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We derive an analytic form for the Heisenberg-Euler Lagrangian in the limit where the component of the
electric field parallel to the magnetic field is small. We expand these analytic functions to all orders in the field
strength (FmnF

mn) in the limits of weak and strong fields, and use these functions to estimate the pair-
production rate in arbitrarily strong electric fields and the photon-splitting rate in arbitrarily strong magnetic
fields. @S0556-2821~97!05404-0#

PACS number~s!: 12.20.Ds, 97.60.Jd, 98.70.Rz

I. INTRODUCTION: THE ONE-LOOP EFFECTIVE
LAGRANGIAN OF QED

When one-loop corrections are included in the Lagrangian
of the electromagnetic field, one obtains a nonlinear correc-
tion term

L5L01L1 . ~1!

Both terms of the Lagrangian can be written in terms of the
Lorentz invariants,

I5FmnF
mn52~ uBW u22uEW u2! ~2!

and

K52S 12 elrmnFlrFmnD 252~4EW •BW !2, ~3!

following Heisenberg and Euler@1#. We do not expect terms
which are odd powers ofelrmnFlrFmn to appear in the ef-
fective Lagrangian as these terms would yield a Lagrangian
which would violate theC and P symmetries of the tree-
level Lagrangian.

Heisenberg and Euler@1# and Weisskopf@2# indepen-
dently derived the effective Lagrangian of the electromag-
netic field using electron-hole theory. Schwinger@3# later
rederived the same result using quantum electrodynamics. In
rationalized electromagnetic units, the Lagrangian is given
by

L052
1

4
I , ~4!

L15
e2

hcE0
`

e2z
dz

z3 H i z2A2K

4

cos@~z/Bk!A2I /21 i ~A2K/2!#1cos@~z/Bk!A2I /22 i ~A2K/2!#

cos@~z/Bk!A2I /21 i ~A2K/2!#2cos@~z/Bk!A2I /22 i ~A2K/2!#
1uBku21

z2

6
I J , ~5!

whereBk5Ek5m2c3/e\'2.231015 Vcm21'4.431013 G.
Both Heisenberg and Euler@1#, and Mielniczuk@4# present
alternative expressions for these integrals in terms of infinite
series.

II. THE ANALYTIC EXPANSION

For many interesting problems, one needs an expansion of
this Lagrangian in the limit where the component of the elec-
tric field in the direction of the magnetic field is small~small
K),

L15L1~ I ,0!1K
]L1
]K U

K50

1
K2

2

]2L1
]K2 U

K50

1•••, ~6!

where the terms are given by the integrals

L1~ I ,0!5
e2

hc

I

2
X0S 1j D

5
e2

hc

I

2E0
`

e2u/j
du

u3 S 2ucothu111
u2

3 D , ~7!

]L1
]K U

K50

5
e2

hc

1

16I
X1S 1j D

5
e2

hc

1

16I E0
`

e2u/j
du

u2

3S cothu2
2

3
u2cothu2ucsch2uD , ~8!
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]2L1
]K2 U

K50

5
e2

hc

1

384I 3
X2S 1j D

5
e2

hc

1

384I 3E0
`

e2u/j
du

u2 S 29ucsch2u24u3csch2u

12u2cothu115cothu

1
8

15
u4cothu26u2coth3uD , ~9!

and we have defined

j5
1

Bk
A I

2
andu5

z

Bk
A I

2
. ~10!

Note thatj is a dimensionless measure of the strength of the
field.

The auxiliary functionsXi may be calculated analyically:

X0~x!54E
0

x/221

ln@G~v11!#dv1
1

3
lnS 1xD12ln4p24lnA

2
5

3
ln22F ln4p111 lnS 1xD Gx1F341

1

2
lnS 2xD Gx2,

~11!

X1~x!522X0~x!1xX0
~1!~x!1

2

3
X0

~2!~x!2
2

9

1

x2
, ~12!

X2~x!5224X0~x!19xX0
~1!~x!1~813x2!X0

~2!~x!

14xX0
~3!~x!2

8

15
X0

~4!~x!1
8

15

1

x2
1
16

15

1

x4
, ~13!

where

X0
~n!~x!5

dnX0~x!

dxn
. ~14!

