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The front form Hamiltonian for quantum chromodynamics, reduced to an effective Hamiltonian acting only
in the qq̄ space, is solved approximately. After coordinate transformation to usual momentum space and
Fourier transformation to configuration space, a second order differential equation is derived. This retarded
Schrödinger equation is solved by variational methods and semianalytical expressions for the masses of all 30
pseudoscalar and vector mesons are derived. In view of the direct relation to quantum chromodynamics
without a free parameter, the agreement with experiment is remarkable, but the approximation scheme is not
adequate for the mesons with one up or down quark. The crucial point is the use of a running coupling constant
as(Q

2), in a manner similar, but not equal to the one of Richardson in the equal usual-time quantization. Its
value is fixed at theZ mass and the five flavor quark masses are determined by a fit to the vector meson
quarkonia.@S0556-2821~97!04504-9#

PACS number~s!: 12.40.Yx, 12.38.Lg

I. INTRODUCTION AND MOTIVATION

One of the most outstanding tasks in strong interaction
physics is to calculate the spectrum and the wave functions
of physical hadrons from quantum chromodynamics~QCD!.
Discretized light-cone quantization~DLCQ! @1# has precisely
this goal. Its three major aspects are~1! a rejuvenation of the
Hamiltonian approach,~2! a denumerable Hilbert space of
plane waves, and~3! Dirac’s front form of Hamiltonian dy-
namics. In thefront form @2#, or in light-cone quantization
@3#, one quantizes at equal ‘‘light-cone time’’x15t1z, as
opposed to the conventionalinstant formwhere one quan-
tizes at equal usual timet. As reviewed in@4#, the front form
has unique features, among them, the vacuum is simple, or at
least simpler than in the instant form, and the relativistic
wave functions transform trivially under certain boosts@2,4#.
Both are in stark contrast with the conventional instant form.
Over the years, the light-cone approach@5# has made much
progress. Calculations@4# agree with other methods, particu-
larly lattice gauge theory. Zero modes of the fields can be
important carriers of quantum structures@6#, particularly of
those of the vacuum@7,8#. Dimensionally reduced models
@7,8# provide much insight into the structure of possible so-
lutions to QCD. But chiral aspects are not yet understood,
and nonperturbative renormalization remains a challenge
@9,10# as for any Hamiltonian approach.

But despite the many successes of light-cone Hamiltonian
methods, one misses the contact to phenomenology beyond
the perturbative regime. We believe that more QCD-inspired
approaches are needed, work such as, for example@11,12# or
@13,14#, where the formalism is related to the experiment.
The present work is of this type.

Right from the outset when applying DLCQ to gauge
theory in 311 dimensions@15–17#, it was clear that one
should need an effective Hamiltonian. In@16# an integral
equation in the light-cone momenta was solved numerically,
which was derived by procedures similar to those of Tamm
@18# and Dancoff@19#, and a nonintegrable singularity was
removed by anad hoc assumption. But recently@20#, the
method of effective interactions was generalized to avoid the
usual truncation in the particle number@21#. As it turns out,

one can assemble all many-body aspects into a vertex func-
tion which bears great similarity with the running coupling
constant.

One wonders: How can such a simple structure account
for the spectra and wave functions of all scalar and vector
mesons? Is this not too much of a claim? On the other hand,
the effective Hamiltonian has been derived@21# from the
QCD Lagrangian without condition on the coupling constant
or on the mass of the constituents. One way of checking this
is to compare to experiment, and this shall be done in this
work very roughly and preliminarily. Lacking the running
coupling constant going with the theory@21#, one can replace
it by one of its current phenomenological versions@22–24#.
The present work applies the one of Richardson@22#. It in-
terpolates smoothly between asymptotic freedom@25,26# and
infrared slavery. After that, one has no freedom in the theory
and no adjustable parameters. Since the quark masses cannot
be determined from independent measurements, they must
be determined self-consistently from a fit to some of the
meson masses. This in itself is not trivial, except when hav-
ing analytical expressions.

In particular, a coordinate transformation from front to
instant-form coordinates is performed in Sec. III. Apart from
a more transparent interpretation, this way of writing down
the integral equation has certain advantages in performing
the calculations. No assumptions will be made in this sec-
tion: All manipulations are straightforward and fully equiva-
lent to the front-form formulation. In Sec. IV, the bound-
state equation is approximated semirelativistically which
allows for Fourier transforming the momentum-space inte-
gral equation into a configuration-space Schro¨dinger-type
equation. The so-obtained Hamiltonian is reduced in Sec. V
to a minimal number of terms~Coulomb plus linear potential
plus one spin-dependent term distinguishing between singlet
and triplet! and diagonalized approximately by a variational
method.

The masses of all pseudoscalar and vector mesons in Sec.
VI are thus semianalytic and approximate solutions to a sec-
ond order differential equation in configuration space. In
comparison with the empirical masses@28#, they are not
much worse than those of potential models@29–33#, or pre-
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dictions from heavy quark symmetry@34#, or even predic-
tions based on lattice gauge calculations@35–37#. In view of
the direct link to QCD@21# and the simplicity, this should be
regarded as considerable progress in the front-form ap-
proach.

But there is a potential danger in such an endeavor. The
present work is motivated by the question whether the simple
structures to be displayed can describe experimentsat all.
Obviously, they can, but it should be emphasized that nu-
merically accurate solutions need another effort. This is cur-
rently being attempted@38# and has a different objective than
to develop models designed to reproduce the data.

