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It is shown that three of the four Brans solutions of classes I–IV admit wormhole geometry. Two-way
traversable wormholes in the Brans-Dicke theory are allowed not only for the negative values of the coupling
parameterv ~v,22!, as concluded earlier, but also for arbitrary positive values ofv ~v,`!. It also follows
that the scalar fieldf plays the role of exotic matter violating the weak energy condition.
@S0556-2821~97!06804-5#

PACS number~s!: 04.20.Gz, 04.50.1h

Researches on wormhole physics by Morris, Thorne, and
Yurtsever@1,2# have opened up, in recent years, a new fron-
tier in theoretical physics. There already exist a number of
investigations exploring the possible existence of wormhole
geometries in different physical situations@3–6#. The occur-
rence of exotic matter having negative energy density@weak
energy condition~WEC! violation# offers an intriguing pos-
sibility as to whether wormholes might act as effective gravi-
tational lenses in astrophysical scenarios. Such a possibility
has been conjectured by Crameret al. @6# who also recom-
mend an analysis of massive compact halo objects
~MACHO’s! search data for the detection of such lens ef-
fects. However, all the above analyses were carried out only
within the framework of Einstein’s general relativity theory
~GRT!. On the other hand, it is known that the GRT can be
recovered in the limiting casev→` of the Brans-Dicke
theory ~BDT!. In addition to the well-known utility of the
BDT in local and cosmological problems, it is often invoked
in the interpretation of physical phenomena on a galactic
scale as well. For example, there are attempts aimed at ex-
plaining the observed flat rotation curves in the vast domain
of dark galactic haloes@7,8#. It, therefore, seems only natural
that in the context of wormhole physics, too, one looks for
wormhole solutions of BDT. The case of dynamic worm-
holes has been dealt with by Accettaet al. @9# while the
search for static wormhole geometry in BDT has been initi-
ated only recently by Agnese and La Camera@10#. They
show that a static spherically symmetric Brans-Dicke~BD!
solution, obtained in a certain gauge by Krori and Bhatta-
charjee @11#, does indeed support a two-way traversable
wormhole forv,22 and one way forv.23/2.

In the present paper, we wish to examine how many of the
Brans I–IV classes of solutions@12#, which also include the
case considered in@10#, support wormhole geometry. It is
demonstrated that, of the four classes, as many as three rep-
resent wormhole solutions provided the range of parameters
are chosen appropriately. The range, obtained by Agnese and
La Camera@10#, of the coupling parameter for wormhole
solutions, viz.,v,22, seems unduly restrictive. Our analy-
sis reveals thatv may take on arbitrary positive values as
well. It will also be apparent that the presence of the BD
scalar fieldf cannot prevent WEC violation showing that the
latter is not a consequence of the GRT alone.

The next four sections will deal with four classes of Brans
solutions, respectively. The final section concludes the re-
sults obtained in the paper.

The BD field equations are
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whereh2[~f;r!;r andTMmn is the matter energy-momentum
tensor excluding thef field, v is a dimensionless coupling
parameter. Brans@12# presented four classes of solutions to
BDT. The general metric, in isotropic coordinates (r ,u,w,t),
is given by (G5c51)

dt252e2a~r !dt21e2b~r !dr21e2n~r !r 2@du21sin2udw2#.
~3!

Brans solutions correspond to the gaugeb2n50. Class I
solutions are given by
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a0, b0, B, C, andf0 are constants. The constantsa0 andb0
are determined by an asymptotic flatness condition as
a05b050, whileB is determined by the requirement of hav-
ing Schwarzschild geometry in the weak field limit such that
B5lM /2, M.0 is the central mass of the configuration.
ClearlyB andl must have the same sign.

The class I solution above is exactly the one considered in
@10#. It can be easily verified that Eq.~6! of @10# is just our
Eq. ~7! above. The important point is that the exponents in
Eqs. ~4!–~6! depend on two parametersv andC satisfying
the inequality~7!. This implies that the range ofv is dictated
by the range ofC, which, in turn, is to be dictated by the
requirements of wormhole geometry as we shall see soon.

In their analysis, Agnese and La Camera@10# use post-
Newtonian values to parametrize their two exponentsA and
B ~equivalently, ourv andC! by a single parameterg @5~1
1v!/~21v!#. This procedure leads, after suitable readjust-
ment of notations, to the equality thatC5g21521/~v12!,
which certainly constitutes a stronger condition than the in-
equality ~7!. As a further consequence, we find
l25~v11.5!/~v12!.0 which implies that the range22,v
,21.5 must be excludeda priori as it corresponds to imagi-
naryl. Therefore, it seems more logical to use the inequality
~7! per sefor the analysis.

In order to investigate whether a given solution represents
a wormwhole geometry, it is convenient to cast the metric
into Morris-Thorne canonical form:

dt252e2F~R!dt21F12
b~R!

