.

Using the results obtained in this section, it is straightfor-
ward to derive the asymptotic behavior of all form factors
describing current-induced transitions between any two
pseudoscalar or vector mesons containing a heavy quar

n

hV:C

1
&— o (§3+2005h9)(2)}=c§,
b

B 4 B 2
h=C §+m—bcosh?X2 =C §—m—b§3 ,
hT=C§,

=C¢, (5.1

1
b

with C given in Eqg.(5.13. The most striking feature of these
results is the fact that the form factor for two longitudinally
polarizedB* mesons, which is positive for coSkem,/A,
becomes negative for co8t-m,/A, and hence has a zero at
some intermediate value ca$hm,/A. Since for spacelike
(negative values ofg?, corresponding te-v’>1, all form
factors are real, the existence of this zero is an exact state-
ment not affected by subleading corrections. We should
stress that this observation is not specific to heavy-light me-
sons. The form factor of, say, longitudinally polarizeane-
sons also has a zero at some negative valug?dR9]. For
Y¥melike (positive) values ofg?, on the other hand, it is the

form factor of pseudoscal@® mesons which has a zero, and
this zero is situated inside the physical region of the produc-
tion of BB pairs ine*e™ collisions. Strictly speaking, be-
cause form factors at timelike valuesa#, corresponding to
v-v'<—1, are complex, this zero is not absolutely exact.
However, in our approximation the imaginary part is
negligible’®

The model-independent results obtained in this section
gan be checked in the simple model where a meson is built

The relevant formulas, which relate the meson form factorQUt of two heavy quarks with masses and w such that

to the Isgur-Wise functions, can be found, e.g.[9r16,52.

m> u>A. This is discussed in detail in Appendix D. The

Here we restrict ourselves to the results obtained for the ma@Me model has been considered by Brodsky arids]i

trix elements of the vector curre*=by*b between
B-meson states. We fifld

(B(v")[V¥[B(v))=h,(v+v")",
(B*(e’,v")|V¥B(v))=hye " *Pe *v v 4,
(B (v")|V¥B (v))=h (v+v")*,
(BT(e',v")|V¥BT(e,v))=—hre-e*(v+v'),

(B%(e’,0")|V¥|B* (v))=sinhdhye'**,  (5.19

whereL andT refer to longitudinal(i.e., in thev-v’ plane
and transversdi.e., orthogonal to that planepolarization
states. We find that, asymptotically,

who observed for the first time the zero of the pseudoscalar
form factor in the physical region of large positigé. How-
ever, their claim that the form factor of longitudinally polar-
ized vector mesons would have the same behavior is incor-
rect. Our analysis shows that this form factor has a zero in
the region of spacelike momentum transfer, i.e., for large
negativeq?.

VI. APPLICATIONS

We finally apply our results to calculate the cross section
for the reactiore”e” —B*)B™*) in the regions>4m3 . Re-
call from the introduction that the part of the electromagnetic
current that couples to light quarks does not give a leading
contribution in the asymptotic regime. Hence, it is justified to
use the relations in Ed5.16 for the relevant form factors.
As usual, we define

®To obtain the conventional relativistic normalization of meson Note also that any mechanism that leads to a common phase
states, the right-hand sides in these equations have to be multiplidelctor of the form factors, such as final-state interactions, does not
by mg). spoil the existence of the zero.
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1072y vanishes at some value,~my,/A, since é~In?/x* and
103 .~ ete > BMB® &3~ — A/X2. In our simple model, we find that
104f
_5 6m
106 R\, Xo= \ /Tb Inxg~ 25. (6.4)
~ 106
%0 . . o
10 We stress again that the accuracy of this prediction is not

high, because of our poor knowledge of the asymptotic be-

havior of the Isgur-Wise functior{In particular, if there is a

soft contribution~1/x* to & that still dominates at such large

values ofx™, then the turnover point is delayed urmzig1

~\Vmp/ A ag.) For 1<x<€X,, the ratiosR,, Rz, andR, are

all of the same magnitude and scale like®1/This situation

L had been studied previously in the context of the HQET
FIG. 9. Cross-section ratioR for BB pair production in [63,64. For x>Xo, however, another pattern sets in. Then

e*e” collisions at largex. We use the form factors in E¢.3 with  the contribution o%; to the ratiosR, andR; dominates over

