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It is shown that three of the four Brans solutions of classes I1-1V admit wormhole geometry. Two-way
traversable wormholes in the Brans-Dicke theory are allowed not only for the negative values of the coupling
parametew (w<<—2), as concluded earlier, but also for arbitrary positive values ¢b<<). It also follows
that the scalar field¢ plays the role of exotic matter violating the weak energy condition.
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Researches on wormhole physics by Morris, Thorne, and In the present paper, we wish to examine how many of the
Yurtsever[1,2] have opened up, in recent years, a new fron-Brans 1-IV classes of solutioj42], which also include the
tier in theoretical physics. There already exist a number ofase considered ifil0], support wormhole geometry. It is
investigations exploring the possible existence of wormholglemonstrated that, of the four classes, as many as three rep-
geometries in different physical situatiof-6]. The occur- ~ resent wormhole solutions provided the range of parameters
rence of exotic matter having negative energy derfsigak  a@re chosen appropriately. The range, obtained by Agnese and
energy conditionf WEC) violation] offers an intriguing pos- L& Camera[10], of the coupling parameter for wormhole
sibility as to whether wormholes might act as effective gravi-S0lUtions, viz.,o<—2, seems unduly restrictive. Our analy-
tational lenses in astrophysical scenarios. Such a possibilit§iS "€veals that» may take on arbitrary positive values as
has been conjectured by Cramral. [6] who also recom- well. It_W|II also be apparent that _the presence of the BD
mend an analysis of massive compact halo object calarl field¢ cannot prevent WEC violation showing that the
(MACHO's) search data for the detection of such lens ef- atter is not a consequence of the QRT alone.
fects. However, all the above analyses were carried out onlg IThe next four sgctllons_;r\;]vlll ]Eieall with 'four claslse dS of I?]rans
within the framework of Einstein’s general relativity theory oltions, respectively. The final section concludes the re-

o sults obtained in the paper.

(GRT). On the other hand, it is known that the GRT can be The BD field equations are
recovered in the limiting case—x of the Brans-Dicke
theory (BDT). In addition to the well-known utility of the D2 8m
BDT in local and cosmological problems, it is often invoked
in the interpretation of physical phenomena on a galactic
scale as well. For example, there are attempts aimed at ey _ = g9,,R=— 8_77 T — w b b~ } ... P
plaining the observed flat rotation curves in the vast domain *” 2 #” ¢ Mrro g2 [T 2 SwrThie
of dark galactic haloel7,8]. It, therefore, seems only natural 1
that in the contgxt of wormhole physics, too, one.looks for — [¢;M;V_gWDZ¢], 2)
wormhole solutions of BDT. The case of dynamic worm- ¢
holes has been dealt with by Accetal. [9] while the ) " )
search for static wormhole geometry in BDT has been initi-Vherell"=(¢"),, and Ty, ,, is the matter energy-momentum

ated only recently by Agnese and La Camétd]. They tensor excluding thep field, » is a dimensionless cogpling
show that a static spherically symmetric Brans-Di¢B®) parameter. Brangl2] presented four classes of solutions to

solution, obtained in a certain gauge by Krori and Bhatta—.BDT' The general metric, in isotropic coordinatesd, ¢.1),

charjee[11], does indeed support a two-way traversable'> 9'VE" by G=c=1)
wormhole foro<—2 and one way fow>—3/2. d7?=—e?*dt?+e?ANdr2+e2"(Vr2[d #?+ sirf ad ¢?].

3

= 3720 Ma @

*On leave from: Department of Mathematics, Tolaram College,Brans solutions correspond to the gauge »=0. Class |
Narayanganj, Dhaka, Bangladesh. solutions are given by
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ag, Bo, B, C, and ¢, are constants. The constamfgand 8,

are determined by an asymptotic flathess condition a:

ag=B,=0, while B is determined by the requirement of hav-

ing Schwarzschild geometry in the weak field limit such that

B=AM/2, M>0 is the central mass of the configuration.
Clearly B and\ must have the same sign.

