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Study of quark propagator solutions to the Dyson-Schwinger equation in a confining model

Douglas W. McKay and Herman J. Munczek
Department of Physics and Astronomy, The University of Kansas, Lawrence, Kansas 66045
(Received 26 June 1996

We solve the Dyson-Schwinger equation for the quark propagator in a model with singular infrared behavior
for the gluon propagator. We require that the solutions, easily found in configuration space, be tempered
distributions and thus have Fourier transforms. This severely limits the boundary conditions that the solutions
may satisify. The sign of the dimensionful parameter that characterizes the model gluon propagator can be
either positive or negative. If the sign is negative, we find a unique solution. It is singular at the origin in
momentum space, falls off like 4? as p>—+/—, and is truly nonperturbative, in that it is singular in the
limit that the gluon-quark interaction approaches zero. If the sign of the gluon propagator coefficient is
positive, we find solutions that are, in a sense that we exhibit, unconstrained linear combinations of advanced
and retarded propagators. These solutions are singular at the origin in momentum space, fall off’like 1/
asympotically, exhibit “resonantlike” behavior at the position of the bare mass of the quark when the mass is
large compared to the dimensionful interaction parameter in the gluon propagator model, and smoothly ap-
proach a linear combination of free-quark advanced and retarded two-point functions in the limit that the
interaction approaches zero. In this sense, these solutions behave in an increasingly “particlelike” manner as
the quark becomes heavy. The Feynman propagator and the Wightman function are not tempered distributions
and therefore are not acceptable solutions to the Schwinger-Dyson equation in our model. On this basis we
advance several arguments to show that the Fourier-transformable solutions we find are consistent with quark
confinement, even though they have singularities on thep®akis.[S0556-282(97)08104-§

PACS numbds): 12.38.Aw, 12.38.Lg

I. INTRODUCTION branch cuts and poles in momentum space. The complemen-
tarity of the configuration space and momentum space views
A classic approach to understanding the behavior of conis especially clear in the interchangeability of the terms short
fined particles is to model and solve the Dyson-Schwinge”nd long distance with ultraviolet and infraréar hard and
(DS) equations for the particles’ propagators. Since confineSOft) to describe the physics of a situation. It is not surpris-
ment is generally regarded as an infrared phenomenon, t{B9, therefore, that we assume that Green functions in
emphasis is naturally on the infrared region of the kernels ofMinkowski) configuration space have Fourier transforms to

the DS equations. Taking clues from studies of the infraredoMentum space and vice versa. Indeed, this property is at

behavior of propagators in pure Yang-Mills theory, one ca the foundation of the standard approach to particles and

adopt a vector-meson propagator model motivated by suchields- . . .
studies, insert it in the kernel for the fermionic propagator. W€ return to the study of fermion propagators in the in-
equation, and study issues such as fermion confinement, cH{:2réd domain to see what insight can be gained by requiring

ral symmetry breaking, the interplay between the scales fothat the solutions to the DS equation be Fourier transform-

these two phenomena, and gauge dependence of solutiof®@le. The question is not idle, since several solutions pro-

There are two extreme views of the infrared behavior of thé?0Sed in the literature as possible models of confined behav-
gluon propagator. One is that the singularitg&0 is much ior do not have Fo_urle_r transfornj@—4]. This consideration
stronger than the f behavior of the perturbative propaga- 'S One of the motivations for the present work. Important
tor, with variants of 14* often proposed, and the other, in collateral questlons Fhat will occupy us are those of thg
complete contrast, is that the propagator vanisheg?as). ~ Propagator behavior in the large mass limit, the asymptotic
Because of the wide and rather successful application of thB€havior in both timelike and spacelike directions in momen-
former type of behavior to bound state problems, we willtum space, and the behavior of the propagator in the limit

adopt a frequently studied model of this type, proposed somihat the infrared f‘gluon-fermion” interaction |s turn_ed_ off.”
time ago by one of uL,2], for our analysis. We choose a simple enough model that “Abelianized

Intuition for the interpretation and application of quantumWard—Takahashi identities can be enforced at the fermion-

field theories is built upon an intimate interplay between con9auge boson vertex and sitill leave us with a model whose
figuration space and momentum space considerations. THYopagator we can solve for exactl)_/ and whose Fourier trans-
interaction Lagrangian and its symmetry properties are studO'™M We can evaluate. Perhaps unique to the present study is
ied in configuration space, and space-time boundary condF—hat,We remain strictly |n.M|nkowsk| space in setting up and
tions of the Green functions of the theory are crucial to theirS°/Ving our model equatiorts.