II. THE EFFECTIVE HAMILTONIAN FOR QCD

In discretized light-cone quantization~DLCQ!, one seeks
to solve the eigenvalue problem

HLCuCb&5Mb
2uCb& ~1!

for a field theory. The ‘‘light-cone Hamiltonian’’
HLC[PmPm @4# is the Lorentz invariant contraction of the
energy-momentum four-vectorPm and has the dimension
^mass&2. The eigenvaluesMb

2 are interpreted as the square
of the invariant mass of stateb. Working in momentum rep-
resentation, the three spatial components ofPm are diagonal

operators, with eigenvaluesP15( j kj
1 andPW'5( j kW' j

. The

sum runs over all particles in a Fock state. Each particle has

a four-momentum denoted bykj
m5(kj

1 ,kW' j
,kj

2) and sits on

its mass shell (kmkm) j5mj
2 . The temporal component, the

Hamiltonian properP2, is a complicated and off-diagonal
operator acting in Fock space. Its matrix elements are tabu-
lated in @4#. Based on the boost properties of light-cone op-

erators@4#, one can transform to a frame wherePW'50, thus
PmPm5P1P2. SinceP1 is diagonal, the diagonalization of
P2 and ofHLC amounts to the same. The Hilbert space for
diagonalizingP2 is spanned by all Fock states which have

given eigenvalues ofP1 andPW'5(0,0) and can be arranged
into sectors according to the particle number such asqq̄,
qq̄ g, or qq̄ qq̄. For any fixed value of the harmonic reso-
lution K52LP1/p, the Hamiltonian matrix in Eq.~1! is
finite and, in principle, could be diagonalized numerically
@1#. Details can be found in the literature@4,20,21#.

DLCQ is quite useful to cleanly phrase the problem, but
to do calculations, particularly in 311 dimensions, one has
to develop effective Hamiltonians. Fock space truncation in
conjunction with perturbation theory in the manner of Tamm
@18# and Dancoff@19# is unsatisfactory, because one has to
resort to ad hoc prescriptions to make things work@16#.
These drawbacks can be avoided by the method of iterated
resolvents@20,21#. It turns out possible to convert the many-
body matrix equation~1! into a well-defined two-body equa-
tion with an effective interaction acting only in theqq̄ space,
i.e., Heffucb&5Mb

2ucb&. In the continuum limitone has to
solve the integral equation

Mb
2^x,kW' ;l1 ,l2ucb&

5 (
l18 ,l28

E dx8d2kW'8 ^x,kW' ;l1 ,l2uHeffux8,kW'8 ;l18 ,l28&

3^x8,kW'8 ;l18 ,l28ucb&. ~2!

The bras and kets refer toqq̄ Fock states which can be made
invariant under SU(N):

ux,kW' ;l1 ,l2&5
1

Anc
(
c51

nc

bc
†~k1 ,l1!dc

†~k2 ,l2!u0&. ~3!

Goals of the calculation are the momentum-space wave func-
tions ^x,kW' ;l1 ,l2ucb&. They are the probability amplitudes
for finding the quark with helicity projectionl1, longitudinal
momentum fractionx[k1

1/P1, and transversal momentum

kW' and, correspondingly, the antiquark withl2, 12x, and
2kW' . The effective interaction as diagrammatically dis-
played in Fig. 1 is a sum of three terms: The first two dia-
grams are kind of a one-gluon exchange and describe the
flavor-conserving part of the effective interaction, while the
last graph due to the two-gluon annihilation can change the
flavor. In the present work we deal only with the first of
them. The kernel of the integral equation~2! has a diagonal
‘‘kinetic’’ and an off-diagonal ‘‘interaction’’ energy: i.e.,

Mb
2^x,kW' ;l1 ,l2ucb&

5Fm11kW'
2

x
1
m21kW'

2

12x
G ^x,kW' ;l1 ,l2ucb&

2
1

4p2 (
l18 ,l28

E dx8d2kW'8 Q~x8,kW'8 !

3
b~Q!

Q2

^l1 ,l2uS~Q!ul18 ,l28&

Ax~12x!x8~12x8!
^x8,kW'8 ;l18 ,l28ucb&.

~4!

The most important factors are the four-momentum transfer

FIG. 1. The effective interaction in theqq̄ sector. By exchang-
ing ‘‘effective gluons,’’ a single-quark state with four-momentum
k1 and spin projectionl1 is scattered into the quark state
(k18 ,l18). Correspondingly, the antiquark is scattered from (k2 ,l2)
to (k28 ,l28).
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Q252~k12k18!252~k22k28!2 ~5!

and the vertex functionr (Q,L) which likes to combine with
the coupling constantg to become

b~Q!5
nc
221

2nc

g2

4p\c
r 2~Q,L![

4

3
as~Q!, ~6!

the like-to-be ‘‘running coupling constant.’’ For QED, this
factor reduces to the fine structure constantb5a;1/137.
The spinor factorS(Q) represents the familiar current-
current coupling

^l1 ,l2uS~Q!ul18 ,l28&5@ ū~k1 ,l1!g
mu~k18 ,l18!#

3@ ū~k2 ,l2!gmu~k28 ,l28!#. ~7!

The cutoff functionQ(x8,kW'8 ) restricts integration in line
with Lepage-Brodsky regularization@4#

Q~x,kW'!:
m1
21kW'

2

x
1
m2
21kW'

2

12x
<~m11m2!

21L2. ~8!

The mass scaleL can be chosen freely.
Despite having been derived in the light-cone gauge

A150, the effective interaction ismanifestly gauge invari-
ant, depending only on the quark currents. The instantaneous
interaction has canceled exactly against other gauge-variant
terms, see@15,16,21#. Since one works in the front form, it is
also frame and boost invariant. Explicit calculations for
QED @16,38# are numerically very stable, and reproduce
quantitatively the Bohr spectra and the fine and hyperfine
structure.

