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I. INTRODUCTION rections. In Sec. V we briefly review the method by Kunszt

. . et al. for one-loop inclusive jet cross sections and give our
Recently the Collider Detector at Fermil46DF) group result in Sec. VI. Details of the QCD calculation may be

repqrted a significant excess of one-jet i_nc.lusive productioqound in the Appendix. Finally in Sec. VIl we discuss QCD
at high pr over the standard QCD predictidd]. The ob- ., rections in the Drell-Yan process.
served inclusive jet cross section is in excellent agreement

with theory, but begins to deviate from the QCD prediction
aroundp;=200 GeV, and its central value becomes as large
as twice the theoretical prediction pt above 400 GeV. If A typical term of the helicity-conserving effective inter-
this discrepancy between theory and experiment survivegctions of composite quarks at low energies compared to the
more stringent tests, and arises not from the uncertainties iBompositeness scale can be written in the form of a current
the QCD parameters such as the parton distribution functiongroduct:
but from a genuine new physics, one possible new physics
explanation would be the existence of a quark substructure. ) R R 4

A substructure in quarks gives rise to four-fermion con- ﬁim(O)ngr](,u,A)f 3 X) 35 (0D (X, A)d™X, (1)
tact interactions at small energies compared to the compos-

iteness scalé via constituent exchanges, and this induces gypere 7(w,A) and JR are the renormalized effective cou-
correction of orders/A to the QCD prediction of jet pro- pling and generic quark current, respectively. The constituent
duction[2]. The correction is negligible at small energies, exchange between currents is represented Dy,(x, A)
but becomes significant at highr. This behavior agrees which is assumed to satisfy
qualitatively with the observed inclusive jet cross section.
We assume here that only quarks are composite and gauge D,,(x,A)=A2g,,D(xA) ©)
fields are elementary. uyie mr ’
The CDF fit of the data using the tree-level amplitudes
from the effective Lagrangian by Eichten, Hinchliffe, Lane,
and Quigg(EHLQ) [3] with SU(2), doublet quarks gives the
compositeness scalé~1.6 TeV. To go beyond the tree-
level analysis of the data, we need the QCD one-loopThe A in D, is a cutoff that determines the interaction
corrected amplitudes faq’'—qq’. The leading QCD cor- range of the constituent exchanges. The relation between
rection to the amplitudes arising from the QCD interaction»(u,A), JE and the corresponding bare quantities depends
has been knowi4—6], and so only the one-loop correction on the fundamental dynamics at the compositeness scale.
to the terms arising from the four-fermion contact interac-However, this model dependence does not cause any prob-
tions needs to be computed. lem in calculating QCD corrections at low energies because
In this paper, we calculate the one-loop QCD correctionany ambiguity arising from the lack of knowledge on how
to qq'—qq’ in the EHLQ effective Lagrangian, using the the currents and couplings are renormalized can be absorbed
framework of Kunsztet al. for one-jet inclusive cross sec- in the coupling» which is supposed to be determined ex-
tions [6,7], and also discuss QCD corrections in Drell-Yan perimentally. With Eq(3), Eg. (1) becomes, at the tree level,
process. This calculation may also find an application in

Il. EFFECTIVE ACTION

15@)
DW(X,A)—>gWP (x) for xA>1. (©)]

other processes that involve four-fermion contact interac- 2
tions, for example, such as exiZaboson model$8]. 90_27\] N (4)
Sections 1-VI are devoted to QCD corrections for the A H

inclusive one-jet cross section. In Secs. Il and Ill, we review

the EHLQ Lagrangian and give the squared amplitudes at th€he most general helicity-conserving SU{S)SU(2),
tree level, and in Sec. IV we discuss the ultraviolet diver-xUy(1) symmetric low-energy effective Lagrangian of up
gence and summarize the short distance effects of loop coend down quarks by EHLQ is
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whereq, =(u, ,d,). We inserted in Eq(5) the strong coupling? explicitly to make the tree amplitudes of QCD and contact
terms be formally in the same order in the QCD coupling. For convenience, in the rest of the paper we absorb the factor
g5 B
2ngz

into the couplingn’s. We also assume here that all quarks are massless . Then because qf(thg Stthmetry, there are only
seven independent helicity amplitudes fpg' —qq’. They areu,d, —u,d, , u .u .—u,u,, ugd, —ugd, , u dg—u, dg,
URUgr— URUR, drdr—dgdgr, and ugdg—ugdg. The amplitude ford, dg—d,dgr, for example, is identical to that of
u_dg—u dgr because of the SU(2)symmetry. In the following, we calculate these seven amplitudes to one-loop order in
QCD.

