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I. INTRODUCTION

Recently the Collider Detector at Fermilab~CDF! group
reported a significant excess of one-jet inclusive production
at high pT over the standard QCD prediction@1#. The ob-
served inclusive jet cross section is in excellent agreement
with theory, but begins to deviate from the QCD prediction
aroundpT5200 GeV, and its central value becomes as large
as twice the theoretical prediction atpT above 400 GeV. If
this discrepancy between theory and experiment survives
more stringent tests, and arises not from the uncertainties in
the QCD parameters such as the parton distribution functions
but from a genuine new physics, one possible new physics
explanation would be the existence of a quark substructure.

A substructure in quarks gives rise to four-fermion con-
tact interactions at small energies compared to the compos-
iteness scaleL via constituent exchanges, and this induces a
correction of orders/L2 to the QCD prediction of jet pro-
duction @2#. The correction is negligible at small energies,
but becomes significant at highpT . This behavior agrees
qualitatively with the observed inclusive jet cross section.
We assume here that only quarks are composite and gauge
fields are elementary.

The CDF fit of the data using the tree-level amplitudes
from the effective Lagrangian by Eichten, Hinchliffe, Lane,
and Quigg~EHLQ! @3# with SU(2)L doublet quarks gives the
compositeness scaleL'1.6 TeV. To go beyond the tree-
level analysis of the data, we need the QCD one-loop-
corrected amplitudes forqq8→qq8. The leading QCD cor-
rection to the amplitudes arising from the QCD interaction
has been known@4–6#, and so only the one-loop correction
to the terms arising from the four-fermion contact interac-
tions needs to be computed.

In this paper, we calculate the one-loop QCD correction
to qq8→qq8 in the EHLQ effective Lagrangian, using the
framework of Kunsztet al. for one-jet inclusive cross sec-
tions @6,7#, and also discuss QCD corrections in Drell-Yan
process. This calculation may also find an application in
other processes that involve four-fermion contact interac-
tions, for example, such as extraZ-boson models@8#.

Sections II–VI are devoted to QCD corrections for the
inclusive one-jet cross section. In Secs. II and III, we review
the EHLQ Lagrangian and give the squared amplitudes at the
tree level, and in Sec. IV we discuss the ultraviolet diver-
gence and summarize the short distance effects of loop cor-

rections. In Sec. V we briefly review the method by Kunszt
et al. for one-loop inclusive jet cross sections and give our
result in Sec. VI. Details of the QCD calculation may be
found in the Appendix. Finally in Sec. VII we discuss QCD
corrections in the Drell-Yan process.

II. EFFECTIVE ACTION

A typical term of the helicity-conserving effective inter-
actions of composite quarks at low energies compared to the
compositeness scale can be written in the form of a current
product:

Lint~0!5g0
2h~m,L!E Jm

R~m,x!Jn
R~m,0!Dmn~x,L!d4x, ~1!

whereh(m,L) and Jm
R are the renormalized effective cou-

pling and generic quark current, respectively. The constituent
exchange between currents is represented byDmn(x,L)
which is assumed to satisfy

Dmn~x,L!5L2gmnD~xL!, ~2!

Dmn~x,L!→gmn

1

L2 d~4!~x! for xL@1. ~3!

The L in Dmn is a cutoff that determines the interaction
range of the constituent exchanges. The relation between
h(m,L), Jm

R and the corresponding bare quantities depends
on the fundamental dynamics at the compositeness scale.
However, this model dependence does not cause any prob-
lem in calculating QCD corrections at low energies because
any ambiguity arising from the lack of knowledge on how
the currents and couplings are renormalized can be absorbed
in the couplingh which is supposed to be determined ex-
perimentally. With Eq.~3!, Eq.~1! becomes, at the tree level,

g0
2h

L2 JmJ
m. ~4!

The most general helicity-conserving SU(3)c3SU(2)L
3UY(1) symmetric low-energy effective Lagrangian of up
and down quarks by EHLQ is
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LEHLQ5g2S g0
2

2g2L2D H h0q̄Lg
mqLq̄Lg

mqL1h1q̄Lg
m

ta

2
qLq̄Lg

m
ta

2
qL1huq̄Lg

mqLūRgmuR1hdq̄Lg
mqLd̄RgmdR

1h8uq̄Lg
m

la

2
qLūRgm

la

2
uR1h8dq̄Lg

m
la

2
qLd̄Rgm

la

2
dR1huuūRgmuRūRgmuR1hddd̄RgmdRd̄RgmdR

1hudūRgmuRd̄RgmdR1hud8 ūRgmdRd̄RgmuRJ , ~5!

whereqL5(uL ,dL). We inserted in Eq.~5! the strong couplingg2 explicitly to make the tree amplitudes of QCD and contact
terms be formally in the same order in the QCD coupling. For convenience, in the rest of the paper we absorb the factor

g0
2

2g2L2 ~6!

into the couplingh ’s. We also assume here that all quarks are massless . Then because of the SUL(2) symmetry, there are only
seven independent helicity amplitudes forqq8→qq8. They areuLdL→uLdL , uLuL→uLuL , uRdL→uRdL , uLdR→uLdR ,
uRuR→uRuR , dRdR→dRdR , and uRdR→uRdR . The amplitude fordLdR→dLdR , for example, is identical to that of
uLdR→uLdR because of the SU(2)L symmetry. In the following, we calculate these seven amplitudes to one-loop order in
QCD.