The vertex function hidden in the like-to-be running cou-
pling constant of Eq.~6! has the same perturbative series
expansion as the running coupling constant@21# which is
indicated in an artist’s way in Fig. 1. What is missing, thus
far, is a renormalization group analysis of the formal expres-
sions. In the absence of that, we are interested in conse-
quences of Eq.~4!. How can it be that such a simple expres-
sion accounts for hadronic phenomena? What are the
invariant masses of the pseudoscalar and vector mesons, us-
ing such an interaction? How far does one get with analytical
procedures and, in particular, where does the approach go
wrong?

Lacking an exact expression foras(Q
2), one can resort to

reasonable parametrizations@22–24#. In the sequel, we shall
content ourselves with the form of Richardson@22#:

as~Q
2!5

12p

27

1

ln~a21Q2/k2!
. ~9!

At least, this form interpolates smoothly between asymptotic
freedom@25,26# and infrared slavery. In the original work,
the parametera was set to have the valuea51 andk was
kept as a free parameter to be determined by the spectra.
Here, we take the value ofas(MZ)50.113460.0035 as
measured at theZ mass@28# to fix

k5193 MeV. ~10!

Its Fourier transform@22# generates two terms, see also be-
low,

V~xW !5
21

2p2E d3qW eiq
W
•xW

as~qW
2!

qW 2
5
8p

27 S 2
1

r
1k2 r D ,

~11!

a ~strong! Coulomb and a linearly rising potential, as plotted
in Fig. 2 versusr5uxW u. The linearity of the confining poten-
tial is a consequence ofa51, as used in@22# and throughout
the present work. If one variesa, one gets the curves dis-
played in Fig. 3. It is taken from@27#. Here, we do not want
to keepa as a free parameter. For one reason, we refuse to
speculate at this point whether or not the potential is strictly
confining. For the other reason, the results to be displayed

FIG. 2. The quark-antiquark potentialV(r ) as given in Eq.~11!
versus the relative distancer is plotted. The Coulomb and the con-
fining potential are indicated. Some of the heavier meson masses
are inserted to provide a scale.

FIG. 3. The confining potential as function of the parametera.
Values are from top to bottom:a51, a51.0005,a51.01, and
a5Ae.1.65.
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below are not very sensitive to large distances, since the
wave functions decay rapidly. Last but not the least, one has
to await the renormalization group analysis of theas(Q)
which truly comes with the theory@21#.

The flavor quark masses are then the only free parameters
of the approach. Of course, they are subject to be determined
consistently by experiment. Natural candidates are the
masses of the pseudoscalar (02) and vector mesons (12).
Since the flavor quark masses potentially range from a few
MeV up to some 100 GeV, see, for instance, Fig. 4, one
faces two problems:~1! By good reasons, the numerical so-
lutions of the integral equation have been restricted thus far
to systems with equal masses of the constituents such as
positronium @16,38#. The wave function is then peaked at
x5m1 /(m11m2)51/2. For very asymmetric systems this
will be a problem. To avoid that, we shall identically rewrite
the integral equation in the next section in terms of instant-
form variables, which are somewhat easier to deal with.~2!
Shall one really perform a calculation of similar complexity
as in preceding work@16,38# for any given set ofm1 and
m2 when intending to fit them to the meson masses, or shall
one aim for a quasianalytic, but approximate solution? In
view of the preliminary character of the present study, we
have opted for the second. At least, this will pave the way for
a future, improved solution.

In the sequel, we shall replaceHeff by the operator

H5
1

2~m11m2!
@Heff2~m11m2!

2#. ~12!

It differs from Heff by an additive constant and an overall
scale, which both are Lorentz scalars. BothH and its eigen-
valueE have the dimension of âmass& and have much in
common with the nonrelativistic Hamiltonian and the bind-
ing energyE, as we shall see. As compared to an instant-
form Hamiltonian, however, the main advantages of the
front-form Heff as given in Eq.~2! prevail, namely, the ad-

ditivity of the interaction and the Lorentz invariance of the
eigenvalues. The rest of this work is a simple, straightfor-
ward evaluation.

III. TRANSFORMING VARIABLES FROM THE FRONT
TO THE INSTANT FORM

The single-particle four-momenta can be parametrized
either in the front form, k1

m5(k1
1 ,kW' ,k1

2) and k2
m

5(k2
1 ,2kW' ,k2

2), or in the instant form,

k1
m5~k1

0 ,kW' ,kz!5~E1 ,kW ! and

k2
m5~k2

0 ,2kW' ,2kz!5~E2 ,2kW !. ~13!

Sinceki
mki ,m5mi

2 , the temporal components are functions of
the spatial components

ki
25

mi
21kW'

2

ki
1 or Ei5Ami

21kW'
21kW z

25Ami
21kW2.

~14!

The transformation function betweenx and kz is obtained
straightforwardly fromP1: i.e.,

x5x~kz!5
kz1E1

E11E2
. ~15!

The front-form integral equation is boost and frame invariant
and, therefore, can be solved also in the center-of-mass
frame, where the total momentumPW vanishes. Changing in-
tegration variables, Eq.~4! in conjunction with Eq.~12! can
thus be rewritten identically as

E^kW uc&5T~kW !^kW uc&1E d3kW8^kW uUukW8&^kW8uc&. ~16!

For simplicity, the explicit summation over the helicities is
suppressed. Contrary to Eq.~4!, all three integration vari-
ables have now the same support. The kinetic energy

T~kW ![
1

2~m11m2!
Sm1

21kW'
2

x
1
m2
21kW'

2

12x
2~m11m2!

2D
5

~E11E2!
22~m11m2!

2

2~m11m2!
~17!

becomes the familiar expression with the reduced massmr ,
for sufficiently small momenta:

T~kW !5
kW2

2mr
, with

1

mr
5

1

m1
1

1

m2
. ~18!