Ill. TREE AMPLITUDES

The tree-level amplitudes for the helicity channels in the EHLQ effective action are given in the Appendix. Note that we
follow the notation in Refs[7,9] for the helicity amplitude and spinor algebra.
The squared amplitudes—color and spin averaged—for quark channels are

) =, 4 2,
|A(ud—ud)[*=[A(ud—ud)|*=g 9 Tz TU mut mat g(meut maa)
2 2 2 11 2 2 ’ 2 r 2 832 ' U2
+8% 4mot 3ot 57t 3 Muauat Tuat Mud” | g T (Mt e tg T (eut e | (D)
4 2 AT T J4 sz+u2+sz+t2 2s? +4(sz+32 Ay ia +8 u2+t2
[A(uu—uw*=|A(uwu—uu)[*=g"| g| —z—+t—z— 35/ T 9| T T ¢ Aot mtdnu) + g e T+
52 2 2 2 2 2 2 2 2
+ 5 (167g+ 8monyt+ 73+ 1677, +2(U+ )| 7+ g 7ay | | ®
and using the crossing symmetry
| A(ud—ud)|2=| A(ud—ud)|2=|A(ud—ud)|2(s—u), 9)
| A(uu—dd)|2= | A(dd—uu)|2= | A(ud—ud)|2(s—u,t—s,u—t), (10)
|A(uu—uu)|?>=] A(uu—uu)|*(s=u), (12)
|
with into eachy’s in the above equations and keeping onlywe
can recover the formulas 18] with
_ 2 i (n_n2 Y
s=(p1+P2)° t=(P1—pa)? u=(p1—ps)°. (12 gi/4m=1. (14)

For the channels involvind-quarks only, we can obtain the Note that we have corrections for typos in E¢8.13 and
squared amplitudes by replacing,, and g, with 74q and ~ (8.195 in [3].
784, respectively, in Eqe8) and (11).

Putting back the factor IV. ULTRAVIOLET DIVERGENCE
) The one-loop Feynman diagrams faq'—qq’ in the
gol4m (13) EHLQ effective Lagrangian are given in Fig. 1. In the mass-
2a A2 less limit, the one-loop self-energy diagrams for fermions in
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FIG. 1. One-loop diagrams from contact inter-
actions.(g) and (h) are the counterterms for the
octet current renormalization.

A N N\

(® ® ()

the dimensional regularization vanigtl], and(g) and(h) in diagrams introduce new free parameters in the amplitudes.
Fig. 1 are the UV counterterms for current renormalizationThis form factor effect from penguin diagrams may be com-
arising from the fermion self-energy diagrams &l and  bined with that in the vector boson propagatfi6,3].

(b). (g) and(h) are required only for color-octet currents, and  Now, in general,(a)—(f) have ultraviolet divergences as
the counterterms for the conserved color-singlet currentsvell as soft and collinear divergences. For one-jet inclusive
vanish. We do not include in our calculation the one-loopcross sections, the soft and collinear divergences are can-
diagram in Fig. 20) because its finite part coming from the celed by those from 2:3 processes, which will be reviewed
small momentum region~ /s) is suppressed by a factor of in more detail in the next section. The UV divergencesain
s/A? relative to those in Fig. 1. This can be easily seen fromand (b), as mentioned before, are canceled by the counter-
the fact that the four-fermion—gluon vertex in the diagram isterms(g) and(h). We assume that the counterterms are given

given by the effective Lagrangian in the modified minimal subtractionMS) scheme. The
scheme dependence of the counterterms is absorbed in the
_ if J2IPFe (15) coupling 's to render the physical amplitudes scheme inde-
AP prs pendent. The UV divergences {n)—(f) arise from the ap-

o proximation in Eq.(3). If we insertD,,(x,A) between the
represented in Fig.(3). HereJ7, denote color-octet currents. cuyrrents, the diagrams would be finite with logarithmic terms
The contribution from the large momentum regior (S),  of order agn(A) from the short distance region. The scale
which is dependent on the fundamental dynamics at the comi plays the role of an UV cutoff. The logarithmic terms can
positeness scale, is independent of external momenta, am@& summed to all orders in QCD in the leading logarithmic
renormalizes only the couplings of the contact terms. Sincepproximation by applying renormalization-gro(RG-) im-
we are not interested in how thg's are renormalized, we proved operator product expansion to Et). [12—14. Ap-
can completely exclude this diagram. plying operator product expansi¢@PB to J%(x)J5(0),