10° |
1070 f
1011 E

A=550 MeV andaf?/A%=0.06. the contribution from the Isgur-Wise functiah) so thatR,
andR; scale like 1¥* and dominate oveR,. In principle, at

o(ete —=X) very largex the ratiosR, andR; should even dominate over

RX:o(e+e‘—>,u+,u‘) : (6.)  R,, which scales like Xf. However, because of the double-

logarithmic enhancement of the Isgur-Wise function this
Using crossing symmetry and the matrix elements given invould require enormous values>x;, where in our model

Eq. (5.15, we obtain forx=/s/mg>1: X1 is given by
2
Zy 6m,

RlzRBB*JrB;Bf:§x2|C|2|§|2, xlelnlew%OO. (6.5

B _Zﬁ ) 2 |? In the ultra-asymptotic regior>x,, mostly BB and B} B}
Ro= RBB_Z|C| &t m_b§3 ' pairs would be produced, witR~ 1/s*> and angular distribu-

tion sirfd.
2 These qualitative features, which are independent of the

ZZ
RaERBf BX = ZblCI2 . particular choice adopted for the meson wave functions, are
clearly exhibited in Fig. 9. Unfortunately, however, the cross
22 sections forB(*).B(*) production at largex are so small that
R,=Rgpx = E|C|2|§|2, (6.2  they will most likely be irrelevant to experiments. The situ-
ation is somewhat more favorable in the case of the pair
production of charm mesons. We can apply our results to this

case by performing obvious substitutionsmy—m,,
|Cl=(e/x*)"" with 7 given in Eq.(5.14. Herez,=—3is 7 .7 =2 etc) in the above formulas. We then find that
the electric charge of the quark. As an illustration, we g in the case of charm pair production, corresponding to

show in Fig. 9 our predictions for the vario@*)B*) pro-  moderate energies of order 15 GeV. The second turnover
duction cross-sections as a functionxobbtained using the point is, however, still too highx;~650) to be of any in-

model wave functions in Eq(4.18, for which [cf. Eq.  terest. The resulting cross sections are shown in Fig. 10.

2
§_m—b§3

where the form factors are functions ofv’=— 3x?, and

(5.10] In summary, we have applied methods developed for hard
exclusive QCD processes to calculate the asymptotic behav-
asf? Inx ior of heavy-meson form factors at large recoil. We find that
§(x)~48m A2 XA this behavior is determined by the leading- and subleading-
twist meson wave functions. For<d|v-v'|<mg/A, the
af? 1 form factors are dominated by the Isgur-Wise functign
(X))~ — 47— 5. (6.3  Which is determined by the interference between the wave
A% X functions of leading and subleading twist. At

lv-v'|>mg/A, they are dominated by the two functions
For simplicity, we have neglected bremsstrahlung effects set¢, and y, arising at order In, in the heavy-quark expan-
ting C=1 in Eq. (6.2). Because of the kinematic enhance- sjon, which are determined by the leading-twist wave func-
ment factorx®, the ratioR; generally dominates at large  tion alone. The sum of these contributions describes the form
This means that mostlBB* andBT B[ pairs are produced, factors in the whole regiof -v'|>1. Central objects of our
with R~1/s® and angular distribution tcog6¢ [63,64. study are the meson wave functioas (w), which are de-
More interesting from the point of view of the present work fined in terms of the Fourier transforms of the matrix ele-
are the three other ratios. TH&B production cross section ment of bilocal operators on the light cone. We have derived
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Q_UFO(iD)Q, where I is an arbitrary Dirac matrix, and
eter > DM DM O(iD) is a differential operator acting on the light-quark
E field, between a meson state and the vacuum. Their represen-
R tation is

(0/Q,I'O(iD)q|M(v))=THO(v)M(v)T}, (A3)

......
.....

whereO(v) is the most general matrix with the same trans-
formation propertiequnder the Lorentz group and heavy-
guark symmetryas the operatoD. In the spinor formalism

adopted in our paper, the same matrix element would read

(0]Q}O(iD)g|M(v))=0O(v)u(v) (A4)

x =s"%/mp

with the same matri¥O(v). The covariant decomposition of
this matrix determines the number of reduced matrix ele-
ments(generalized Isgur-Wise form factgrthat appear in
the heavy-quark expansion. As an example, we give the ex-

the (Brodsky-Lepagg evolution equations obeyed by these pre_ss_i_ons i_n the trace formalism which correspond to the
wave functions, and we have investigated the properties df€finitions in Eqs(1.1), (2.18, and(2.20:

the wave functiongsuch as their momentsising QCD sum e _

rules. Finally, we have discussed as an application the impli- (01Q,I'alM(v))=f Tr{M(v)T},
cations of our results for the production of heavy-meson
pairs ine" e~ collisions.

