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We present a nonperturbative QCD calculation of diffractive vector meson production in virtual photon
nucleon scattering at high energy. We use the nonperturbative model of the stochastic QCD vacuum which
yields linear confinement and makes specific predictions for the dependence of high-energy scattering cross
sections on the hadron size. Using light cone wave functions of the photon and vector mesons, we calculate
electroproduction cross sections forr, v, f, andJ/c. We emphasize the behavior of specific observables such
as the ratio of longitudinal to transverse production cross section and thet dependence of the differential cross
section.@S0556-2821~97!05405-2#

PACS number~s!: 12.38.Lg, 13.60.Le

I. INTRODUCTION

Exclusive vector meson production by real and virtual
photons is a good probe to investigate the physics of diffrac-
tive scattering. Whenever the coherence length of the photon
is larger than the proton radius, it is preferable to study the
process in the proton rest frame or in the center-of-mass
frame where the virtual photon can be considered as a had-
ronic system composed of partons. In this case the photon-
hadron interaction is then in many respects similar to a
hadron-hadron collision. In addition, it offers the possibility
to vary the polarization and virtuality of the photon and
thereby manipulate the light cone wave function of the in-
coming state. The experimentalist can make hadrons of arbi-
trary sizes.

In our approach, we attack the problem as a genuine non-
pertubative one. We use the model of the stochastic vacuum
@1# which has been adapted to high-energy hadron-hadron
scattering in Ref.@2#, applying the general scheme developed
by Nachtmann@3# for the separation of the large energy scale
from the small scale of momentum transfer. The model of
the stochastic vacuum gives satisfactory results in both low-
and high-energy physics. It yields a rather simple geometri-
cal picture for a single gluonic flux tube@4#. The same
mechanism of nonperturbative gluon fluctuations which
leads to confinement also generates an interaction of the
strings in colliding hadrons. In this picture hadron-hadron
scattering cannot be constructed from quark-quark scattering
since the string-string interaction plays an important role. It
leads to cross sections which are determined by the trans-
verse extensions of the interacting hadrons. In addition to the
forward scattering amplitudes, the model provides thet de-
pendence of the cross section explaining the phenomenologi-
cally observed@5# correlation between elastic slopes and to-
tal cross sections.

Soft electroproduction on the nucleon can be calculated
along the same lines as hadron-nucleon scattering using a
model wave function for the photon. At smallQ2, the photon
is of hadronic size and large-distance physics as in hadron-
hadron scattering should apply. In another paper@6#, we con-
struct the wave function of the photon as a superposition of
vector meson states and calculate the production cross sec-
tion of r, r8, andr9. This approach is limited to virtualities

Q2&2 GeV2 and the unknown couplings of the electromag-
netic current to ther8 andr9 introduce new parameters. In
this paper, we explore the possibility to represent the incom-
ing photon as aqq̄ state. With increasingQ2, the transverse
extension of theqq̄ dipole diminishes in a way that depends
on the polarization of the virtual photon. We shall demon-
strate how this mechanism shows up phenomenologically.
This allows us to study the transition from large- to short-
distance-dominated processes. The cross section for trans-
versely polarized photons has a large nonperturbative part,
because end points at momentum fractionsz50 andz51 in
the photon wave function do not select aqq̄ system of small
transverse separation. Therefore our large-distance mecha-
nism is important here, too.

In our model the length of the string connecting the va-
lence quarks in the hadron turns out to be very important.
This length depends on the light cone wave function of the
hadron. There is as yet little knowledge about the physics
determining the light cone Hamiltonian in nonperturbative
QCD. So at the moment these wave functions and their in-
tegrated distribution amplitudes satisfy mainly a phenomeno-
logical task to parametrize the valence quark content of the
hadron. Although the exact value of cross section depends in
our model on the detailed form of the wave function, the
Q2 behavior of specific observables, such as ratios of longi-
tudinal to transverse vector meson production or elastic
slopes, is likely to provide a good test for the string picture
inherent in our model.

Electroproduction of vector mesons has also been dis-
cussed within a soft Pomeron framework in Refs.@7,8#. In
this model, transverse sizes of hadrons only play a marginal
role because, on the one hand, hadron scattering can system-
atically be reduced to quark scattering through the property
of quark additivity of the model and, on the other hand, the
vector meson wave functions are assumed to be wider than
the distance of the quarks in the virtual photon and are thus
replaced by their value at the origin. These assumptions are
phenomenologically tenable if one further assumes that the
quark-Pomeron coupling is flavor dependent. At intermediate
Q251210 GeV2 @7#, a Pomeron form factor is used for
far-off-shell quark legs. At larger values ofQ2 @8#, nonper-
turbative two-gluon exchange is applied which leads to
color-singlet cancellation at smallqq̄-dipole size.
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In a series of papers@9#, a perturbative two-gluon ex-
change model extended to include nonperturbative effects
via the gluon distribution in the proton has been developed to
evaluate vector meson production. This approach has been
further refined to incorporate a Balitskii-Fadin-Kuraev-
Lipatov- ~BFKL-!like evolution to accommodate both en-
ergy andQ2 dependence. Dipole scattering is the basis of
this framework. In the following paper we are treating the
photon and vector meson in a similar way. The main differ-
ence between our approaches lies in the reaction mechanism
for soft diffraction.

The importance of the gluon distribution as a necessary
part of hard diffraction has been advocated in Refs.@10,11#.
These authors have limited the range of applicability of their
perturbative calculations to reactions where a large trans-
verse momentum scale rules the exchanges, i.e., to heavy
quark production such asJ/c production @10# or at large
Q2 (Q2>10 GeV2 @11#!.

The DESYep collider HERA has opened up new possi-
bilities to enlarge the energy andQ2 range. Recent ZEUS
and H1 data indicate that at largeQ2 the cross section may
rise more steeply than expected from soft Pomeron ex-
change. A possible explanation in the language used above
@12# is that the evolution of the wave function at higher
energy andQ2 gives rise to more and more dipoles inside the
hadron. This evolution would then be a prerequisite to dis-
cuss the energy dependence of the virtual photon cross sec-
tion with increasing resolution. This phenomenon of ‘‘hard’’
Pomeron exchange will not be addressed in the following
study which deals with soft Pomeron physics at a fixed en-
ergy.

The kinematics is defined in Fig. 1. We denote the initial
photon four-momentum withq, the initial nucleon momen-
tum with p, and the equivalent final states withq8 and p8.
D5q82q is the momentum transfer and the independent
Lorentz invariants are

s5~p1q!2,

t5D25~q82q!2,

Q252q2.

We are interested in soft reactions, i.e.,utu,1 GeV2, at high
energy,s@Q2 ands@Mp

2 ~e.g.,s.100 GeV2). In this do-
main,xB5Q2/2p•q is small, e.g.,xB,0.1.

To be specific, we use the center-of-mass frame where the
photon momentum points along thez axis. Then the absolute
sizes of the three-momenta are given as

upu5uqu5
As
2

1
Q22Mp

2

2As
1O~s23/2!,

up8u5uq8u5
As
2

2
MV

21Mp
2

2As
1O~s23/2!.

