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We solve the Dyson-Schwinger equation for the quark propagator in a model with singular infrared behavior
for the gluon propagator. We require that the solutions, easily found in configuration space, be tempered
distributions and thus have Fourier transforms. This severely limits the boundary conditions that the solutions
may satisify. The sign of the dimensionful parameter that characterizes the model gluon propagator can be
either positive or negative. If the sign is negative, we find a unique solution. It is singular at the origin in
momentum space, falls off like 1/p2 asp2→1/2`, and is truly nonperturbative, in that it is singular in the
limit that the gluon-quark interaction approaches zero. If the sign of the gluon propagator coefficient is
positive, we find solutions that are, in a sense that we exhibit, unconstrained linear combinations of advanced
and retarded propagators. These solutions are singular at the origin in momentum space, fall off like 1/p2

asympotically, exhibit ‘‘resonantlike’’ behavior at the position of the bare mass of the quark when the mass is
large compared to the dimensionful interaction parameter in the gluon propagator model, and smoothly ap-
proach a linear combination of free-quark advanced and retarded two-point functions in the limit that the
interaction approaches zero. In this sense, these solutions behave in an increasingly ‘‘particlelike’’ manner as
the quark becomes heavy. The Feynman propagator and the Wightman function are not tempered distributions
and therefore are not acceptable solutions to the Schwinger-Dyson equation in our model. On this basis we
advance several arguments to show that the Fourier-transformable solutions we find are consistent with quark
confinement, even though they have singularities on the realp2 axis. @S0556-2821~97!08104-6#

PACS number~s!: 12.38.Aw, 12.38.Lg

I. INTRODUCTION

A classic approach to understanding the behavior of con-
fined particles is to model and solve the Dyson-Schwinger
~DS! equations for the particles’ propagators. Since confine-
ment is generally regarded as an infrared phenomenon, the
emphasis is naturally on the infrared region of the kernels of
the DS equations. Taking clues from studies of the infrared
behavior of propagators in pure Yang-Mills theory, one can
adopt a vector-meson propagator model motivated by such
studies, insert it in the kernel for the fermionic propagator
equation, and study issues such as fermion confinement, chi-
ral symmetry breaking, the interplay between the scales for
these two phenomena, and gauge dependence of solutions.
There are two extreme views of the infrared behavior of the
gluon propagator. One is that the singularity atq250 is much
stronger than the 1/q2 behavior of the perturbative propaga-
tor, with variants of 1/q4 often proposed, and the other, in
complete contrast, is that the propagator vanishes asq2→0.
Because of the wide and rather successful application of the
former type of behavior to bound state problems, we will
adopt a frequently studied model of this type, proposed some
time ago by one of us@1,2#, for our analysis.

Intuition for the interpretation and application of quantum
field theories is built upon an intimate interplay between con-
figuration space and momentum space considerations. The
interaction Lagrangian and its symmetry properties are stud-
ied in configuration space, and space-time boundary condi-
tions of the Green functions of the theory are crucial to their
interpretation. On the other hand, the particle spectrum and
the scattering and decay processes contained in the theory
are more intuitively assessed in momentum space. The par-
ticle content is revealed in the Green functions by their

branch cuts and poles in momentum space. The complemen-
tarity of the configuration space and momentum space views
is especially clear in the interchangeability of the terms short
and long distance with ultraviolet and infrared~or hard and
soft! to describe the physics of a situation. It is not surpris-
ing, therefore, that we assume that Green functions in
~Minkowski! configuration space have Fourier transforms to
momentum space and vice versa. Indeed, this property is at
the foundation of the standard approach to particles and
fields.