FIG. 10. Cross-section ratioR; for DD_pair production in
e*e” collisions at largex.

(0|Q,I'iD#q|M(v))= L ATH{(4v"— y*) M(v)T},
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discussions about gluon bremsstrahlung in heavy-quark tran-

Evaluating the trace for various choiceslgfwe recover the
results given in Eqs2.26—(2.3)).

The most convenient way to calculate the matrix elements The trace formalism is readily extended to more compli-
of operators between the physical pseudoscalar and vectégted cases, such as transition matrix elements between two
(qQ) meson stategrather than the spi-mesons obtained Meson states. For instance, the expressions corresponding to
when the heavy-quark spin is switched)o provided by the definitions in Eq(1.4) and(1.5) read
the covariant tensor formalism introduced [ib5]. In the = . —

HQET, the spin wave function of the ground-state mesortM(®)IQ.I'Qy/[M(v))=¢(v-v ) TH{M(v)I M(v")},
doublet is described by thexd4 Dirac matrix ) —
(M(v")|(iD*TQ,)I'Q,/[M(v))

=Tr{&*(v,0" YM(v)T M(v')}, (A7)

APPENDIX A: COVARIANT TRACE FORMALISM

144 —ivys, pseudoscalar mesdi(v),

M(U)ZT €, vector mesoM*(e,v), (A1)
where the covariant decomposition §f(v,v') is given in
Eg. (1.6). Note that as a consequence of the fact that in this
paper we work with Q) rather than Q) mesons, the
drace formalism is slightly different from the one usually
employed in the literaturf9,16,53. Crossing symmetry im-
plies that the form factors forgQ) mesons are related to
dM(v)=M(v)=—M()b. (A2) those for Qq) mesons by Hermitean conjugation followed
by the substitutions — —v andv’— —v’. We have defined
Operator matrix elements between meson states can like invariant functions in the HQET¢( &5, i, etc) in such
represented by traces over these wave functions. Considarway that the resulting expressions for the physical matrix
first the matrix elements of heavy-light operators of the typeelements look the same as in the conventional formalism.

wherev is the meson velocity, aneé is the polarization
vector of the vector mesone(v=0). The matrix M(v)
simply contains the appropriate spin-parity projections of th
spinor productug(v)vg(v) [14]. It satisfies
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APPENDIX B: NONLOCAL CONDENSATES

o 3oy
2\2e A= —N,Cro—ss 6 —Cr—5(qq) 6
The contributions of higher-order nonperturbative correc- Crapams oaleen) ~Crgn (qa)ox(ec)
tions to the sum rules foxZ and A in Eq. (4.6) can be %) m(qa)
included by introducing two functions,f*)(x?) and ¥ as( o) — — 99
£()(x?), which parametrize the following nonlocal conden- 1677 16
sates[56]: X[zf(l)(_ 7_2)_1:(2)(_ 7_2)]' (83)
w2 (A(OE(0X)0,,,G*()a(x) , , ,
o (x%) = (90,,G*q) Next we give some details of the calculation of the quark-
i condensate contributions to the QCD sum rules for the me-
Q;—Q,—2Q; x? son wave functions. The contribution with the cut light-quark
= —m2<aq> g line shown in Fig. €c) involves a trilocal object, the noncol-
0 linear quark condensaf&6]:
(@2 X6 (AOE0X),,,G*()a(x) _
X*)=—2 {90,,,G""q) (dp(Y)E(Y,00E(0X)qa(x))
2Q;—Q,—3Q;3 x? 2
=l+———= =+ B1 <QQ>
miaa) 12 By fe00y) + ZelKY1Fr(6Y)
The quantitiesQ; form a basis of dimension-seven quark- i
gluon condensates and are defined @8"= %e“”“ﬁGaﬁ) - Z[va(x,y)—yfv(y,x)] . (B4)
— apB
Q:=(qG,,G*"q),
o~ Neglecting the functiorf,(x,y), whose operator product ex-
Q2=i(qG,,G*"ysa), pansion contains even-dimensional quark condensates with
R N~y d=6 and whose contribution to heavy-meson sum rules is
Q3=i(qo,,G**G"\0), negligible[18,41-43, we obtain
=(qo,,(D*D,G"*)q). B2
Q{37 (D™D L™ B2 )=~ @ Felz, -0 Ao xtf(z, 0],
If these corrections are included, the sum ru{ds) are (BS)

modified in the following way:
) — wherez?=0, x>=(v-x)?, andz-x=v - xt.

