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Analytic form for the effective Lagrangian of QED and its application
to pair production and photon splitting

Jeremy S. Heyl and Lars Hernquist
Lick Observatory, University of California, Santa Cruz, California 95064

(Received 16 May 1996

We derive an analytic form for the Heisenberg-Euler Lagrangian in the limit where the component of the
electric field parallel to the magnetic field is small. We expand these analytic functions to all orders in the field
strength £,,F#") in the limits of weak and strong fields, and use these functions to estimate the pair-
production rate in arbitrarily strong electric fields and the photon-splitting rate in arbitrarily strong magnetic
fields.[S0556-282197)05404-0
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. INTRODUCTION: THE ONE-LOOP EFFECTIVE 1 2 o
LAGRANGIAN OF QED K=- (EEAP"VFMFW) =—(4E-B)?, 3

When one-loop corrections are included in the Lagrangian ) )
of the electromagnetic field, one obtains a nonlinear correctollowing Heisenberg and)\EuIeE[L]. We do not expect terms
tion term which are odd powers of"**"F, F,, to appear in the ef-

fective Lagrangian as these terms would yield a Lagrangian
L=Lo+ L. ) which would violate theC and P symmetries of the tree-

level Lagrangian.

Both terms of the Lagrangian can be written in terms of the Heisenberg and Eulefl] and Weisskopf[2] indepen-

Lorentz invariants, dently derived the effective Lagrangian of the electromag-
netic field using electron-hole theory. Schwind@&i later

| = FM,,F”V=2(|I§|2—||§|2) 2) rederived the same result using quantum electrodynamics. In

rationalized electromagnetic units, the Lagrangian is given

and by

I, (4)

1
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e? (= _d¢f V=K oS (LB — 112+ (V=K/2)]+cog (Z/B)N — 12— i (V—K/2)] , &
'Cl:h_f =2 Y S : : +Byl t5l O
clo ¢ cog (¢/By) \[=172+i(y=K/2)]~cog (¢/BW) = 172=1({—K/2)]
|
where B, =E, =m?c®/en~2.2x10"° Vem 1~4.4x 10" G. e? | 1
Both Heisenberg and Eul¢f], and Mielniczuk[4] present L£,(1,00= REXO(E>

alternative expressions for these integrals in terms of infinite
series. el (= _yedu u?
Il. THE ANALYTIC EXPANSION “he2),® @ —ucothu+1+ =/, (7)

For many interesting problems, one needs an expansion of
this Lagrangian in the limit where the component of the elec-

> Al o S aLy e’ 1 1
tric field in the direction of the magnetic field is smé&mall it = ~ x.|=
K), K | _, hclel "t &
2 %
Fo I T R i | R 6 =§—% e Vel
1=£4(1,0) P T DI (6) c 0 u
x| cothu 2 thu It 8
where the terms are given by the integrals co 3u co ueschid). ®

0556-2821/97/581)/24496)/$10.00 55 2449 © 1997 The American Physical Society



2450
FL| e 1 « 1
oK2| _ “hc384372 ¢
2
e 1 (= du
— —ulé_ "
hc_384l3f0 e Vi ( 9ucscifu—4uicsctfu
+ 2u?cothu+ 15cothu
8
+ U 4cothu—6u coti‘?u) 9

and we have defined

_1 \f ¢
E—B—k > andu= Bk E (10)
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X 1
+Z(l+|n277)—§|n217, a7

x/2—1 X
f In[F(v+1)]dv=<§—
0

where

G(z)= (277)(2—1)/2exr{ _ Z(zz— 1))

e 50|11 ||+ 5

(z-1)?
><ex;{1—znL oK ” (18

Note that¢ is a dimensionless measure of the strength of the

field.