There are also penguin diagrartisg. 3). Although they
are not one-loop QCD corrections, it is easy to see that they
induce form factors in the quark-gluon vertices that are for- f Ji(x)J?(O)DW(x,A)dx=Z Ci(,u/A,a(,u))OiR(O),
mally of same order of magnitude as the QCD one-loop cor- :
rections. The form factors induced by the penguin diagrams (17
assume the form . L
with ¢; satisfying
2

g 2
F<q2>=1+(ZT‘)’2C[In<—q2>](%>

d J
w52t Bla)s o +yi(@) o (ulA a(p)=0, (19

— 795
~1+C(4-T)2

q2
— ], 16
AZ) (16 where

whereC[In(—g?] is a model-dependent function of order 1.
In the last step we replaced the functiGnwith its average
value C in the momentum range of interest. Thus penguin

Yi=2v3" %, (19

and y; and y, are the anomalous dimensions of the current
and the operatoD;, respectively, and

X N

FIG. 2. One-loop diagram from a dimension-8 operatby.is FIG. 3. Penguin diagrams induce form factors in the quark-
suppressed by a factsfA2 compared to the diagrams in Fig. 1.  gluon vertex.
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(23

B(a)=u? i a=—Boa’[1+0(a)] <1>=:i(N 1) (28)
/"L W 0 ' 7t 47TNC Cc .
1 2 According to Eq.(24), the effective action at one loop is
Bo=-—| 11— =Ny ]|, (20
4 3 3
n Ry (2 R
Fi(@) =7 Va+0(a?). I e
Note that?y; arises only from the UV divergences in dia- _ } 7 _ %_ R
grams(c)—(f). =512mt 5 |L+—|— —2m0|L-|O;
Integrating the RG equation,
1 7 311 R
~ +=|| 290+ = |Li+| —==—27|L_|OF,
«M)yi(a) 2 2 2
Ci(u/ A, a(p))=ci(a(A))ex
a(w) B(a) (29)
~c(OL;(a(p),a(A)), 22 i
where )
50 L (almnatin= ) g
aw))” . e )

Li(a(u),a(A))=(m
Thus at one-loop order we have to replagg and »; by
The constantsfo) can be determined from the tree-level am- 7, and »; defined by
plitudes. Substituting Eq(22) into Eq. (17), the one-loop
effective Lagrangian for E¢(1) should read (%) ( S+l E,- L)) ( 770) .
71

L,—L_ Lo+ 3L )\ m

Lin(0)=2 gon(p,M)cLOF. (24)
o Let us now consider the dg—u, dg which involves a
In computing the matrix eIemerﬁf|OF|i>, we take theMS  color-octet current. The Lagrangian for this process is
subtraction scheme for the UV divergences. The scheme de-
pendence in the matrix element is compensated by that of ,CuLdRz 7401+ 75405, (32
c; to make physical amplitudes scheme independent.
Since the EHLQ effective action at one loop must assumgyhere O, now are defined by

the same form as in the tree-level action, the short distance
effect in diagramgc)—(f) results in a mixing among’s with
an appropriate scaling by;. Let us first consider the
u d, —u,d, process. The effective Lagrangian for this pro- a a

. — A" — A
cess is OZZUL')"M?ULdR'yﬂ?dR- (33

Olzu_l_’}’“ULd_R?’“dRa

7
EuLdL:(ZWO_j 01+ 70, Unlike in the previous example, in this case there is no
simple symmetry argument to find multiplicatively renormal-

m 3 ized operators, and so we are going to diagonalize the one-
:(2770+ -0+ 7_2770)0— . (29 loop mixing matrix explicitly.
From the UV divergence part i@ —(f), we have
where
o L Ol B Ol R
O;=up y*u d y*d,, 0, =Z 0, (34
O,=u y*didy*uL, (26) where
and . 607 1
0.=3(0,%0y). (27) (4m)° e
Z= (35

