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Masses of the physical mesons from an effective QCD Hamiltonian
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The front form Hamiltonian for quantum chromodynamics, reduced to an effective Hamiltonian acting only

in the qq space, is solved approximately. After coordinate transformation to usual momentum space and
Fourier transformation to configuration space, a second order differential equation is derived. This retarded
Schralinger equation is solved by variational methods and semianalytical expressions for the masses of all 30
pseudoscalar and vector mesons are derived. In view of the direct relation to quantum chromodynamics
without a free parameter, the agreement with experiment is remarkable, but the approximation scheme is not
adequate for the mesons with one up or down quark. The crucial point is the use of a running coupling constant
a4(Q?), in a manner similar, but not equal to the one of Richardson in the equal usual-time quantization. Its
value is fixed at thez mass and the five flavor quark masses are determined by a fit to the vector meson
guarkonia[S0556-282(97)04504-9

PACS numbds): 12.40.Yx, 12.38.Lg

[. INTRODUCTION AND MOTIVATION one can assemble all many-body aspects into a vertex func-
tion which bears great similarity with the running coupling
One of the most outstanding tasks in strong interactiorconstant.
physics is to calculate the spectrum and the wave functions One wonders: How can such a simple structure account
of physical hadrons from quantum chromodynam{i@E€D).  for the spectra and wave functions of all scalar and vector
Discretized light-cone quantizatigPLCQ) [1] has precisely mesong Is this not too much of a claim? On the other hand,
this goal. Its three major aspects &i¢ a rejuvenation of the the effective Hamiltonian has been derivgzil] from the
Hamiltonian approach(2) a denumerable Hilbert space of QCD Lagrangian without condition on the coupling constant
plane waves, an{B) Dirac’s front form of Hamiltonian dy- or on the mass of the constituents. One way of checking this
namics. In thefront form [2], or in light-cone quantization is to compare to experiment, and this shall be done in this
[3], one quantizes at equal “light-cone timeX"=t+2z, as  work very roughly and preliminarily. Lacking the running
opposed to the conventionaistant formwhere one quan- coupling constant going with the thedr®1], one can replace
tizes at equal usual time As reviewed il 4], the front form it by one of its current phenomenological versig@2—24.
has unique features, among them, the vacuum is simple, or &he present work applies the one of Richard§®a]. It in-
least simpler than in the instant form, and the relativisticterpolates smoothly between asymptotic freed@6y26 and
wave functions transform trivially under certain bod2s4|. infrared slavery. After that, one has no freedom in the theory
Both are in stark contrast with the conventional instant form.and no adjustable parameters. Since the quark masses cannot
Over the years, the light-cone approdé&h has made much be determined from independent measurements, they must
progress. Calculatiorigl] agree with other methods, particu- be determined self-consistently from a fit to some of the
larly lattice gauge theory. Zero modes of the fields can baneson masses. This in itself is not trivial, except when hav-
important carriers of quantum structures, particularly of ing analytical expressions.
those of the vacuuni7,8]. Dimensionally reduced models In particular, a coordinate transformation from front to
[7,8] provide much insight into the structure of possible so-instant-form coordinates is performed in Sec. Ill. Apart from
lutions to QCD. But chiral aspects are not yet understooda more transparent interpretation, this way of writing down
and nonperturbative renormalization remains a challengéhe integral equation has certain advantages in performing
[9,10] as for any Hamiltonian approach. the calculations. No assumptions will be made in this sec-
But despite the many successes of light-cone Hamiltoniation: All manipulations are straightforward and fully equiva-
methods, one misses the contact to phenomenology beyorent to the front-form formulation. In Sec. IV, the bound-
the perturbative regime. We believe that more QCD-inspiredstate equation is approximated semirelativistically which
approaches are needed, work such as, for exafaflé2 or  allows for Fourier transforming the momentum-space inte-
[13,14], where the formalism is related to the experiment.gral equation into a configuration-space Sdchinger-type
The present work is of this type. equation. The so-obtained Hamiltonian is reduced in Sec. V
Right from the outset when applying DLCQ to gauge to a minimal number of term&oulomb plus linear potential
theory in 3+1 dimensiong[15-17, it was clear that one plus one spin-dependent term distinguishing between singlet
should need an effective Hamiltonian. Ja6] an integral and triple} and diagonalized approximately by a variational
equation in the light-cone momenta was solved numericallymethod.
which was derived by procedures similar to those of Tamm The masses of all pseudoscalar and vector mesons in Sec.
[18] and Dancoff[19], and a nonintegrable singularity was VI are thus semianalytic and approximate solutions to a sec-
removed by amad hocassumption. But recentlj20], the ond order differential equation in configuration space. In
method of effective interactions was generalized to avoid theomparison with the empirical massg28], they are not
usual truncation in the particle numbéd]. As it turns out, much worse than those of potential modg29—-33, or pre-
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dictions from heavy quark symmetf4], or even predic-
tions based on lattice gauge calculatip8S—37. In view of

the direct link to QCO 21] and the simplicity, this should be
regarded as considerable progress in the front-form ap-
proach.