III. TREE AMPLITUDES

The tree-level amplitudes for the helicity channels in the EHLQ effective action are given in the Appendix. Note that we
follow the notation in Refs.@7,9# for the helicity amplitude and spinor algebra.

The squared amplitudes—color and spin averaged—for quark channels are

uA~ud→ud!u25uA~ ūd̄→ūd̄!u25g4F49 s21u2

t2
1u2S hu

21hd
21

2

9
~h8u

2 1h8d
2 ! D

1s2S 4h0
21

2

3
h0h11

11

12
h1
21

2

3
hudhud8 1hud

2 1hud8
2D1

8

9

s2

t
~h11hud8 !1

4

9

u2

t
~h8u1h8d!G , ~7!

uA~uu→uu!u25uA~ ūū→ūū!u25g4F49 S s21u2

t2
1
s21t2

u2
2
2s2

3tuD1
4

9 S s2t 1
s2

u D ~4h01h114huu!1
8

9
h8uS u2t 1

t2

u D
1
2s2

3
~16h0

218h0h11h1
2116huu

2 !12~u21t2!S hu
21

2

9
h8u
2 D G , ~8!

and using the crossing symmetry

uA~ud̄→ud̄!u25uA~ ūd→ūd!u25uA~ud→ud!u2~s↔u!, ~9!

uA~ ūū→d̄d̄!u25uA~ d̄d̄→ūū!u25uA~ud→ud!u2~s→u,t→s,u→t !, ~10!

uA~uū→uū!u25uA~uu→uu!u2~s↔u!, ~11!

with

s5~p11p2!
2, t5~p12p4!

2, u5~p12p3!
2. ~12!

For the channels involvingd-quarks only, we can obtain the
squared amplitudes by replacinghuu andh8u with hdd and
h8d , respectively, in Eqs.~8! and ~11!.

Putting back the factor

g0
2/4p

2asL
2 ~13!

into eachh ’s in the above equations and keeping onlyh0 we
can recover the formulas in@3# with

g0
2/4p51. ~14!

Note that we have corrections for typos in Eqs.~8.13! and
~8.15! in @3#.

IV. ULTRAVIOLET DIVERGENCE

The one-loop Feynman diagrams forqq8→qq8 in the
EHLQ effective Lagrangian are given in Fig. 1. In the mass-
less limit, the one-loop self-energy diagrams for fermions in
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the dimensional regularization vanish@11#, and~g! and~h! in
Fig. 1 are the UV counterterms for current renormalization
arising from the fermion self-energy diagrams and~a! and
~b!. ~g! and~h! are required only for color-octet currents, and
the counterterms for the conserved color-singlet currents
vanish. We do not include in our calculation the one-loop
diagram in Fig. 2~b! because its finite part coming from the
small momentum region (;As) is suppressed by a factor of
s/L2 relative to those in Fig. 1. This can be easily seen from
the fact that the four-fermion–gluon vertex in the diagram is
given by the effective Lagrangian

;
1

L4 f abcJm
aJn

bFmn
c , ~15!

represented in Fig. 2~a!. HereJm
a denote color-octet currents.

The contribution from the large momentum region (@As),
which is dependent on the fundamental dynamics at the com-
positeness scale, is independent of external momenta, and
renormalizes only the couplings of the contact terms. Since
we are not interested in how theh ’s are renormalized, we
can completely exclude this diagram.

There are also penguin diagrams~Fig. 3!. Although they
are not one-loop QCD corrections, it is easy to see that they
induce form factors in the quark-gluon vertices that are for-
mally of same order of magnitude as the QCD one-loop cor-
rections. The form factors induced by the penguin diagrams
assume the form

F~q2!511
hg0

2

~4p!2
C@ ln~2q2!#S q2L2D

'11C̄
hg0

2

~4p!2 S q
2

L2D , ~16!

whereC@ ln(2q2)# is a model-dependent function of order 1.
In the last step we replaced the functionC with its average
value C̄ in the momentum range of interest. Thus penguin

diagrams introduce new free parameters in the amplitudes.
This form factor effect from penguin diagrams may be com-
bined with that in the vector boson propagators@10,3#.

Now, in general,~a!–~f! have ultraviolet divergences as
well as soft and collinear divergences. For one-jet inclusive
cross sections, the soft and collinear divergences are can-
celed by those from 2→3 processes, which will be reviewed
in more detail in the next section. The UV divergences in~a!
and ~b!, as mentioned before, are canceled by the counter-
terms~g! and~h!. We assume that the counterterms are given
in the modified minimal subtraction (MS) scheme. The
scheme dependence of the counterterms is absorbed in the
couplingh ’s to render the physical amplitudes scheme inde-
pendent. The UV divergences in~c!–~f! arise from the ap-
proximation in Eq.~3!. If we insertDmn(x,L) between the
currents, the diagrams would be finite with logarithmic terms
of order asln(L) from the short distance region. The scale
L plays the role of an UV cutoff. The logarithmic terms can
be summed to all orders in QCD in the leading logarithmic
approximation by applying renormalization-group~RG-! im-
proved operator product expansion to Eq.~1! @12–14#. Ap-
plying operator product expansion~OPE! to Jm

R(x)Jn
R(0),

E Jm
R~x!Jn

R~0!Dmn~x,L!dx5(
i
ci„m/L,a~m!…Oi

R~0!,

~17!

with ci satisfying

S m2
]

]m2 1b~a!
]

]a
1g̃ i~a! D ci„m/L,a~m!…50, ~18!

where

g̃ i52gJ2g i , ~19!

andgJ andg i are the anomalous dimensions of the current
and the operatorOi , respectively, and

FIG. 3. Penguin diagrams induce form factors in the quark-
gluon vertex.