In this frame the vector meson emerges with a small trans-
verse momentumuq'8 u5D''uAs/2,1 GeV. Unlike in the
elastic scattering case, the center-of-mass momentum varies
in this reaction:

d5upu2up8u'
Q21MV

2

2As
.

This implies that the momentum transferD has a time com-
ponent D0'd, besides the space components
Dz'2d2Asu2/4 andD''Asu/2. Let us notice for com-
pletness that the square ofD is t5D2'2D'

21t0 with
t052Mp

2(Q21MV
2)2/s2. In the high-energy limit

s@Q21MV
2 the space components dominate. When we de-

mand in addition a finite transfer, i.e., a small scattering
angleu/25O(1/As), the transverse component is the leading
component ofD. In the following we shall therefore neglect
all components besidesD' .

The outline of the paper is as follows. Section II gives a
very short and nontechnical description of the model of the
stochastic vacuum and describes its application to high-
energy scattering. Section III deals with the specific features
of electroproduction, i.e., the photon and vector meson wave
functions, which are used in the evaluation of the longitudi-
nal and transverse cross sections. Section IV contains the
numerical results forr-, f-, andJ/c-integrated and differ-
ential cross sections as functions ofQ2. As far as possible
these results are compared to experiment. Section V con-
cludes with a discussion of the results.

II. HIGH-ENERGY ELASTIC SCATTERING
IN THE STOCHASTIC VACUUM

A. Model of the stochastic vacuum

The model of the stochastic vacuum is based on the
asumption that the contributions of the slowly varying gluon
fields in an infrared regular QCD can be approximated by a
simple stochastic process~for a review see Ref.@13#!. Al-
ready the assumption that this process has a converging clus-
ter expansion leads to linear confinement in a non-Abelian
gauge theory. As usual, approximations to a quantum field
theory in the functional approach are more safely made in an
Euclidean rather than Minkowskian field theory. It turns out,
however, that in high-energy scattering there is no feasible
way to continue Green’s functions from the Euclidean to the
Minkowskian world and we therefore have to formulate the
model in the Minkowski continuum. This seems at first sight
more dramatic than it turns out to be finally, since at the end
we have to evaluate the relevant quantities only at spacelike
Euclidean distances; i.e., we can take these quantities from
an Euclidean field theory.

In order to define gauge-invariant correlators we intro-
duce the modified gluon field strengthFmn(x,v) which is

FIG. 1. Kinematics of the reactiong*1p→V1p.
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obtained from the field strength at pointx by parallel trans-
porting the color content to the pointv:

Fmn~x,v!5F21~x,v!Fmn~x!F~x,v!,

with F(x,v)5Pexp@2ig*v
xAdz#.

Assuming that the main features of the correlator
^Fmn(x,v)Frs(y,v)& do not depend crucially on the choice
of the reference pointv we obtain for the dependence on
z5x2y the most general form

^g2Fmn
c ~x,v!Frs

d ~y,v!&A

5
dcd

Nc
221

1

12
^g2FF&$k~hmrhns2hmshnr!D~z2/a2!

1~12k! 12 @]m~zrhns2zshnr!

1]n~zshmr2zrhms!#D1~z
2/a2!%. ~2.1!

The correlatorD is typical for a non-Abelian gauge theory
~or an Abelian theory with monopoles! since the homoge-
neous Maxwell equations

emnrs]nFrs50

allow only the tensor structure proportinal toD1; hence,
k50 in an Abelian theory without monopoles.

In a Gaussian model, where all higher cumulants in the
linked cluster expansion@14# are neglected, we obtain a re-
lation between the slope of the static quark-antiquark poten-
tial and the typically non-Abelian correlatorD:

s5k
p

144
^g2FF&a2E

0

1`

duD~2u!.

The choice of phenomenological parameters will be given
in Sec. IIC.

B. Scattering of two color-singlet dipoles

The high-energy scattering of two color-singlet dipoles
q1q̄1 andq2q̄2 can be treated analogously to the situation of
heavy quarks encountered in the Wilson area law. The rela-
tivistic quarks and antiquarks move along two opposite
straight line trajectories on the light cone. In order to apply
the model of the stochastic vacuum to high-energy hadron
hadron scattering we adopt the method of Ref.@3#. In this
approach the problem is first considered as the scattering of
quarks in an external color field which is solved for fast-
moving quarks by the leading term of an eikonal expansion;
i.e., the quark picks up the eikonal phase

V5expF2 igE
G
AdzG ,

whereG is the classical path of the quark.
This phase is manifestly gauge dependent, but if we con-

sider a fast-moving dipole, i.e., a quark and an antiquark
moving on parallel lightlike trajectories connected by a
Schwinger string, then we have to evaluate a Wilson loop

W5expF2 igE
]S
AdzG ,

rather than the path integral above. The open ends of theq
and q̄ trajectories in dipole 1 and dipole 2 are closed by
small transverse lines, yielding two loops]S1 and ]S2,
which have transverse extensions according to the lengths of
the dipolesr 1 and r 2. The dipoles are positioned relative to
each other with a given impact parameterb. The loop-loop
interaction amplitude for this system of dipoles is calculated
in Ref. @2#:

J~x1 ,x1̄ ,x2 ,x2̄ !5 K 1

NC
tr@W1~x1 ,x1̄ !21#

3
1

NC
tr@W2~x2 ,x2̄ !21#L

A

,

where the boldface vectorsxi5(xi
1 ,xi

2) denote the two-
dimensional positions of quarksi51,2 in the transverse
plane (ı̄ refers to the corresponding antiquarks!. The geom-
etry of the loops is shown in Fig. 2.

The various steps and approximations necessary to derive
a tractable expression ofJ have been developped in Ref.@2#,
to which we direct the interested reader. Here we only sum-
marize these steps. First one transforms the line integrals
appearing in the non-Abelian phasesW1 andW2 into surface
integrals. The manipulation of gauge-invariant quantities
leads to the introduction of a reference pointv in between
the two surfaces. The surfaces to be considered are two pyra-
midsS1 andS2, with v as apex and]S1, ]S2 as respective
basis. This is shown in Fig. 3. The surfaces are the world
sheets of infinitely many gluons in the two-hadron state
which interact via the correlator Eq.~2.1!. In order to make
the calculation practical, these interactions are truncated to
fourth order in the field strengths. The effects of higher or-
ders have been estimated in Ref.@15# to be of 10%–20%.
Because of the Gaussian process, the terms factorize into
products of integrals over the correlators linking the surfaces
generated byW1 andW2. One gets

FIG. 2. Configuration of the two interacting loops in the trans-
verse plane. With our choice of frame, loops 1 and 2 lie, in the
(x0,x3) plane, on the linesx05x3 andx052x3, respectively.
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J'
1

8NC
2 ~NC

221!S ES1dSmn~x!E
S2

dSrs~y!

3^g2Fmn
c ~x,v!Frs

c ~y,v!&AD 2.
Symbolically, this expression can be rearranged into a sum
of four interaction termsx,

J5
1

8NC
2 ~NC

221!
S ^g2FF&

12 D 2
3$x~q1q2!1x~ q̄1q̄2!2x~q1q̄2!2x~ q̄1q2!%

2.