2 2 2 '
BecauseO, (O_) is symmetric(antisymmetri¢ under w E 3(N°_2)gz. E
interchange between up and down quarks and separately up 2N;(4m)? € Nc(4m)° e
and down antiquarks).. are multiplicatively renormalized
to all orders in QCD, and their anomalous dimensions at onaith e=3(4—n). The one-loop anomalous dimension of
loop are given by 14] O; is then
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0 6 7ud 1/Li+L- Ly—L_\[7ud

r=2s( 4 (36) Fo i) VI I | D PR
4o § 7 Mud + - + -/ \ Mud

DiagonalizingI’, we have

Rt 3
with
3
1 _Z
4
=l 4 | (39)
27 9

The one-loop anomalous dimension of octet current arisin

from (a) in Fig. 1 is

N
Mo =" go (39
Thus at the one-loop level,
Ly, 45— 7005+ 78405, (40
where
N
78d Cy; dy/\ 7gq
Cq Lg, O 1)
=L L™ A1 42
(Cz) ( 0 Ls)( )(0 “2
d, Lge O 0
=L ~ whHy -, 43
e D en(s) e
and
a(p)| ~78Po
8+ m ,
- a(w)| ~ (7822780
8+ a'(A) 3 (44)
with
-1
=2,
8
(=
Ye- =4 (45)
A similar calculation gives
(Eu =<L+ 0 )(nuu (46)
Ndd 0 L_/\ 744

and

where L. are defined in Eq(30). The transformation for
7, and ng, can be obtained by replacingy and 7g4 in EQ.
(41) with 5, and 7g,, respectively. The modified coupling
7’s should also be used in calculating the-3 tree-level
amplitudes. For notational convenience, we keep usjigg
instead of the modified couplings; however, in the rest of the
paper, all»’s should be understood ag's defined in Eq.
(31), (41, (46), and(47).

V. CALCULATION FRAMEWORK

When computing the one-jet inclusive cross section, we
need the one-loop QCD amplitudes for—2, not the
squared amplitudes, since QCD and the composite model
$hteraction act coherently. To use the one-loop QCD helicity
amplitudes for 2-2 by Kunsztet al. [6] calculated in the
't Hooft—Veltman schemd15], we also calculate the dia-
grams in Fig. 1 in the 't Hooft—Veltman scheme. Kunszt
et al. also isolated the soft and collinear divergences in
2—2 and 2-3 processes, exposed explicitly the cancella-
tion of these divergences among them, and gave a complete
prescription for the one-jet inclusive cross sectj6i7]. In
this section we briefly review the calculation scheme of
Kunsztet al. and identify terms to be calculated for the one-
jet cross section. We follow the notation[i,7] and readers
should consult the references for more detailed discussions.

The one-jet inclusive cross section

dO" t
|=— 48
dp,dy; 49

can be written as
|=1(2—2)+1(2—3), (49
where

(2

1 do(2—2)
|(2—>2)=§f dpzd—zsz(p’f,p’f),

p

do(2—3)

s Ss(pt,p%.p5), (50

1
1(2—3)= gf dps
and
dp,=dy;dp,dy,de,,

dpz=dy;dp,dy,d¢,dpsdysdes. (51)

S, andS; define a jet algorithm, ang; andy; denote trans-
verse momenta and pseudorapidities of the partons, respec-
tively.

(2—2) can be divided into singular{1/e®) and non-
singular parts

[(2—2)=1(2—2)5t1(2—2)\s, (52

with
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2 11(2—3)=1%23) + 12 3), (59
|(2H2)Ns:2a_szj szpzz LAB( ¢(4)(a,p)
a with
+—¢<6><ap> Sy(p4.ps), (53 15912 3) =132 3) s+ 1572 3) s,

where 1€0(2—3)=12%2-3)+12-3)ys, (60
fa(an.Xa) fa(ag X where the explicit form of each term is given [i,7]. The
Lag= Al@a . Xa)T5 (a3 B), (54) singular and nonsingular terms in EG80) involve Altarelli-
W(aa)XaW(ap)Xg Parisi functions and only tree-level amplitudes in four di-
mensions. For example,

a=(ap,ag,a;,8,) for parton flavors, and p
=(pa,Ps,P1,P2). The indicesA,B and 1,2 denote the initial |§°ﬁ(2—>3)Ns
state and the final state partons, respectivg§. is the Born

amplitude squared an#{® is the nonsingular part of(®)
defined in " =i f dp,p, 2 Lol 057(@p) InsSal Pt P5).
61
> |A(ap+ag—a;+ay)|? (©D

P with
2

(W(a p)+29 CF(QES) ¢'®(a,p)+0(gY |, 3" N EB Vo Tam (62)

(55)

whereT,y, is a universal function o§;;=(pi+p;)%
whereQg is an arbitrary scale introduced by Ellis and Sex- Adding Eq.(58) to Eq.(52), we have
ton[4], and

— Ll coll
1 T(1-e2T(1+e 1=1(2=2)ust 2 [15(2=3)nst 177 (2— )l

T amZ T T(1-2e)