interpretation. On the other hand, the particle spectrum and

the scattering and decay processes contained in the theory

are more intuitively assessed in momentum space. The partwith care taken to handle the continuation to Minkowski space
ticle content is revealed in the Green functions by theirproperly, an equivalent Euclidean space treatment can be given.
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IIl. DEFINING THE MODEL AND SOLVING 1=(p—m)S(p) + u2y* A ,(p,p). @
FOR THE PROPAGATOR

We begin by developing the model for our study of We assume thak,(p+k,p) obeys the Ward identity
Fourier-transformable solutions to the fermion Dyson-
Schwinger equation. Our crucial ingredient for the DS equa- o d
tion is the infrared gluon propagator modi|2] used a num- Au(pp)=— JIpt S(p), (8)
ber of times sincg3—-5]. As mentioned in the Introduction, a
number of studies of the gluon propagator sug@@bthat  which is exact in an Abelian gauge theory and true also in

5 non-Abelian gauge theory if the ghost contributions to the
D(qz)H"L_4 as q>—0, (1) Ward-'Takahashi identity are of ordkrand higher. The DS
q equation(7) then reads
where, in the Landau gauge, 9
L=(p=m)S(p)~ Py 57 S(P), ©
4.9
D,Ly(qz):( Gt gz )D(qz). ©)

in our model. Taking the Fourier transform of E®), we
The Fourier transform of 16#+i€)?% does not exis{7], find that thex-space DS equation that forms the basis for the

however, and a regularization must be prescribed to define Rresent investigation is
gluon propagator that has a Fourier transform. Defining

DM(g?) as S X)=(id—m)S(x) +iu’y-xX). (10
(N2 6472 20— 1) (A—2) Phenomenologically, the dimensionful parametecan be
D*™(g%)= 3 M m ©) expressed in terms of the QCD hadron dynamics scale by
fitting the pion decay constant, for example.
where u has dimensions of mass, the lifnit The solutions to Eq(10) have the forn2]
lim Dy (a%) =i u?o'(a)(2m) . @ S(x)=e #>25y(x), (11)

¥vhereSO(x) is a general solution of the free DS equation. In
order to avoid an exponential blow up that invalidates the
Fourier transform, we must choose an approprigjx).°

For the caseu®>0, this means that the free propagator

whereu? can be positive or negative, defines the propagato
for our infrared DS equation studyThe simple form of the
confining propagator then is

D/.LV(X):iMZQ;LV (5) choice must béll]
in configuration spacé. Sy(X)=—(i4+m)[1+Ce(x0)JA(X), (12
The general form of the DS equation is, in momentum _
space, whereC is an arbitrary constant ane(x,)A(x?) obeys the

. free homogeneous DS equation. The choi€es+1 yield
. d*k ) advanced and retarded Green functions, respectively. Here
1=(p—m)S(p)—|f (2m)* 7uD*(KA(P+KP). (6)  A(x?) obeys the inhomogeneous Klein-Gordon equation and
has the forn{11]
where A, is defined in Appendix B. Inserting our model

propagator(4), we obtain _ 1 m2 Jy(m /_xz)
2\ _ 2 2

2The distribution ¢2+ie) ™ has, as a function ok, a pole at
A=2 with residue—i 726%(q). See the discussion in Chap. Ill, Sec. and 6(x°) prohibits thex?<0 region where, otherwise, the
2.4, or the summary chapter, in RET]. The contribution from the full propagator(11) would blow up. For theu?<0 case in
second term in Eq2) is equal, in the limif—2, to 1/4 that of the  EQ. (4), one needs a solution with(—x?), which follows
first term when the gluon propagator is inserted in the DS equatioffom Ed. (13) by adding the appropriate solution to the ho-
and relativistic invariance and regularity of the vertex function atmogeneous equation: namély,
g=0 are taken into account.