But there is a potential danger in such an endeavor. The
present work is motivated by the question whether the simple
structures to be displayed can describe experimaniall.
Obviously, they can, but it should be emphasized that nu-
merically accurate solutions need another effort. This is cur-
rently being attempte[B8] and has a different objective than
to develop models designed to reproduce the data.

Il. THE EFFECTIVE HAMILTONIAN FOR QCD FIG. 1. The effective interaction in theq sector. By exchang-
ing “effective gluons,” a single-quark state with four-momentum
In discretized light-cone quantizatidDLCQ), one seeks , and spin projection\; is scattered into the quark state
to solve the eigenvalue problem (ki ,\}). Correspondingly, the antiquark is scattered frda,§ »)
to (kj,\}).

HiclWp)=Mj| W) 1) MK, N1 Aol )

= > | dx'd2K] (6K, N1 Ao Heg XK AL A
for a field theory. The “light-cone Hamiltonian” Ay
H.c=P*P, [4] is the Lorentz invariant contraction of the .
energy-momentum four-vectd®* and has the dimension X(X" KN A ) (2
(mas$?. The eigenvalues are interpreted as the square Tne pras and kets refer tpy Fock states which can be made
of the invariant mass of state Working in momentum rep-  jnvariant under SUY):
resentation, the three spatial component®tfare diagonal

. . 5 gt 5 v . 1 Ne
operators, with eigenvaluds’ ==;k" andP, =2k, . The %K A A)=—= 2, bl(k;,A)dl(ks,\5)]0). (3)
sum runs over all particles in a Fock state. Each particle has \/n—C c=1

a four-momentum denoted Byf*=(kj" ,k, k") and sits on  Goajs of the calculation are the momentum-space wave func-
its mass shell K*k,);=m?. The temporal component, the tions (x,K, ;\1,M\| ). They are the probability amplitudes
Hamiltonian properP ™, is a complicated and off-diagonal for finding the quark with helicity projectiol,, longitudinal
operator acting in Fock space. Its matrix elements are tabunomentum fractiork= kf/P*, and transversal momentum
lated in[4]. Based on the boost properties of»light-cone Op-k, and, correspondingly, the antiquark wikh, 1—x, and
erators[4], one can transform to a frame whe?e =0, thus K, . The effective interaction as diagrammatically dis-
P#P,=P"P~. SinceP™ is diagonal, the diagonalization of played in Fig. 1 is a sum of three terms: The first two dia-
P~ and ofH ¢ amounts to the same. The Hilbert space forgrams are kind of a one-gluon exchange and describe the
diagonalizingP~ is spanned by all Fock states which haveflavor-conserving part of the effective interaction, while the
given eigenvalues d®* andP, =(0,0) and can be arranged |ast graph due to the two-gluon annihilation can change the

into sectors according to the particle number suchyas flavor. In the present wprk we deal qnly with th_e first of
49 g, or qq qq. For any fixed value of the harmonic reso- them. The kernel of the integral equati(®) has a diagonal

lution K=2LP "/, the Hamiltonian matrix in Eq(1) is “kinetic” and an off-diagonal “interaction” energy: i.e.,

finite anq, in principle, cc_)uld be_ diagonalized numerlcally|v|g<x,|zL NN )
[1]. Details can be found in the literatuf4,20,21.
DLCQ is quite useful to cleanly phrase the problem, but

. ) ) . . my+kZ myt+k?
to do calculations, particularly in81 dimensions, one has = +

(X,Ky N1 No| )

to develop effective Hamiltonians. Fock space truncation in X 1=x

conjunction with perturbation theory in the manner of Tamm 1 . .

[18] and Dancoff{19] is unsatisfactory, because one has to by E dx’dzki(a(x’,ki)

resort toad hoc prescriptions to make things worKi6]. AAg

These drawbacks can be avoided by the method of iterated ;o

resolventd20,21]. It turns out possible to convert the many- X'B(Q) <)‘1')\2|S(Q)|7‘1')‘2><X, KD ML N4 )
body matrix equatiorl) into a well-defined two-body equa- Q% X(I—x)x (1—x') | rirnarer

tion with an effective interaction acting only in tlog space, @
i.e., Her ) =M3| ). In the continuum limitone has to
solve the integral equation The most important factors are the four-momentum transfer
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Q%= —(ky—kp)?=— (ky—kp)? ®) B '
and the vertex function(Q,A) which likes to combine with ok
the coupling constarg to become

2 2
B Ng— 1 g 2 . 4 ';‘ -1+
BQ= 50 e (QM=3a(Q,  © 3
the like-to-be “running coupling constant.” For QED, this S-2 r
factor reduces to the fine structure constgat o~ 1/137.
The spinor factorS(Q) represents the familiar current- 5L
current coupling
(N1 N2 S(Q)N1 NSy =[u(ky,Ng) y*u(ky,\7)] _4 L l I I
0.0 0.5 15 2.0

— 1.0
X[u(kz,A2) y,u(kz,Np)]. (7) r(fm]
The cutoff function@(x’,l?i) restricts integration in line FIG. 2. The quark-antiquark potenti(r) as given in Eq(11)
with Lepage-Brodsky regularizatidd] versus the relative distanceis plotted. The Coulomb and the con-
fining potential are indicated. Some of the heavier meson masses
R mi"’ Ei m§+ Ei are inserted to provide a scale.
O(x,k,): =

<(m;+my)2+A2. (8
Its Fourier transfornj22] generates two terms, see also be-

low,
The mass scald can be chosen freely.