(56)
+ linie(2—3), (63
The singular part (2—2)g depends only on the Altarelli-

Parisi functions and the tree-level amplitudes in four dimen-
sions, y*)(a,p) and 449 (a,p), with the latter defined by

with complete cancellation of the singular terms. From Eq.
(63) we see that for the one-jet inclusive cross section, we
need to calculate the tree-level amplitudéd and 4{*% in
four dimensions and the one-loop amplitudg$) of y(®)

=— a (0) . .
wW@p=—7Te . Too il_m[’n R defined in Eq.(55).
x(ZHZ)A(CO):Bﬁ42H2) 57) VI. ONE-LOOP AMPLITUDES

, N A s a ) The general form of the amplitude for
Fora=(q,q',q,q"), T*=\%2 for the final state quarks and ai(p1)a; (p2)—ai(Pa)ai(Pa) to one loop for each helicity

—()\a)t/Z for the |n|t|a| state quarkS. Channe| can be Written as
Similarly 1(2—3) can be divided into singular and non-
singular parts A(p,+p,—p,+p,) =97C(AS, 5,+B35,), (69
1(2—3)=|1(2—3)— >, 1/(2—3) [+ >, 1/(2—3) where
n n
A=A 1 g2AD)
= linie(2—3)+ 2 11(2—3), (58) BB g8, 5

where n runs overA,B,1,2. The soft and collinear diver- and

gences are containedif(2—3), andl [(2—3) is divergent

only whenps; becomes soft or collinear to the partonHere A(”—A(' cot Acom, B = B ot Bg'gm (66)

linite(2—3) is by construction well defined over all parton

phase space and depends only on the tree-level amphtudesArSQCD,Bg)CD andAl) B are the tree and one-loop ampli-

four dimensions, and so the phase-space integration can lnedes arising from QCD and the fermion contact interactions,

done numerically. respectively, and@ is a channel-dependent spinor matrix el-
Separating collinear divergence from soft divergenceement.

I/(2—3) can be written as The amplitude squared for each helicity channel is then
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> |,4|2=g4|c|2N§[(A<0>)2+(B<0>)2+N_A<0>B<0>
Cc

colors

+ Zgz[A(O)Re(A(l)) + B(O)Re( B(l))

1
+ N—[A<°>Re( B1)+BORgAM)]
C

]. (67)

Comparing Eq(67) with Eq. (55), we havey® and (& in
theqq’'—qq’ process,

P D=2 [C|>N2

spins

(A(O))2+ (B(O)) + I\ZI A(O)B(O)}

No= 2 IEIZNi{N“Re(A“)) +BORgB™)

spins

+ Ni[A“’)Re(E(l)) + B(O)Re(:&(”)]}, (68)

2597
where
;u):[(QES) ZAD
M) Cr NS
~ Qf
BW= {( = C—B<1> (69)
,U« r NS

For the one-loop amplitudes(), andB{}) we calculate the
diagrams in Fig. 1 in the 't Hooft—Veltman dimensional
regularization scheme in which the spins and momenta of
internal particles are defined mdimensions, while those of
external particles are defined in four dimensions. The calcu-
lation of the one-loop diagrams in the 't Hooft—Veltman
scheme is much simplified since we can treat the Diyac
matrices as if they were defined in four dimensions. To show
this, let us consider, as an example, diagfajrin Fig. 1 for
uL(p1)di(p2) —uL(p4)dL(ps). Diagram(a) is proportional

to

Y*(1=ys) (P +K) ¥#|1—)(3—[y*[2—)

f iy (4= 17k By

k?(k+pa)*(k+py)?

Y (1= ys)(G+K) y*|1=)(3—|y*|2— >

11 A—|yr(k+
=2f dxxf olyfol”k< |7 (k+ )
0 0

where p=-xyp;+(1—x+xy)ps and g=(1—xy)p;
—X(1—-y)p4. Writing y*, defined inn dimensions, as

(71
where 'yf‘4) are the four-dimensional Dirac matrices and
Z":O for u<4,

[vs,v*]=0 for u>4, (72

the numerator in the integrand in Eq0) can be written as

(4= y*(kay+ D) v(a)(b+Ka) via) | 1= )(3—[v(5|2—)
(A= [y Ry Ky 1 =) (3= v{y|2-). (73

[k*—x? y(1- Y)514]3 (79

wherek? is defined inn dimensions. Then the integration
overk in n dimensions can be done in the standard {ud.

For other diagrams we can similarly check that only the four-
dimensionaly matrices contribute to the loop diagrams.