3Blaha[8] studied PR 1/(q%+i€)?], but in a perturbative context.
Pagels studied an alternative prescription, with a quark propagatorSyiomentum space solutions to this model that have been offered
vanishing as\—2, to handle the #* singularity. This leads to a in the literature[2—4] are not Fourier transformable because they

different DS equation from our®]. diverge exponentially on the real four-momentum-squared axis at
“The configuration space propagat®) is consistent with con-  timelike infinity.

finement, since it clearly does not satisfy the cluster decomposition ®This solution is the unique one in whidi{—x?) appears, as re-
property[10]. quired in theu?<O0 case. That is, for this cas€=0.
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T = Alx? m? Jl(m\/P) performed are the Fourier transforms |”“2|X2A_(x2) and
C)=A0D+ 77 M2 et 1W*A(x2); namely, choosing™#*A(x?) for discus-
sion, we have, adopting the conventipA>0,
1 m? J1(my/x
=— | 8(x®)+—= 0(—x?) —1( \/2—2) , (14 — - 22
Am 2 myx? Buﬂy:—mjkﬁxéﬂ@—w/$XAu%[r+cqx@]
with §O(X)= —(id+ m)Z(xz). Note that Eq(13) represents (18)

a tempered distribution and, therefore, has a Fourier trans-
form, while Eq.(14) does not. We emphasize that a Feynman?"
propagator is1ot an acceptable choice f&,(x) in Eq. (11),
; : _ . g —
Eizz?iiivetrgzifg;)r;respondlng soluti8fx) does not have a pZA(pZ):—|f d*x &P e~ (WX P AIA(X2)[ 1+ Ce(xo) ]}
In summary, we have the two cases

= (p?+ u2p- 9)B(p?)/m. (19
— 2 —_— —_— — —
S(x)=exp( - @ 2] S5(x) (158  We have defined\(p?) andB(p) in terms ofS(p) to be
and S(p)=BAG) +B(p) - [ d'x eP 5. (20)
= _ |ILL2| 21 &
S(x) =exg —5— X7 So(%), (15D petails of our evaluation of the Fourier transfor8) are

given in the Appendix A, where we present a procedure that
corresponding to the choices™>0 and u*<0, respectively, can be applied tg any functioﬁ(xz) which has a one-
for the gluon propagator model in EG). The noninteract- dimensional (in x°) Fourier transform and whose four-
ing Green functions Sy(x) and Sy(x) are manifestly re- dimensional Fourier transform is a function pf. We also
gained in theu—0 limit. Avoiding the exponential blowup show there how to choose contours that give improved con-
asx’>——o« in Eq. (153 and asx>— -+ in Eq. (15b) dictates  vergence for the numerical evaluation of the Fourier trans-
the choices ofA(x) andA(x) in Egs.(13) and(14), as nec- form for timelike and spacelike values_of the momentum
essary conditions to ensure that Fourier transforms to mospace argument. Writing tr@=0 result forB(p?) derived in

mentum space exist. Appendix A in the form
The only solution to the homogeneous form of Ef0) L
that reduces to the free Wightman function wheh=0 is B(p?) i (= . . m?y
=—j dv e(v)exg —ip?v+i —————|, (21)
— o (u2)x2; m 2 ) o 1-2ipv
Sw(x)=e~ T2 h+m)Wo(x), (16)
. . . . —m22u? ; ; 2
whereW,(x) is the free-field scalar Wightman functiphl]  we factor oute and introduce a variablg® as fol-
lows:
m 2
Wo(x)=~ JXTKl(Jx_mx (17 Com m? f s
aw _ | = R —
exp i 1-2i % ex 22 ) . T 8(v—1)
in terms of a standard Hankel function. If Wightman func- 5
tions are tempered distributions satisfying certain regularity Xexy{ﬂz 1 )
conditions, one can prove that free fermion asymptotic states 2p” 1-2ip T
exist [12]. The Schwinger model, which is solvable, illus- m2\ = d .
trates a connection between pathologies of the Wightman :exp< __z)f _Tf di2
functions and confinement. The fermion Wightman functions 2p) ) e 27 )

in Coulomb gauge blow up exponentially in configuration 2

space and fermion states, at the same time, do not appear in Xexir(v=1)]

the spectrum13]. Since S(x) as defined above is not a m2 1

tempered distribution, this suggests that our model is consis- X exp(F 1_2—2) .

tent with fermion confinement. K tpoT
L now tak he evaluation of the Fourier trans- _ . .

forme'st (;‘Squ.(lt;@ ea:dp(lt5f)) Zn%uee:aomir?e tthgir t;)etjhaevi(;[re}ns Substituting Eq(22) into Eq. (21), exchanging the order of

2 . . . -
momentum space. The essential calculations that must t%u?gsdﬂntegratmn, and evaluating the integral owepro-