ma(aa) (@) _ 2 The noncollinear condensate in Eg4) can be expanded
16 (=), in x at fixedy. One findg56]

e o
f2\2e A= Nchws—;-, SylecT)—

ey~ 1071+ 3

y +0(x3),

m2
fa(y?)+ —fs<y )= 15 P02

2

16 m
fr(xy)=— [ fy?) - { fayd) +2y21y?) — g 129

] +0(x?), (B6)

where the functiorf ¢(x2) parametrizes the bilocal quark condensate and is give@®p5

(a(0E©OX)a()) _  mox*  6Q;-3Q,~6Q3+2Q; x*
(qa) 16 (qq) 1152

fs(x?)= +0(x5). (B7)

A convenient representation of the bilocal quark condensate _ - mé
is [44] f drvfg(v)=1, deVfS(V):E’ (B9)

and so on. The functioﬁs(v) can be interpreted as the dis-
2y _ s x2 tribution quarks with virtualityy in the QCD vacuum. The
fs( f dvis(v)e™, (B8) local expansion in EqB7) corresponds to the expansion

2

_ mg
where fs(r)=8(v) = 158" (W) +-- - (B10)
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Because the factdg(0x) in Eqg. (B7) can be interpreted as !
the heavy-quark propagator, the asymptotic behavior of A
2 _v2;
fg(x4) at large—x© is e .
fo(x2)~e M, (B11) .
N\
This fixes the behavior ofg(v) for v—0. A simple ansatz e ™
for the distribution function, which satisfies this constraint, AN
was proposed ifi65]: N
- N\
~ A? \\ﬁ; c
fs(v)=Nexg — 2——ov|, (B12) 0 e 2ec
whereN and o are fixed by the conditionéB9). FIG. 11. Square moddbolid line) and triangle mode{dashed
line) for the continuum subtraction in QCD sum rules for three-
APPENDIX C: FORM-FACTOR ASYMPTOTICS point correlation functions.

FROM QCD SUM RULES

depend on two variables,ande’; see Fig. 11. The “square

| l(;.'s mst(rjuctl\éle tod_comlpare Wr asfympi_totlc re.f#lttrs] f?r themodel” of the continuum subtraction amounts to cutting off
eading and subleading ISgur-Wise functions wi € 1ar9€ine integrals over these variables at the threshgld This
9 limit of the two-loop (orderws) QCD sum-rule expres-

! for th functi hich h b btained . leads to an exact factorization of the integrals in Eg2).
sions for these functions, which have been obtaine IrUsing the appropriate products of the sum rules for the wave

[2dl'24]d I_:ortr\]/ery large re(|:0|l,fthetz three_—ptow;;c]correlat(l)ri COn'{unctions given in Eq(4.17), and retaining the leading per-
sidered in these sum rules factorize into the convolution of .-« e contributions only, we then obtain

the two-point correlator$4.14) with hard-scattering ampli-
tudes. In this limit, only diagrams with a gluon exchange N2

between a heavy quark and the light q_uark remain. We find 2’ (0)p_(0)= 44—]f23eAT50(%8C7) 51(38.7),
that the results of the sum-rule calculations do indeed repro- mhT
duce the correct asymptotic behavior; in particular, the rela-
tion (5.9 betweeny, and &; is satisfied. For the normaliza-
tion factors appearing in the expressions fom Eq. (5.4

and for&; in Eq. (5.7), we obtain, from21,24],

N2 —
Ko = —azae' [aGen])”.  (C3

On the other hand, it is well known that for small recoil the

2 . . .. .
square model of the continuum subtraction is inconsistent, as

’ c T
f2¢+(0)¢*(0):WeA Sa(ecT), it leads to an unphysical infinite slope of the Isgur-Wise
function atv -v’ =1 [18]. This deficiency is removed by us-
g — ing the “triangle model,” where & e +¢&’'<2¢., while the
Ao )= 7T4sz4eAT53(<°«:7')- (C1)  difference e—¢' is unconstrained[18,19. The triangle