We return to the study of fermion propagators in the in-
frared domain to see what insight can be gained by requiring
that the solutions to the DS equation be Fourier transform-
able. The question is not idle, since several solutions pro-
posed in the literature as possible models of confined behav-
ior do not have Fourier transforms@2–4#. This consideration
is one of the motivations for the present work. Important
collateral questions that will occupy us are those of the
propagator behavior in the large mass limit, the asymptotic
behavior in both timelike and spacelike directions in momen-
tum space, and the behavior of the propagator in the limit
that the infrared ‘‘gluon-fermion’’ interaction is turned off.
We choose a simple enough model that ‘‘Abelianized’’
Ward-Takahashi identities can be enforced at the fermion-
gauge boson vertex and still leave us with a model whose
propagator we can solve for exactly and whose Fourier trans-
form we can evaluate. Perhaps unique to the present study is
that we remain strictly in Minkowski space in setting up and
solving our model equations.1

1With care taken to handle the continuation to Minkowski space
properly, an equivalent Euclidean space treatment can be given.
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II. DEFINING THE MODEL AND SOLVING
FOR THE PROPAGATOR

We begin by developing the model for our study of
Fourier-transformable solutions to the fermion Dyson-
Schwinger equation. Our crucial ingredient for the DS equa-
tion is the infrared gluon propagator model@1,2# used a num-
ber of times since@3–5#. As mentioned in the Introduction, a
number of studies of the gluon propagator suggest@6# that

D~q2!→
m2

q4
as q2→0, ~1!

where, in the Landau gauge,

Dmn~q2!5S 2gmn1
qmqn

q2 DD~q2!. ~2!

The Fourier transform of 1/(q21 i e)22 does not exist@7#,
however, and a regularization must be prescribed to define a
gluon propagator that has a Fourier transform. Defining
D (l)(q2) as

D ~l!~q2!5
64p2

3
m2~l21!

~l22!

~q21 i e!l , ~3!

wherem has dimensions of mass, the limit2

lim
l→2

Dmn
~l!~q2!5 im2d4~q!~2p!4gmn , ~4!

wherem2 can be positive or negative, defines the propagator
for our infrared DS equation study.3 The simple form of the
confining propagator then is

Dmn~x!5 im2gmn ~5!

in configuration space.4

The general form of the DS equation is, in momentum
space,

15~p”2m!S~p!2 i E d4k

~2p!4
gmD

mn~k!Ln~p1k,p!, ~6!

whereLn is defined in Appendix B. Inserting our model
propagator~4!, we obtain

15~p”2m!S~p!1m2gm
•Lm~p,p!. ~7!

We assume thatLm(p1k,p) obeys the Ward identity

Lm~p,p!52
]

]pm S~p!, ~8!

which is exact in an Abelian gauge theory and true also in
non-Abelian gauge theory if the ghost contributions to the
Ward-Takahashi identity are of orderk and higher. The DS
equation~7! then reads

15~p”2m!S~p!2m2gm
•

]

]pm S~p!, ~9!

in our model. Taking the Fourier transform of Eq.~9!, we
find that thex-space DS equation that forms the basis for the
present investigation is

d4~x!5~ i ]”2m!S~x!1 im2g•xS~x!. ~10!

Phenomenologically, the dimensionful parameterm can be
expressed in terms of the QCD hadron dynamics scale by
fitting the pion decay constant, for example.

The solutions to Eq.~10! have the form@2#

S~x!5e2m2x2/2S0~x!, ~11!

whereS0(x) is a general solution of the free DS equation. In
order to avoid an exponential blow up that invalidates the
Fourier transform, we must choose an appropriateS0(x).

5

For the casem2.0, this means that the free propagator
choice must be@11#

S̄0~x!52~ i ]”1m!@11Ce~x0!#D̄~x2!, ~12!

whereC is an arbitrary constant ande(x0)D̄(x
2) obeys the

free homogeneous DS equation. The choicesC571 yield
advanced and retarded Green functions, respectively. Here
D̄(x2) obeys the inhomogeneous Klein-Gordon equation and
has the form@11#

D̄~x2!5
1

4p S d~x2!2
m2

2
u~x2!