FIG. 1. One-loop diagrams from contact inter-
actions.~g! and ~h! are the counterterms for the
octet current renormalization.

FIG. 2. One-loop diagram from a dimension-8 operator.~b! is
suppressed by a factors/L2 compared to the diagrams in Fig. 1.
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b~a!5m2
]

]m2a52b0a
2@11O~a!#,

b05
1

4p S 112 2

3
Nf D , ~20!

g̃ i~a!5g̃ i
~1!a1O~a2!. ~21!

Note that g̃ i arises only from the UV divergences in dia-
grams~c!–~f!.

Integrating the RG equation,

ci„m/L,a~m!…5ci„a~L!…expS E
a~m!

a~L!g̃ i~a!

b~a!
da D

'ci
~0!Li„a~m!,a~L!…, ~22!

where

Li„a~m!,a~L!…5S a~m!

a~L! D
g̃ i

~1!/b0

. ~23!

The constantsci
(0) can be determined from the tree-level am-

plitudes. Substituting Eq.~22! into Eq. ~17!, the one-loop
effective Lagrangian for Eq.~1! should read

Lint~0!5( g0
2h~m,L!ci

~0!LiOi
R. ~24!

In computing the matrix element^ f uOi
Ru i &, we take theMS

subtraction scheme for the UV divergences. The scheme de-
pendence in the matrix element is compensated by that of
ci to make physical amplitudes scheme independent.

Since the EHLQ effective action at one loop must assume
the same form as in the tree-level action, the short distance
effect in diagrams~c!–~f! results in a mixing amongh ’s with
an appropriate scaling byLi . Let us first consider the
uLdL→uLdL process. The effective Lagrangian for this pro-
cess is

LuLdL5S 2h02
h1

2 DO11h1O2

5S 2h01
h1

2 DO11S 3h1

2
22h0DO2 , ~25!

where

O15ūLg
muLd̄Lg

mdL ,

O25ūLg
mdLd̄Lg

muL , ~26!

and

O65 1
2 ~O26O1!. ~27!

BecauseO1 (O2) is symmetric~antisymmetric! under
interchange between up and down quarks and separately up
and down antiquarks,O6 are multiplicatively renormalized
to all orders in QCD, and their anomalous dimensions at one
loop are given by@14#

g6
~1!57

3

4pNc
~Nc71!. ~28!

According to Eq.~24!, the effective action at one loop is

LuLdL→S 2h01
h1

2 DL1O1
R1S 3h1

2
22h0DL2O2

R

5
1

2 F S 2h01
h1

2 DL12S 3h1

2
22h0DL2GO1

R

1
1

2 F S 2h01
h1

2 DL11S 3h1

2
22h0DL2GO2

R,

~29!

with

L6„a~m!,a~L!…5S a~m!

a~L! D
2g6

~1!/b0

. ~30!

Thus at one-loop order we have to replaceh0 and h1 by
h̄0 and h̄1 defined by

S h̄0

h̄1
D 5S 3

4 L11 1
4 L2

3
16 ~L12L2!

L12L2
1
4 L11 3

4 L2

D S h0

h1
D . ~31!

Let us now consider theuLdR→uLdR which involves a
color-octet current. The Lagrangian for this process is

LuLdR5hdO11h8dO2 , ~32!

whereOi now are defined by

O15ūLg
muLd̄RgmdR ,

O25ūLg
m

la

2
uLd̄Rgm

la

2
dR . ~33!

Unlike in the previous example, in this case there is no
simple symmetry argument to find multiplicatively renormal-
ized operators, and so we are going to diagonalize the one-
loop mixing matrix explicitly.

From the UV divergence part in~a!–~f!, we have

SO1

O2
D B5ZSO1

O2
D R, ~34!

where

Z5S 1 6g2

~4p!2
1

e

3~Nc
221!g2

2Nc
2~4p!2

1

e
11

3~Nc
222!g2

Nc~4p!2
1

e
D , ~35!

with e5 1
2(42n). The one-loop anomalous dimension of

Oi is then
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G5
as

4p S 0 6

4

3
7D . ~36!

DiagonalizingG, we have

LGL215
as

4p S 21 0

0 8D , ~37!

with

L5S 1 2
3

4

4

27

8

9

D . ~38!

The one-loop anomalous dimension of octet current arising
from ~a! in Fig. 1 is

g j 8
~1!52

Nc

8p
. ~39!

Thus at the one-loop level,

LuLdR→h̄dO1
R1h̄8dO2

R, ~40!

where

S h̄d

h̄8d
D 5S c1 d1

c2 d2
D S hd

h8d
D , ~41!