Despite having been derived in the light-cone gauge

. > I : : . - -1 . --adq?) 8w 1
A" =0, the effective interaction imanifestly gauge invari- V(X)=5— | d3q et "= _—| - +k2r],
ant, depending only on the quark currents. The instantaneous 2w q? 27 r
interaction has canceled exactly against other gauge-variant (11

terms, se¢15,16,2]. Since one works in the front form, it is
also frame and boost invariantExplicit calculations for a(strong Coulomb and a linearly rising potential, as plotted
QED [16,38 are numerically very stable, and reproducein Fig. 2 versug =|x|. The linearity of the confining poten-
quantitatively the Bohr spectra and the fine and hyperfingial is a consequence af=1, as used ifi22] and throughout
structure. the present work. If one varies, one gets the curves dis-

The vertex function hidden in the like-to-be running cou- played in Fig. 3. It is taken frorf27]. Here, we do not want
pling constant of Eq(6) has the same perturbative seriesto keepa as a free parameter. For one reason, we refuse to
expansion as the running coupling constfiat| which is  speculate at this point whether or not the potential is strictly
indicated in an artist's way in Fig. 1. What is missing, thusconfining. For the other reason, the results to be displayed
far, is a renormalization group analysis of the formal expres-
sions. In the absence of that, we are interested in conse-
guences of Eq). How can it be that such a simple expres- 4 T T T
sion accounts for hadronic phenomena? What are the
invariant masses of the pseudoscalar and vector mesons, us-
ing such an interaction? How far does one get with analytical
procedures and, in particular, where does the approach go
wrong?

Lacking an exact expression fag(Q?), one can resort to
reasonable parametrizatiof2—24. In the sequel, we shall
content ourselves with the form of RichardJ@2)]:

V(r)[gev]

o 12w 1
Q)= 37 @+ QD) ®

At least, this form interpolates smoothly between asymptotic
freedom[25,26 and infrared slavery. In the original work, 0 L L L
the parametea was set to have the vallee=1 and x was 0 5 10 15 20

kept as a free parameter to be determined by the spectra. rfm]

Here, we take the value ofi(M7)=0.1134-0.0035 as

measured at th& mass[28] to fix FIG. 3. The confining potential as function of the parameter

Values are from top to bottoma=1, a=1.0005,a=1.01, and
k=193 MeV. (10 a= \/E=1.65.




55 MASSES OF THE PHYSICAL MESONS FROMMN. .. 2489

; T T ditivity of the interaction and the Lorentz invariance of the

0r eigenvalues. The rest of this work is a simple, straightfor-
ward evaluation.
8 — —
Ill. TRANSFORMING VARIABLES FROM THE FRONT
5 TO THE INSTANT FORM
§ The single-particle four-momenta can be parametrized
S~ >
2, L | either inﬁ the front form, kf=(k; ,k, ,k;) and ki
=(k, ,—k, ,k;), or in the instant form,
2 r 7 ki=(k?,k, ,k)=(E;,k) and
ottt A ks=(Kkg,—Ki —k)=(Ep, —K). (13

Sincek{’k; ,= m?, the temporal components are functions of

m/ K .
/ the spatial components

FIG. 4. Bound states ofjq pairs versusquark masses. All .
masses are given in units of the QCD-scaleThe upper curve _ MKy or E.= \/m-2+I22 T R2= \/m-2+122
refers to the triplet $,=2), the lower to the singlet3,=0). The ! k" ! b ! '
masses of some vector mesons,w,$,J/y) are marked by a (14

(A), those of some pseudoscalars®(n, 7', 7:) by a (x).
The transformation function betweenandk, is obtained

below are not very sensitive to large distances, since thetraightforwardly fromP™*: i.e.,
wave functions decay rapidly. Last but not the least, one has
to await the renormalization group analysis of thg(Q) _ _ ktEy
which truly comes with the theorj21]. x=x(k;)= E,+E,

The flavor quark masses are then the only free parameters
of the approach. Of course, they are subject to be determinethe front-form integral equation is boost and frame invariant
consistently by experiment. Natural candidates are thand, therefore, can be solved also in the center-of-mass

masses of the pseudoscalar {0and vector mesons ().  frame, where the total momentukhvanishes. Changing in-
Since the flavor quark masses potentially range from a fewegration variables, Ed4) in conjunction with Eq(12) can
MeV up to some 100 GeV, see, for instance, Fig. 4, onehus be rewritten identically as

faces two problemsl) By good reasons, the numerical so-

lutions of the integral equation have been restricted thus far . Lo 31 IR s i

to systems with equal masses of the constituents such as E<k|l//>:T(k)<k|l//>+J’ d*k’ (kUK )K" [¢).  (16)
positronium[16,38. The wave function is then peaked at

x=my/(m;+m,)=1/2. For very asymmetric systems this For simplicity, the explicit summation over the helicities is
will be a problem. To avoid that, we shall identically rewrite suppressed. Contrary to E(), all three integration vari-
the integral equation in the next section in terms of instantables have now the same support. The kinetic energy
form variables, which are somewhat easier to deal wizh.