Because of the near symmetry betweenI andK in Eq. ~6!,
higher derivatives with respect toK may be calculated, in
principle, and represented by a sum of derivatives of
L(I ,0) with respect toI . The constantA is defined as

lnA5 lim
n→`

S (
i51

n

i lni D 2F S n22 1
n

2
1

1

12D lnn2
n2

4 G ~15!

5
1

12
2z~1!~21!50.248 754 477, ~16!

in analogy to the Euler-Mascheroni constant~g! @5#. Here
z (1)(x) denotes the first derivative of the Riemannz func-
tion.

Barnes @5# evaluates the definite integral of lnG(x) in
terms of theG function:

E
0

x/221

ln@G~v11!#dv5S x221D lnGS x2D2 lnGS x2D2
x2

8

1
x

4
~11 ln2p!2

1

2
ln2p, ~17!

where

G~z!5~2p!~z21!/2expS 2
z~z21!

2 D
3expS 2g

~z21!2

2 D )
k51

` F S 11
z21

k D k

3expS 12z1
~z21!2

2k D G . ~18!

The integral of lnG(x) may also be expressed in terms of the
generalized Riemannz function @6#:

E
0

x/221

ln@G~v11!#dv5z~1!S 21,
x

2
21D2z~1!~21!

1
ln2p

2 S x221D2
x

4 S x221D
1S x221D lnS x221D . ~19!

Our expression forX0 was also found by Dittrichet al. @6#.
Ivanov@7# derived a similar expression as well, but his result
differs from ours and that of Dittrichet al. in the constant
term. Unlike Ivanov’s expression, ours approaches zero as
j goes to 0 which from examination of Eq.~7! is the correct
limiting behavior. In addition, the above form forX0 repro-
duces the asymptotic strong-field limit given by Heisenberg
and Euler@1#.

These functions can be expanded in both the weak-field
and strong-field limits. In the weak-field limit (j,0.5), we
obtain

X0S 1j D52(
j51

`
22 jB2~ j11!

j ~ j11!~2 j11!
j2 j ~20!

X1S 1j D52
14

45
j21

1

3(
j52

`
22 j@6B2~ j11!2~2 j11!B2 j #

j ~2 j11!
j2 j

~21!

X2S 1j D5
1

15(j53

`
22 j

j F2 j ~2 j21!B2~ j21!160~ j21!B2 j

2180
j22

2 j11
B2~ j11!Gj2 j , ~22!

whereBj denotes thej th Bernoulli number. In the strong-
field limit ( j.0.5), we obtain
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X0S 1j D5S 13 ln224lnA1
1

3
lnj D1~12 lnp1 lnj!j21

1S 12 ~ ln22g!1
3

4
1
1

2
lnj D j22

1(
j53

`
~21! j21

2 j22

1

j

1

j21
z~ j21!j2 j , ~23!

X1S 1j D52
2

3
j1S 8lnA2

1

3
2
2

3
g D

1S lnp1
1

18
p2222 lnj D j21

1S 2
1

2
2
1

6
z~3! D j221(

j53

`
~21! j21

2 j22

3S j22

j ~ j21!
z~ j21!1

1

6
z~ j11! D j2 j , ~24!

X2S 1j D5
16

15
j324j1S 2628g1

4

15
z~3!196lnAD

1S 2271p2215lnp2
1

225
p4215lnj D j21

1S 25 z~5!2924z~3! D j22

1(
j53

`
~21! j21

2 j22 F3~ j14!~ j22!

j ~ j21!
z~ j21!

1~ j12!S z~ j11!2
j11

30
z~ j13! D Gj2 j . ~25!

The Lagrangian may also be expanded in terms of the invari-
ants themselves or the electric and magnetic fields. In the
weak-field limit, we obtain

L1~ I ,0!5
e2

hc S 1

180

I 2

Bk
2 2

1

630

I 3

Bk
4 1

1

630

I 4

Bk
6 1••• D ,

~26!

]L1
]K U

K50

5
e2

hc S 2
7

720

1

Bk
2 1

13

5040

I

Bk
4 2

11

3780

I

Bk
6 1••• D ,

~27!

]2L1
]K2 U

K50

5
e2

hc S 19

15120

1

Bk
6 2

127

23760

I

Bk
8

1
5527

180180

I 2

Bk
101••• D . ~28!

This weak-field expansion agrees with the Heisenberg and
Euler @1# result.