~2.2!

To be precise each termx( i j ) corresponds to the correlator
integrated over two surfaces~cf. Fig. 3! which are two sides
of the pyramids, namely, the two triangles with apexv and
basis i and j trajectories. They are four possible combina-
tions, hence four terms inJ. Each termx has confining and
nonconfining parts from the basic gluon-gluon correlator in
the vacuum,x( i j )5kxc( i j )1(12k)xnc( i j ), which we now
specify.

The correlation functionsD(z) andD1(z) are normalized
to 1 at z50 and fall off with a characteristic correlation
lengtha, defined through

E
0

`

dzD~1!~2z2/a2!5a.

In Ref. @15#, a family of functions of the form

Dn~z
2/a2!5 iBnE d4k

~2p!4
k2

~k21ln
2!n

e2 ik•z/a

have been investigated. They can be easily continued from
the Euclidean to Minkowski metric. Different values ofn
from n54 to n→` lead to changes in the parameters of the
model of about 30%. In the present paper, we make the spe-
cific choicen54 for bothD andD1 which leads to a perfect
agreement with the lattice calculations of Ref.@16# ~see Ref.
@2#, Fig. 10!. We remark that in the final results only the
correlators in the Euclidean region enter.

For the nonconfining part the two surface integrals can be
performed and result in quark-quark interaction terms such
as

xnc~q1q2!5
8

3 S ux12x2u
a D 3K3S 3p

8

ux12x2u
a D .

Since nonperturbative gluon correlations are of sizea, two
color charges can only interact if their trajectories enter in a
common domain of sizea. A constituent quark picture arises
where the elementary color charges are surrounded with
gluon clouds. This can be seen in Fig. 4~a! where the inter-
action amplitudeJ for k50 between a dipole target of size
r 2512a oriented along a givenx axis and a dipole probe of
sizer 15a is plotted as a function of the impact position. For
simplicity we sum over the orientation of the probe. It turns
out that with a physical correlation length around 0.3 fm a
physical target has a size of 4a–5a so that constituents in
the target are not as well separated as in Fig. 4.

For the confining part, on the contrary, the integrals have
a path dependence which is linked to the non-Abelian nature
of the confining term. Physically this means that the color
dipoles connected by their strings interact as whole objects
rather than as isolated end points. In space-time the integra-
tion over the surfaces is done with the reference pointv
chosen in the most symmetrical way as shown in Fig. 3. The
result depends only very weakly on the choice of the refer-
ence point and has the form

xc~q1q2!5
p

2
cosc12H ux12xvu

a

3E
0

1

daU x12xv2a~x22xv!

a U2

3K2S 3p

8aUx12xv2a~x22xv!U D 1~1↔2!J .
~2.3!

The angle c12 denotes the angle between the vectors
x12xv andx22xv . The amplitude in the string-string inter-

FIG. 3. Space-time representation of the pyramids and their
transverse projection. The sliding sides of the pyramids give the
domainsS1 andS2 of the surface integrations. Note that the two
Wilson loops are not parallel in the transverse plane.

55 2605VECTOR MESON LEPTOPRODUCTION AND . . .



action picture, i.e.,k51, is shown in Fig. 4~b! with the same
choice for the target and probe sizes as in the nonconfining
case. The interaction is nonzero whenever the probe is close
to the line connecting the target quark and antiquark. We
note that the string and constituent picture both differ from
the optical droplet picture where the charge distribution form
factor is responsible for the differential cross section. Via the
wave functions of the valence quarks, the geometrical sizes
of the hadrons enter in the cross sections.

C. From dipole-dipole to hadron-hadron cross section

A valence quark picture can be constructed from the non-
perturbative scattering amplitude of color dipoles with fixed
lengths r 1 and r 2 by distributing the positions of the end
points of the strings according to a quantum-mechanical
wave function. Since for high-energy scattering the incoming
particles propagate along the light cone, it is natural to
choose light cone wave functions. The amplitude of the pro-
cess can be written as@17#

M52isE d2be2 iD'•bE dz1d
2r1

4p
cV
†cg~z1 ,r1!

3E dz2d
2r2

4p
ucp~z2 ,r2!u2J~$xi%!, ~2.4!

where the index ‘‘1’’ refers to the photon or vector meson
side whereas the index ‘‘2’’ is attached to the nucleon coor-
dinates.~Conventions are fixed in Appendix A.! For simplic-
ity, the nucleon is considered in a quark-diquark configura-
tion. It has been shown in Ref.@2# that quark-diquark and
three-quark pictures lead to similar predictions for diffractive
scattering once the model parameters are adjusted to fit the
proton-proton cross section. In the following, we also fix the
parameters to fit the proton-proton cross section and there-
fore we do not expect any significative dependence on the
model of the proton. ForC5P521 exchange, the quark-
diquark configuration is favored since it suppresses the odd-
eron contribution@18#.

Thec ’s are the valence light cone wave functions of the
corresponding hadrons. They are usually defined in momen-
tum space where they describe the probability amplitudes to
find in a hadron with momentum1 $P1,P% and well-defined
angular momentum and flavor content a quark and an anti-
quark with momenta$zP1,k1zP% and $(12z)P1,2k
1(12z)P%. One crucial property of light cone wave func-
tions is their dependence onz and k alone @19,20#. This
implies that upon Fourier transformation in the transverse
plane, the relative coordinate of theqq̄ pair, r5xq2xq̄ , is
easily separated from the position of the hadron ‘‘center,’’
X5zxq1(12z)x q̄ . In a similar way to nonrelativistic phys-
ics, the nontrivial degree of freedom of the wave function
can be isolated, and the resulting transition matrix element is

^z,xq ,xq̄uP1,P&5c~z,r !eiP•X.

In the amplitude given in Eq.~2.4! the impact parameter
b denotes the transverse separation between hadron centers,
b5X12X2. The transverse positions of quarks are then
given by

x15x01b/21~12z1!r1 ,

x25x02b/21~12z2!r2 ,

x05~X11X2!/2;

i.e.,x0 is in the center ofX1 andX2. Antiquark positions are
related to quark positions asxı̄5xi2r i . We notice that the
reference pointv chosen in Sec. II B ‘‘moves’’ with respect
to x0, xv5x021/2@(z121/2)r12(z221/2)r2#. We have,
however, checked that choosingx0 rather thanv as the ref-
erence point for the computation of the loop-loop amplitude
has negligible numerical effects.

In the present study, we are interested in electroproduc-
tion of different vector mesons under various kinematical
conditions on a fixed proton target. It is therefore instructive

1Light cone coordinates areP65(P06P3)/A2, P5P'

5(P1,P2). A particle momentum is fully specified by the set
$P1,P% @P25(P21M2)/2P1 with M the particle mass#.