The auxiliary functionsX; may be calculated analyically:

x/2—1 1
Xo(x)=4f In[F(v+1)]du+—In )+2In477 4InA
0

_§n—n77+ +n; Zin X2,
(11)
(1) 2 (2) 21
X1(X)=—2Xp(X) +XxXj (x)+§x0 (X)_§X_2’ (12)
Xa(X) = = 28Xo(X) + 9xXE" (X) + (8+ 3K X (x)
2 0 0 §
4xXE X<4> 81 161
+4x (X)— (x)+15 RETIT (13)
where
(n) d"Xo(X)
Xo (X = (14)

dx"

Because of the near symmetry betwdeandK in Eq. (6),

higher derivatives with respect #§ may be calculated, in
principle, and represented by a sum of derivatives of

L(1,0) with respect td. The constanA is defined as

n 2 2
InA= lim E ilni | — n_+ n +i Inn— v (15
A 2 2 12
—(M(-1)=0.248 754 477, (16)

in analogy to the Euler-Mascheroni constdm [5]. Here
{M(x) denotes the first derivative of the Riematirfunc-
tion.

Barnes[5] evaluates the definite integral ofIl(x) in
terms of theG function:

The integral of Ih’(X) may also be expressed in terms of the
generalized Riemana function[6]:

x/2—1 X
f |n[F(v+1)]dv=§(l)(—1,5—1)—§(1)(_1)
0
In27-r(x )x(x )
T2 l27t gl

X X
+(§—1)In<§—l). (29

Our expression foX, was also found by Dittriclet al. [6].
Ivanov[7] derived a similar expression as well, but his result
differs from ours and that of Dittriclet al. in the constant
term. Unlike Ivanov’'s expression, ours approaches zero as
£ goes to 0 which from examination of E() is the correct
limiting behavior. In addition, the above form fof, repro-
duces the asymptotic strong-field limit given by Heisenberg
and Eulerf1].

These functions can be expanded in both the weak-field
and strong-field limits. In the weak-field limitt&0.5), we

obtain
( ) % M@ (20)
< j(j+1)(2j+1)
1 14 1 29[6By;.1)—(2j+1)By] .
1(3)“4_5 3 2+ D) &
(21)

1) 1.G 2% .
X, = =1—52 2j(2]=1)By(j-1)+60(j —1)By

J_
_180 _BZ(j+1)

2j+1 &, (22)

where B; denotes thgth Bernoulli number. In the strong-
field limit (£>0.5), we obtain
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+(j+2)

§(J+1)— §(J+3)”§"- (25

The Lagrangian may also be expanded in terms of the invari-
ants themselves or the electric and magnetic fields. In thexo(x):4

weak-field limit, we obtain

e2<1lz 113 114 )

Ll.9=5¢| 18082 ~ 63087 * 63087
(26)

Ly € 7 1 13 | 11 |

K|, _, hc 72082 ' 5040B] 3780BC
(27)

%L, e’ 19 1 127 |

dK? | _, hcl|15120B7 237608y

5527 12

(29

1801808

This weak-field expansion agrees with the Heisenberg and

Euler[1] result.

In the strong-field limit, for direct comparison with
Heisenberg and Eulgd], we definea=E/E, andb=B/B,
and take the limitb>1 anda<1. We take,£?=b’—a?,

é~b—a?/2b andK = — 16B;/(ab)?. We obtain

which agrees numerically with the corresponding expansion
in Heisenberg and Euléd].

Ill. PAIR PRODUCTION IN AN ARBITRARILY STRONG
ELECTRIC FIELD

In a strong electric field with no magnetic field, the value
of the first invariant is negativé,= —2|E|?> andK=0. The
analytic expressions for the Lagrangian are valid for values
of ¢ throughout the complex plane, with a branch cut along
the negative real axis. Using an imaginary value of

g=i(£)=iy, y>0 (30
Ex

and takingw=2(4x74)"1, ImL gives the pair production
rate per unit volumé8]. From examination of Eq.20), for
£<0.5 the pair-production rate is apparently zero. However,
since Eq.(20) is a power series i§/2, the imaginary part of
Xo may be exponentially small. Berestetsédial.[8] derive,

for a weak field,

_ 1 (a3 h |\t T
w=2(47h) HmL~ m(m—c) (m) yzexr( — y) .
(3D

To simplify the numerics, we use an alternate definition of
Xo(X) obtained by means of a change of variables

X 1 fll r X 1/+1])|d 1I !
E o n u E + U+§ n ;
5 1
+2In47—| 4InA+ §In2 —|Ind7+1+In X X
3 1I 2 2 32
Tzt an : (32)