The class | solution above is exactly the one considered i

[10]. It can be easily verified that E¢6) of [10] is just our

Eq. (7) above. The important point is that the exponents in

Egs. (4)—(6) depend on two parametessand C satisfying
the inequality(7). This implies that the range af is dictated
by the range ofC, which, in turn, is to be dictated by the
requirements of wormhole geometry as we shall see soon.
In their analysis, Agnese and La Cam¢i®] use post-
Newtonian values to parametrize their two exponektsnd
B (equivalently, ourw andC) by a single parametey [=(1
+w)/(2+w)]. This procedure leads, after suitable readjust
ment of notations, to the equality th@t=y—1=—1/(w+2),
which certainly constitutes a stronger condition than the in
equality (7). As a further consequence, we find
\=(w+1.5/(w+2)>0 which implies that the range 2<w
<—1.5 must be excluded priori as it corresponds to imagi-

nary\. Therefore, it seems more logical to use the inequality,

(7) per sefor the analysis.

In order to investigate whether a given solution represent

a wormwhole geometry, it is convenient to cast the metri
into Morris-Thorne canonical form:

b(R)

-1
dr?=—e**Rdt?+| 1~ T} dR?

+R?[d#?+sir? 6de?], (8)

where®(R) andb(R) are called the redshift and shape func-
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Mr3(R)+B2 —2r(R)B(C+1))?
b(R)=R 1—[ trt ))\{rz}(R)_r(Bz)}( )] . (1D

The throat of the wormhole occurs &=R, such that
b(Ry) =R,. This gives minimum allowed-coordinate radii

ro” as
o =B[(1-Q)=/Q(Q—2)].

The valuesR,™ can be obtained from Eq9) using thisr,".
oting that R—« as r—o, we find thatb(R)/R—0 as
—o0, Also b(R)/R=<1 for all R=R,. The redshift function

®(R) has a singularity at=r ;=B. In order that a wormhole

be two-way traversable, the minimum allowed valugs
must exceed ;=B. The extent to which this requirement is

(12

I§atisfied depends on specific values{bfSeveral cases are

possible.

(i) —o<Q<0 [=\<C+1]. We see that,">B while
ro” <B. Hence a real, positive throat radiRg" exists only
whenr=r,". The function®(R) is also nonsingular for
R=R,">0 and it is finite everywhere. We therefore have a
two-way traversable wormhole. On the other hand, if
r=ry <B, the corresponding valuR, is imaginary and
hence does not represent a wormhole.

(i) Q=0 [=A=C+1]. This gives a minimum allowed
radiusr,” =B and the functior®(R) is singular at the cor-
responding radiusR,"=4B. Thus we obtain a non-
Schwarzschild one-way wormhole sin€e£0 and the scalar

field ¢ is present. The choic€=0 indicates the absence of
the ¢ field and we have what is known as the one-way
Schwarzschild wormhole.

(i) 0<Q<2 [=\>C+1]. In this caser,” and hence
Ro" are imaginary. Hence, no wormhole can be constructed.
(iv) 2=Q<. If A assumes a positive sign and so dBes
enr,” andR,~ both become negative and hence worm-

Choles are not possible. Latassume a negative sign so that

B=-B', B’>0. Then, from Eq.(12), we getr, >B’,
ro"<B’. The function® has no horizon at=r,~ and is
finite for r=r,~ and we have a two-way wormhole with a
corresponding throat radiuR=R,~. But if r=r,", then
®(R) is undefined, and we cannot have a wormhole. The
case()=2 corresponds to cage) above.

Summing up, we see that two-way wormhole solutions

tions, respectively. These functions are required to satisfire allowed only in the ranges»<Q<0 and 2<Q<x

some constraints, enumerated[i], in order that they rep-

(with N negative,A=—\', \">0). Let us write out(} in

resent a wormhole. It is, however, important to stress that thierms ofw andC explicitly:

choice of coordinategMorris-Thorng is purely a matter of

convenience and not a physical necessity. For instance, ond2=1—

could equally well work directly with isotropic coordinates
using the analyses of Viss¢B] but the final conclusions
would be the same. Redefining the radial coordimateR as

B Q
2 1-—
R—refol 1 B r Q=1 C+1 9
=re T B| =l-= 9
1+?

we obtain the function®(R) andb(R) as

C+1_,
-

C+1
+[(C+1)>-C(1-wC/2)]¥?*

(13

It is evident that(C+1) and\ must have the same sign for
(<0. Suppose both have minus signs. Theént 1= —t,
t>0, say. The following inequality must hold:

t>[t2+ (1+ ) {1+ (w/2)(1+1)} Y= (1+ ) o<—2.