S c1c2D 5LtS L81 0

0 L82
D ~L21! tS 10D , ~42!

S d1d2D 5LtS L̃81 0

0 L̃82
D ~L21! tS 01D , ~43!

and

L865S a~m!

a~L! D
2g86

~1! /b0

,

L̃865S a~m!

a~L! D
2~g86

~1!
22g j 8

~1!
!/b0

, ~44!

with

g81
~1!5

21

4p
,

g82
~1!5

8

4p
. ~45!

A similar calculation gives

S h̄uu

h̄dd
D 5S L1 0

0 L2
D S huu

hdd
D ~46!

and

S h̄ud

h̄ud8
D 5

1

2 S L11L2 L12L2

L12L2 L11L2
D S hud

hud8
D , ~47!

where L6 are defined in Eq.~30!. The transformation for
hu andh8u can be obtained by replacinghd andh8d in Eq.
~41! with hu andh8u , respectively. The modified coupling
h̄ ’s should also be used in calculating the 2→3 tree-level
amplitudes. For notational convenience, we keep usingh ’s
instead of the modified couplings; however, in the rest of the
paper, allh ’s should be understood ash̄ ’s defined in Eq.
~31!, ~41!, ~46!, and~47!.

V. CALCULATION FRAMEWORK

When computing the one-jet inclusive cross section, we
need the one-loop QCD amplitudes for 2→2, not the
squared amplitudes, since QCD and the composite model
interaction act coherently. To use the one-loop QCD helicity
amplitudes for 2→2 by Kunsztet al. @6# calculated in the
’t Hooft–Veltman scheme@15#, we also calculate the dia-
grams in Fig. 1 in the ’t Hooft–Veltman scheme. Kunszt
et al. also isolated the soft and collinear divergences in
2→2 and 2→3 processes, exposed explicitly the cancella-
tion of these divergences among them, and gave a complete
prescription for the one-jet inclusive cross section@6,7#. In
this section we briefly review the calculation scheme of
Kunsztet al.and identify terms to be calculated for the one-
jet cross section. We follow the notation in@6,7# and readers
should consult the references for more detailed discussions.

The one-jet inclusive cross section

I5
ds jet

dpJdyJ
~48!

can be written as

I5I ~2→2!1I ~2→3!, ~49!

where

I ~2→2!5
1

2!E dr2
ds~2→2!

dr2
S2~p1

m ,p2
m!,

I ~2→3!5
1

3!E dr3
ds~2→3!

dr3
S3~p1

m ,p2
m ,p3

m!, ~50!

and

dr25dy1dp2dy2df2 ,

dr35dy1dp2dy2df2dp3dy3df3 . ~51!

S2 andS3 define a jet algorithm, andpi andyi denote trans-
verse momenta and pseudorapidities of the partons, respec-
tively.

I (2→2) can be divided into singular (;1/ep) and non-
singular parts

I ~2→2!5I ~2→2!S1I ~2→2!NS, ~52!

with
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I ~2→2!NS5
as
2

2s2E dr2p2(
a
LABS c~4!~a,p!

1
as

2p
cNS

~6!~a,p! DS2~p1m ,p2m!, ~53!

where

LAB5
f A~aA ,xA! f B~aB ,xB!

w~aA!xAw~aB!xB
, ~54!

a5(aA ,aB ,a1 ,a2) for parton flavors, and p
5(pA ,pB ,p1 ,p2). The indicesA,B and 1,2 denote the initial
state and the final state partons, respectively.c (4) is the Born
amplitude squared andcNS

(6) is the nonsingular part ofc (6)

defined in

(
colors
spins

uA~aA1aB→a11a2!u2

5g4S c~4!~a,p!12g2cGS m2

QES
2 D e

c~6!~a,p!1O~g4! D ,
~55!

whereQES is an arbitrary scale introduced by Ellis and Sex-
ton @4#, and

cG5
1

~4p!22e

G~12e!2G~11e!

G~122e!
. ~56!

The singular partI (2→2)S depends only on the Altarelli-
Parisi functions and the tree-level amplitudes in four dimen-
sions,c (4)(a,p) andcmn

(4,c)(a,p), with the latter defined by

cmn
~4,c!~a,p!5

22

g4
Tcm̄cm
a Tcn̄cn

a )
iÞm,n

d
c ī ci
AcAcBc1c2

~0!

3~2→2!AcĀcB̄c 1̄c 2̄
~0!* ~2→2!. ~57!

For a5(q,q8,q,q8), Ta5la/2 for the final state quarks and
Ta52(la) t/2 for the initial state quarks.

Similarly I (2→3) can be divided into singular and non-
singular parts

I ~2→3!5F I ~2→3!2(
n

I n8~2→3!G1(
n

I n8~2→3!

5I finite~2→3!1(
n

I n8~2→3!, ~58!

where n runs overA,B,1,2. The soft and collinear diver-
gences are contained inI n8(2→3), andI n8(2→3) is divergent
only whenp3 becomes soft or collinear to the partonn. Here
I finite(2→3) is by construction well defined over all parton
phase space and depends only on the tree-level amplitudes in
four dimensions, and so the phase-space integration can be
done numerically.