model was adopted in the calculationd21,24). If we use it

We have retained the leading perturbative contributions onlyto evaluate Eq(C2), we indeed recover EC1). This is a
since the relevant nonlocal condensates have not yet be&fong check of both, the present approach and the two-loop
calculated to orders. Note, in particular, that the leading calculations performed if21,24. However, in this case the
quark-condensate contribution to the sum rule for the Isgurtesulting sum rule for the product of the wave functions is no
Wise function is constant and seems to dominate for largéonger exactly factorizable, meaning that the triangle model
recoil. However, once the nonlocality of the quark conden4ds not fully consistent at large recoil, and so the square model
sate is taken into account, one finds that this contributiorts preferrable. Comparing E4C1) with (C3), we observe
actua”y vanishes qu|ck|y at |a|’ge recéﬂ7’1a_ that both results agree in the I|rm§—>°°, when the choice of

It is straightforward to reproduce the expressions in Eqthe continuum model becomes irrelevagh{1).
(C1) starting from the sum-rule results for the wave func- The sum rule for the Isgur-Wise functiofil8] has a
tions ¢ (w) obtained in Sec. IV. The sum rule for the prod- built-in model of the infrared cutoff, and therefore it allows

uct ¢, (w)e.(w') at equal Borel parameters has the form Us to estimate the subleadi@(d) term to the Isgur-Wise
function in Eq.(5.5). The result is

f4¢+(w)¢:(w')efmzfd8d8'P+(w-8)P¢(w',8') &(coshy) ~e 2292+ [4L(e,7)—5]9+ -}, (Cd)
X e—(£+s')7'/2, (CZ) where

wherep.(w,e) are the spectral densities of the correlators Xe 7X

(4.14), and the integral is taken over the complement of the jo dxx’e*In2x

continuum region. The precise form of the result will depend L(X)=——— (CH
on the particular way in which the continuum subtraction is f “dxx2e

performed. The spectral densities for three-point correlators 0
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In the relevant region of values af.7=2.5, we find that

289

structures arising for pseudoscalar mesons. The heavy-quark

(4L—5)~—0.7, meaning that the subleading term is negafropagators in Figs.(8) and 8b) are given by

tive and has a coefficient of order unity.

APPENDIX D: STATIC QUARK MODEL
Our model-independent results in E@S.4), (5.7), (5.9,

and(5.15 can be checked in the simple model where a me

son is composed of two heavy quarks with masseand
m, such that m>u>A [47]. In this case,
o (w)=¢_(0)=8(w—pu), and{w").=u". Note that for-

mulas(2.19 and(2.24 for the lowest moments are based on
the equation of motion for a massless quark, and are thus

longer applicable.
Let us consider the pseudoscalar form fadtar in Eq.

(5.195. It is convenient to calculate it from the relation

(cosh¥+1)h, =(B(v')jv,V¥|B(v)). A simple evaluation of
the diagrams in Figs.(8) and &b) gives

Cp f2 — —
h, =2mSN—C ;ze—ZﬂTr[ 7, Dy SH D' + D34S y,®' y*],
(D1)

where &= vy5(1—4) and (I7=—(1—n/1’)y5 are the spin

m(1—d)+ud’
g MA=d)+pd’

“mpe? (D2)

and S'=S(v<—v'). If we retain the leading term propor-
tional to m in the numerator of Eq(D2), then the gluon is
longitudinally polarized; the two diagrams contribute
equally, and we recover the contribution of the functipim

g. (5.4) to the form factoh, in Eq. (5.16). If, on the other

and, we retain the term with’, we lose a factop/m but
gain a factore” from the trace. Then only the first diagram
contributes; the gluon is transversely polarized, and we re-
cover the contribution of the functio&; in Eq. (5.7) to the
form factorh, . In this model, the form factor of pseudo-
scalar mesons has a zerogdt= 2m°®/ . The calculation can
be repeated for vector mesons using the spin structures
d=¢(1-9¢) andd’'=(1—¢")é’. In particular, we find that
the form factor of longitudinally polarized vector mesons has
a zero ag?= — 2m?®/ u. Other form factors can be calculated
in a similar way; our results agree wif#7].
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