(22

" 2
dxzéﬂf—l 23)

B
-FSO(X) does not have a Fourier transform. Thus Etpb) is a = (p2)=PPf 732

truly nonperturbative solution. As we will see below, although -
So(x?) is the u—0 limit of Eq. (15b), the Fourier transform of Eq.
(15b) is singular asu—0. where
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\2)— m? f” dr 2
o(N)=ex ﬁ B Eex iNT
. m? 1
Z_,uz 1-2iu’r
= %mz SN2+ O(\2) —
S ]
exp — =l —=
2/J,2 1 MZ
-m? _
sexp( 2)5()\2)-1—0()\2)0()\2). (24)
2p
Thus our representation f@=0 is
- 2 2 —_—
B(p?) _ e ™ (=, o(\?)
m =P +f0 Ao a|- (254

Equation (23) representB(p?) as a superposition of free
propagators of massa. The Fourier transform of
e(Xo)A(X%,\) is obtained from that ofA(x?\) by the sub-

stitution (p?—A2) "= —ime(py) 8(p>—\?). Therefore, the

Fourier transform of the second term in E48) is

Clime(po)e ™ 24| 5(p?)

myp?

2

(25b

m 1
o) g o 5o

Equations(259 and (25b) show several key features of the
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and the free-propagator ultraviolet behavior is reproddced.
Next we consider the?/m?—0 limit of the expressions
(253 and (25b) for B(p?). The singularities at the origin
vanish exponentially in this limit. What happens to the prin-
cipal part integral? The asymptotic expansion 1g(x)
shown above allows one to write the limit in the form

N

— 1 M 215 2
2 — (A —m)%i2u _
o(A )Hmmme Hrgﬁﬁ()\ m),
which yields
B(p?) 1) 2
- —P i +imCe(po) 8(p>—m?) aSWﬂO,
(27

which is the Fourier transform of the free Green function
[1+Ce(x)]A(X?) in Egs.(12) and(13). This result estab-
lishes that there is a smooth limit where the free momentum
space Green function is the Fourier transform of the free
configuration space Green function. This smooth limit does
not obtain in our,u2<0 case of Eq(4) (see Sec. Il B beloy

or in the solutions reported in the literaty-4]. B(p?)m is
graphed for several values pf/m? in Fig. 1. The sharpen-
ing of the resonancelike behavior pt=m? and the disap-
pearance of the pole at=0 asu?m?—0 are clearly shown.
Thus in the limit as the mass of the fermion becomes large
compared to the scale associated with the infrared behavior
of the gluon propagator, the fermion propagator becomes
more and more particlelike, in the sense that it behaves like
1/(p?—m?) everywhere. The pole g@?>=0 is not an actual
particle pole with theie prescription corresponding to a
time-ordered product that insures unitarity in the perturbative

momentum space behavior of the propagator, which is thexpansion. This is true for any value 6fin Eq. (12).
solution to the DS equation in our model, and we turn to a A blowup of the region neap?=0 for the 2u¥m?=0.2

discussion of these points in the next section.

lll. PROPERTIES OF THE FERMION PROPAGATOR

A. u>>0 case

The most obvious features of Eq253 and(25b) are the
singularities ap?=0. As we emphasize in Sec. IV, these are

not the singularities of a Feynman propagator. Next, we note

that, if u?#0, the\? integral clearly converges since

[1(X)— e as x—oo,

1
\V2X
and

1

am 1
—\212u2 M —N212u2 i 2
—e | 5 e M M ,
A (2,LL2) amA\32

which is strongly convergent. Therefore the asympototic be
havior of B(p?) is

— m
B(pz)—>52 as p?— *os, (26)

case is shown in Fig. 2 to indicate just how sharp the pole is

in this case where its weighting factorés ™72+’ =5,

Figure 3 shows the value ofB[p?)/m](p>*—m?) as a
function of p>/m? for the case 2%/m?=0.2. The rapid ap-
proach to the free Green function behavior for lapém? is
readily apparent.

B. Caseu?<0: An example of a singular #?>—0 limit

The free Green function (x%), Eq. (14), and the corre-
spondingSy(x) are not tempered distributions and do not
have Fourier transforms. Nonetheless, the solutisb) to
the DS equation with the verte8) and gluon infrared
propagator(4) doeshave a Fourier transform because the

exponential factore*“** controls the exptw[x?]) diver-
gence ofJ;(my/x?) asx?——c.