Separating collinear divergence from soft divergence,
I n8(2→3) can be written as

I n8~2→3!5I n
soft~2→3!1I n

coll~2→3!, ~59!

with

I n
soft~2→3!5I n

soft~2→3!S1I n
soft~2→3!NS,

I n
coll~2→3!5I n

coll~2→3!S1I n
coll~2→3!NS, ~60!

where the explicit form of each term is given in@6,7#. The
singular and nonsingular terms in Eqs.~60! involve Altarelli-
Parisi functions and only tree-level amplitudes in four di-
mensions. For example,

I 2
soft~2→3!NS

5
as
3

4ps2E dr
2
p
2(a L

AB
@c2

soft~a,p!#NSS2~p1
m,p2

m!,

~61!

with

@c2
soft#NS5 (

m5A,B,1
c2m

~4,c!T̃2m, ~62!

whereT̃2m is a universal function ofsi j5(pi1pj )
2.

Adding Eq.~58! to Eq. ~52!, we have

I5I ~2→2!NS1(
n

@ I n
soft~2→3!NS1I n

coll~2→3!NS#

1I finite~2→3!, ~63!

with complete cancellation of the singular terms. From Eq.
~63! we see that for the one-jet inclusive cross section, we
need to calculate the tree-level amplitudesc (4) andcmn

(4,c) in
four dimensions and the one-loop amplitudescNS

(6) of c (6)

defined in Eq.~55!.

VI. ONE-LOOP AMPLITUDES

The general form of the amplitude for
qi(p1)qj8(p2)→ql(p4)qk8(p3) to one loop for each helicity
channel can be written as

A~p
1
1p

2
→p

3
1p

4
!5g2c̃~Ad

l i
d
k j

1Bd
l j
d
ki

!, ~64!

where

A5A~0!1g2A~1!,

B5B~0!1g2B~1!, ~65!

and

A~ i !5AQCD
~ i ! 1Acont

~ i ! , B~ i !5BQCD
~ i ! 1Bcont

~ i ! . ~66!

AQCD
( i ) ,BQCD

( i ) andAcont
( i ) ,Bcon

( i ) are the tree and one-loop ampli-
tudes arising from QCD and the fermion contact interactions,
respectively, andc̃ is a channel-dependent spinor matrix el-
ement.

The amplitude squared for each helicity channel is then
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(
colors

uAu25g4uc̃u2Nc
2H ~A~0!!21~B~0!!21

2

Nc
A~0!B~0!

12g2FA~0!Re~A~1!!1B~0!Re~B~1!!

1
1

Nc
@A~0!Re~B~1!!1B~0!Re~A~1!!#G J . ~67!

Comparing Eq.~67! with Eq. ~55!, we havec (4) andcNS
(6) in

theqq8→qq8 process,

c~4!5 (
spins

uc̃u2Nc
2F ~A~0!!21~B~0!!21

2

Nc
A~0!B~0!G

cNS
~6!5 (

spins
uc̃u2Nc

2FA~0!Re~Ã~1!!1B~0!Re~B̃~1!!

1
1

Nc
@A~0!Re~B̃~1!!1B~0!Re~Ã~1!!#G , ~68!

where

Ã~1!5F SQES
2

m2 D e 1

cG
A~1!G

NS

B̃~1!5F SQES
2

m2 D e 1

cG
B~1!G

NS

. ~69!

For the one-loop amplitudesAcont
(1) andBcont

(1) we calculate the
diagrams in Fig. 1 in the ’t Hooft–Veltman dimensional
regularization scheme in which the spins and momenta of
internal particles are defined inn dimensions, while those of
external particles are defined in four dimensions. The calcu-
lation of the one-loop diagrams in the ’t Hooft–Veltman
scheme is much simplified since we can treat the Diracg
matrices as if they were defined in four dimensions. To show
this, let us consider, as an example, diagram~a! in Fig. 1 for
uL(p1)dL(p2)→uL(p4)dL(p3). Diagram~a! is proportional
to

E dnk
^42ugm~k”1p” 4!g

a~12g5!~p” 11k” !gmu12&^32ugau22&
k2~k1p4!

2~k1p1!
2

52E
0

1

dxxE
0

1

dyE dnk
^42ugm~k”1p” !ga~12g5!~q”1k” !gmu12&^32ugau22&

@k22x2y~12y!s14#
3 , ~70!

where p52xyp11(12x1xy)p4 and q5(12xy)p1
2x(12y)p4 . Writing gm, defined inn dimensions, as

gm5g~4!
m 1gm, ~71!

whereg (4)
m are the four-dimensional Dirac matrices and

gm50 for m<4,

@g5,g
m#50 for m.4, ~72!

the numerator in the integrand in Eq.~70! can be written as

^42ugm~k” ~4!1p” !g~4!
a ~q”1k” ~4!!g~4!

m u12&^32ug~4!
a u22&

1^42ugmk”g~4!
a k” gmu12&^32ug~4!

a u22&. ~73!

The second term in Eq.~73! is O(e4) and so it can be safely
discarded because the soft and collinear divergence is at
most O(1/e2). The four-dimensional Dirac algebra then
gives the divergent term

^42ug~4!
m k” ~4!g~4!

a k” ~4!g~4!
m u12&^32ug~4!

a u22& ~74!

to

8k2

n
@12#^34&, ~75!

wherek2 is defined inn dimensions. Then the integration
overk in n dimensions can be done in the standard way@11#.
For other diagrams we can similarly check that only the four-
dimensionalg matrices contribute to the loop diagrams.