It is possible to choosein such a way thatw may take on
any arbitrary value in the open intervél-2,0). Suppose
again that botHC+1) and \ have plus signs. TherG+1
=s, s>0, say. The following must hold:
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s>[s2—(s—1){1—(w/2)(s—1)}]*2 where M>0 is the central mass of the configuration. The
inequality (22) fixes the range ob:C=—1=w<-2, or,C<
=—(s—1){1-(w/2)(s—1)}<0. —1=—2<w<—3/2. The sign ofA is left undetermined. Un-

der the radial coordinate transformation: R

1+ B’ 1 2 '
f_2 ex ;arcta E

Now, two cases are possibl@) If 0<s<1, takes—1=a,

thena<0. We then havaw<—2=—wx<w<w. (b) If 1<s R=r

<oo, takes—1=b>0. Thenbw<2. In the limitb—0+, we

havew<+. In other wordsw can take on arbitrary positive ) )

values ifa andb are appropriately chosen. For®l<w, we  Class Il solutions yield

must have(C+1)>\" and we findw<e from the same T 2 r(R)

analysis as above. PRI=—1+ 1 arctars T) ’ (29)
The combined energy density of the gravitational

BO ’ (24)

(second-order derivatives ofg,,) + scalar (¢) field o ply_|q, 2B r(R)(C+1) B)]z 26
(Tg+T4)oois obtained by computing the Einstein ten&y, r’(R)+B? A :
such that
1 1 db Once againR—« asr—o and all the conditions for a two-
GooZ@ (Tg+T¢)OO=R7 ar’ (14  way wormhole are satisfied by the abo®#€R) and b(R).
The function®(R) has no horizon, is finite everywhere, and
From Eq.(11), we obtain ®(R)—0 asR—». Ther radii of the throat are given by
db  4r?B? . _Bbo 2/ _2\1
Wszm(z—m]_ (15) ro-=——[=1=(1+By/7) ?]. (27)

If Q<0 or 0>2, thendb/dR<0. This implies that, withy S Usudl, putting these values in E4), we can findR,".
everywhere non-negativ&,,<0. This shows that the scalar Notice that finite positive values af (exceptr=0) corre-
field ¢ plays the role of exotic matter at the wormhole throat,SPONd to finite positive values @®. Thus we require that
The same conclusion was reached alsglil. ro_ >0 so that we can havR,~>0. Rewriting Eqg.(27) as

g ) .
The axially symmetric embedded surfaze z(R) shap- "o deM (h1+%)' wherep=0 is T‘I”y arbitrary real nurﬂb:ar,
ing the wormhole’s spatial geometry is obtained from we find that the Ta”9£>‘1 +a ows two-way wormhole
dz R i solutions since it ensures,”>0. In the same way,

+

2l 1 (16) ro =—qM(1+C) whereq>0 is any arbitrary real number
dR "~ |b(R) and C<—1 implies a finite positiveR,” for the wormhole

throat radius in the range 2<w<<—3/2.
For a coordinate-independent description of wormhole phys- |t can be verified that

ics, one may use proper lengdthinstead ofR such that db
= JR dR 1 dRr =-1 (28)
~~ Jr; [1-b(RRTP* 17 R=F
and hence there occurs a WEC violation. The flaring-out
In the present case, conditiond?z/dR?>0 is also satisfied, since it can be veri-
. fr By 18) fied that
B rar ' dZZ _ 1 -0 29
dR? Ry 29