R G21

dR2

1R2@du21sin2 udw2#, ~8!

whereF(R) andb(R) are called the redshift and shape func-
tions, respectively. These functions are required to satisfy
some constraints, enumerated in@1#, in order that they rep-
resent a wormhole. It is, however, important to stress that the
choice of coordinates~Morris-Thorne! is purely a matter of
convenience and not a physical necessity. For instance, one
could equally well work directly with isotropic coordinates
using the analyses of Visser@3# but the final conclusions
would be the same. Redefining the radial coordinater→R as
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we obtain the functionsF(R) andb(R) as
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b~R!5RF12H l$r 2~R!1B2%22r ~R!B~C11!

l$r 2~R!2B2% J 2G . ~11!

The throat of the wormhole occurs atR5R0 such that
b(R0)5R0 . This gives minimum allowedr -coordinate radii
r 0

6 as

r 0
65B@~12V!6AV~V22!#. ~12!

The valuesR0
6 can be obtained from Eq.~9! using thisr 0

6.
Noting that R→` as r→`, we find that b(R)/R→0 as
R→`. Also b(R)/R<1 for all R>R0 . The redshift function
F(R) has a singularity atr5r s5B. In order that a wormhole
be two-way traversable, the minimum allowed valuesr 0

6

must exceedr s5B. The extent to which this requirement is
satisfied depends on specific values ofV. Several cases are
possible.

~i! 2`,V,0 @⇒l,C11#. We see thatr 0
1.B while

r 0
2,B. Hence a real, positive throat radiusR0

1 exists only
when r5r 0

1. The functionF(R) is also nonsingular for
R>R0

1.0 and it is finite everywhere. We therefore have a
two-way traversable wormhole. On the other hand, if
r5r 0

2,B, the corresponding valueR0
2 is imaginary and

hence does not represent a wormhole.
~ii ! V50 @⇒l5C11#. This gives a minimum allowed

radiusr 0
65B and the functionF(R) is singular at the cor-

responding radiusR0
654B. Thus we obtain a non-

Schwarzschild one-way wormhole sinceCÞ0 and the scalar
field f is present. The choiceC50 indicates the absence of
the f field and we have what is known as the one-way
Schwarzschild wormhole.

~iii ! 0,V,2 @⇒l.C11#. In this case,r 0
6 and hence

R0
6 are imaginary. Hence, no wormhole can be constructed.
~iv! 2<V,`. If l assumes a positive sign and so doesB,

then r 0
6 andR0

6 both become negative and hence worm-
holes are not possible. Letl assume a negative sign so that
B52B8, B8.0. Then, from Eq.~12!, we get r 0

2.B8,
r 0

1,B8. The functionF has no horizon atr5r 0
2 and is

finite for r>r 0
2 and we have a two-way wormhole with a

corresponding throat radiusR5R0
2. But if r5r 0

1, then
F(R) is undefined, and we cannot have a wormhole. The
caseV52 corresponds to case~ii ! above.

Summing up, we see that two-way wormhole solutions
are allowed only in the ranges2`,V,0 and 2,V,`
~with l negative,l52l8, l8.0!. Let us write outV in
terms ofv andC explicitly:

V512
C11

l
512

C11

6@~C11!22C~12vC/2!#1/2
. ~13!

It is evident that~C11! andl must have the same sign for
V,0. Suppose both have minus signs. Then,C1152t,
t.0, say. The following inequality must hold:

t.@ t21~11t !$11~v/2!~11t !%#1/2⇒~11t !v,22.

It is possible to chooset in such a way thatv may take on
any arbitrary value in the open interval~22,0!. Suppose
again that both~C11! and l have plus signs. Then,C11
5s, s.0, say. The following must hold:
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s.@s22~s21!$12~v/2!~s21!%#1/2

⇒2~s21!$12~v/2!~s21!%,0.

Now, two cases are possible:~a! If 0,s,1, takes215a,
thena,0. We then haveav,22⇒2`,v,`. ~b! If 1,s
,`, takes215b.0. Then,bv,2. In the limitb→01, we
havev,1`. In other words,v can take on arbitrary positive
values ifa andb are appropriately chosen. For 2,V,`, we
must have~C11!.l8 and we findv,` from the same
analysis as above.

The combined energy density of the gravitational
~second-order derivatives ofgmn! 1 scalar ~f! field
(Tg1Tf)00 is obtained by computing the Einstein tensorG00
such that
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From Eq.~11!, we obtain
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If V,0 or V.2, thendb/dR,0. This implies that, withf
everywhere non-negative,G00,0. This shows that the scalar
field f plays the role of exotic matter at the wormhole throat.
The same conclusion was reached also in@10#.

The axially symmetric embedded surfacez5z(R) shap-
ing the wormhole’s spatial geometry is obtained from
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56F R
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For a coordinate-independent description of wormhole phys-
ics, one may use proper lengthl instead ofR such that
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In the present case,

l56E
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1

r
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This integral is not integrable in a closed form. Nonetheless,
it can be seen thatl→6` as r→6`.