J1~mAx2!
mAx2 D , ~13!

and u~x2! prohibits thex2,0 region where, otherwise, the
full propagator~11! would blow up. For them2,0 case in
Eq. ~4!, one needs a solution withu~2x2!, which follows
from Eq. ~13! by adding the appropriate solution to the ho-
mogeneous equation: namely,6

2The distribution (q21 i e)2l has, as a function ofl, a pole at
l52 with residue2ip2d4(q). See the discussion in Chap. III, Sec.
2.4, or the summary chapter, in Ref.@7#. The contribution from the
second term in Eq.~2! is equal, in the limitl→2, to 1/4 that of the
first term when the gluon propagator is inserted in the DS equation
and relativistic invariance and regularity of the vertex function at
q50 are taken into account.
3Blaha@8# studied PP@1/(q21 i e)2#, but in a perturbative context.

Pagels studied an alternative prescription, with a quark propagator
vanishing asl→2, to handle the 1/q4 singularity. This leads to a
different DS equation from ours@9#.
4The configuration space propagator~5! is consistent with con-

finement, since it clearly does not satisfy the cluster decomposition
property@10#.

5Momentum space solutions to this model that have been offered
in the literature@2–4# are not Fourier transformable because they
diverge exponentially on the real four-momentum-squared axis at
timelike infinity.
6This solution is the unique one in whichu~2x2! appears, as re-

quired in them2,0 case. That is, for this case,C50.
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D̃~x2!5D̄~x2!1
m2

4p

J1~mAx2!
mAx2

5
1

4p S d~x2!1
m2

2
u~2x2!

J1~mAx2!
mAx2 D , ~14!

with S̃0(x)52( i ]”1m)D̃(x2). Note that Eq.~13! represents
a tempered distribution and, therefore, has a Fourier trans-
form, while Eq.~14! does not. We emphasize that a Feynman
propagator isnot an acceptable choice forS0(x) in Eq. ~11!,
because the corresponding solutionS(x) does not have a
Fourier transform.

In summary, we have the two cases

S̄~x!5expS 2
um2u
2

x2D S̄0~x! ~15a!

and

S̃~x!5expS um2u
2

x2D S̃0~x!, ~15b!

corresponding to the choicesm2.0 andm2,0, respectively,
for the gluon propagator model in Eq.~4!. The noninteract-
ing Green functions7 S̄0(x) and S̃0(x) are manifestly re-
gained in them→0 limit. Avoiding the exponential blowup
asx2→2` in Eq. ~15a! and asx2→1` in Eq. ~15b! dictates
the choices ofD̄(x) andD̃(x) in Eqs.~13! and~14!, as nec-
essary conditions to ensure that Fourier transforms to mo-
mentum space exist.

The only solution to the homogeneous form of Eq.~10!
that reduces to the free Wightman function whenm250 is

SW~x!5e2~m2/2!x2~ i ]”1m!W0~x!, ~16!

whereW0(x) is the free-field scalar Wightman function@11#

W0~x!5
m

4pAx2
K1~Ax2m!, ~17!

in terms of a standard Hankel function. If Wightman func-
tions are tempered distributions satisfying certain regularity
conditions, one can prove that free fermion asymptotic states
exist @12#. The Schwinger model, which is solvable, illus-
trates a connection between pathologies of the Wightman
functions and confinement. The fermion Wightman functions
in Coulomb gauge blow up exponentially in configuration
space and fermion states, at the same time, do not appear in
the spectrum@13#. SinceSW(x) as defined above is not a
tempered distribution, this suggests that our model is consis-
tent with fermion confinement.

Let us now take up the evaluation of the Fourier trans-
forms of Eqs.~15a! and~15b! and examine their behavior in
momentum space. The essential calculations that must be

performed are the Fourier transforms ofe2um2ux2D̄(x2) and
e1um2ux2D̃(x2); namely, choosinge2um2ux2D̄(x2) for discus-
sion, we have, adopting the conventionm2.0,

B̄~p2!52mE d4x eip•xe2~m2/2!x2D̄~x2!@11Ce~x0!#

~18!

and

p2Ā~p2!52 i E d4x eip•xe2~m2/2!x2p” ]” $D̄~x2!@11Ce~x0!#%

5~p21m2p•]p!B̄~p2!/m. ~19!