As mentioned before, the counterterrtgy and (h) are
nonvanishing only for the color-octet currents. For the octet
currents, from the fermion self-energy diagrams émdand
(b), they are given by

Ne (1
?g ; CF-Atree (76)

where A;.. denotes the tree amplitude of the corresponding
contact term. Also the UV divergences (i0)—(f) should be
subtracted in thé1S scheme. For each helicity channel, we
give 449 T, A©, AM B andB™ in the Appendix.

The second term in Eq73) is O(€*) and so it can be safely
discarded because the soft and collinear divergence is at
most O(1/e?). The four-dimensional Dirac algebra then
gives the divergent term

VIl. DRELL-YAN PROCESS

If composite quarks and leptons share common constitu-
ents, exchanges between quarks and leptons of their common
constituents would give rise to quark-lepton contact interac-
tions at low energies. Then the signal from these contact
interactions may appear in Drell-Yan processes. In this sec-
tion we write down general effective quark-lepton contact
interactions and consider their one-loop QCD corrections in
Drell-Yan processes.

(A= vk v ka vl 1=)3-1vl2—) (79

to

2

87[12]<34>, (79
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As in the EHLQ Lagrangian, we consider a single family of quarks and leptons. Including more fermion families should be
straightforward. With the first generation of fermions, the most general, helicity-preserving §t3$U(2) X U(1)y
symmetric quark-lepton contact interactions are

%[ —  — _ — —
Lo = Az oLy aul y*I + flqw”LEQL'L?”L?'L"‘ Eull Ly" I Lugy U+ &4l L y*I Ldry*dR

2
72 72

+£0L Y O erY erT EueUr Y URBRY €T £gedr Y drERY ERT (£50  drERIL +H.C) |, (77)

wherel = (v,e),_ andq,_=(u,d)_ . The lastterm in Eq(77)  whereh andQ,,; denote the helicities and charges of quarks

is due to scalafor pseudoscalaexchanges and all the other and leptons, respectively, ang?® is the invariant mass

terms are due to vectdor axial vectoy exchanges. squared of the leptons. The helicity independence of
For the massless fermions, no amplitudes with the Samda'(yh*)/sz, whereq?=Q?, of virtual photon exchange al-

fermion helicities in the scalar exchange term arise in théows us to write Eq(78) as

standard model, and so the contact term of the scalar ex-

changes provides the leading amplitude in that helicity chan-

nel. Therefore we may keep the amplitudes in the scalar de™

channel at the tree level and consider one-loop QCD correc- d—Qz[QQ’—”' "(G)]

tions only in the vector channels. L
To calculate the one-loop QCD corrections in the quark O — DM (g —11")q

sector in the Drell-Yan process, we must consider virtual = d—Qz[qu”(G)] 0.0,

corrections in qq’—Il" and real gluon emission in d

qq’—I1'G along withqG—q'll". Since these processes oc-
cur only in thes channel in the lepton momenta, the ampli-
tudes for a given helicity channel factorize into a flavor-
independent part and a flavor-dependent propagator part th
also include the couplings on the quark and lepton vertices.
The contact interactions thus modify only the propagator (h)

. . . do —
part, and so the one-loop QCD corrections in this model are ——(qG—q'll")
essentially identical to those in the standard model. This al- dQ
lows us to write the cross section at the parton level in terms q DO (qa 11
of the corresponding cross section with a virtual photon ex- _ Ty (qG_)qW (qu g )9

q¥I

change in the standard model, dQ*

do™[qq —11"(G)] (80)

212

(79

g{milarly, for theqG—q’ II_’,

2

o — | D™(qg—=N")g?|? 5. N -
=doerqo—I1(G Fromdo .« /dQ? in Altarelli, Ellis, and Martinelli[16], we
y*[qq ( )] Q Q 3 Y i
gl finally have the Drell-Yan cross section fbir pair produc-
(78  tion:
|
dO'DY 1 1 1dX1 1dX2 [ —2] 2
d? =2 36’7TSQ2J0 X_1J0 X_sz,f' ([af " (x)ay (X)) +(L=2) {6(1-2) + al(Q )9(1_2)[fq,DY(Z)_qu,z(z)]}

I ) + 0 (x)]6Px0) + (1-2)}ad @) (1= D[ e 0v(2) ~ fe 2D DM (arcty 1107,

(82)
with
ooy 2= = 6—dz+2(1+2%) Mt 2 1+ 202] 51
q,DY " q'z_ﬁ ﬁ— —4z+ ( +Z) 1—7 ++ +§7T ( —Z),
113 9 ) ) )
fG,DY_fG,ZZE 5_52+ EZ +(Z +(1_Z) )ln(l_Z) y (82)




55 ONE-LOOP QCD CORRECTION FOR INCLUSIVE JE ..

2599

wherez=Q?/x;x,s and \/s is the invariant mass of the in- the Drell-Yan process from the one-jet inclusive production

coming hadron system.