(15

Shall one really perform a calculation of similar complexity R 1 m2+k? ma+k?

as in preceding work16,38 for any given set ofm; and T(k)= 2(my+my) " 1—x —(my+m,)?

m, when intending to fit them to the meson masses, or shall 1re

one aim for a quasianalytic, but approximate solution? In (E;+E5)2—(my+m,)?

view of the preliminary character of the present study, we = 2(my+my) 17)

have opted for the second. At least, this will pave the way for

a future, improved solution. becomes the familiar expression with the reduced mass
In the sequel, we shall repla¢t.s by the operator for sufficiently small momenta:

H

— ~  rH— 2 LK 1 1 1
2(m1+m2)[Heﬂ (mg+my)“]. (12 T(K)= T with s (18)
It differs from Hggt by an additive constant and an overall
scale, which both are Lorentz scalars. Béthand its eigen- > + Lo
value E have the dimension of gnas$ and have much in Ll FOCk_ sta_te|x,kl> has the_sameP+ aso|x ';(i)' Ex-
common with the nonrelativistic Hamiltonian and the bind-Pressed in - instant-form variable®” =P"+P". Since
ing energyE, as we shall see. As compared to an instanty” — Kz1tkz2=0, one is left withP™=P"" or, explicitly,
form Hamiltonian, however, the main advantages of the

front-form Hg as given in Eq(2) prevail, namely, the ad- E,+E,=Ej+E; or k*=k'? (19

Nevertheless, there are explicit residues from the front form.
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for every matrix element. Obviously, the interaction kernel

in Eq. (16) cannot change the size &f it only changes its
direction. This is a source of great simplification. For ex-
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with R=igxp. (29)

These expressions are simpler than usual, because of Eq.

ample, the four-momentum transfer is always identical with(19). For the antiquark, one must change the sign of thoth

the three-momentum transfer,

Q? ki) = (ky—

Ei)ZZ c'iZ’
(20)

— (kg — k) (kg — K})2—(Eq—

and the three-momentum transfer and its mean,

>

- -1 .
g=k—k' and pzz(k+k’), (21)
respectively, are always orthogonal:
- 1. 1. .
p-q= (k +k’ )(k—k’)zi(kz—k’z)zo. (22

The Jacobian of the transformation equati@®) is evalu-
ated by means of the identities

ax
K,

(E1+k)(Ez—ky)
E,Ex(E1+Ey)

(E1+k,)(Ex—

k,)
(E1+Ep?

X(1—Xx)=

(23

The auxiliary functions

.o J(Extky)(Ex—ky)
Alkk)= \/(E1+kz><E2—kz>

and

(24

are useful for factorizing

m,dx’

K'
W(1=)x (1-x")

=A(k,k)B(k,k)dk,, (25

and to single ouA which is not rotationallyinvariant. Both
A andB are dimensionless and of order unity for sufficiently
small momenta. The cutoff functid®’, as introduced in Eq.

andk’, and replace the quark-spin matixby 7. The cur-
rent term becomes then explicitly

) — v m ’ '
J(klk ) 4mlm2[u(kl1)\l)’y u(k 1)\1)]
X[u_(k21)\2)7/1, U(k,,)\é)] (30)
-G R )
=C| 1+ +
(Ez+my)? " (Ep+my)?
P-qia R )
x| 1+ +
(Ez+my)?  (Ex+my)?
c Zﬁ—i(iX(;' 25—iq3<? (31)
E;+my E,+m, /'’
with
_ (Eg+my)(Ex+my) (32
B 4m;m,

After A and B, a third auxiliary functionC is introduced,
which is also dimensionless and of order unity. As expected
for a Lorentz scalar] is rotationally invariant.

Thus far, all quantities considered are of order unity for
sufficiently small momenta. The most important part of the
interaction kernel

(KU[K"y =0 (K" )A(K,K")B(K,K")I(KK V(KK (33)
is, therefore, the interaction proper
VR = a(Q) 1 adg? 34
2wt Q2 2m? @2

It depends only on the three-momentum transfer.

The front form is frame and boost invariant, as men-
tioned. It is rotationallyco-, but not rotationallyinvariant,
particularly when the spatial rotations are performed perpen-

(8) to define a maximum transversal momentum, restricts, oflicular to thez axis. This aspect is reflected in the appear-

course, also three-momentum:

: E2s<

The quark currents in Eq$4) or (7) can be evaluated with
the Gordon decompositiof39]. Since we work in the
Lepage-Brodsky convention for the spingdd, one has

A

_)2

2

A%+4mm,

A (memy? 2

u(ky,Ng)¥0u(ky,\g)
£oomy B0 R 27
= m ,
PN (Ertmy)  (Eptmy) Y
uCky M) yu(k A =(2p=igX o)y a1 (28)

ance of the factoA as defined in Eq(24). The violation of
rotational invariance occurs, however, in such a form that it
can be absorbed into the wave function. If one inserts

E1+k )(E2 k,)

$(K)=(K| ) \/ (35)

into Eq. (16), the factorA cancels in the new integral equa-
tion

E ¢(R)=T(|Z)¢(|Z)+f d*k’ @ (k")B(k,k")JI(k,K")

XV(K,K")p(K'). (36)