As mentioned before, the counterterms~g! and ~h! are
nonvanishing only for the color-octet currents. For the octet
currents, from the fermion self-energy diagrams and~a! and
~b!, they are given by

Nc

2
g2S 1e D cGAtree, ~76!

whereAtree denotes the tree amplitude of the corresponding
contact term. Also the UV divergences in~c!–~f! should be
subtracted in theMS scheme. For each helicity channel, we
give cmn

(4,c) c̃, A(0), Ã(1),B(0), andB̃(1) in the Appendix.

VII. DRELL-YAN PROCESS

If composite quarks and leptons share common constitu-
ents, exchanges between quarks and leptons of their common
constituents would give rise to quark-lepton contact interac-
tions at low energies. Then the signal from these contact
interactions may appear in Drell-Yan processes. In this sec-
tion we write down general effective quark-lepton contact
interactions and consider their one-loop QCD corrections in
Drell-Yan processes.
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As in the EHLQ Lagrangian, we consider a single family of quarks and leptons. Including more fermion families should be
straightforward. With the first generation of fermions, the most general, helicity-preserving SU(3)QCD3SU(2)L3U(1)Y
symmetric quark-lepton contact interactions are

LQL5
g0
2

L2 H j0q̄Lg
mqLl̄ Lg

ml L1j1q̄Lg
m
ta

2
qLl̄ Lg

m
ta

2
l L1jul̄ Lg

ml LūRgmuR1jdl̄ Lg
ml Ld̄RgmdR

1jeq̄Lg
mqLēRgmeR1jueūRgmuRēRgmeR1jded̄RgmdRēRgmeR1~jsq̄L

i dRēRl L
i 1H.c.!J , ~77!

wherel L5(n,e)L andqL5(u,d)L . The last term in Eq.~77!
is due to scalar~or pseudoscalar! exchanges and all the other
terms are due to vector~or axial vector! exchanges.

For the massless fermions, no amplitudes with the same
fermion helicities in the scalar exchange term arise in the
standard model, and so the contact term of the scalar ex-
changes provides the leading amplitude in that helicity chan-
nel. Therefore we may keep the amplitudes in the scalar
channel at the tree level and consider one-loop QCD correc-
tions only in the vector channels.

To calculate the one-loop QCD corrections in the quark
sector in the Drell-Yan process, we must consider virtual
corrections in qq̄8→ l l̄ 8 and real gluon emission in
qq̄8→ l l̄ 8G along withqG→q8l l̄ 8. Since these processes oc-
cur only in thes channel in the lepton momenta, the ampli-
tudes for a given helicity channel factorize into a flavor-
independent part and a flavor-dependent propagator part that
also include the couplings on the quark and lepton vertices.
The contact interactions thus modify only the propagator
part, and so the one-loop QCD corrections in this model are
essentially identical to those in the standard model. This al-
lows us to write the cross section at the parton level in terms
of the corresponding cross section with a virtual photon ex-
change in the standard model,

ds~h!@qq̄8→ l l̄ 8~G!#

5dsg*
~h!

@qq̄→ l l̄ ~G!#U D ~h!~qq̄8→ l l̄ 8!q2

QqQl
U2,

~78!

whereh andQq,l denote the helicities and charges of quarks
and leptons, respectively, andq2 is the invariant mass
squared of the leptons. The helicity independence of
dsg*

(h) /dQ2, whereq25Q2, of virtual photon exchange al-
lows us to write Eq.~78! as

ds~h!

dQ2 @qq̄8→ l l̄ 8~G!#

5
dsg*
dQ2 @qq̄→ l l̄ ~G!#U D ~h!~qq̄8→ l l̄ 8!q2

QqQl
U2.

~79!

Similarly, for theqG→q8l l̄ 8,

ds~h!

dQ2 ~qG→q8l l̄ 8!

5
dsg*
dQ2 ~qG→ql l̄ !U D ~h!~qq̄8→ l l̄ 8!q2

QqQl
U2.

~80!

From dsg* /dQ
2 in Altarelli, Ellis, and Martinelli @16#, we

finally have the Drell-Yan cross section forl l̄ 8 pair produc-
tion:

dsDY

dQ2 5
1

4

1

36psQ2E
0

1dx1
x1

E
0

1dx2
x2

( f , f 8 „@qf
[1]~x1!q̄f 8

[2]
~x2!1~1↔2!#$d~12z!1as~Q

2!u~12z!@ f q,DY~z!22 f q,2~z!#%

1$@qf
[1]~x1!1q̄f 8

[1]
~x1!#G

[2]~x2!1~1↔2!%as~Q
2!u~12z!@ f G,DY~z!2 f G,2~z!#…(

h
uD ~h!~qfq̄f 8→ l l̄ 8!q2u2,

~81!

with

f q,DY22 f q,25
2

3p F 3

~12z!1
2624z12~11z2!S ln~12z!

12z D
1

1S 11
4

3
p2D d~12z!G ,

f G,DY2 f G,25
1

4p F3225z1
9

2
z21~z21~12z!2!ln~12z!G , ~82!
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wherez5Q2/x1x2s andAs is the invariant mass of the in-
coming hadron system.