We have definedĀ(p2) and B̄(p) in terms ofS̄(p) to be

S̄~p!5p” Ā~p2!1B̄~p2!5E d4x eip•xS̄~x!. ~20!

Details of our evaluation of the Fourier transform~18! are
given in the Appendix A, where we present a procedure that
can be applied to any functionF(x2) which has a one-
dimensional ~in x2! Fourier transform and whose four-
dimensional Fourier transform is a function ofp2. We also
show there how to choose contours that give improved con-
vergence for the numerical evaluation of the Fourier trans-
form for timelike and spacelike values of the momentum
space argument. Writing theC50 result forB̄(p2) derived in
Appendix A in the form

B̄~p2!

m
5

i

2 E
2`

`

dn e~n!expS 2 ip2n1 i
m2n

122im2n D , ~21!

we factor oute2m2/2m2
and introduce a variablel2 as fol-

lows:

expS i m2n

122im2n D5expS 2
m2

2m2D E
2`

`

dt d~n2t!

3expS m2

2m2

1

122im2t D
5expS 2

m2

2m2D E
2`

` dt

2p E
2`

`

dl2

3exp@ il2~n2t!#

3expS m2

2m2

1

122im2t D . ~22!

Substituting Eq.~22! into Eq. ~21!, exchanging the order of
l2 andt integration, and evaluating the integral overn pro-
duces

B̄

m
~p2!5PPE

2`

`

dl2
s~l2!

p22l2 , ~23!

where

7S̃0(x) does not have a Fourier transform. Thus Eq.~15b! is a
truly nonperturbative solution. As we will see below, although
S̃0(x

2) is them→0 limit of Eq. ~15b!, the Fourier transform of Eq.
~15b! is singular asm→0.
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s~l2!5expS 2
m2

2m2D E
2`

` dt

2p
expS 2 il2t

1
m2

2m2

1

122im2t D
5expS 2m2

2m2 D Fd~l2!1u~l2!
m

2m2l

3expS 2
l2

2m2D I 1S lm

m2 D G
[expS 2m2

2m2 D d~l2!1s̄~l2!u~l2!. ~24!

Thus our representation forC50 is

B̄~p2!

m
5PPFe2m2/2m2

p2
1E

0

`

dl2
s̄~l2!

p22l2G . ~25a!

Equation ~23! representsB̄(p2) as a superposition of free
propagators of massl. The Fourier transform of
e(x0)D̄(x

2,l) is obtained from that ofD̄(x2,l) by the sub-
stitution (p22l2)21→2 ipe(p0)d(p

22l2). Therefore, the
Fourier transform of the second term in Eq.~18! is

CF ipe~p0!e
2m2/2m2Fd~p2!

1u~p2!
m

2m2

1

Ap2
I 1SmAp2

m2 D Ge2p2/2m2G . ~25b!

Equations~25a! and ~25b! show several key features of the
momentum space behavior of the propagator, which is the
solution to the DS equation in our model, and we turn to a
discussion of these points in the next section.

III. PROPERTIES OF THE FERMION PROPAGATOR

A. m2>0 case

The most obvious features of Eqs.~25a! and~25b! are the
singularities atp250. As we emphasize in Sec. IV, these are
not the singularities of a Feynman propagator. Next, we note
that, if m2Þ0, thel2 integral clearly converges since

I 1~x!→
1

A2px
ex as x→`,

and

1

l
e2l2/2m2

I S lm

2m2D→A m

pm

1

l3/2 e
2l2/2m21lm/m2

,

which is strongly convergent. Therefore the asympototic be-
havior of B̄(p2) is

B̄~p2!→
m

p2
as p2→6`, ~26!

and the free-propagator ultraviolet behavior is reproduced.8

Next we consider them2/m2→0 limit of the expressions
~25a! and ~25b! for B̄(p2). The singularities at the origin
vanish exponentially in this limit. What happens to the prin-
cipal part integral? The asymptotic expansion forI 1(x)
shown above allows one to write the limit in the form

s̄~l2!→
m

2m2l

1

A2p

m

Aml
e2~l2m!2/2m2→

Am
l3/2 d~l2m!,

which yields

B̄~p2!