Following the same steps as before, one arrives at Eq.
(22), but with the opposite sign in front @f2. The represen-
tation corresponding to Eq259 is

8n fact, expanding Eq(21) in powers of(1/p? shows that the
asympototic behavior is given byB(p?)/m— 1/(p?>—m?)
+0(m*/pb), asp—.
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FIG. 1. Plot ofmB(p?) vs x=p?/m? for the caseC=0, Eq.(21). Curves for the valuea=2u%/m?=0.05 (solid line), a=0.2 (long-
dashed ling anda=1.0 (short-dashed lineare shown. The onset of the pole is visible for &w0.2 case, and it is the dominant feature in
thea=1.0 case, where the “resonant” behavionat 1(p?>=m?) is gone. The region around=0 is excluded from all three plots so that
all three cases fit on the figuféhe jump across=0 does not show up on this scale for the 0.05 casg

3| m

2 2 1
m</2uc
2

p
= d\?

)
2u? Jo

In the limit p?>— =%, B(p?)/m—1/p? as in the previous
case. In the limitu?m?—0, there is nod\—m) behavior,
and there is no pole gi?=m?. The whole expressiodi-
vergesase™ %#* in the (singulaj xZm2—0 limit. The origi-
nal free Green functior (x?) is not Fourier transformable,
and so the singular nature of thé/m?>—0 limit merely re-
flects that fact.

(p5=P%e

+ em2/2ﬂ2 1

N pPPHA?

mA
#2

2 2
e )\IZMJl

(28)

IV. DISCUSSION OF RESULTS AND CONCLUSIONS

Green functions of the free Dirac equation when the interac-
tion is turned off. In momentum space, the real part of the
free Green function is simply PB/(p>—m?)], which is also

the behavior of the full solution to the interacting model in
the =p?— limit, as indicated in Fig. 3. The full propagator
shows an interesting particlelike behavior as the mass param-
eter grows large compared to the infrared scale that charac-
terizes the gluon propagator. This behavior is shown in Fig.
1, and it gives an explicit picture of the increasingly “free-
particlelike” behavior expected as quarks become heavy.
This is particularly true of the top quark, of course. The
solution has a pole g1?=0 that dominates when the quark
mass parameter is of the order of or less than the infrared
scale in the gluon propagator, as shown in Fig. 1. The sin-
gularity at the origin is suppressed by the exm?%2u?)
factor displayed in Eqs(259 and (25b) in the large quark
mass limit. Though the model is not realistic, since we do not
include the ultraviolet contribution from the gluon propaga-

We have reexamined a model for the infrared gluontor, it does have the interesting feature that, while the region

propagator and quark-gluon vertex previously discussed imearp?=0 dominates when the quark mass is small, the re-
the literature[1—5]. We found those solutions to the quark gion nearp?=m? dominates as the quark mass gets large.
propagator DS equation that admit Fourier transforms; wedRegarding confinement, we note that the gluon propagator
work directly in Minkowski space. Such solutions lend them-model, which is constant in configuration space, clearly vio-
selves to the study of timelike and spacelike behavior of thdates the cluster decomposition property, which has been
propagator without appeal to transformation to Euclidearconsidered to be a sufficient condition for confinement. For
space and continuation of the solutions found to the timelikehe quark propagator, the absence of a singularity on the real
region. The first solution(u>>0 cas¢ presented has a p? axis is often taken to be a sufficient condition for confine-
smooth limit to a combination of advanced and retardedment. In contrast, the quark propagator solution that we find
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FIG. 2. Blow up of thep®=0 region for thea=0.2 plot to display the onset of the singularity.

is singular at the origin in momentum space. This singularesonant behavior gt?=m? in the large mass limit is miss-
behavior appears to be consistent with confinement, since thieg. Furthermore, the large mag®r small interaction

i e prescription necessary to define Feynman diagrams thatrength limit is singular, in keeping with the fact that, while
build in the connection with unitar$-matrix elements be- this solution to the full, interacting DS equation has a Fourier
tween free outgoing and incoming colored quark states is ndtansform, the solution to the free equation does not. When
permitted by the DS equatidit9) or (10)]. Further reinforc- taken in momentum space, the limit to the free Green func-
ing our point about confinement is the fact that the functiortion simply does not exist. The latter feature is shared by the
Sw(x), Eq. (16), which reduces to the free two-point Wight- solutions presented {i2], [3], and[4], where thg Euclidean

man function in our model, is not a tempered distribution,momentum space propagators, extended to timelike values of
one of the conditions assumed for the Wightman functionghe argument, are not tempered distributions and have no
when they are used for proving the existence of free-fermior-ourier transform.