With this definition and the property of th€ function,
INC(X)=InT"(x), we see thakKq(x) = Xy(X), SO

W=2(47Tﬁ)71|m£|lz—2y2Eﬁ’K:O
s £2,2 x ! X !
~BataZe W | Mol Ty T ely
I L O 2 e B
“8a2lm |me| [T3™

—=2y(Iny+Ind7+1)+4yReQ(y) + Ew} (33

8y*ImQ(y)

2

where
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FIG. 1. The left panel depicts the imaginary part@fas a function of . For weak fields the imaginary component is approximately
7~ texp(—mly). The right panel depicts the pair-production rate for near and supercritical fields.

1 i Adler expresses the opacity for photon splitting by means of
Q(y)=f In F(u(z——l +1]|du (34)  auxiliary functions which are simply derivatives of the La-
0 y grangian and, therefore, of the functioXisabove:
and the scaling constant aﬁ p13 . w® )
klll=l+11=5— rrzaBsin® 0— 1(€) (38)
L2 )_3( i _1—1 7x10tem3sl (35

872 \mc/ \md& T cm™s. (39 _a® (Bsing\®( fiw | 5C1(£)? (mc -
“2.2 7B | \m@ T30 |w] ©?

This expression fow, the pair-production rate, agrees with

the Itzykson-Zuber resul8] for an arbitrarily strong electric Bsing 5

field. If we return to Eq.(11) and use the properties of the =17.0cm ( ) ( ) C.(8)2, (40)
6

I" function along the imaginary axis, we find that the imagi-
nary part ofX, for imaginary arguments is given by °

B K[|—=L+L1]= 2—2 —15—72B%sir’ 0— 2(&)2, (41
1 1 3 e ™
ImXg| = iy S S (36) o8 K13 5

i w
l—f+1]=25— WBGS'n%%Cz(f)Z- (42

which vyields a pair-production rate in agreement with the

earlier resulf9]. The conversion of to||+ L proceeds through two channels,
In the strong-field limit we use Eq23) and take the hence the twofold increase in the opacity for this process.
imaginary part: Cl and Cz are defined by
105\ A Y . I*L ader 64 Ly (43
- 2 3 =a- 3
_W(ﬁ) (W) {—gy +2(1—In7+Iny)y IF G=0.F=(1/2)B2 47" Il K=0) =282
- 3K 3 6
™ (—1)%¢(2k) (é)
o —(2k-1) _2_8_0 1
+ 5 +k21 KT ok 1) Tk2k+ 1) . (37) 2am°mBct
o
Figure 1 depicts the imaginary component ¥f for =- ﬁcl(g), (44)
22 ; ; ; T By
I=—2y°E} and the pair-production rate per unit volume.
From the left panel, we verlfy that the imaginary components3. , - 128 %L,
of X, is approximatelyr~lexp(—ly) for weak fields. The SFICE 19-0F=(11282= o lk=0) =282 (45
Fog 4w 91K
nght panel shows the pair-production rate which increases as
y2 for strong fields and is damped exponentially in weak a
fields. =- TZBQ‘CZ(@’ (46)
IV. AUXILIARY FUNCTIONS FOR PHOTON SPLITTING and@ is the angle between the direction of propagation of the

photon and the external magnetic field. The factors of 128
To calculate the phOton Sp|lttlng rates we follow the tech- -and 64 result from the definitions of Ad'erf and g in
nique by Adlef{10] for the low-frequency limit. In this limit, terms ofl andK:
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1 . - |
7= (1812~ EP)=4, @7

J_ (48)

An additional factor of 4r appears because we are using
rationalized Gaussian units, while Adler employs unrational

ized units.
Given the analytic forms foK, and X;, we obtain

1 1
_ (2) (1) 2
Cal)= 7 %67 g/ +3% (5)‘5 3o (&)‘f
C (g):—i{x“) 1)+2x (EH (50)
2 455 1 é: 1 § .