FIG. 4. ~a! Color interaction amplitude, Eq.~2.2!, for the non-
confining casek50 as a function of the impact position between
the two dipoles. Dipole 1 has a transverse sizer 15a and we sum
over its orientation. Dipole 2 has a transverse sizer 2512a and lies
along thex axis. ~Notice that the tops of the two peaks are cutoff
because when the middle of the dipole probe is sitting right on top
of a color charge the interactions of the dipole components with this
charge cancel out.! ~b! Color interaction amplitude for the confining
casek51.
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to isolate the variable part of the amplitude associated with
the photon and vector meson coordinatesz1 ,r1 by integrat-
ing out the nucleon coordinatesz2 ,r2. To this end we define

Jp~z1 ,r1 ,D'!52E
0

1`

bdb2pJ0~D'b!

3E dz2d
2r2

4p
ucp~z2 ,r2!u2J~b,z1 ,r1 ,z2 ,r2!,

~2.5!

so that the amplitude, Eq.~2.4!, is now written as

M5 isE dz1d
2r1

4p
cV
†cg~z1 ,r1!Jp~z1 ,r1 ,D'!. ~2.6!

The determination of parameters of the model of the sto-
chastic vacuum can be made in different ways. We follow
the method given in Ref.@2#. We use as input parameters the
total proton-proton cross section atAs520 GeV, namely,
spp535 mb, and the slopeBpp511.5 GeV22 of the p-p
elastic cross section. From lattice simulations@16#, we take
the mixing coefficientk50.74 and the curve relating the
gluon condensate and correlation length. The square of the
proton quark-diquark wave function is taken in the simple
form

uc~z,r !u254v2d~z21/2!e2v2r2.

As ouput we obtain the gluon condensate^g2FF&52.49
GeV4, the correlation lengtha50.346 fm, and the proton
transverse radiusR'p51.51a50.52 fm. The parameters are
different from those of Ref.@2# where the influence of the
nonconfining termD1 in the correlator Eq.~2.1! was ne-
glected; i.e.,D1 was set to 0. The proton size is smaller than
the transverse rms charge radius,R'

em50.68 fm. Sea-quark
contributions may enter into the form factor, increasing the
charge radius compared to the radius of the valence quarks.
The same sea quarks or extra color dipoles may also enter in
the cross section at higher energies where it is increasing
with energy. New lattice simulations@21# try to isolate the
perturbative contributions from the nonperturbative gluon
fluctuations in a more precise way and may be incorporated
together with a better treatment of the perturbative two-gluon
exchange.

In Fig. 5, we show the behavior of the function

Jp
~0!~z,r ,D'50!5E

0

2p du

2p
Jp~z,r ,u,D'50!.

It represents the total cross section of aqq̄ dipole of fixed
sizer averaged over its orientation. For varying dipole sizes
the total cross section on the proton increases quadratically
for small dipoles until a size ofr5(1–2)a, and then the
increase continues but with a decreasing power. This feature
is distinct to the model of perturbative gluon exchange in
Ref. @22# where this total cross section saturates at about
twice the proton radius.

It is also instructive to consider how the hadron radii and
the correlation lengtha affect theD' falloff of the transition
amplitude. In Ref.@2#, the logarithmic slopeB of elastic
cross sections has been numerically parametrized as

B'1.56a210.36~R'1
2 1R'2

2 !.

The large first term which is independent of the radii is spe-
cific for the model.

III. ELECTROPRODUCTION OF VECTOR MESONS

In this section, we describe theqq̄ wave functions of the
photon and vector meson which enter into the expression of
the production amplitude, Eq.~2.6!. Even at the qualitative
level there are still large uncertainties about the correct dy-
namical description of hadrons. Indeed, one of the most in-
teresting issues of current and future experiments is to shed
light on the long-distance properties of QCD. This evidently
includes the unraveling of basic facts about hadronic wave
functions. We shall show that the electroproduction of vector
mesons is quite sensitive to their wave function.

For the time being, one has to make assumptions which
influence the result as strongly as the dynamical features of
the transition operator for diffraction given by the model of
the stochastic vacuum. In the analysis of hadron-hadron scat-
tering@2#, a simple transverse wave function for thep meson
has been chosen:

c~r !52ve2v2r2/2. ~3.1!

Note that in this reference the dependence of the geometry of
the loop-loop interaction on the respective light cone frac-
tions of the quarks and antiquarks was not yet considered.
Including this dependence and wave functionsc(z,r ) with a
reasonable behavior on the light cone momentum fraction
z, we found similar results to those given in Ref.@2#. The
transverse size of the studied hadrons still determines the
size of hadron-hadron cross sections. We shall see in the
following how this feature is modified when one is consid-
ering photon-induced reactions.

A. Photon wave function

The qq̄ wave function of the photon carries as labels the
virtuality Q2 and the polarization statel of the photon. It
describes the probability amplitude to find a quark-antiquark
pair inside the photon with light cone fractions (z,12z) and

FIG. 5. Dipole-proton total cross section as a function of the
dipole size forz50 and z50.5. The dependence inz is rather
marginal as it becomes noticeable only for very large separation of
the qq̄ pair. The cross section behaves assq q̄}r

n with n52 for
small extension and slowly decreasing at larger distances.
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transverse separationr5(rcosu,rsinu). The qq̄ state is in a
configuration with given flavor (f , f̄ ) and helicities (h,h̄).
The color part of the wave function is treated separately and
considered together with the Wilson loop in the way de-
scribed in Sec. II B and we are only left here with an overall
factorANc. The photon couples to the electric charge of the
quarks withefd f f̄ whereef52/3e or 21/3e, respectively.
The helicity and spatial configuration part of the wave func-
tion looks different for various photon polarizations. It can
be computed in light cone perturbation theory and one has, to
lowest order~see Appendix A!,

cg~Q2,l!5ANcefd f f̄ c̃g~Q2,l! , ~3.2!

with

c̃g~Q2,0!52dh,2 h̄ 2z~12z!Q
K0~«r !

2p
,

c̃g~Q2,1!5A2S ieiu«@zdh1d h̄22~12z!dh2d h̄1#
K1~«r !

2p

1mfdh1d h̄1

K0~«r !

2p D ,
c̃g~Q2,21!5A2S ie2 iu«@~12z!dh1d h̄22zdh2d h̄1#

K1~«r !

2p

1mfdh2d h̄2

K0~«r !

2p D ,
where «5Az(12z)Q21mf

2 and mf the current quark
masses given in Table I, below, for the different flavors.
K0, K1 are modified Bessel functions.

The longitudinal photon wave function is peaked around
z51/2, so that the longitudinal photon interacts like a small
dipole, r;1/Q, at largeQ2. On the contrary, the transverse
photon is almost flat inz so that, at largeQ2, it interacts
partly like a small object for intermediatez and partly like a
large one forz;mf /Q when light quarks are involved. For
heavy quarksc andb, the inverse of the quark mass limits
the photon extension. In electroproduction of vector mesons
the effective dipole size is fixed by the overlap of wave func-
tions of the photon with the vector meson. Because of the
shape of the latter, the small-z region is somewhat sup-
pressed and the transverse region explored forQ above 1–
2 GeV is below or around 1 fm. Lacking better knowledge in
the region of large transverse size, we use the above wave

function. This may be tested by forthcoming experiments on
the ratio of longitudinal to transverse cross sections.