asymptotic states. If an ultraviolet term were added to the In conclusion, we have presented the tempered-
gluon propagator to make it more realistic, what effect ondistribution solutions to the DS equation for a simple model
our solution to the quark DS equation might one find? Cer4n four-dimensional Minkowski space with a confining gluon
tainly the 1p2 behavior at large, spacelike values p? propagator and a nontrivial quark gluon vertex. We offer the
should be not affected, since this is consistent with asympresults as an interesting, instructive, and useful addition to
totic freedom. At large timelike values of, the 1p?behav-  the literature on the dynamics of confined quarks.

ior that we find may be modified, but the asymptotic behav-

ior should still admit a Fourier transform for the solution. ACKNOWLEDGMENTS

The specific singularity structure on the finite real axis may

be chanaed. but the model for the infrared redion is compat- We thank Pankaj Jain and V. A. Miranski for discussions.
: inged, o 9 P LI'he computational facilities of the Kansas Institute for Theo-
ible with the cluster decomposition property, so one may

i . retical and Computational Science were used for portions of
expect that there will be no poles or cuts with the FeynmaqhiS work. This research has been supported in part by De-

i e prescription that would indicate loss of confinement. Fi- artment of Enerav Grant No. DE-EG02-85ER40214
nally, as noted if2], our model of the gluon propagator does P oy ' '

not produce spontaneous chiral symmetry breaking by itself,
but the ultraviolet term may drive the breakdown.

The second Fourier transformable solutiqef<O case In this appendix we present details of our evaluation of
that we presented has the same “free-quark” asymptotic bethe Minkowski space Fourier transforms. Our approach is to
havior in momentum space as the first, but the particlelikalefine the auxiliary, one-dimensional transform

APPENDIX A
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FIG. 3. Plot of k— l)B_(pz)m for the case=0.2. The rapid approach to 1 as- p?/m? grows shows the ¥—1) asymptotic behavior.
As seen in Fig. 1, this behavior is shared by all of the differertlue solutions. The same asymptotic behavior is obeyeB(Ipf) (see
text).

. i wx?

2 G(w)dw (A1) B(p2)= 82 J do e_m2/4{|w+(M2/2)]f d%x eIwX2+|p-x,
™ —
(Ad)

’(”Z’Z)XZA_(XZ) _ f

and its inverse . L "
where we have exchanged the order of integration in writing

0 this version of Eq.(18). The x integration is a product of
G(w)ZI e i’e” (WIDCA(x2) dxC, (A2)  Fresnel integrals that yields
; 2 ; o2 ? 02
It is understood thaf“>0 here. This procedure can be ap- f d*x X FIPX= _jg(w) — e 1(P74)  (AB)
plied to any function of&? which has a one-dimensionéh @

x?) Fourier transform and whose four-dimensional transform - _ — _
is a function ofp? Substituting Eq(13) into Eq. (A2) and  Defining v=4/w, the Fourier transfornB(p“) can be written
evaluating, we find

oo 1—2iu?
B(pz)/mzlmf dv ex;{ipzv—ivmz( )
0

* A 2.5
G(w):fweXZ[in,u?/Z)]{% ( S(x?) (1+4uv9)
Ji(m®) ”

1 0

=—zf dz exd —z%al(1+a?7%)]
m= Jo

e 9( x%)

myx2

2 ro
1 m e—xz[iw+(,u,2/2 m\/—)

X sintz—z/(1+a%z?)], (AB)

wherea=2u%/m?, t=p?/m?, andz=vm?. One obtains the

“47m 8w m\/—z Fourier transform oB(p?) by simply changing the sign of
w2 in Eq. (A6).__
_ i —m2/4(i w+ u2/2) To evaluateB(p?) for pZ>0, Eq.(A6), convergence can
= e . (A3) . . - . .
A7 be improved by choosing a contour in the first quadrant in

the complexz plane that is equivalent to the one shown in
So the evaluation of the first term in the expression forEq. (A6) by Cauchy’s theorem. Writing= pe'?, 0<#< /2,
B(p?), Eq. (18), now involves the integral one can recast the representatiorB¢p?) in the form
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P cosﬂ) k*A ,(p+k,p)=S(p)—S(p+k) (B7)

sm( Xp cosh+ 60— D

mB(p?)= J dp
0 and k“AlTL:O. Equation(B6) must satisfy the Ward identity
(8); therefore,AL must vanish ak=0. With this in mind, we