From the standard model Lagrangian and &q) we can

read off the nonvanishing propagator part

g N goé1
2(q°=My)  2A%

D(ud —v.e)=

u_l_

QuQe

- g \?
D(ULUL_)eLeL):(‘lCOSg ) q2—M2+ q
w z

Jobo ot
AZ T aA7
2 2
— —_— _ g U,|+ QuQe gOge
D(u u —eger)= 4cody) P-M2 2 + A2
2 2
— - _ g U+|, QuQe gogu
D(URUR_’eLeL)_<4co39W) qZ—M§+ 7 A2
2 2
— — g ugly QuQe  9obue
D(URUR—’eReR)—<4COS9W) qZ—M§+ % + AZ
- — g 2 d_I_ QdQe
D(deL_)eLeL)_(4CO89W) q2—M§+ q
doéo  Goés
A% T 4AN%
2 2
— o~ g d_l, QgQe Jobe
D(d d —egrer)= 4COS9W) P-M2 "2 + A2
2 2
-  — g dil- Q4Qe 9oéd
D(deRHeLeL)_<4CO§W) qZ—M§+ % A2
D (At ey = - dil, | QuQe, Gobae
RURT™CRER) = 4co9,, qz—Mf qz A2
(83
where
u_=2- 8&sirfe,, u,=-2%sirfe,,
d_=—2+ %sirf6,, d.= 3sirte,,
|_=—2+4sirt6,, |,=4sirto,,

andg is the SU(2) coupling constant.

Finally we would like to add a comment on calculating

doPY/dp,dy, in the framework of Kunszet al, wherep,
andy, are the transverse momentum and rapidity of a desig-
nated lepton, respectively. Since the essential difference of A(®),B(®): For contact terms,

is that the soft and collinear divergences in the Drell-Yan
process occur only in the initial state, all the formulas for the
inclusive jet cross section can be used with only minor modi-
fication. First, since the final state leptons in the Drell-Yan
process are identifiable, the jet algorithm in E50) should

be replaced by

S,=2!8(p,—p,)8(y,—y,), S,=3!8(p,—p,)dy,~Y,)

(84)

and since soft and collinear divergences occur only in the
initial state, the indicesn andn in Egs.(57), (58), and(63)
should run only over the initial state. Also the restriction on
ps, that it be the smallest among the final state parton mo-
menta, should be revoked.

For the virtual corrections, we need to consider only dia-
gram(a) in Fig. 1, and its calculation goes exactly as in the
case of the one-jet inclusive cross section. Details of the
calculation and numerical analysis of the Drell-Yan cross
section along with the one-jet inclusive cross section will be
published elsewhergl7].
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APPENDIX

In this appendix we give the tree amplitudess
¢,A andB{® and the one-loop amplitudést), B, de-
fined in Egs.(57), (64),(65), and(69) and, for completeness,
corresponding terms in QCD for the following helicity chan-
nels:  (iju_d . —u.d,(ii))u u . —u,ug, (i) ugd, —ugd, ,
(iv)u dg—u, dg,(V)UgUg— URUR, (Vi)drdgr— drdg ,and
(vii) ugdg— URdg . All the momenta of external fermions are
asiumed to have positive energies, arjld:(pierj)z.

C:

c [c]?