Nevertheless, there are explicit residues from the front form.
The Fock stateux,kW'& has the sameP1 as ux8,kW'8 &. Ex-
pressed in instant-form variablesP15P01P3. Since
P35kz,11kz,250, one is left withP05P08 or, explicitly,

E11E25E181E28 or kW25kW82 ~19!

FIG. 4. Bound states ofqq̄ pairs versusquark masses. All
masses are given in units of the QCD-scalek. The upper curve
refers to the triplet (Se52), the lower to the singlet (Se50). The
masses of some vector mesons (r0,v,f,J/c) are marked by a
(n), those of some pseudoscalars (p0,h,h8,hc) by a (!).
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for every matrix element. Obviously, the interaction kernel
in Eq. ~16! cannot change the size ofkW , it only changes its
direction. This is a source of great simplification. For ex-
ample, the four-momentum transfer is always identical with
the three-momentum transfer,

Q252~k12k18!m~k12k18!m5~kW12kW18!22~E12E18!25qW 2,
~20!

and the three-momentum transfer and its mean,

qW 5kW2kW8 and pW 5
1

2
~kW1kW8!, ~21!

respectively, are always orthogonal:

pW •qW 5
1

2
~kW1kW8!~kW2kW8!5

1

2
~kW22kW82!50. ~22!

The Jacobian of the transformation equation~15! is evalu-
ated by means of the identities

]x

]kz
5

~E11kz!~E22kz!

E1E2~E11E2!
and

x~12x!5
~E11kz!~E22kz!

~E11E2!
2 . ~23!

The auxiliary functions

A~kW ,kW8!5A~E11kz8!~E22kz8!

~E11kz!~E22kz!
and

B~kW ,kW8!5Smr

E1
1
mr

E2
D ~24!

are useful for factorizing

mrdx8

Ax~12x!x8~12x8!
5A~kW ,kW8!B~kW ,kW8!dkz , ~25!

and to single outA which isnot rotationally invariant. Both
A andB are dimensionless and of order unity for sufficiently
small momenta. The cutoff functionQ8, as introduced in Eq.
~8! to define a maximum transversal momentum, restricts, of
course, also three-momentum:

Q~kW8!: kW2<S L

2 D 2 L214m1m2

L21~m11m2!
2 . ~26!

The quark currents in Eqs.~4! or ~7! can be evaluated with
the Gordon decomposition@39#. Since we work in the
Lepage-Brodsky convention for the spinors@4#, one has

ū~k1 ,l1!g
0u~k18 ,l18!

5S E11m11
pW 22qW 2/4

~E11m1!
1

RW •sW

~E11m1!
D

l1 ,l18
, ~27!

ū~k1 ,l1!gWu~k18 ,l18!5~2pW 2 iqW 3sW !l1 ,l18
, ~28!

with RW 5 iqW 3pW . ~29!

These expressions are simpler than usual, because of Eq.
~19!. For the antiquark, one must change the sign of bothkW

andkW8, and replace the quark-spin matrixs by t. The cur-
rent term becomes then explicitly

J~kW ,kW8!5
1

4m1m2
@ ū~k1 ,l1!g

mu~k18 ,l18!#

3@ ū~k2 ,l2!gm u~k28 ,l28!#

5CS 11
pW 22qW 2/4

~E11m1!
2 1

RW •sW

~E21m2!
2D

3S 11
pW 22qW 2/4

~E11m1!
2 1

RW •tW

~E21m2!
2D

1CS 2pW 2 iqW 3sW

E11m1
D S 2pW 2 iqW 3tW

E21m2
D ,

~30!

~31!

with

C5
~E11m1!~E21m2!

4m1m2
. ~32!

After A and B, a third auxiliary functionC is introduced,
which is also dimensionless and of order unity. As expected
for a Lorentz scalar,J is rotationally invariant.

Thus far, all quantities considered are of order unity for
sufficiently small momenta. The most important part of the
interaction kernel

^kW uUukW8&5Q~kW8!A~kW ,kW8!B~kW ,kW8!J~kW ,kW8!Ṽ~kW ,kW8! ~33!

is, therefore, the interaction proper

Ṽ~kW ,kW8!52
1

2p2

as~Q
2!

Q2 52
1

2p2

as~qW
2!

qW 2
. ~34!

It depends only on the three-momentum transfer.
The front form is frame and boost invariant, as men-

tioned. It is rotationallyco-, but not rotationallyinvariant,
particularly when the spatial rotations are performed perpen-
dicular to thez axis. This aspect is reflected in the appear-
ance of the factorA as defined in Eq.~24!. The violation of
rotational invariance occurs, however, in such a form that it
can be absorbed into the wave function. If one inserts

f~kW !5^kW uc&A~E11kz8!~E22kz8!

E1E2
~35!

into Eq. ~16!, the factorA cancels in the new integral equa-
tion

E f~kW !5T~kW !f~kW !1E d3kW8Q~kW8!B~kW ,kW8!J~kW ,kW8!

3Ṽ~kW ,kW8!f~kW8!. ~36!

The kernel is now rotationally invariant. Since no approxi-
mations have been made, the solutions of this equation,mu-
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tatis mutandis, are identical with those obtained from the
original front-form integral equation, Eq.~4!, but Eq.~36! is
much easier to deal with.

IV. THE RETARDED SCHRÖ DINGER EQUATION

The front form of Hamiltonian dynamics@2# has wonder-
ful properties, but it does not appeal strongly to our intuition,
not even when it is transcribed to instant-form variables.
Thinking in terms of momentum-space integral equations is
not always easy. The equations become more transparent
when Fourier transforming them to configuration space and
the corresponding Schro¨dinger form of quantum mechanics.

We begin with rewriting Eq.~36! conveniently as

Ef~kW !5E d3kW8H̃~qW ,pW !f~kW8!. ~37!