m
→PPS 1

p22m2D1 ipCe~p0!d~p22m2! as
m2

m2→0,

~27!

which is the Fourier transform of the free Green function
[11Ce(x0)] D̄(x

2) in Eqs. ~12! and ~13!. This result estab-
lishes that there is a smooth limit where the free momentum
space Green function is the Fourier transform of the free
configuration space Green function. This smooth limit does
not obtain in ourm2,0 case of Eq.~4! ~see Sec. III B below!
or in the solutions reported in the literature@2–4#. B̄(p2)m is
graphed for several values ofm2/m2 in Fig. 1. The sharpen-
ing of the resonancelike behavior atp2>m2 and the disap-
pearance of the pole atp250 asm2/m2→0 are clearly shown.
Thus in the limit as the mass of the fermion becomes large
compared to the scale associated with the infrared behavior
of the gluon propagator, the fermion propagator becomes
more and more particlelike, in the sense that it behaves like
1/(p22m2) everywhere. The pole atp250 is not an actual
particle pole with thei e prescription corresponding to a
time-ordered product that insures unitarity in the perturbative
expansion. This is true for any value ofC in Eq. ~12!.

A blowup of the region nearp250 for the 2m2/m250.2
case is shown in Fig. 2 to indicate just how sharp the pole is
in this case where its weighting factor ise2m2/2m2

5e25.
Figure 3 shows the value of [B̄(p2)/m](p22m2) as a

function of p2/m2 for the case 2m2/m250.2. The rapid ap-
proach to the free Green function behavior for largep2/m2 is
readily apparent.

B. Casem2<0: An example of a singularm2
˜0 limit

The free Green functionD̃(x2), Eq. ~14!, and the corre-
spondingS̃0(x) are not tempered distributions and do not
have Fourier transforms. Nonetheless, the solution~15b! to
the DS equation with the vertex~8! and gluon infrared
propagator~4! doeshave a Fourier transform because the
exponential factoreum2ux2 controls the exp(mAux2u) diver-
gence ofJ1(mAx2) asx2→2`.

Following the same steps as before, one arrives at Eq.
~21!, but with the opposite sign in front ofm2. The represen-
tation corresponding to Eq.~25a! is

8In fact, expanding Eq.~21! in powers of~1/p2! shows that the
asympototic behavior is given byB̄(p2)/m→1/(p22m2)
1O(m4/p6), asp2→`.
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B̃

m
~p2!5PPFem2/2m2 1

p2

1em
2/2m2 m

2m2 E
0

` dl2

l

1

p21l2 e
2l2/2m2

J1Sml

m2 D G
~28!

In the limit p2→6`, B̃(p2)/m→1/p2 as in the previous
case. In the limitm2/m2→0, there is nod~l2m! behavior,
and there is no pole atp25m2. The whole expressiondi-
vergesasem

2/2m2
in the ~singular! m2/m2→0 limit. The origi-

nal free Green functionD̃(x2) is not Fourier transformable,
and so the singular nature of them2/m2→0 limit merely re-
flects that fact.

IV. DISCUSSION OF RESULTS AND CONCLUSIONS

We have reexamined a model for the infrared gluon
propagator and quark-gluon vertex previously discussed in
the literature@1–5#. We found those solutions to the quark
propagator DS equation that admit Fourier transforms; we
work directly in Minkowski space. Such solutions lend them-
selves to the study of timelike and spacelike behavior of the
propagator without appeal to transformation to Euclidean
space and continuation of the solutions found to the timelike
region. The first solution~m2.0 case! presented has a
smooth limit to a combination of advanced and retarded