B. Vector meson wave function

For the hadron wave function, we use the same notation
as described above for the photon. We have already taken
care of color in the construction of the Wilson loops; cf. Sec.
II B. For the flavor content we consider that ther0(770),
v(782), f(1020), andJ/c mesons are, respectively, pure
isospin 1, isospin 0,ss̄, andcc̄ vector mesons. This flavor
part together with the configuration partc̃ forms the wave
functioncV needed in Eq.~2.6!.

Some information has been obtained on the spatial depen-
dence of hadron wave functions. The first piece of informa-
tion comes from long-distance physics which various quark
models describe successfully. These models tell us that a
hadron at rest can be modeled with Gaussian wave functions
as a sytem of constituent quarks moving in a harmonic os-
cillator potential. To boost nonrelativistic wave functions to
a fast-moving system is not a trivial step. Technically the
interplay between the transverse and longitudinal dynamics
in light cone physics as well as the treatment of spin degrees
of freedom remains to be understood. Within the model of
the stochastic vacuum a nice quantitative description of
hadron-hadron soft collisions has been obtained by disre-
garding spin and light cone fraction dependences. Therefore
we assume that for soft collisions between large objects, a
simpleminded description of hadrons Eq.~3.1! suffices. A
smoothz dependence on the light cone momentum fraction
will not change this picture.

The second piece of information comes from short-
distance physics and perturbative QCD supplemented by
sum rules, where some properties of the valence wave func-
tion at 0 transverse separation are known~in particular the
end pointz→0,1 behavior can be analyzed!. When wave
functions at short distances are involved, e.g., in hard exclu-
sive scatterings@23#, the value of the meson wave function at
the origin determines the value of cross sections. The wave
function at the origin is related to the leptonic decay width of
the meson.

The above observations allow us to make an ansatz for
vector meson wave functions:

c̃V~0!5z~12z!
dh,2 h̄

A2
A2p f V

ANcêV
f ~z!e2v2r2/2,

c̃V~1!5H iv2reiu

MV
@zdh1d h̄22~12z!dh2d h̄1#

1
mf

MV
dh1d h̄1JA2p f V

ANcêV
f ~z!e2v2r2/2, ~3.3!

c̃V~21!5H iv2re2 iu

MV
@~12z!dh1d h̄22zdh2d h̄1#

1
mf

MV
dh2d h̄2JA2p f V

ANcêV
f ~z!e2v2r2/2.

This ansatz has the following properties. The main trans-

TABLE I. Vector meson characteristics. The quark masses con-
sidered aremu5md50,ms50.15 GeV, andmc51.3 GeV.

V(MV) G f V vL
21 R'L vT

21 R'T

~GeV! êV ~keV! ~MeV! ~fm! ~fm! ~fm! ~fm!

r(770) 1/A2 6.7~7! 153. 0.60 0.30 0.90 0.64
v(782) 1/3A2 0.60 45.8 0.66 0.33 0.93 0.66
f(1019) 1/3 1.37 79.1 0.54 0.27 0.73 0.47
J/c(3097) 2/3 5.2~6! 270. 0.29 0.14 0.34 0.18
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verse dependence exp(2w2r2/2) and the functionf (z) are
modeled in the way proposed by Wirbel, Stech, and Bauer
@24#:

f ~z!5NAz~12z!e2MV
2

~z21/2!2/2v2
. ~3.4!

We use the same functional form for all vector mesons. The
transverse size parameterv is related to the vector meson
transverse radius. This quantity is presumably not very dif-
ferent from the electromagnetic transverse radius which un-
fortunatly is unknown for vector mesons. The way out in the
quark model is to fixv andN by the normalization and the
e1e2 decay width~see Appendix B!. We draw attention to
the fact that applying this procedure to the above parametri-
zation of the wave function leads to different sets of param-
eters$v,N% for longitudinal and transversal mesons. We find
radii in this way which are reasonable in the whole family of
vector mesons. This is a welcome property because, as we
shall see in Sec. IV, the vector meson transverse size is one
of the important ingredients determining the cross sections in
the intermediateQ2 range. The above form is written to have
explicitly the correct value of the wave function at the origin;
i.e., theqq̄ state fulfills the equation

^0uJm~0!uV~q,l!&5e fVMV«m~q,l!,

with f V the meson decay constant. In Eq.~3.3!, êV is the
mean quark charge in the meson state in units of the proton
charge~see Table I!. The helicity dependence of the wave
functions is modeled after the perturbativeg→qq̄ transition.

C. Cross sections

Let us collect the formula necessary to compute cross
sections. It is convenient to expand the quantityJp in Eq.
~2.5! in terms ofLz eigenfunctions:

Jp~z1 ,r 1 ,u1 ,D'!5(
m

eimu1Jp
~m!~z1 ,r 1 ,D'!,

where thanks to the periodicity ofJp only evenm are
present. It follows that in the reaction studied, only trans-
verse to transverse and longitudinal to longitudinal transi-
tions are expected. From the explicit form of the wave func-
tion, Eqs. ~3.2! and ~3.3!, there is a possibility of helicity
change by two units in the process. We have, however, ob-
served that the corresponding contribution to the cross sec-
tion is smaller than 2% in the wholeQ2 range. We disregard
this contribution.

In the following, we distinguish transverse and longitudi-
nal cross sections which, in the present conventions, are

dsL

dt
5

1

16p U E dz1r 1dr1
2

cV~0!
† cg~0!~z1 ,r 1!

3Jp
~0!~z1 ,r 1 ,D'!U2,

dsT

dt
5

1

16p U E dz1r 1dr1
2

cV~1!
† cg~1!~z1 ,r 1!

3Jp
~0!~z1 ,r 1 ,D'!U2, ~3.5!

where the average over proton helicities is understood. The
combinationcV(l)

† cg(l)(z1 ,r 1) is computed by multiplying
Eq. ~3.2! by Eq. ~3.3! supplemented by the flavor part de-
scribed in Sec. III B, giving

cV~0!
† cg~0!52e fVz1~12z1! f ~z1!e

2v2r1
2/22z1

3~12z1!QK0~«r 1!,

cV~1!
† cg~1!5e fVf ~z1!e

2v2r1
2/2H v2«r 1

MV
@z1

21~12z1!
2#

3K1~«r 1!1
mf
2

MV
K0~«r 1!J . ~3.6!

Experimentally, the differential cross sections, Eq.~3.5!,
are difficult to measure. On the one hand, the separation of
transverse and longitudinal cross section is not easily done,
and on the other hand, accurate data exist only for
t-integrated cross sections. Nevertheless, some results have
been obtained for

dsexpt

dt
5e

dsL

dt
1
dsT

dt
,

as a function ofD'
2 . Here e is the rate of longitudinally

polarized photons which depends on the lepton scattering
angleue and the photon energyn. In the proton rest frame,

e5@112~11n2/Q2!tan2~ue/2!#21.