The kernelH̃ is expressed in terms of the momentum trans-
fer and its mean rather than bykW and kW8. It is the Fourier
transform of the Schro¨dinger Hamiltonian. To see that, one
multiplies the whole equation with exp(ikW•xW) and integrates
overd3kW . Defining the Fourier transforms by

c~xW !5E d3kW eik
W
•xWf~kW8! and

H~xW ,pW !5E d3qW eiq
W
•xWH̃~qW ,pW !, ~38!

one gets an eigenvalue equation of the Schro¨dinger-type with
a possibly nonlocal Hamiltonian

Ec~xW !5H~xW ,pW !c~xW ! with pW[2 i¹W x . ~39!

The momentum transferqW is Fourier conjugate to the posi-
tion xW of the quark in the center-of-mass frame, andpW is the
associated momentum operator. This holds in general but,
unfortunately, one is unable to perform the Fourier transform
explicitly with all the square roots behind the energiesEi .
The way out is, of course, to expand and to develop a sys-
tematic approximation scheme. We base it on the Lepage-
Brodsky cutoff and chooseL such that

kW2

m1
2<1, ~40!

for the lighter quarkm1. All square roots are expanded to
first nontrivial order

Ei.mi1
kW2

2mi
5mi1

pW 2

2mi
1

qW 2

8mi
, ~41!

which is a semirelativistic approximation. In the worst case,
it allows for relativistic velocities of the lighter particle up to
ukW u;m1. The expansion of the various factors in the kernel
of Eq. ~36! yields, up to second order,

B512
pW 2

2mq
2 2

qW 2

8mq
2 with

1

mq
2 5

1

m11m2
Sm2

m1
2 1

m1

m2
2D ,

~42!

C511
pW 2

4ma
2 1

qW 2

16ma
2 with

1

ma
2 5

1

m1
2 1

1

m2
2 , ~43!

and

BJ511
pW 2

2m1m2
2

qW 2

8mq
2 2

~sW 3qW !•~tW3qW !

4m1m2
1

sW •RW

4m1
2

1
tW•RW

4m2
2 2

SW •RW

m1m2
, ~44!

respectively. One should emphasize that the form ofṼ(qW )
needs not to be known at this point, since it does not depend
on pW . The total spin and the kinetic energy,

SW 5
1

2
~sW 1tW ! and T5

kW2

2mr
, ~45!

respectively, complete the definitions. Finally, one can con-
jecture that the wave function decays sufficiently fast, such
that it acts itself like a cutoff. We, therefore, setQ(kW8)51.

The Hamiltonian operator in Schro¨dinger representation
becomes then straightforwardly

H5
1

2mr
S 11

V~r !

m11m2
D pW21V~r !1

¹W 2V~r !

8mq
2

1
~sW 3¹W !•~tW3¹W V!

4m1m2
1
1

r

]V

]r S sW •LW

4m1
2 1

tW•LW

4m2
2 2

SW •LW

m1m2
D ,

~46!

with the usual angular momentum operatorLW 5xW3pW . Since
the average potential is spherically symmetric, one uses
(sW 3¹W )•(tW3¹W V)5 2

3(sW •tW )¹W
2V andsW •tW52SW 223 to get

H5
1

2mr
S 11

V~r !

m11m2
D pW21V~r !

2
¹W 2V

8mr
2 S 3mr

m11m2
2

~m12m2!
2

~m11m2!
2D

1
1

r

]V

]r S sW •LW

4m1
2 1

tW•LW

4m2
2 2

SW •LW

m1m2
D 1

¹W 2V

3m1m2
SW 2. ~47!

Its structure is a direct consequence of gauge theory, particu-
larly QCD, and holds for an arbitrary running coupling con-
stantas(Q

2). We emphasize particularly that this structure
was obtained from a fully covariant theory@21#. The state-
ment could even be stronger without our inability to evaluate
the Fourier transforms without expansions. Richardson’s pa-
rametrization ofas(Q

2) yields the potentialV(xW ) as given in
Eq. ~11!, and thus
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¹W 2V~r !5bS 2k2

r
14pd~xW ! D and

1

r

]V~r !

]r
5bS k2

r
1

1

r 3D , ~48!

with b58p/27.0.93. If one works with QED, one sets
k50 and chooses the valueb.1/137.

We now have reached our goal: The retarded Schro¨dinger
equation and its Hamiltonian have a wonderfully simple
structure which can be interpreted with ease. The average
potentialV(xW ) plays a different role in the different terms of
the equation. In the first term of Eq.~47!, in the kinetic
energy, it generates an effective mass of the quark which
depends on the relative position and which reflects the non-
locality of the interaction. In the second term,V(xW ) appears
in its natural role as a potential energy. In the third term one
observesV(xW ) as the analogue of the Darwin term. In the
remainder,V(xW ) provides the coupling strength for the ana-
logue of the fine and hyperfine interactions of atomic phys-
ics, particularly the spin-orbit interaction. Contrary to com-
mon belief, they exist not only due to weak coupling, but
also for strongly coupled QCD.

Finally, one must come back to the expansion scheme of
Eq. ~41!. Its validity cannot be judgeda priori, since the
expansion is made under the integral. The omitted terms are
of second order inp2/m2 for the lighter quark. Whether or
not this is justified can be decided onlya posteriori, by the
expectation value of the omitted next higher term:

d[
1

8S ^pW 2&
mi
2 D 2. ~49!

Only if d is ~very! small as compared to unity, the expansion
in Eq. ~41! is justified. If it is comparable or larger than 1,
the solution must be rejected, and another regime of approxi-
mation must be found. Below, we shall examine such cases.