Green functions of the free Dirac equation when the interac-
tion is turned off. In momentum space, the real part of the
free Green function is simply PP@1/(p22m2)#, which is also
the behavior of the full solution to the interacting model in
the6p2→` limit, as indicated in Fig. 3. The full propagator
shows an interesting particlelike behavior as the mass param-
eter grows large compared to the infrared scale that charac-
terizes the gluon propagator. This behavior is shown in Fig.
1, and it gives an explicit picture of the increasingly ‘‘free-
particlelike’’ behavior expected as quarks become heavy.
This is particularly true of the top quark, of course. The
solution has a pole atp250 that dominates when the quark
mass parameter is of the order of or less than the infrared
scale in the gluon propagator, as shown in Fig. 1. The sin-
gularity at the origin is suppressed by the exp~2m2/2m2!
factor displayed in Eqs.~25a! and ~25b! in the large quark
mass limit. Though the model is not realistic, since we do not
include the ultraviolet contribution from the gluon propaga-
tor, it does have the interesting feature that, while the region
nearp250 dominates when the quark mass is small, the re-
gion nearp25m2 dominates as the quark mass gets large.
Regarding confinement, we note that the gluon propagator
model, which is constant in configuration space, clearly vio-
lates the cluster decomposition property, which has been
considered to be a sufficient condition for confinement. For
the quark propagator, the absence of a singularity on the real
p2 axis is often taken to be a sufficient condition for confine-
ment. In contrast, the quark propagator solution that we find

FIG. 1. Plot ofmB̄(p2) vs x5p2/m2 for the caseC50, Eq. ~21!. Curves for the valuesa52m2/m250.05 ~solid line!, a50.2 ~long-
dashed line!, anda51.0 ~short-dashed line! are shown. The onset of the pole is visible for thea50.2 case, and it is the dominant feature in
thea51.0 case, where the ‘‘resonant’’ behavior atx51(p25m2) is gone. The region aroundx50 is excluded from all three plots so that
all three cases fit on the figure~the jump acrossx50 does not show up on this scale for thea50.05 case!.
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is singular at the origin in momentum space. This singular
behavior appears to be consistent with confinement, since the
i e prescription necessary to define Feynman diagrams that
build in the connection with unitaryS-matrix elements be-
tween free outgoing and incoming colored quark states is not
permitted by the DS equation@~9! or ~10!#. Further reinforc-
ing our point about confinement is the fact that the function
SW(x), Eq. ~16!, which reduces to the free two-point Wight-
man function in our model, is not a tempered distribution,
one of the conditions assumed for the Wightman functions
when they are used for proving the existence of free-fermion
asymptotic states. If an ultraviolet term were added to the
gluon propagator to make it more realistic, what effect on
our solution to the quark DS equation might one find? Cer-
tainly the 1/p2 behavior at large, spacelike values ofp2

should be not affected, since this is consistent with asymp-
totic freedom. At large timelike values ofp2, the 1/p2 behav-
ior that we find may be modified, but the asymptotic behav-
ior should still admit a Fourier transform for the solution.
The specific singularity structure on the finite real axis may
be changed, but the model for the infrared region is compat-
ible with the cluster decomposition property, so one may
expect that there will be no poles or cuts with the Feynman
i e prescription that would indicate loss of confinement. Fi-
nally, as noted in@2#, our model of the gluon propagator does
not produce spontaneous chiral symmetry breaking by itself,
but the ultraviolet term may drive the breakdown.

The second Fourier transformable solution~m2,0 case!
that we presented has the same ‘‘free-quark’’ asymptotic be-
havior in momentum space as the first, but the particlelike

resonant behavior atp25m2 in the large mass limit is miss-
ing. Furthermore, the large mass~or small interaction
strength! limit is singular, in keeping with the fact that, while
this solution to the full, interacting DS equation has a Fourier
transform, the solution to the free equation does not. When
taken in momentum space, the limit to the free Green func-
tion simply does not exist. The latter feature is shared by the
solutions presented in@2#, @3#, and@4#, where the~Euclidean!
momentum space propagators, extended to timelike values of
the argument, are not tempered distributions and have no
Fourier transform.