We shall also compare our theoretical results with the inte-
grated cross sectionsexpt5esL1sT , for variousQ

2. By
analyzing the vector meson decay, it is possible to check the
validity of s-channel helicity conservation or, assuming he-
licity conservation, to deduceR5sL /sT .

IV. NUMERICAL INVESTIGATION

A. General results

Before entering into a detailed analysis, let us discuss
qualitatively theQ2 dependence of differential cross section
expected from Eq.~3.5!. The quantityJp

(0)(z1 ,r 1 ,D') de-
creases exponentially withD'

2 . It depends only weakly on
z1. At fixed D' , Jp

(0)}r 1
a, with a52 at small r 1 and a

slowly decreasing forr 1*a ~see Fig. 5!. Given this behav-
ior, we also need an estimate of the effective size of the
photon-vector meson overlap after integration overz1 in Eq.
~3.6!. One can anticipate two extreme regimes. At small
Q2, the effective size is driven by the meson wave function
so thatdsL}Q

2 anddsT is constant. At largeQ
2, the effec-

tive size is given by the photon wave function alone, which
leads todsL}Q

26 anddsT}Q
28.

These asymptotic behaviors of the cross section are rather
model independent. Most of the current experimental results,
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however, are below the asymptotic large-Q2 region. The
theoretical behavior of cross sections in our calculation
shows a much more specific dependence onQ2 in this re-
gion. In Fig. 6 we show ther-production cross section
ds/dt(t50) as a function ofQ2. The effective powern of
the falloff ds/dt(t50)}Q2n is about 2.5 and 4 at
Q251 GeV2 for the longitudinal and transversal cross sec-
tions, respectively, and this power increases to about 4.5 and
6, respectively, atQ2510 GeV2. Thus the asymptotic re-
gime starts only above that value.

As we have emphasized the result depends on the wave
function chosen to represent the vector meson state. Without
changing the parametrization, this can be seen by varying the
size parameterv of the vector meson wave function. With
the value of the wave function at the origin kept fixed we
observe that decreasingv by 5% increases the cross section
at Q251 GeV2 by about 20%. This modification becomes
less than 5% atQ2510 GeV2 because the vector meson size
is less important for a smallq-q̄ state in the photon. One can
also think of changing the light cone distribution of the quark
and antiquark in the meson wave function. An indication of
the resulting modification is given by changing the factor
Az(12z)→@z(12z)#3/2 in the parametrization off (z) in
Eq. ~3.4!. This leads to an about 30% decrease of the cross
section in the wholeQ2 range examined.

In Fig. 7, we show the importance of the transversal ex-
tension of the virtual photon. We introduce a transversal cut-
off in the cross section; i.e., we cut ther 1 integration in Eq.
~2.6! at a fixed valuer 1<r 1

cut. As expected theqq̄ wave
function in a transversal photon extends to much larger val-
ues ofr 1; e.g., atQ

254 GeV2 more than 50% of the cross
section comes from transverse separations larger than 1 fm.
In the longitudinal case, the contribution of the region with
transverse separationsr 1.1 fm drops down to 15% at
Q254 GeV2.

B. r, v, and f production

In the range from 1 to 10 GeV2, the 1/Q4 behavior of the
production cross section observed by the European Muon
Collaboration~EMC! and New Muon Collaboration~NMC!
is very well reproduced by our calculations. Besides theQ2

dependence, also the absolute values of the cross section are
reproduced. It should be noted that within our model we
have introduced no new parameters and the parameters un-
derlying the interaction on the quark-gluon level are deter-

FIG. 6. ds/dt(t50) for r production as a function ofQ2 for
the longitudinal~solid line! and transverse~dotted line! cross sec-
tion. The effective power of the falloff withQ is increased by two
units in the range 1–10 GeV2 but the asymptotic behavior is only
reached in the 10–100 GeV2 range.

FIG. 7. ~a! The contribution to the transverse differential cross
section ofr production with respect to the radial parameter of the
photon and vector meson side. The integration over the transverse
distancer 1 is taken up to a cutoffr 1

cut for several values of the
photon virtuality,Q251, 4, and 10 GeV2. The transverse differen-
tial cross section att50 is plotted as a function ofr 1

cut . It is nor-
malized to its value with the cutoff removed.~b! Same as~a! for
longitudinal polarization. With increasingQ2 the cross section is
dominated by short transverse distances in both cases but the satu-
ration occurs earlier for the longitudinal cross section.

FIG. 8. The scaled cross sectionQ4s(Q2) for r production in
nb GeV4. The circles are the NMC results@25# and the diamonds
represent our prediction for the quantityQ4(esL1sT) with the
experimental polarization rate of NMC.
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mined by soft high-energy proton-~anti!proton scattering. We
show in Fig. 8 NMC deuteron data@25# together with our
prediction forQ4(sL1sT). We notice that this theoretical
quantity is not the actually measured cross section due to the
polarization rate of the photon,eÞ1. Therefore we also
show with diamonds the quantityQ4(esL1sT) at theQ

2

points of NMC using their value ofe(Q2).
In our approach, the approximate 1/Q4 behavior is due to

a combination of different falloffs insL andsT which them-
selves come from the interplay between the size dependence
of the dipole-proton cross section and the effective size of
the photon-meson overlap. This is very different from the
dynamics which occur in quark-quark scattering, which
leads, however, to a similarQ2 dependence. As explained
above the asymptotic behavior for largeQ2 is just governed
by the dipole size of the virtual photon and is thus model
independent.

A possible way to distinguish both approaches would be a
precise measurement of theQ2 behavior of the ratio of lon-
gitudinal to transverse cross sectionsR(Q2)5sL /sT . We
plot this ratio in Fig. 9. For largeQ2, R}Q2, but this behav-
ior is not yet reached in the intermediate range whereR
grows slower thanQ2. This again reflects the intermediate
nature of the transverse distances probed in thisQ2 interval.
The concavity ofR points out that, while shrinking with
Q2, the longitudinal photon being smaller reaches the short-
distance region before the transverse one. Here we expect a
different pattern in approaches either based on vector meson
dominance where theQ2 dependence follows a linear behav-
ior of the formR'0.35Q2/M r

2 or on quark-quark scattering
where the result of Ref.@7# is approximately given by
R'0.3Q2/M r

220.55 forQ2>2 GeV2.
Another important check is provided by looking at thet

dependence of the differential cross section. We show our
result foredsL /dt1dsT /dt versusD'

2 at 6 GeV2 and com-
pare in Fig. 10 to the NMC points for the deuteron outside of
the coherent production region@25#. Notice that thet depen-
dence of our computation is not fully exponential.

There is a nontrivialQ2 dependence of the slopeB in our
model which is due to a decreasing transverse region probed
by the slowly shrinking size of the photon asQ2 grows. We
show this in Fig. 11.

For the production of thev meson, we expect a wave
function very similar to the one of ther and correspondingly
the ratio should be determined through the flavor factor

f v
2 / f r

2'9%.