The kernel is now rotationally invariant. Since no approxi-
mations have been made, the solutions of this equation,
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tatis mutandis are identical with those obtained from the 52 dz 1 1 m, m
original front-form integral equation, E¢4), but Eq.(36) is B=1—--————= with —= > —1)
much easier to deal with. 2mg 8y mg Mitmpimy  m;
(42)
IV. THE RETARDED SCHRO DINGER EQUATION ) )
o LA S (43
The front form of Hamiltonian dynamid] has wonder- ST 4ms o 1emd m: mi m;

ful properties, but it does not appeal strongly to our intuition,
not even when it is transcribed to instant-form variablesand
Thinking in terms of momentum-space integral equations is
not always easy. The equations become more transparent p2 92 (oxq)-(7xq) o-R
when Fourier transforming them to configuration space and BJ=1+ -
the corresponding Schdinger form of quantum mechanics.

2mm, 8m?

2
q 4m;m;, 4mj

We begin with rewriting Eq(36) conveniently as >R SR
—— 44
s 4m; mym,’ (44)

E¢<|2)=j K (G.5)b(K'). (37

respectively. One should emphasize that the forn\7(xﬁ)

The kernelH is expressed in terms of the momentum trans-neeids not to be known at this point, since it does not depend

fer and its mean rather than ByandK’. It is the Fourier ©" P- The total spin and the kinetic energy,
transform of the Schiinger Hamiltonian. To see that, one

multiplies the whole equation with ex’ﬁ(i) and integrates S=
over d3k. Defining the Fourier transforms by

2

2m,’

(c+7) and T=

N| -

(45

o respectively, complete the definitions. Finally, one can con-
¢(;):J d3k €% *¢(k’) and jecture that the wave function decays sufficiently fast, such

that it acts itself like a cutoff. We, therefore, 98(k’')=1.
The Hamiltonian operator in Schiimger representation

H(>Z, 5):f dsﬁ eid~§ﬁ(a’5), (38) becomes then straightforwardly

1 / V(r)

B s V2V(r)
T2m | T my+my

02+ V(r)+
pEHV(r) 8m;
oL 7L SLC
7t ——>— '
4m;  4m; mim,
(46)

one gets an eigenvalue equation of the Sdimger-type with H
a possibly nonlocal Hamiltonian

(oXV)-(rxVV) 1V

E¢(£)=H(>Z,§)¢(>Z) with §E—iﬁx. (39) + amm, to o

The momentum transfeq is Fourier conjugate to the posi-

tion x of the quark in the center-of-mass frame, gt the | it the usual angular momentum operafo# <X 5 Since

associated momentum operator. This holds in. general bufy . average potential is spherically symmetric, one uses
unfortunately, one is unable to perform the Fourier transform( S T) - (X TV = 26 YTV anda. ie 28— 3 1o get
explicitly with all the square roots behind the energigs (¢ X V) (TXVV)=5(c- )V*V ando 7= 0 ge

The way out is, of course, to expand and to develop a sys-
tematic approximation scheme. We base it on the Lepage- H= 1 (1+ V(r) 52+V(r)
Brodsky cutoff and choosA such that 2mr\ my+m,/ =
k2 VAV 3m (mmmy)?
m_§$1' (40) 8m2\m+m, (m;+m,)?
for the light km,. Al t ded t +1&V(&'E+;‘E §.[)+ vV SNy
or the lighter quarkm;. square roots are expanded to - —=t = .
first nontrivial order rooriamg 4m; mump) - 3mm,
-, - - Its structure is a direct consequence of gauge theory, particu-
E=m + k_: m;+ p_+ q_ (41) larly QCD,Zand holds for an arbitrgry running Coypling con-
2m; 2m;  8my stanta(Q?). We emphasize particularly that this structure

was obtained from a fully covariant theof21]. The state-
which is a semirelativistic approximation. In the worst case,ment could even be stronger without our inability to evaluate
it allows for relativistic velocities of the lighter particle up to the Fourier transforms without expansions. Richardson’s pa-

|I2|~m1. The expansion of the various factors in the kernelrametrization ofx(Q?) yields the potentia‘{/(i) as given in
of Eq. (36) yields, up to second order, Eqg. (11, and thus
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R 22 R position of the physical hadrons. In order to avoid that in the
V2V(r)=,8(7+4175(x) and very crude estimate below, we shall substitute all physical
mesons by pureq pairs, by fiat We shall thus replace the
1 6V(r) 21 “pions,” for example, by “quasipions” with the same
T (T+ r_3)’ (48 physical mass. Theu-, ud-, du-, or dd eigenstates shall be

identified with the quasi®, quasi=", quasi#, or quasi

with 8=8m/27=0.93. If one works with QED, one sets 7 and so on. This simplification will be revoked in future
«=0 and chooses the valy@=1/137. work and is, by no means, a compelling part of the model.