In conclusion, we have presented the tempered-
distribution solutions to the DS equation for a simple model
in four-dimensional Minkowski space with a confining gluon
propagator and a nontrivial quark gluon vertex. We offer the
results as an interesting, instructive, and useful addition to
the literature on the dynamics of confined quarks.

ACKNOWLEDGMENTS

We thank Pankaj Jain and V. A. Miranski for discussions.
The computational facilities of the Kansas Institute for Theo-
retical and Computational Science were used for portions of
this work. This research has been supported in part by De-
partment of Energy Grant No. DE-FG02-85ER40214.

APPENDIX A

In this appendix we present details of our evaluation of
the Minkowski space Fourier transforms. Our approach is to
define the auxiliary, one-dimensional transform

FIG. 2. Blow up of thep250 region for thea50.2 plot to display the onset of the singularity.
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e2~m2/2!x2D̄~x2!5E
2`

` eivx
2

2p
G~v!dw ~A1!

and its inverse

G~v!5E
2`

`

e2 ivx2e2~m2/2!x2D̄~x2!dx2. ~A2!

It is understood thatm2.0 here. This procedure can be ap-
plied to any function ofx2 which has a one-dimensional~in
x2! Fourier transform and whose four-dimensional transform
is a function ofp2. Substituting Eq.~13! into Eq. ~A2! and
evaluating, we find

G~v!5E
2`

`

e2x2@ iv1~m2/2!#F 1

4p S d~x2!

2
m2

2
u~x2!

J1~mAx2!
mAx2 D Gdx2

5
1

4p
2
m2

8p E
0

`

e2x2@ iv1~m2/2!#
J1~mAx2!
mAx2

dx2

5
1

4p
e2m2/4~ iv1m2/2!. ~A3!

So the evaluation of the first term in the expression for
B̄(p2), Eq. ~18!, now involves the integral

B̄~p2!5
2m

8p2 E
2`

`

dv e2m2/4@ iv1~m2/2!#E d4x eivx
21 ip•x,

~A4!

where we have exchanged the order of integration in writing
this version of Eq.~18!. The x integration is a product of
Fresnel integrals that yields

E d4x eivx
21 ip•x52 i e~v!

p2

v2 e
2 i ~p2/4v!. ~A5!

Definingn54/v, the Fourier transformB̄(p2) can be written

B̄~p2!/m5Im E
0

`

dn expS ip2n2 inm2
~122im2n!

~114m4n2! D
5

1

m2 E
0

`

dz exp@2z2a/~11a2z2!#

3sin@ tz2z/~11a2z2!#, ~A6!

wherea[2m2/m2, t[p2/m2, andz[nm2. One obtains the
Fourier transform ofB̃(p2) by simply changing the sign of
m2 in Eq. ~A6!.

To evaluateB̄(p2) for p2.0, Eq. ~A6!, convergence can
be improved by choosing a contour in the first quadrant in
the complexz plane that is equivalent to the one shown in
Eq. ~A6! by Cauchy’s theorem. Writingz5reiu, 0<u,p/2,
one can recast the representation ofB̄(p2) in the form

FIG. 3. Plot of (x21)B̄(p2)m for the casea50.2. The rapid approach to 1 asx5p2/m2 grows shows the 1/~x21! asymptotic behavior.
As seen in Fig. 1, this behavior is shared by all of the differenta-value solutions. The same asymptotic behavior is obeyed byB̃(p2) ~see
text!.
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mB̄~p2!5E
0

`

drFsinS xr cosu1u2
r cosu

D D
3expS 2xr sinu1r

sinu

D
2
ar2

D D G , ~A7!

where x5p2/m2, a52m2/m2, and D5~12ar sinu!2

1a2r2cos2u. The choiceu5p/4 is convenient for evaluating
Eq. ~A7!, which converges significantly faster than Eq.~A6!
for p2.0 and thereby speeds up the numerical integration. A
similar formula holds forp2,0, where2~p/2!,u,0.