From the standard model Lagrangian and Eq.~77! we can
read off the nonvanishing propagator part

D~uLd̄L→nLēL!5
g2

2~q22Mw
2 !

1
g0
2j1
2L2 ,

D~uLūL→eLēL!5S g

4cosuw
D 2 u2l2
q22Mz

2 1
QuQe

q2

1
g0
2j0
L2 2

g0
2j1
4L2 ,

D~uLūL→eRēR!5S g

4cosuw
D 2 u2l1
q22Mz

2 1
QuQe

q2
1
g0
2je
L2 ,

D~uRūR→eLēL!5S g

4cosuw
D 2 u1l2
q22Mz

2 1
QuQe

q2
1
g0
2ju
L2 ,

D~uRūR→eRēR!5S g

4cosuw
D 2 u1l1
q22Mz

2 1
QuQe

q2
1
g0
2jue
L2 ,

D~dLd̄L→eLēL!5S g

4cosuw
D 2 d2l2
q22Mz

2 1
QdQe

q2

1
g0
2j0
L2 1

g0
2j1
4L2 ,

D~dLd̄L→eRēR!5S g

4cosuw
D 2 d2l1
q22Mz

2 1
QdQe

q2
1
g0
2je
L2 ,

D~dRd̄R→eLēL!5S g

4cosuw
D 2 d1l2
q22Mz

2 1
QdQe

q2
1
g0
2jd
L2 ,

D~dRd̄R→eRēR!5S g

4cosuw
D 2 d1l1
q22Mz

2 1
QdQe

q2
1
g0
2jde
L2 ,

~83!

where

u2522 8
3 sin

2uw, u152 8
3 sin

2uw,

d25221 4
3 sin

2uw, d15 4
3 sin

2uw,

l252214sin2uw, l154sin2uw,

andg is the SU(2)L coupling constant.
Finally we would like to add a comment on calculating

dsDY/dpldyl in the framework of Kunsztet al., wherepl
andyl are the transverse momentum and rapidity of a desig-
nated lepton, respectively. Since the essential difference of

the Drell-Yan process from the one-jet inclusive production
is that the soft and collinear divergences in the Drell-Yan
process occur only in the initial state, all the formulas for the
inclusive jet cross section can be used with only minor modi-
fication. First, since the final state leptons in the Drell-Yan
process are identifiable, the jet algorithm in Eq.~50! should
be replaced by

S
2
52!d~p

l
2p

1
!d~y

l
2y

1
!, S

3
53!d~p

l
2p

1
!d~y

l
2y

1
!,

~84!

and since soft and collinear divergences occur only in the
initial state, the indicesm andn in Eqs.~57!, ~58!, and~63!
should run only over the initial state. Also the restriction on
p3, that it be the smallest among the final state parton mo-
menta, should be revoked.

For the virtual corrections, we need to consider only dia-
gram ~a! in Fig. 1, and its calculation goes exactly as in the
case of the one-jet inclusive cross section. Details of the
calculation and numerical analysis of the Drell-Yan cross
section along with the one-jet inclusive cross section will be
published elsewhere@17#.
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APPENDIX

In this appendix we give the tree amplitudescmn
(4,c)

c̃,Acont
(0) andBcont

(0) and the one-loop amplitudesÃcont
(1) ,B̃cont

(1) de-
fined in Eqs.~57!, ~64!,~65!, and~69! and, for completeness,
corresponding terms in QCD for the following helicity chan-
nels: (i)uLdL→uLdL ,( ii)uLuL→uLuL ,( iii) uRdL→uRdL ,
( iv)uLdR→uLdR ,(v)uRuR→uRuR ,(vi)dRdR→dRdR ,and
(vii) uRdR→uRdR . All the momenta of external fermions are
assumed to have positive energies, andsi j5(pi1pj )

2.
c̃:

c̃ uc̃u2

~ i! 22i @12#^34& 4s12
2

~ ii ! 22i @12#^34& 4s12
2

~ iii ! 22i @24#^13& 4s13
2

~ iv! 22i @13#^24& 4s13
2

~v! 22i @34#^12& 4s12
2

~vi! 22i @34#^12& 4s12
2

~vii ! 22i @34#^12& 4s12
2 ~A1!

A(0),B(0): For contact terms,
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Acont
~0! Bcont

~0!

~ i! 22h
0
1h

1
/2 2h

1

~ ii ! 22~h
0
1h

1
/4! 22~h

0
1h

1
/4!

~ iii ! 2h
u
1h

8u
/~2Nc! 2h

8u
/2

~ iv! 2h
d
1h

8d
/~2Nc! 2h

8d
/2

~v! 22h
uu

22h
uu

~vi! 22h
dd

22h
dd

~vii ! 2h
ud 2hud8 ~A2!

and for QCD,

AQCD
~0! BQCD

~0!