V. MESON MASSES BY PARAMETRIC VARIATION

It will take some time and effort to work out all the many
consequences of the integral equations, Eq.~4! or ~36!, or of
the retarded Schro¨dinger equation~47!. In the sequel, we
shall restrict ourselves to calculate only the ground-state
masses of the pseudoscalar and vector mesons. If one leaves
aside the recently discovered top quark and restricts to five
flavors (u,d;s,c;b), one has thus 30 different physical me-
sons, since charge-conjugate hadrons have the same mass.

One cannot calculate these masses, however, without
knowing the quark mass parametersm1 andm2. These can-
not be measured in a model-independent way. In the sequel,
we shall adopt the point of view that they have to be deter-
mined consistently within each model, for the better or the
worse. One has thus five mass parameters to account for 30
physical masses. Which ones should be selected to fit? There
are 142 506 different possibilities to select five members
from a set of 30, and we have to make a choice: We choose
the five pureqq̄ pairs. Even that is not unique: Shall one take
the pseudoscalar or the vector mesons? We shall do both.

Of course, one runs into the problem of the chiral com-

position of the physical hadrons. In order to avoid that in the
very crude estimate below, we shall substitute all physical
mesons by pureqq̄ pairs,by fiat. We shall thus replace the
‘‘pions,’’ for example, by ‘‘quasipions’’ with the same
physical mass. Theuū-, ud̄-, dū-, or dd̄ eigenstates shall be
identified with the quasip0, quasip1, quasip2, or quasi
h, and so on. This simplification will be revoked in future
work and is, by no means, a compelling part of the model.

Our problems lie in another ballpark. One should not deal
head on with the full complexity of the integral equations, or
of the retarded Schro¨dinger equation. Which part of the
Hamiltonian should one select in a first assault? Some help is
gained by the rather unique property of the light-cone Hamil-
tonian: Kinetic and interaction energy are additive. One can
select always an ‘‘interesting part’’H0, and checka poste-
riori , by calculating the expectation value ofDH5H2H0,
whether or not the selection makes any sense. Since the sca-
lar and pseudoscalar mesons have only little orbital excita-
tions, i.e., are primarilys waves, one can disregard the spin-
orbit part and choose first

H0;S 11
V~r !

m11m2
D pW 2

2mr
1V~r !1

¹W 2V

3m1m2
SW 2

2
¹W 2V

8mr
2 S 3mr

m11m2
2

~m12m2!
2

~m11m2!
2D . ~50!

Even that looks too complicated for a start up. We, therefore,
select those terms which have turned out to be important in
the past, namely, the central potential and the triplet-
interaction mediated by the total spin. Omitting the effective
mass and the Darwin term, our choice is, therefore,

H05
pW 2

2mr
1V~r !1

2k

3m1m2

SW 2

r

5
pW 2

2mr
2

b

r
1

2k2

3m1m2

SW 2

r
1bk2r . ~51!

Working in a spinorial representation which diagonalizes
Sz and SW 2, we replace the latter by the eigenvalue
Se5S(S11) and take 0 or 2 for the singlet or the triplet,
respectively.

What does the wave function for the lowest state look
like? For a pure Coulomb potential, the solution has the form

c~xW !5
1

Ap
l3/2e2lr . ~52!

Omitting the Coulomb part, a linear potential can be solved
in terms of Airy functions and its integral transforms@40#. If
one has both, one will have some mixture of the two. But for
the present start-up check, even that requires too much effort.

We shall rather pursue a variational approach and choose
Eq. ~51! as a one-parameter family (l). One could take also
harmonic oscillator states@13,14#, but with Eq.~51! the ex-
pectation values are particularly simple:
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^cupW 2uc&5l2, ^cu
1

r
uc&5l, and ^cur uc&5

3

2l
.

~53!

These are all one needs for calculating the expectation value
of the energy

Ē5^cuH0uc&5
l2

2mr
2bl1

2Sek
2

3m1m2
l1

3bk2

2

1

l
. ~54!

Since we deal only with ground states, we are not in conflict
with the statement that the wave function cannot be purely
Coulombic. For the pure Coulomb case, the 2S and 1P states
would be degenerate and the respective ratio
uc2S(0)u2/uc1S(0)u250.125 would disagree with the experi-
mental values.0.63 and.0.50 for charmonium and bot-
tomium @29#.

We aim at calculating the total invariant mass of the had-
rons and return to the light-cone HamiltonianHLC5M2, i.e.,
to M25(m11m2)

212(m11m2)Ē. For equal massesm1
5m25m, one preferably expresses the variational equation
~54! in units of the fixed QCD scalek, introducing the di-
mensionless variables

s5
l

k
, j5

m

k
, and W5S M2k D 2. ~55!

The variational equation~54! reduces then simply to

W~s;j!5s22S bj2
2Seb

3j D s1j21
3bj

2

1

s
. ~56!

We must varyl, thuss, such that the energy is stationary,

]W~s;j!

]s U
s5s!~j!

50, thus S M2k D 25W„s!~j!…5W!~j!,

~57!

at fixed values of the parameters (j,b,Se). This leads to a
cubic equation ins which can be solved analytically in terms
of Cardano’s formula. In special cases they can well be ap-
proximated by a quadratic equation, namely, whens!@1 or
when s!!1. We got accustomed to refer to these two re-
gimes as the Bohr and the string regime, respectively. In the
Bohr regime the Coulomb potential dominates the solution
and the linear string potential provides a correction. In the
string regime the linear string potential dominates, with the
Coulomb potential giving a correction. Solutions in the string
regime, however, imply that the ratiôpW 2&/m25l2/m2 be-
comes so large that one is in conflict with the validity con-
dition equation~49!.