APPENDIX B

The configuration space solution of the DS equation has
the factorizable formS(x)5ei f (x

2)S0(x) for the vertex out-
lined in this appendix, for any gluon propagator for which
the integral~B15! exists. Thed4(q) propagator is a special
example where the Ward identity~8! defines the DS equation
vertex and leads to the factorized solution~11!. Let us see
how this result can be generalized to other propagators.

A model for the irreducible vertexGm that has good sym-
metry properties @14# and satisfies the Abelian Ward-
Takahashi identity can be written in configuration space as

Gm~z;x,y!5Fm~y2z,x2z!S21~x,y!. ~B1!

In Eq. ~B1!, S(x,y) is the full fermion propagator and

Fm~y2z,x2z!5E ~e2 iq•~y2z!

2e2 iq•~x2z!!
~x2y!m

q•~x2y!

d4q

~2p!4
1Fm

T ,

~B2!

where]F m
T /]zm50. One can represent the Fourier transform

of Gm in terms of the fermion propagator as

Gm~p1k,p!5
]

]pm E
0

1

S21~p1ak!da1Gm
T~p1k,p!.

~B3!

The first term on the right-hand side of Eq.~B3! is con-
structed to satisfy

kmGm~p1k,p!5S21~p1k!2S21~p!, ~B4!

wherekmG m
T(p1k,p)50.

While the vertexGm is convenient for a discussion of the
symmetry properties of a theory, the study of the fermion DS
equation is generally more convenient when use is made of
the functionLm , defined as

Lm~p1k,p![S~p1k!Gm~p1k,p!S~p!. ~B5!

In terms ofLm(p1k,k), our model looks like

Lm~p1k,p!5
]

]pm E
0

1

S~p1ak!da1Lm
T~p1k,p!, ~B6!

with

kmLm~p1k,p!5S~p!2S~p1k! ~B7!

andkmL m
T50. Equation~B6! must satisfy the Ward identity

~8!; therefore,L m
T must vanish atk50. With this in mind, we

make the approximation that the first term in Eq.~B6! domi-
nates in the infrared region of interest here, and so we drop
L m

T in what follows.9

The general form of the DS equation is then, in momen-
tum space,

15~p”2m!S~p!2 i E d4k

~2p!4
gmD

mn~k!Ln~p1k,p!,

~B8!

whereDmn(k) is the gauge-boson propagator.
With Lm(p1k,k) modeled by the first term in Eq.~B6!,

the Fourier transform of Eq.~B8! is a pure differential equa-
tion, which we write as

d4~x!5~ i ]”2m!S~x!1@]” f ~x2!#S~x!. ~B9!

In Eq. ~B9! we have

]

]xn f ~x2!5xnE
0

1

@d1~a2x2!1a2x2d2~a2x2!#da

52xn ḟ ~x
2!, ~B10!

with

ḟ ~x2![
d

dx2
f ~x2!5

1

2 E
0

1

da@d1~a2x2!1a2x2d2~a2x2!#.

~B11!

In writing Eqs. ~B8!–~B10!, we have expressed the
covariant-gauge, gauge-boson propagator in the general form

Dmn~x!5d1~x
2!gmn1d2~x

2!xnxn . ~B12!

The general solution to the DS equation~B9! has the remark-
ably simple factorized form

S~x!5ei f ~x
2!S0~x!. ~B13!

The Green functionS0(x) satisfies the free equation

~ i ]”2m!S0~x!5d4~x!e2 i f ~0!, ~B14!

where it is to be understood that arbitrary solutionsSH to the
homogeneous equation (i ]2m)SH(x)50 can always be
added to solutions of Eq.~B14!. We require thatS0(x) have
the standard normalization, and sof ~0!50, and the solution
to Eq. ~B10! can be displayed as

f ~x2!5
1

2 E
0

x2

dx82E
0

1

da@d1~a2x82!1a2x82d2~a2x82!#,

~B15!

in those circumstances where the integral converges.

9For the model of Eq.~4!, Lm
T does not contribute anyway, and so

the first term of Eq.~B6! is the complete contribution.
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