~ i! 21/~2Nc!s14 1/2s14

~ ii ! 21/~2Nc!s1411/2s13 21/~2Nc!s1311/2s14

~ iii ! 21/~2Nc!s14 1/2s14

~ iv! 21/~2Nc!s14 1/2s14

~v! 21/~2Nc!s1411/2s13 21/~2Nc!s1311/2s14

~vi! 21/~2Nc!s1411/2s13 21/~2Nc!s1311/2s14

~vii ! 21/~2Nc!s14 1/2s14

cmn
(4,c) : For each helicity channel,

c~4!5uc̃u2Nc
2F ~A~0!!21~B~0!!21

2

Nc
A~0!B~0!G ,

c12
~4,c!5c~4!/Nc2uc̃u2Nc@~A

~0!!21~B~0!!212NcA
~0!B~0!#

c13
~4,c!52c~4!/Nc1uc̃u2Nc@A

~0!1NcB
~0!#2, ~A3!

c14
~4,c!52c~4!/Nc1uc̃u2Nc@NcA

~0!1B~0!#2,

c23
~4,c!5c14

~4,c!, c24
~4,c!5c13

~4,c!, c34
~4,c!5c12

~4,c!,

whereA(0),B(0) are the sum of the corresponding contact and
QCD terms as defined in Eq.~66!.

Ã(1),B̃(1): With the auxiliary functions,

F152~Nc
221!Y NcF31

3

2
lnSQES

2

s14
D 1

1

2
ln2SQES

2

s14
D G ,

F252H 41
3

2
lnSQES

2

s13
D 1

1

2 F ln2SQES
2

s13
D 2 ln2S QES

2

2s12
D G

1
3

2
lnS m2

QES
2 D J , ~A4!

F352F2~s12↔2s13!

and

F1o52~Nc
121!Y Nc

2H 41
3

2
lnS QES

2

2s12
D 1

1

2 F ln2S QES
2

2s12
D

2 ln2SQES
2

s13
D G1

3

2
lnS m2

QES
2 D J , ~A5!

F2o51/NcH 52Nc
22

3

2
lnSQES

2

s14
D 13lnS QES

2

2s12
D 2

1

2
ln2SQES

2

s14
D

1 ln2S QES
2

2s12
D 2S 12

Nc
2

2 D F ln2SQES
2

s13
D 23ln2S m2

QES
2 D G J ,

the contact terms are

~ i! Ãcont
~1! 5~2h02h1/2!~F12F2/Nc!1h1F2~p3↔p4!

B̃cont
~1! 5~2h02h1/2!F21h1~F12F2/Nc!~p3↔p4!,

~ ii ! Ãcont
~1! 52~h01h1/4!@F12F2/Nc1F2~p3↔p4!#

B̃cont
~1! 52~h01h1/4!@F21~F12F2/Nc!~p3↔p4!#,

~ iii ! Ãcont
~1! 5hu~F12F3/Nc!1h8u~F1o2F2o/Nc!

B̃cont
~1! 5huF31h8uF2o,

~ iv! Replace hu→hd,h8u→h8d in ~ iii !,

~v! Replace ~h01h1/4!→huu in ~ ii !,

~vi! Replace ~h01h1/4!→hdd in ~ ii !,

~vii ! Replace ~2h02h1/2!→hud,h1→hud8 in ~ i!.
~A6!

For QCD, from the one-loop amplitudes in@6#,
~i!,~vii !

ÃQCD
~1! 52

1

2s14Nc
H1,

~A7!

B̃QCD
~1! 5

1

2s14
~H11H2!,

~ii !,~v!,~vi!

ÃQCD
~1! 5

1

s14
F2H1/Nc1

s14
s13

@~H11H2!~p3↔p4!#G ,
~A8!

B̃QCD
~1! 5

1

s14
FH11H22

s14
Ns13

H1~p3↔p4!G ,
~iii !,~iv!

ÃQCD
~1! 52

1

2s14Nc
K1,

~A9!

B̃QCD
~1! 5

1

2s14
~K11K2!,
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where

H15Nc~13/91p2!2
10

9
Nf1

1

Nc
H 81

s14
2s12

~11s13/s12!

3F ln2S 2s14
s12

D 1p2G1s14/s12lnS s14s13
D J 1 lnSQES

2

s14
D

3F23Nc1
11

3
Nc22NclnS 2s14

s12
D 2

2

3
Nf13/Nc

12/NclnS s12
2s13

D G2 ln2SQES
2

s14
D ~Nc21/Nc!

14pb0lnS m2

QES
2 D ,

H252~Nc
221!Y NcH 12 s14

s12
~11s13/s12!F ln2S s14s13

D 1p2G
1s14/s12lnS s14s13

D 12lnSQES
2

s14
D lnS s12

2s13
D J ,

K15Nc~13/91p2!2
10

9
Nf18/Nc1~Nc11/Nc!

3H s14
2s13

~11s12/s13!F ln2S s14s13
D 1p2G

1s14/s13lnS 2s14
s12

D J 1 lnSQES
2

s14
D F23Nc1

11

3
Nc

22NclnS 2s14
s12

D 2
2

3
Nf13/Nc12/NclnS s12

2s13
D G

1 ln2SQES
2

s14
D ~2Nc11/Nc!14pb0lnS m2

QES
2 D , ~A10!

K252~Nc
221!Y NcH s14

2s13
~11s12/s13!F ln2S 2s14

s12
D 1p2G

1s14/s13lnS 2s14
s12

D 12lnSQES
2

s14
D lnS s12

2s13
D J .
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