We now have reached our goal: The retarded Stihger Our problems lie in another ballpark. One should not deal
equation and its Hamiltonian have a wonderfully simplehead on with the full complexity of the integral equations, or

structure which can be interpreted with ease. The averagd the retarded Schdinger equation. Which part of the
. ~ . . . Hamiltonian should one select in a first assault? Some help is
potentialV(x) plays a different role in the different terms of

the equation. In the first term of Eq47), in the kinetic gained by the rather unique property of the light-cone Hamil-

. . . F]onian: Kinetic and interaction energy are additive. One can
energy, it generates an effective mass of the quark whic ' ,
select always an “interesting partt,, and checka poste-

depends on the relative position and which reflects the non-~ - . . .

i ) ) - riori, by calculating the expectation value AH=H —H,,
locality of the interaction. In the second terWi(x) appears \yhether or not the selection makes any sense. Since the sca-
in its natural role as a potential energy. In the third term ongar ang pseudoscalar mesons have only little orbital excita-
observesV(x) as the analogue of the Darwin term. In the tions, i.e., are primarilg waves, one can disregard the spin-
remainderV(x) provides the coupling strength for the ana- orbit part and choose first

logue of the fine and hyperfine interactions of atomic phys-

ics, particularly the spin-orbit interaction. Contrary to com- V(1) 52 v2y

mon belief, they exist not only due to weak coupling, but Ho~(1+ +V(r)+ 32

also for strongly coupled QCD. my+my/ 2m; 3m;m,
Finally, one must come back to the expansion scheme of vy

Eq. (41). Its validity cannot be judgea priori, since the _
expansion is made under the integral. The omitted terms are 8mr2
of second order irp?/m? for the lighter quark. Whether or

not this is justified can be decided ordyposteriorj by the  Even that looks too complicated for a start up. We, therefore,
expectation value of the omitted next higher term: select those terms which have turned out to be important in
the past, namely, the central potential and the triplet-

3m, (ml—mz)z)

my+m, (my+m,)2 (50

1 ﬁ ’ (49) interaction mediated by the total spin. Omitting the effective
S8\ m? ) mass and the Darwin term, our choice is, therefore,
Only if §'is (very) small as compared to unity, the expansion =5 5 &
in Eq. (41) is justified. If it is comparable or larger than 1, Ho:p—+V(r)+ K>
the solution must be rejected, and another regime of approxi- 2m, 3mym, r
mation must be found. Below, we shall examine such cases. -5 s &
p B 2k° S )
“om rt 3mm, v AT (53)
V. MESON MASSES BY PARAMETRIC VARIATION r 12

It will take some “”?e and effort tp work out all the many Working in a spinorial representation which diagonalizes
consequences of the integral equations, @gor (36), or of =5 .
the retarded Schdinger equation47). In the sequel, we S, and S, we replace the latter _by the elgenyalue
shall restrict ourselves to calculate only the ground-statege:S(S.J“l) and take O or 2 for the singlet or the triplet,
masses of the pseudoscalar and vector mesons. If one leaJ&SPECtively. .
aside the recently discovered top quark and restricts to fivF V,\!hat does the wave functlon for the onvest state look
flavors (u,d:s,c:b), one has thus 30 different physical me- ike? For a pure Coulomb potential, the solution has the form
sons, since charge-conjugate hadrons have the same mass.

One cannot calculate these masses, however, without . 1
knowing the quark mass parameteng andm,. These can- P(x)= —=\¥%e M, (52)
not be measured in a model-independent way. In the sequel, m
we shall adopt the point of view that they have to be deter-
mined consistently within each model, for the better or theOmitting the Coulomb part, a linear potential can be solved
worse. One has thus five mass parameters to account for 3@ terms of Airy functions and its integral transforf0]. If
physical masses. Which ones should be selected to fit? Theame has both, one will have some mixture of the two. But for
are 142 506 different possibilities to select five memberghe present start-up check, even that requires too much effort.
from a set of 30, and we have to make a choice: We choose We shall rather pursue a variational approach and choose
the five puregq pairs. Even that is not unique: Shall one take Eq. (51) as a one-parameter familx). One could take also
the pseudoscalar or the vector mesons? We shall do both. harmonic oscillator statgd.3,14], but with Eq.(51) the ex-

Of course, one runs into the problem of the chiral com-pectation values are particularly simple:
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. 1 3 TABLE I. The flavor quark masses in MeV, as obtained from a
(Wp?|y=N?, (4| F|¢)=)\, and (¢|r|y)= o fit to Eq. (57). The first row refers to a fit for the singlets, the second
(53) to the one for the triplets.

These are all one needs for calculating the expectation valud2ver mass u d S ¢ b

of the energy From fit to 0~ 2.3 155.6 430.6 1642.3 5330.8
A2 ZSeKZ 38k% 1 From fit to 1 2228 236.2 427.2 17013 5328.2

E=<¢|Ho|lﬂ>=2—mr—ﬁ>\+3mlm2 =5

(54

) _ ) _ early as required by the soft pion theorems. Determining the
Since we deal only with ground states, we are not in conflic{; ass by fitting to the quasipion gives a value close to the

with the statement that the wave function cannot be purely.q ,rent mass,” see Table I. The resultisg1, see Tables
Coulombic. For the pure Coulomb case, tteehd PP states | anq |1, implies the ultrarelativistic string regime and that
would ~be  degenerate and the respective ratighe yalidity condition is badly violated. The retarded Sehro
|1h25(0)[ /] 415(0)|"=0.125 would disagree with the experi- ginger equation with its semirelativistic approximation
mental values=0.63 and=0.50 for charmonium and bot- scheme is thus not appropriate for describing quasipions. For
tomium{29]. _ o the 7 and they’, the scaling variables is of order unity,