Rather than to display explicitly the straightforward but
cumbersome formalism, we present the analytical results in
the graphical form of Fig. 4. The total massM52kAW! is
almost linear in the quark mass, with small but significant
deviations. In line with expectation, the hyperfine splitting
decreases with increasing quark mass. Less expected was
that the splitting increases so strongly with decreasing quark
mass. For very small quark masses, the triplet mass starts off
at a finite and almost constant value. The singlet mass takes
off from zero like a square root, but unfortunately not lin-

early as required by the soft pion theorems. Determining the
u mass by fitting to the quasipion gives a value close to the
‘‘current mass,’’ see Table I. The resultings!1, see Tables
I and II, implies the ultrarelativistic string regime and that
the validity condition is badly violated. The retarded Schro¨-
dinger equation with its semirelativistic approximation
scheme is thus not appropriate for describing quasipions. For
the h and theh8, the scaling variables is of order unity,
while for the quasi-hc , one definitely is in the Bohr regime.
Here, the masses are similar or close to what is referred to as
the ‘‘constituent-quark’’ mass.

Since singlet and triplet are so close fors@1, one fits the
quark masses preferentially with the vector mesons. In the
lack of empirical data we have setMhb

5MY , which should
be of minor importance in the present model, see Fig. 4. The
flavor masses are now in close agreement with the constitu-
ent quark masses, see Table I, and the smallness condition is
satisfied better, see Table II.

Having determined the quark masses, one has exhausted
all freedom in the model. We now ask: How well do the
remaining 25 meson masses agree with experiment? The for-
mal procedure runs quite analogously, except that it is now
easier. With the masses fixed, one variesl separately for
each flavor composition subject to Eq.~54!. The results are
compiled in Table III and compared with the experimental
values to the extent the latter are known. The present model
predicts, for example,

M ~Bc
6!56495 MeV, M ~Bc*

6!56502 MeV. ~58!

By and large, the agreement is remarkably good. The heavy
meson masses are reproduced quite well, but the agreement
is not quantitative everywhere, particularly not for those had-
rons with one light quark (u or d). In judging this agreement
one should keep in mind~1! that all 25 meson masses have
been calculated from one and the same model, and~2! that
the light mesons such as the quasipions should not be calcu-
lated by a crude potential model such as the retarded Schro¨-
dinger equation. The smallness condition actually tells us

TABLE I. The flavor quark masses in MeV, as obtained from a
fit to Eq. ~57!. The first row refers to a fit for the singlets, the second
to the one for the triplets.

Flavor mass u d s c b

From fit to 02 2.3 155.6 430.6 1642.3 5330.8
From fit to 12 222.8 236.2 427.2 1701.3 5328.2

TABLE II. The validity check. The first row displays the values
of (l/m)2 as obtained from the mass fit to the singlets, the second
row those from the mass fit to the triplets. If the mean momentum is
comparable to the mass, or larger, the solution has to be rejected.
The extremely large value for theu quark in the pseudoscalar fit
gives a good example for such a case.

l2

m2 u d s c b

For fit to 02 293 1.45 0.53 0.25 0.22
For fit to 12 0.79 0.76 0.48 0.25 0.22
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that these hadrons probably are systems in which the con-
stituents move highly relativistically. Thus far, we have at
hand no simple paradigms for such a kinematic situation.
Solving directly, the momentum-space integral equations
might, therefore, be the only way.

All in all, with all due respect to the work with potential
models and with lattice gauge theory, the agreement between
the empirical data and the present first attempt to relate them
on trial and error to an effective, QCD-inspired Hamiltonian,
is, in fact, not so much worse; particularly in view of the
absence of any free parameters and the simplicity of the ap-
proach. No doubt, the various simplifications can be im-
proved in the future.

VI. SUMMARY AND CONCLUSIONS

The full many-body front-form Hamiltonian, evaluated
for QCD in the light-cone gaugeA150, had been reduced in
preceding work@21# to a manifestly gauge-invariant effec-
tive Hamiltonian which acts only in the space of one quark
and one antiquark. Particularly, no Tamm-Dancoff Fock-
space truncations had to be made, nor it was necessary to
rely on perturbation theory by assuming a small coupling
constant. The present work is motivated by the question why
and how such a simple structure such as the resulting integral
equation in the transversal momenta and the longitudinal

momentum fraction can account for the complexities of had-
ronic phenomenology. In particular, we have wondered to
what extent one can understand the masses of the pseudo-
scalar and vector mesons with no other input than the flavor
quark masses of the constituent quarks.

In this first study of such a structure, which actually was
preceding@27,20# the more rigorous derivation@21#, we re-
place the running coupling constant, which absorbs the
many-body amplitudes of the full theory in a well-defined
way, by the suitably adjusted phenomenological version of
Richardson@22#. At the least, the latter interpolates smoothly
between asymptotic freedom and infrared slavery. Its only
free parameter is fixed by a fit to the strong coupling constant
at theZ mass.

For the future, we have in mind mainly two improve-
ments: ~1! the explicit calculation of the running coupling
constant by a renormalization group analysis, and~2! an ex-
plicit solution of the integral equation in light-cone variables,
Eq. ~4!. It should be applied to mesons whose constituent
quarks have very different masses, such that the structure
functions including the contributions from higher Fock states
can be calculated from a covariant theory. This could be
done in such a way that the relation to the existing phenom-
enological models can be seen explicitly.