Indeed, this is observed.
The situation is more complex for the production of

heavier vector mesons where the different quark content has
several consequences. The direct appearance of a mass term
in the meson wave function gives an additionnal component
in the overlap, Eq.~3.6!, and also modifies the photon exten-
sion parameter«25z(12z)Q21mf

2. The quark content also
influences both the transversal size of the vector meson and
its momentum fraction distributionf (z). Whereas the first
effects are quite easily controllable, nothing precise is known
about the quantitative effect of a heavier mass on the distri-
bution f (z). Qualitatively, one expects that the distribution
becomes more peaked atz51/2 as the mass of the constitu-
ents increases.

Forf mesons, a smaller transversal extension than in the
r meson is expected due to the heaviers-quark mass. The
smaller size of thef meson reduces thef-production cross
section at lowQ2 values beyond the flavor factor:

ff
2 / f r

2'27%.

FIG. 9. The ratio for longitudinal to transverse cross section for
r-production. The data point is from Ref.@25#. Other data compare
well within errors but they either are far outside the 10–20 GeV
range or have large error bars.

FIG. 10. The differential cross sectionds/dt(D'
2 ) for

g*1p→r1p atQ256 GeV2. Data from Ref.@25#.

FIG. 11. The differential cross section forr production,
ds/dt(D'

2 ), for a longitudinal photon~solid lines! and a transverse
one ~dotted lines! atQ252 and 10 GeV2.
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Such an effect is also observed in the difference between
pion-nucleon and kaon-nucleon scattering in the model@2#. It
should diminish with increasingQ2 in electroproduction
since then the amplitude is less and less determined by the
extension of the produced meson, but rather by the virtual
photon. This effect may have been observed in the ZEUS
data@26#. Also the change of the longitudinal distribution in
z betweenf andr mesons may influence the cross section
independently ofQ2. This difference is absent with our
choice of distribution for thef meson which is numerically
the same as for ther meson. Our resulting theoretical cross
section forf production reproduces theQ2 dependence of
the NMC data, but its absolute value is practically a factor of
2 too large~see Fig. 12!.

The increase of the longitudinal to transverse ratio
R(Q2) looks the same as for ther meson, its overall mag-
nitude being just reduced by about 20%. Thet dependence
also exhibits a similar pattern with a small broadening of the
diffraction peak asQ2 is increased.

C. J/c production

For heavier quark pairs, the large quark mass leads to
more dramatic modifications. Let us first notice that in our
model we assume that the quarks move on lightlike trajecto-
ries. This can only be the case at energies far above 2mf .
Therefore a center-of-mass energy larger than 10 GeV is
necessary in theJ/c case. At these energies a moderate en-
ergy dependence is observed which is not contained in our
model. In return, the large quark mass provides a hard scale
so that also photoproduction data are accessible within our
perturbative treatment of the photon. Strictly speaking, the
difference t052Mp

2(Q21MV
2)2/s2, betweent and 2D'

2 ,
leads to a phase space thresholdeBt0 for the J/c production
in the energy range we are considering. AtAs515 GeV, it is
easy to see that this threshold effect is only sizable for large
Q2; e.g., forQ2510 GeV2 andB55210 GeV22 one gets
eBt050.9720.94. We shall disregard this factor in the fol-
lowing.

The discussion of the asymptotic regime given in Sec.
IVA can be refined in the presence of a large quark mass.
Let us reexamine the short-distance regime in the presence of
the mass terms in Eq.~3.6!. To simplify further, we tempo-

rarily assume a simple nonrelativistic form for the distribu-
tion, i.e., f (z)}d(z21/2), and for consistency take
mc5MJ/2. We consider the domain of large enough
«25mc

21Q2/4 5(MJ
21Q2)/4, where we can approximate

exp(2v2r2/2)'1 and Jp
(0)(z151/2,r 1 ,D'50)'Cr1

2. One
gets

dsL

dt
~ t50!5aem~8 f JC!2

Q2

~MJ
21Q2!4

,

dsT

dt
~ t50!5aem~8 f JC!2

MJ
2

~MJ
21Q2!4

SMJ
218v2

MJ
212v2D 2.

From these expressions one sees that the relevant scale for
J/c production isMJ

21Q2 rather thanQ2. As in the light
quark case, the longitudinal cross section is expected to
dominate at large Q2; namely, the quantity
(MJ

218v2)2/(MJ
212v2)2'1.4 leads to a ratio

R'0.7Q2/MJ
2. The differential cross section is expected to

fall off as ds/dt}(11eR)(MJ
21Q2)24. Experimentally a

Q2 dependence such as (MJ
21Q2)2n is observed withn

around 2 but the accuracy of the data is not sufficient to
exclude a complete short-distance falloff. Let us stress that
an accurate test of this power law is a necessary prerequisite
to understand the physics at work.

In Fig. 13, we plot (11Q2/MJ
2)2s, i.e., the cross section

rescaled by the observed data falloff, for the transversal and
longitudinal cross sections separately together with the data
recorded by EMC in the energy rangeAs510–20 GeV@27#.
The photoproduction comes out fairly in the energy range
As510–20 GeV, where several measurements have been
performed, leading to a production cross section between 10
and 20 nb. As could be guessed from the study of the asymp-
totic behavior above, the shape of thez distribution and the
value of the charm quark mass determine the size of the
cross section. Changing the quark mass by 5% would lead to
a 20% change in the cross section atQ250 and to a 10%
change atQ2510 GeV2, respectively. AsQ2 increases, our
expectation follows qualitatively the pattern depicted for the
short-distance regime although quantitatively the intermedi-

FIG. 12. f-production cross section compared to NMC data
@25#. In our model the difference between theoretical and experi-
mental result is attributed to the wave function effect.

FIG. 13. J/c-production cross section for longitudinal~dotted
line! and transverse~dashed line! polarizations. To compare with
EMC data@27#, one has to combine these two cross sections into
s5esL1sT with the polarization rate measured by EMC,
e'0.7.
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ate transverse distance somewhat contributes to give a falloff
flatter than the short-distance one.

We next turn to the study of thet dependence shown in
Fig. 14. We find good agreement with the photoproduction
measurement@28# and with the extrapolation of EMC~open
circles!. We also note that, contrary to the ‘‘large’’ hadron
case, there is practically noQ2 dependence of thet falloff in
the J/c case.