We aim at calculating the total invariant mass of the hadyyhile for the quasin,, one definitely is in the Bohr regime.
rons and return to the light-cone Hamiltoniinc=M*, i.e.,  Here, the masses are similar or close to what is referred to as
to M?=(m;+m,)?+2(m;+my)E. For equal masses;  the “constituent-quark” mass.
=m,=m, one preferably expresses the variational equation Since singlet and triplet are so close ¢ 1, one fits the
(54) in units of the fixed QCD scalg, introducing the di- quark masses preferentially with the vector mesons. In the

mensionless variables lack of empirical data we have skt, =My, which should
N m M\ 2 be of minor importance in the present model, see Fig. 4. The
s=—, &=—, and W= (_) (55) flavor masses are now in close agreement with the constitu-
K K 2K ent quark masses, see Table |, and the smallness condition is

satisfied better, see Table II.
Having determined the quark masses, one has exhausted
3B8¢ 1 all frge_dom in the model. We now a_\sk: How well do the
)s+ E+—-. (56 remaining 25 meson masses agree with experiment? The for-
2.8 mal procedure runs quite analogously, except that it is now
easier. With the masses fixed, one varieseparately for
each flavor composition subject to E&4). The results are

The variational equatiofb4) reduces then simply to

2S.8
3¢

We must vary\, thuss, such that the energy is stationary,

W(s:§)=sz—(,8§—

IW(s:£) M\ 2 compiled in Table Il and compared with the experimental
— =0, thus (2—> =W(s*(£))=W*(§), values to the extent the latter are known. The present model
s s=s*(§) K predicts, for example,

(57)
at fixed values of the parameter§, 8,S.). This leads to a

g?%3%1%?2%:;VJEI'CTnczne%?af?:lgggsa%aelytf;rlllyv\;g"tebremz By and large, the agreement is remarkably good. The heavy
) - !N Sp . Y Pmeson masses are reproduced quite well, but the agreement
proximated by a quadratic equation, namely, wkE® 1 or

‘e is not quantitative everywhere, particularly not for those had-
whens <1. We got accustomed to.refer to the_se two " rons with one light quarky or d). In judging this agreement
gimes as the Bohr and the string reg|me,.respectlvely. In.thgne should keep in mindl) that all 25 meson masses have
Bohr regime the Coulomb potential dominates the solutlor‘been calculated from one and the same model, @ndhat
and the linear string potential provides a correction. In th '

. . : ) ) . . She light mesons such as the quasipions should not be calcu-
string regime th_e I|n.efar string potgnnal dommat_es, with .thelated by a crude potential model such as the retarded Schro
Coulomb potential giving a correction. Solutions in the strin

. ; Lot o o o gdinger equation. The smallness condition actually tells us
regime, however, imply that the ratigp)/m==\“/m* be-

comes so large that one is in conflict with the validity con-  tag|E 1. The validity check. The first row displays the values
dition equation(49). of (\/m)? as obtained from the mass fit to the singlets, the second
Rather than to display explicitly the straightforward but yow those from the mass fit to the triplets. If the mean momentum is

cumbersome formalism, we present the analytical results igomparable to the mass, or larger, the solution has to be rejected.
the graphical form of Fig. 4. The total mab=2«xW* is  The extremely large value for the quark in the pseudoscalar fit
almost linear in the quark mass, with small but significantgives a good example for such a case.

deviations. In line with expectation, the hyperfine splitting
decreases with increasing quark mass. Less expected was \°

M(By)=6495 MeV, M(B}*)=6502 MeV. (58)

that the splitting increases so strongly with decreasing quark m? u d s ¢ b
mass. For very small quark masses, the triplet mass starts afbr fit to 0~ 293 1.45 0.53 0.25 0.22
at a finite and almost constant value. The singlet mass takgsr fit to 1~ 0.79 0.76 0.48 0.25 0.22

off from zero like a square root, but unfortunately not lin-
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TABLE lIl. The masses ofjq hadrons are compared with experimental values. The flavor quark masses
used are inserted in column 2 and come from a fit to the vector mesons. The first line within each box refers
to the hadronic symbol of the meson, the second line gives the calctassabsuredvector mass in MeV;
the third line accounts for the calculatéieasurefpseudoscalar mass in MeV, and, finally, the fourth line
specifies the hadronic symbol of the pseudoscalar meson.

m u d s c b
PO p+ K*+ E, 0 B*+
768769 773769 910892 21102007 57125325
u 222.8
714(135
7,_0
® K* 0 D*~ B* 0
782782 914(896) 21092010 57095325
d 236.2
658140 668549
T Ui
¢ D:~ B:°
10191019 21562110 5735 —)
s 427.2
825(494) 831(498 953959
K- KO 7'
Il B:*
30973097 6502 —)
c 1701.3
20791865 20781869 2131(1969 30822980
D° Dt DS 7e
Y
94609460
b 5328.2
57015278 56985279 57245375 6495 —) 9455 —)
B~ BO BY B D)

that these hadrons probably are systems in which the comomentum fraction can account for the complexities of had-
stituents move highly relativistically. Thus far, we have atronic phenomenology. In particular, we have wondered to
hand no simple paradigms for such a kinematic situationwhat extent one can understand the masses of the pseudo-
Solving directly, the momentum-space integral equationscalar and vector mesons with no other input than the flavor
might, therefore, be the only way. quark masses of the constituent quarks.