Class II solutions are given by
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The constantsa0 andb0 are determined by using an asymp-
totic flatness condition and the constantB is determined by
the weak field condition as follows:

a052
p

L
, b05
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L
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whereM.0 is the central mass of the configuration. The
inequality~22! fixes the range ofv:C>21⇒v,22, or,C,
21⇒22,v,23/2. The sign ofL is left undetermined. Un-
der the radial coordinate transformationr→R

R5r S 11
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class II solutions yield
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Once again,R→` asr→` and all the conditions for a two-
way wormhole are satisfied by the aboveF(R) and b(R).
The functionF(R) has no horizon, is finite everywhere, and
F(R)→0 asR→`. The r radii of the throat are given by

r 0
65

Bb0

p
@216~11b0

2/p2!1/2#. ~27!

As usual, putting these values in Eq.~24!, we can findR0
6.

Notice that finite positive values ofr ~exceptr50! corre-
spond to finite positive values ofR. Thus we require that
r 0

6.0 so that we can haveR0
6.0. Rewriting Eq.~27! as

r 0
15pM(11C), wherep.0 is any arbitrary real number,

we find that the rangeC.21 allows two-way wormhole
solutions since it ensuresr 0

1.0. In the same way,
r 0

252qM(11C) whereq.0 is any arbitrary real number
andC,21 implies a finite positiveR0

2 for the wormhole
throat radius in the range22,v,23/2.

It can be verified that

db

dRU
R5R6

0

521 ~28!

and hence there occurs a WEC violation. The flaring-out
conditiond2z/dR2.0 is also satisfied, since it can be veri-
fied that

d2z

dR2U
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0

5
1
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The proper lengthl is given by

l56eb0E
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6

r
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Again,R→6`⇔ l→6` as r→6`.
Class III solutions are given by
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r

B
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The redshift and shape functions are
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F~R!5a02 r ~R!/B , ~35!
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where
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Here, too,R→` as r→` but b(R)/Ry0 asR→`. Also
F(R)→` asR→`. Asymptotic flatness condition is also not
satisfied by this solution. Therefore, there is no question of
any wormhole geometry in this case.

Class IV solutions are
a~r !5a02 1/Br , ~38!

b~r !5b01 ~C11!/Br , ~39!

f5f0e
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Usual asymptotic flatness and weak field conditions fixa0,
b0, andB as

a05b050, B51/M.0. ~42!

The functions are
F~R!52a02 1/Br~R! , ~43!
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The wormhole throat occurs at

r5r 05~C11!/B⇒R5R0@~C11!/B#e. ~46!

It can be verified from Eq.~41! that ~C11!.0 only if
v,22. No wormhole is possible if22,v<23/2 or v.
23/2, since~C11! is either negative or imaginary.

The proper length is given by

l56E
r0

r

expSC11

Br Ddr. ~47!

One can see that ifr→6`, thenR→6` and l→6`. It can
be verified that all the conditions of a two-way wormhole
including the flaring-out condition are satisfied. The pecu-
liarity of this solution is that

db

dR
52@~C11!/Br#2,0, ~48!

and henceG00,0 for all finite nonzero values ofr ~and, of
course,R!. This implies that the entire wormhole, and not
only the throat, is made up of exotic material.

The special caseC521 is not of interest as it corre-
sponds to a flat spatial section.

It was shown in the foregoing that three out of the four
types of Brans solutions give rise to a two-way traversable
wormhole geometry provided the constants are chosen ap-
propriately. The restrictionv,22 need no longer be strictly
maintained, for, as we have seen,v can also take on positive
values in the context of two-way wormholes. This result ex-
tends the scope for the feasibility of wormhole scenarios
even to the regime of ordinary observations. For example,
laser-ranging probes and observations on binary systems put
a lower limit of v>500–600@13–15#. However, there oc-
curs a violation of the WEC at the wormhole throat even for
v,1` ~class I solutions!, but, unlike in@10#, the range ofv
~or g! alone does not cause it. The positive, real values of the
throat radiir 0

6, ~or R0
6! containing bothv andC are actu-

ally responsible for the WEC violation, as we have just seen.
Only in class IV solutions do we see that WEC is violated
for all values ofr .

A search for wormhole geometry in BDT amounts to an
investigation of the extent to which the scalar fieldf does
play the role of exotic matter required for WEC violation.
Researches into the existence of matter having negative en-
ergy density~or, negative mass! are not new. It was Bondi
@16# who initiated the work and, in recent years, we have a
number of investigations into the question of negative energy
@17–20#. Interestingly, Pollard and Dunning-Davies@20#
show that no contradictions arise if negative mass is intro-
duced into Newton’s laws of motion.
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