, (A7)  make the approximation that the first term in Eg§6) domi-
nates in the infrared region of interest here, and so we drop

where x=p?/m?, a=2u?/m? and D=(1—ap sing)? A, in what follows” o _

+a2p%c0€6. The choice§=m/4 is convenient for evaluating | ne general form of the DS equation is then, in momen-

Eq. (A7), which converges significantly faster than £46) UM space,

for p2>0 and thereby speeds up the numerical integration. A

4
similar formula holds fop?<0, where—(/2)< 6<0. 1:(¢)_m)g(p)_if (s_k)4 7, D* (KA (p+k,p),

w
(B8)

. sind ap?
Xexp —Xp sinf+p o D

APPENDIX B

WwhereD*"(k) is the gauge-boson propagator.
With A (p+k,k) modeled by the first term in E¢B6),

the Fourier transform of EqB8) is a pure differential equa-

tion, which we write as

The configuration space solution of the DS equation ha:

the factorizable forns(x) =ei'*)S,(x) for the vertex out-
lined in this appendix, for any gluon propagator for which
the integral(B15) exists. Thes*(q) propagator is a special
example where the Ward identi¢®) defines the DS equation 84 (x)=(ib—m)S(X) + [ HF (x?)]S(X). (B9)
vertex and leads to the factorized soluti¢iil). Let us see
how this result can be generalized to other propagators. In Eg. (B9) we have

A model for the irreducible vertek, that has good sym-

metry properties[14] and satisfies the Abelian Ward- d o 1 5 o 2 2 5 2
Takahashi identity can be written in configuration space as o [ =x, 0 [di (™) + a™X7dp(a"x") Jda
I (z:xy)=F,(y—2x-2)S"(x,y). (B1) =2x,f(x?), (B10)
In Eq. (B1), S(x,Y) is the full fermion propagator and with
E 7 Y—7)= —ig-(y-2) £0u2 d 2 1 2,2 2,2 2,2
(Yy—2X=2)= [ (e f(x )= f(x =5 da[d;(a®x?)+ a®)2d,(a®x?)].
0
4
_efiq-(xfz)) (X_y)M d q4 T (B1D
q-(x—y) (2m)" # In writing Egs. (B8)—(B10), we have expressed the

(B2) covariant-gauge, gauge-boson propagator in the general form

wheredF | /dz,=0. One can represent the Fourier transform D, (X) =d1(x*)g,,+da(X})X,X, . (B12)

of I', in terms of the fermion propagator as ) )
The general solution to the DS equati®®) has the remark-

1 ably simple factorized form
— | S Yp+ak)da+TT(p+k,p).
ap* Jo "

(B3)

I (ptk,p)= -
S(x)=e'f*I5y(x). (B13)

The first term on the right-hand side of E@3) is con- The Green functiors,(x) satisfies the free equation

structed to satisfy (16—m)Sy(x) = 84(x)e 1@, (B14)

kAT, (p+k,p)=S " (p+k) =S *(p), (B4)  where it is to be understood that arbitrary soluti@sto the

homogeneous equationi —m)S,(x)=0 can always be
wherek“T" T (p+k,p) =0. . ,
While thﬂe vertex’,, is convenient for a discussion of the added to solutions of EqB14). We require tha(x) have

symmetry properties of a theory, the study of the fermion DS{ e standard normalization, and 8@)=0, and the solution

h
equation is generally more convenient when use is made of Eq.(B10) can be displayed as
the functionA ,, defined as

AL (p+k,p)=S(p+K)T ,(p+k,p)S(p). (B5)

In terms of A ,(p+k,k), our model looks like

1 (2 1
fod)=5 fx dx'2f da[dy(a?x'2)+ a?x 2d,( a?x'2)],
0 0
(B15)
in those circumstances where the integral converges.

Pl 1
— T
A,L(p+k,p)——&p,i fOS(p+ak)da+AM(p+k,p), (B6) ——

%For the model of Eq(4), A}, does not contribute anyway, and so
with the first term of Eq(B6) is the complete contribution.
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