This integral is not integrable in a closed form. Nonetheless, R=R%g

it can be seen thdt— o asr— =+,

Class Il solutions are given by The proper lengthh is given by

r
2 r = +gho BNdr=+eBo[(r—ra*)+---1.
a(r)=ag+ n arctarEE , (19 |==e Jrge dr==>e™[(r=ro) 1. Q0
2(C+1) r r? Again, R— +®& | — + oo asr— =+,
Br)=p———arctang|—In| 77|, (20 Class IlI solutions are given by
r
B(1) = ppe(2C/Narctanr/e) (21) a(r)=ag— B’ (32)
o wC 2 r 2 r
A'=C|1-—|-(C+1)">0. (22) B(r)=Bo=In| 5| +(C+1)| 5/, (32)
The constantsy, and 3, are determined by using an asymp- B(r)=poe™¢"'®), (33
totic flatness condition and the constdhis determined by _ 5 =
the weak field condition as follows: C= %5("3 (34)
_ 7 _mCHl)  AM ’s ¢
="} Po=—(x— B=75 @3 e redshift and shape functions are
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®(R)=ay— r(R)/B, (35) One can see that if— o, thenR— =+ andl—=*oc, It can
Cc+1 5 be verified that all the conditions of a two-way wormhole
b(R)=R|1— + r(R)—1 (36) including the flaring-out condition are satisfied. The pecu-
B ' liarity of this solution is that
where db )
C+1 ﬁ=—[(c+l)/Br] <0, (48
_,—1Rp2
R=r"B ex;{ Bot B ') @7 and hences,<0 for all finite nonzero values af (and, of

Here, t0oo,R—» asr—x but b(R)/R+0 as R—x. Also

P (R) —o asR—o0, Asymptotic flatness condition is also not

course,R). This implies that the entire wormhole, and not
only the throat, is made up of exotic material.
The special cas€=—1 is not of interest as it corre-

satisfied by this solution. Therefore, there is no question o§ponds to a flat spatial section.

any wormhole geometry in this case.
Class |V solutions are

a(r)y=ag— 1/Br, (38

B(r)=By+ (C+1)/Br, (39

b= e P, (40)

C:—li\/—Zw—3. 1)
w+?2

Usual asymptotic flathess and weak field conditionsafix
By, andB as

ap=Bo=0, B=1/M>0. (42)

The functions are
O (R)=—ay— 1/Br(R), (43

B C+1)2
R=r exd (C+1)/Br]. (45

The wormhole throat occurs at
r=ro=(C+1)/B=R=Ry[(C+1)/B]e. (46)

It can be verified from Eqg.(41) that (C+1)>0 only if
w<—2. No wormhole is possible if-2<w=-3/2 or 0>
—3/2, since(C+1) is either negative or imaginary.

The proper length is given by

| fr ;{C+1
==+ ex
o Br

dr. (47)

It was shown in the foregoing that three out of the four
types of Brans solutions give rise to a two-way traversable
wormhole geometry provided the constants are chosen ap-
propriately. The restrictiom<<—2 need no longer be strictly
maintained, for, as we have seencan also take on positive
values in the context of two-way wormholes. This result ex-
tends the scope for the feasibility of wormhole scenarios
even to the regime of ordinary observations. For example,
laser-ranging probes and observations on binary systems put
a lower limit of ¥=500-600[13—-15. However, there oc-
curs a violation of the WEC at the wormhole throat even for
w<+o (class | solutiong but, unlike in[10], the range ofv
(or y) alone does not cause it. The positive, real values of the
throat radiir,™, (or R,") containing bothw andC are actu-
ally responsible for the WEC violation, as we have just seen.
Only in class IV solutions do we see that WEC is violated
for all values ofr.

A search for wormhole geometry in BDT amounts to an
investigation of the extent to which the scalar fiebddoes
play the role of exotic matter required for WEC violation.
Researches into the existence of matter having negative en-
ergy density(or, negative magsare not new. It was Bondi
[16] who initiated the work and, in recent years, we have a
number of investigations into the question of negative energy
[17-20. Interestingly, Pollard and Dunning-DavidR0]
show that no contradictions arise if negative mass is intro-
duced into Newton'’s laws of motion.
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