(i) —2i[12)(34) 4s3,

(i) —2i[12](34) 4s,
(i) —2i[24](13) 4s3,
(iv) —2i[13](24) 4s2,
(V) —2i[34](12) 4s3,
(vi) —2i[34](12) 4<%,
(vii) —2i[34)(12) 4s2, (A1)
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A0 B 3 [ Q&) 1 z
cont cont F10= —(Ng'—l) N(Z: 4+ ~In ES + 20 2( QES)
2 \—spp 2 —S12
(i) —27,* 7,12 - Q2 )
3
) 2 By 2l A
(iy  —2mytnld  —2(n,+n,l8) In ( 313) +5In z || (AS)
(i) —m,* 7g,/(2Nc) —7g,/2 3 2 Q2| 1 Qi
, _ _ F,,=1/N.{5—N:— =In| —| +3In —=In?l —
(iv) My Mgyl (2Nc) gql2 2 ¢ € 27\ s —S1p) 2 S14
(vi) -2, -27,, —S12 2 S13 QZs
(vii) — 1, — (A2) the contact terms are
and for OCD (i) Aln=(270= 71/2)(F1—F oI No) + 7:F 2(p3= Pa)
o o Bf:o)m (2m0— 11/2)F o+ 71(F1—F2/N¢)(P3+Pa),
Aaco Baco L=y B
(i) Agon=2(m0+ 71/A)[F1—F/Nc+Fa(p3e—pa)]
(i) —1/2N¢)s14 1/2s14 =)
(i) —1(2Ng)S14+1/253 —1(2Ng)Si5+ 1/25,, Beon=2( 70+ 71/4)[F2+ (F1—F2/No) (p3—=pa) ],
(iii) ~ L(2Nc)s14 zsy (iii) Alh= 74(F1— Fa/No) + 7g,(F1o— F20/No)
(iv) — 1/(2N,)S14 1/2s,, ~
(V) —U(2N)Sia+1/25;5 — 1(2N.)Sya+ 1/25,4 Boon= 7uF 3+ 78 20,
(Vi)  —1A2N¢)S1at1/2513 —1N(2N¢)S13+ 1/25,, (iv) Replace ny— 14, 70— 18q in (iii),
(vii) — 1/(2N,)Sy4 1/2s,, (V) Replace (7o+7./4)— 7y, in (ii),
(vi) Replace (7o+ 71/4)—nq4q in (ii),

Y149 For each helicity channel,
— 2
(4) = [5]N2 (A(O))2+(B(O))2+N—A(°)B(°> ,
(o3

P59 = g DIN— [C1PNJ(A@)2+ (B(@)2+ 2N AOBO)]
157 == ¢! IN+[EPNJAO+NBOT?,  (A3)
G50 =— g WIN A+ [CIPNINAQ 4+ B2,

4 4, 4 (4 4 4,
W =T vet= e s = e,

(vii) Replace (27— 71/2)— nyq, 11— 14¢ N ().
(A6)
For QCD, from the one-loop amplitudes [i],
(i), (vii)
1
1 —
Aqco 25N H
(A7)
BS&o— 25, (H1+ Ho),

whereA(® B are the sum of the corresponding contact andii).(v),(vi)

QCD terms as defined in E¢66).
A BM): With the auxiliary functions,

QES 1 .(Q&s
(N2 2| XES
F,=2(N2 1)/ 3+ n| ]+ 5| 5o |
3 2 1 2 2
Fo=2{ 4+ —In| = | + 2|1 Z(QES>—|n2( QES)
2 S13 2 S13 —S12
N (A4)
—In ,
271 Q%

F3=—F3(S120> —Sp3)

and

1
Agéo H1/N + [(H1+H2)(p3<—>p4)]
Sua|

(A8)
~ 1 S
(1) _ . 14
Baco ; Hy+H> _Nsl3H1(p3<_>p4)}'
(iii ), (iv)
~ 1
(1) _— _
Qe 251N, Ka,
(A9)



where

) 10 1 S14
H1=Nc(13/9+ 7%)— —Ni+—1 84+ ——(1+5,9S1))
N, 2515

9
- Q?
| 10?2 —24) 1 2| s, s in| 24 | 4 in| <ES
S12 S13 S14
11 _314 2
X| —3N¢+ gNC—ZNCIn ™ —§Nf-i—3/NC
S12 Qés
+2/Ncln( ”—In2<—)(Nc—llNC)
—S13 S14
2
)2
+47B In(—),
o\ Qs
P 1sy4 5| S14 2
HZZ_(NC_l) NC ES_(1+S]_3/S]_2) In S_13 +
Q S
+sl4/slzln< +2In| =22|In| =22 ,
S14 —S13

ONE-LOOP QCD CORRECTION FOR INCLUSIVE JE ..

2601
10
K, =Ng(13/9+ 72) — 5 N+ 8N+ (Nt 1N)
S14 5| S14 2
>< —_— J—
{ 2513(1+512/513) |n (Sl3 +

- Q2 11

+514/8.40 ] +n| ==2)| = 3N+ =N,
S1a 3

=

—S14| 2
—2N In( )——Nf+3/N +2/N¢In
S12

3
Qés Mz
2 R
+4n(?iz QEJ’ (A10)

S14 —S14
K2=—(N§—1)/ Nc[ E(1+312/513) |n2( St

i)
S14 S13/ |

)(—NC+ 1/Nc)+47rﬁoln(

+ 72

+2In

+ 5.4 sl3ln(
S12
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