With these future applications in mind, we have not hesi-

TABLE III. The masses ofqq̄ hadrons are compared with experimental values. The flavor quark masses
used are inserted in column 2 and come from a fit to the vector mesons. The first line within each box refers
to the hadronic symbol of the meson, the second line gives the calculated~measured! vector mass in MeV;
the third line accounts for the calculated~measured! pseudoscalar mass in MeV, and, finally, the fourth line
specifies the hadronic symbol of the pseudoscalar meson.

mq u d s c b

r0 r1 K*1 D̄* 0 B*1

768~768! 773~768! 910~892! 2110~2007! 5712~5325!
u 222.8

714~135!
p0

v K* 0 D*2 B* 0

782~782! 914~896! 2109~2010! 5709~5325!
d 236.2

658~140! 668~549!
p2 h

f Ds*
2 Bs*

0

1019~1019! 2156~2110! 5735~ —!

s 427.2
825~494! 831~498! 953~958!
K2 K̄0 h8

J/c Bc*
1

3097~3097! 6502~ —!

c 1701.3
2079~1865! 2078~1869! 2131~1969! 3082~2980!

D0 D1 Ds
1 hc

Y

9460~9460!
b 5328.2

5701~5278! 5698~5279! 5726~5375! 6495~ —! 9455~ —!

B2 B̄0 B̄s
0 Bc

2 hb
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tated to perform in Sec. III a number of basically trivial and
straightforward calculations and to transcribe the front-form
integral equation into the intuitively easily accessible form of
usual momenta. The major impact of very different quark
masses is then absorbed into the familiar reduced mass, and
all integration variables have the same domain of validity.
This is not unimportant for the practitioner who actually
wants to get out numbers from his/her theory. This virtue
does not seem to be common ground anymore, unfortu-
nately. As a wonderful and not intended side effect, it turns
out that the rotationally only covariant equation on the light
cone can be transformed into a rotationally invariant integral
equation~36! in usual momentum space. All factors which
seem to violate strict rotational invariance can be absorbed
into the wave function, Eq.~35!. One looks forward to see
numerical solutions to these equations.

But in our aim to relate the basically exact formalism with
its connection to Lagrangian QCD to the usual configuration
space where our intuition is at home, we went a step further
and tried to Fourier transform the integral equations. We
have been unable to do this, by formal mathematical reasons.
Rather, we had to discourse on an approximation to which
we refer to as semirelativistic. The resulting retarded Schro¨-
dinger equation~47! has the amazing property of looking
like a conventional Schro¨dinger equation with velocity-
dependent interactions and still being a fully covariant equa-
tion. It should be obvious that the transition from the front-
form to the usual instant-form momenta and the subsequent
Fourier transform to configuration space does not change the
basic feature of the light-cone Hamiltonian to be manifestly
frame independent. Would one be able to perform the nec-

essary Fourier transforms in closed form, this statement
could be phrased even more rigorously.

One should emphasize that the retarded Schro¨dinger
equation has no free parameter, since coupling constant and
quark masses have to be determined from the experiment.
Fitting the five quark flavor masses to the fiveqq̄-vector
mesons exhausts all freedom. The rest is structure: The 25
remaining pseudoscalar and vector masses are then predicted
and presented in Table III. In comparison with the experi-
mental data, they are not much worse than those from con-
ventional phenomenological models@29,30#, or from heavy
quark symmetry@34#, or even from lattice gauge calculations
@35–37#, in particular when keeping in mind the very rough
and simple approximations applied. The pions are repro-
duced more than poorly and remain mysterious particles
such as in every other model not specially designed for them.
The mesons with one light quark do not yet meet the tough
standard of the phenomenological models. The latter two as-
pects are possibly related to each other.

Conclusion: If such a poor model can do so well, one
must be on the right track. It seems that the front-form
Hamiltonian approach applied to quantum chromodynamics
has made a big step forward. Intensified efforts are justified.

ACKNOWLEDGMENTS

H.C.P. thanks Stanley J. Brodsky for the many discus-
sions and exchange of ideas over all these ten years, particu-
larly for his patience in listening to the ideas still vague at
the time of the Kyffha¨user meeting@20#. In the final phase of
writing-up the content of the master thesis@27# we got to
knowledge on similar ideas by Zhang@41#.

@1# H. C. Pauli and S. J. Brodsky, Phys. Rev. D32, 1993~1985!.
@2# P. A. M. Dirac, Rev. Mod. Phys.21, 392 ~1949!.
@3# S. Weinberg, Phys. Rev.150, 1313~1966!.
@4# S. J. Brodsky and H. C. Pauli, inRecent Aspects of Quantum

Fields, edited by H. Mitter and H. Gausterer, Lecture Notes in
Physics Vol. 396~Springer, Heidelberg, 1991!, and references
therein.

@5# Theory of Hadrons and Light-front QCD, edited by S. D.
Glazek~World Scientific, Singapore, 1995!.

@6# T. Heinzl, S. Krusche, S. Simburger, and E. Werner, Z. Phys.
C 56, 415 ~1992!.

@7# K. Demeterfi, I. R. Klebanov, and G. Bhanot, Nucl. Phys.
B418, 15 ~1994!, and references therein.

@8# H. C. Pauli, A. C. Kalloniatis, and S. S. Pinsky, Phys. Rev. D
52, 1176~1995!.

@9# R. J. Perry, A. Harindranath, and K. Wilson, Phys. Rev. Lett.
65, 2959~1990!.

@10# K. G. Wilson, T. Walhout, A. Harindranath, W. M. Zhang, R.
J. Perry, and S. D. Glazek, Phys. Rev. D49, 6720~1994!, and
references therein.

@11# M. Bauer, B. Stech, and M. Wirbel, Z. Phys. C29, 103~1987!.
@12# A. N. Mitra et al., Prog. Part. Nucl. Phys.22, 43 ~1989!.
@13# S. J. Brodsky and F. Schlumpf, Phys. Lett. B329, 111~1994!.
@14# F. Schlumpf, J. Phys. G20, 237~1994!, and references therein.
@15# A. C. Tang, S. J. Brodsky, and H. C. Pauli, Phys. Rev. D44,

1842 ~1991!.
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