The functionsC; and C, have the appropriate limits as
¢—0 which correspond to the lowest order hexagon dia-

grams for the splitting process:

1)By+ny( 1|72
2j+1 BZ (51)

2171(j -

C4(1) 162

8 641 32012
~°%315 10582 99!BZ

(52)

) :3§ 2" 4(j—1)(6By 1)~ (2] +1)By) [ | |1 72
23 i(2j+1) B

(53

_ ><13 176 | +332 | 54

~ 77045 945B2 ' 495\BZ) 4

In the strong-field limit, we obtain

1 3 5
Cl(f):§§_4—zf_5(|n§—lmr+§ —¢8
(-1} j>~
_;37_1— {(j—1¢E4 (59
1, s, 4 1
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time integration[3] used by Adler[10] reduce to these
results obtained from the Heisenberg-Euler Lagrangian.
Baler, Milstein, and Shaisultanopl1] have also obtained
similar results for arbitrary field strengtiiand photon fre-
guencie$ using an operator diagram technique.

Baler et al. and Adler’'s methods differ in spirit, but yield
the same results. Ban, Katkov, and Strakhovenko devel-
‘oped the operator diagram technidd€]. In this formalism,
the photon-splitting matrix element is evaluated with Feyn-
man diagram$13] using electron propagators in an external
field. On the other hand, Adldi0] calculates the expecta-
tion value of the currenf(j,(x))] order by order in the
external photon fields using Schwinger’s formali§& and
relates this expectation value to the photon-splitting matrix
element.

V. PHOTON-SPLITTING OPACITIES AND APPLICATION
TO NEUTRON STARS

Adler [10] argues that because of dispersive effects, the
procesy— L + 1 dominates the opacity of photons traveling
through a strong field. Therefore, we are interested in the
function C,(¢) which determines the splitting rate for all
magnetic field strengths at photon energies small compared
to the mass of the electron. We see immediately from the
expansions o€, that the opacity has the following behavior
for weak and strong fields

Bsin&) 6( fw\®

0.116 cm't , B<B,,
mc K

k
K[[|—L+L]=

ho\®
0.472 cmlsin‘ie(W) , B>B.
(57)

We find, in agreement with the recent result of &aat al.

[11] and as well as with earlier resul{d4,15 that the
photon-splitting opacity approaches a constant value in the
limit of strong fields.

The left panel of Fig. 2 depicts the opacity for photons
with E=mc? as a function of. Our formulas are not valid
for these high-energy photons, but for low energies the opac-
ity scales as this quantity times the photon energy to the fifth
power. The right panel applies these opacities to neutron
stars. Neutron stars are observed to have magnetic fields
~10Y G (e.g.,[16]) and a subset of these objects known as
magnetars are suspected to have much stronger fields
~10'® G or larger[17]. The figure illustrates the energy of
photons with a mean-free path of 10 km. All parallel-
polarized photons with this energy or larger would tranverse
an optical depth of one or larger, while escaping from the
neutron star.

Because of the asymptotic behavior of the function
C,(&), even in immensely large fields, photons with energies
less than 37 keV have opacities less than
(10 km) ~1. This energy corresponds to a temperature of

These expressions for the photon-splitting rate are valid onl#x 10® K, so we must conclude that unless the strong mag-
in the low-frequency limit since the Heisenberg-Euler La-netic field of the neutron star extends over a distance much
grangian neglects the gradients of the field. When these grgreater than 10 km, photon splitting affects the thermal ra-
dients are neglected, the results from Schwinger's properdiation of only the youngest neutron stars.
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FIG. 2. The left panel depicts the photon-splitting opacity for photons Bittmc® as a functioré andB (upper axig. The right panel
shows the energy of photons with a mean-free path for splitting of 10 km as a fugctind B.

VI. CONCLUSION applied to a wide variety of problems in strong electromag-
We have derived a closed form expression for thenetic fi'elds, including Compton scattering, photon-photon
Heisenberg-Euler effective Lagrangian for quantum electro-scatte”ng’ and bremsstrahlung.

dynamics as a function of the gauge and Lorentz invariant

guantitiesl andK in the limit of smallK. We have calcu-

lated from this analytic expression the photon-splitting and ACKNOWLEDGMENTS
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