V. CONCLUSION

We have calculated the longitudinal and transversal dif-
ferential cross sections for diffractive production ofr, v,
f, and J/c mesons in the range of 2 GeV2<Q2<10
GeV2. The hadronic part of our calculation is based on a
model for nonperturbative QCD, the model of the stochastic
vacuum@1#. The parameters of the model which gives a uni-
fied description of low-energy and soft high-energy scatter-
ing phenomena can be obtained from a variety of sources:
hadron spectroscopy, QCD sum rules, high-energy proton-
proton scattering, and lattice calculations of the fundamental
gluon field correlator. We have used a consistent parameter
set very similar to the one used for hadron-hadron scattering
in Ref. @2#. The virtual photon and hadron wave functions
are light cone wave functions motivated by perturbation
theory for the photon and relativistic quark models for the
hadrons; we thus do not have adjustable parameters. A spe-
cific feature of electroproduction is the dependence of the
cross sections on the photon virtualityQ2 which is repro-
duced by the model almost perfectly. Even atQ2510
GeV2 the cross sections have not yet reached their asymp-
totic 1/Q6 behavior. Our calculation is consistent with the
observed ratio of longitudinal to transverse cross sections.
Here precise data at different values ofQ2 could discrimi-
nate between different models. In our model, we also can
calculate the dependence on the tranverse momentum trans-

fer and it nicely reproduces the available data.
Depending on photon polarization, theQ2 range 2–

10 GeV2 corresponds to an effective transverseqq̄ size lying
between 0.5 and 1.2 fm. This region just interpolates be-
tween the short-distance domain and normal hadron diam-
eters, thus allowing a natural extension of the phenomenol-
ogy of hadron-hadron scattering where the model has been
applied originally. Model-dependent features of the light
cone wave functions enter into the magnitude of the produc-
tion cross section. A good experimental separation ofsL and
sT can help to obtain a real breakthrough in our understand-
ing of diffractive electroproduction, since the physics of the
qq̄ pair state is so much different for both photon polariza-
tions. The extension to photoproduction and low-Q2 electro-
production necessitates a modification of the simple pertur-
bativeqq̄ wave function in the photon.

The model of the stochastic vacuum cannot predict the
behavior of the cross sections as a function of the c.m. en-
ergyAs. If all parameters are fixed, it yields constant cross
sections. We therefore have confined ourselves in this paper
to the energy range 10 GeV<As<20 GeV. The absolute
values for the cross sections are correctly reproduced forr,
v, and J/c production. Our results forf production are
about a factor of 2 larger than the NMC data; we can, how-
ever, explain theQ2 dependence of the ratio off to r pro-
duction as observed by ZEUS@26#.

In the present model the energy dependence of the total
hadronic cross section and the slope of the elastic cross sec-
tion can be obtained consistently by increasing the hadron
radii ~slightly! with energy. Because of the expected differ-
ence of the energy dependence of the perturbative and non-
perturbative contributions~hard and soft Pomerons! one has
also to take into account perturbative contributions if one
wants to obtain a realistic model of the energy dependence of
diffractive electroproduction. This will be done in a forth-
coming work.
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APPENDIX A: PHOTON WAVE
FUNCTION COMPUTATION

The photon wave function in the framework of light cone
perturbation theory is discussed in@19#. We compute it using
the rules and conventions given in@23#. For a photon with
momentumq5@q1,q252Q2/2q1,q50#, one multiplies a
color factorANc, a flavor partefd f f̄ , a spinor term

ū~zq1,k,h!«m~q,l!gmv„~12z!q1,2k,h̄…,

a factor (A2zq1)21/2@A2(12z)q1#21/2 for the quark and
antiquark lines, and a light cone energy denominator

FIG. 14. ds/dt(D'
2 ) for J/c production atQ250 and 10

GeV2. The upper curve is our prediction for the photoproduction
differential cross section. It can be compared to the measurement of
Ref. @28# ~solid circles! and to the extrapolation toQ250 of the
EMC data@27#. Similar data have been measured by NMC@29# at
Q251.5 GeV2. Also shown are the differential cross sections at
Q2510 GeV2 for longitudinal ~dotted line! and transverse~lower
solid line! photons. The dependence of the slope onQ2 and polar-
ization is marginal in theJ/c case.
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2A2q1FQ21
k21m2

z~12z!G
21

.

The polarization vectors of the photon are«(q,0)
5@q1/Q,Q/2q1,0# and «(q,61)5@0,0,21/A2,7 i /A2#.
The spinor matrix elements between infinite-momentum-
frame helicity eigenspinors@23# are

ūg1v52Az~12z!q1dh,2 h̄ ,

ūg2v52
k21m2

Az~12z!q1
dh,2 h̄ ,

ūg iv5
~122z!ki7 i e i j 3kj

Az~12z!
dh,2 h̄7m

d i17 id i2

Az~12z!
dh, h̄ .

In the last line i51,2 and7 stands for a minus sign if
h511/2 and for a plus sign whenh521/2.

By taking the Fourier transform

c~z,r !5E d2k

~2p!2
eik•rc~z,k!,

one gets the expressions given in Eq.~3.2!. In the longitudi-
nal case there is an additionald (2)(r ) which one can drop
because the color interaction vanishes at 0 transverse dis-
tance.

It is of course possible to obtain a wave function descrip-
tion in a covariant approach and we want here to give the
steps necessary to get the photon wave function. First, it is
important to notice that a photon-quark-antiquark coupling in
a Feynman graph can be interpreted in terms of a photon
wave function in light cone perturbation theory if thex1

ordering is g→qq̄. This is the case in the formal limit
q1→1` where this ordering survives.

The first step is the evaluation of thek2 integral which
leads for asymptoticq1 to

dk1d2k

~2p!4
E

2`

1`

dk2
f ~k1,k2,k!

~k22m21 i«!@~k2q!22m21 i«#

;
dzd2k

16p3

i f ~k1,02,k!

k21m22z~12z!q2
,

provided f (k250) is finite and nonzero. The numerator
N5 i (k”1m)(2 ie«” l) i (k”2q”1m) is

N5 ie$k•«~2k”2q” !2k•~k2q!«”1 i eamnrg5g
akm«nqr

1m~2k•«2«”q”1m«” !%

' ieq1g2H dl0

Q
@z~12z!q21k21m2#1~122z!k•«'

1 ig5e
i j 3ki«'

j 1m«”'J .
The wave function is then obtained@23# by taking the helic-
ity matrix elementw̄(h)Nw(2h̄)/A2q1 with

w~1/2!5~1/A2,0,21/A2,0!,

w~21/2!5~0,1/A2,0,1/A2!.

APPENDIX B: HADRON WAVE
FUNCTION PARAMETERS

The value of the wave function at the origin is related to
the meson leptonic decay constant

^0uJm~0!uV~q,l!&5e fVMV«m~q,l!, ~B1!

which appears in the expression of the vector mesone1e2

width:

G~V→e1e2!5
4pa2

3MV
f V
2 .

In the parametrization, Eq.~3.3!, this constraint leads to the
determination of the parameterN. The fixing condition,
which depends on the meson helicityl, is

15E
0

1

dzz~12z! f L~z!

5E
0

1

dz
2@z21~12z!2#vT

21m2

2MV
2z~12z!

f T~z!, ~B2!

with êV the effective quark charge in the mesonV expressed
in units of the proton charge~see Table I!.

The normalization condition is

^V~q8,l8!uV~q,l!&5~2p!32q1d~q12q81!

3d2~q2q8!dll8, ~B3!

which leads to the relation

vl5
p f V

A2NcêV
AI l, ~B4!

where

I L5E
0

1

dzz2~12z!2f L
2~z!,

I T5E
0

1

dz
@z21~12z!2#vT

21m2

MV
2 f T

2~z!.

vl and Nl are therefore defined by a system of implicit
equations, Eq.~B2! and Eq.~B4!. Solutions forv are listed
in Table I together with the corresponding transverse radius
R' , defined in

R'
25

E dzd2r ~r /2!2ucu2

E dzd2r ucu2
.
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