All'in all, with all due respect to the work with potential | this first study of such a structure, which actually was
models and with lattice gauge theory, the agreement betWG%Teceding[Z?,Zq the more rigorous derivatiof21], we re-
the empirical data and the present first attempt to relate the'ﬁ‘lace the running coupling constant, which absorbs the
on trial and error to an effective, QCD-inspired HamiItonian,maw_body amplitudes of the full theory in a well-defined

s, in fact, not so much worse; partlcularl_y In View of the way, by the suitably adjusted phenomenological version of
absence of any free parameters a_nd t_h_e 5|_mpI|<:|ty of the_ aqiichardsorfzz]. At the least, the latter interpolates smoothly
proach._ No doubt, the various simplifications can be "M petween asymptotic freedom and infrared slavery. Its only
proved in the future. L . .
free parameter is fixed by a fit to the strong coupling constant

at theZ mass.

For the future, we have in mind mainly two improve-

The full many-body front-form Hamiltonian, evaluated ments:(1) the explicit calculation of the running coupling
for QCD in the light-cone gaugl™® =0, had been reduced in constant by a renormalization group analysis, é2)dan ex-
preceding work21] to a manifestly gauge-invariant effec- plicit solution of the integral equation in light-cone variables,
tive Hamiltonian which acts only in the space of one quarkEg. (4). It should be applied to mesons whose constituent
and one antiquark. Particularly, no Tamm-Dancoff Fock-quarks have very different masses, such that the structure
space truncations had to be made, nor it was necessary tonctions including the contributions from higher Fock states
rely on perturbation theory by assuming a small couplingcan be calculated from a covariant theory. This could be
constant. The present work is motivated by the question whylone in such a way that the relation to the existing phenom-
and how such a simple structure such as the resulting integrahological models can be seen explicitly.
equation in the transversal momenta and the longitudinal With these future applications in mind, we have not hesi-

VI. SUMMARY AND CONCLUSIONS
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tated to perform in Sec. Ill a number of basically trivial and essary Fourier transforms in closed form, this statement
straightforward calculations and to transcribe the front-formcould be phrased even more rigorously.

integral equation into the intuitively easily accessible form of One should emphasize that the retarded Stihger
usual momenta. The major impact of very different quarkequation has no free parameter, since coupling constant and
masses is then absorbed into the familiar reduced mass, afi#ark masses have to be determined from the experiment.

all integration variables have the same domain of validity.Fitting the five quark flavor masses to the fige-vector
This is not unimportant for the practitioner who actually mesons exhausts all freedom. The rest is structure: The 25

wants to get out numbers from his/her theory. This virtue'emaining pseudoscalar and vector masses are then predicted

does not seem to be common ground anymore, unfortui@nd presented in Table Ill. In comparison with the experi-
nately. As a wonderful and not intended side effect, it turné“er;.tal dlat?]' they arelno_t n?uch(;/vors%than tfhosehfrom con-
out that the rotationally only covariant equation on the Iightven ional phenomenological model29,30, or from heavy

cone can be transformed into a rotationally invariant integraFuark symmetry34], or even from lattice gauge calculations

equation(36) in usual momentum space. All factors which 35d_3.ﬂ’ IT parnculay W?_en keep|?gd|n_:_r;1|nd the very rough
seem to violate strict rotational invariance can be absorbef§"¢ SIMP'e approximalions applied. € pions are repro-

into the wave function, Eg(35). One looks forward to see uced more than poorly and rema".‘ myste_r ous particles
numerical solutions to ,these equations such as in every other model not specially designed for them.

But in our aim to relate the basically exact formalism with The mesons with one light quark do not yet meet the tough

its connection to Lagrangian QCD to the usual configurationSt"ind"’Ird of the phenomenological models. The latter two as-

space where our intuition is at home, we went a step furthepe(éS arle p_ost<;|l|)fIy relﬁlted to each gtTer' q I
and tried to Fourier transform the integral equations. We onclusion. 1f-such a poor mocel can do So Wel, one

have been unable to do this, by formal mathematical reason ust be_on the right trac!<. It seems that the front-for_m
Rather, we had to discourse on an approximation to whictii@miltonian approach applied to quantum chromodynamics

we refer to as semirelativistic. The resulting retarded Schrohas made a big step forward. Intensified efforts are justified.

dinger equation(47) has the amazing property of looking ACKNOWLEDGMENTS
like a conventional Schobnger equation with velocity-

dependent interactions and still being a fully covariant equa- H.C.P. thanks Stanley J. Brodsky for the many discus-
tion. It should be obvious that the transition from the front- sions and exchange of ideas over all these ten years, particu-
form to the usual instant-form momenta and the subsequetérly for his patience in listening to the ideas still vague at
Fourier transform to configuration space does not change thibe time of the Kyffhaiser meeting20]. In the final phase of
basic feature of the light-cone Hamiltonian to be manifestlywriting-up the content of the master the$7] we got to
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