In the strong-field limit, for direct comparison with
Heisenberg and Euler@1#, we definea5E/Ek andb5B/Bk
and take the limitb@1 and a!1. We take,j25b22a2,
j'b2a2/2b andK5216Bk

4(ab)2. We obtain

L1~a,b!54
e2

hc
Bk
2Fb2S lnb12 2 lnA1

ln2

12 D1
b

4
~ lnb112 lnp!

1
lnb

8
1

3

16
1
ln22g

8
2
a2

12
~ lnb1 ln22g!

1bS a2121
a4

90
1••• D1••• G , ~29!

which agrees numerically with the corresponding expansion
in Heisenberg and Euler@1#.

III. PAIR PRODUCTION IN AN ARBITRARILY STRONG
ELECTRIC FIELD

In a strong electric field with no magnetic field, the value
of the first invariant is negative,I522uEW u2 andK50. The
analytic expressions for the Lagrangian are valid for values
of j throughout the complex plane, with a branch cut along
the negative real axis. Using an imaginary value of

j5 i S EEk
D5 iy , y.0 ~30!

and takingw52(4p\)21, ImL gives the pair production
rate per unit volume@8#. From examination of Eq.~20!, for
j,0.5 the pair-production rate is apparently zero. However,
since Eq.~20! is a power series inj/2, the imaginary part of
X0 may be exponentially small. Berestetskiiet al. @8# derive,
for a weak field,

w52~4p\!21ImL;
1

4p3 S \

mcD
23S \

mc2D
21

y2expS 2
p

y D .
~31!

To simplify the numerics, we use an alternate definition of
X0(x) obtained by means of a change of variables

X0~x!54S x221D E
0

1

lnFGS uS x221D11D Gdu1
1

3
lnS 1xD

12ln4p2S 4lnA1
5

3
ln2D2F ln4p111 lnS 1xD Gx

1F341
1

2
lnS 2xD Gx2. ~32!

With this definition and the property of theG function,
lnG(x̄)5lnG(x), we see thatX0( x̄)5X0(x), so

w52~4p\!21ImLu I522y2E
k
2 ,K50

5 i
e2

8p2\2c
Ek
2y2FX0S 2

i

yD2X0S iyD G
5

1

8p2 S \

mcD
23S \

mc2D
21F2

1

3
py228y2ImQ~y!

22y~ lny1 ln4p11!14yReQ~y!1
1

2
pG , ~33!

where
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Q~y!5E
0

1

lnFGS uS i

2y
21D11D Gdu ~34!

and the scaling constant

1

8p2 S \

mcD
23S \

mc2D
21

51.731051 cm23 s21. ~35!

This expression forw, the pair-production rate, agrees with
the Itzykson-Zuber result@9# for an arbitrarily strong electric
field. If we return to Eq.~11! and use the properties of the
G function along the imaginary axis, we find that the imagi-
nary part ofX0 for imaginary arguments is given by

ImX0S 1iy D52
1

p (
n51

`
e2pn/y

n2
, ~36!

which yields a pair-production rate in agreement with the
earlier result@9#.

In the strong-field limit we use Eq.~23! and take the
imaginary part:

w5
1

8p2 S \

mcD 23S \

mc2D 21F2
p

3
y212~12 lnp1 lny!y

1
p

2
1 (

k51

`
~21!3kz~2k!

22k21k~2k11!
y2~2k21!G . ~37!

Figure 1 depicts the imaginary component ofX0 for
I522y2Ek

2 and the pair-production rate per unit volume.
From the left panel, we verify that the imaginary component
of X0 is approximatelyp

21exp(2p/y) for weak fields. The
right panel shows the pair-production rate which increases as
y2 for strong fields and is damped exponentially in weak
fields.

IV. AUXILIARY FUNCTIONS FOR PHOTON SPLITTING

To calculate the photon-splitting rates we follow the tech-
nique by Adler@10# for the low-frequency limit. In this limit,

Adler expresses the opacity for photon splitting by means of
auxiliary functions which are simply derivatives of the La-
grangian and, therefore, of the functionsXi above:

k@ i→i1i #5
a6

2p2

\13

m16c24
B6sin6u

v5

30
C1~j!2 ~38!

5
a3

2p2 SBsinuBk
D 6S \v

mc2D
5C1~j!2

30 Smc

\ D ~39!

517.0 cm21SBsinuBk
D 6S \v

mc2D
5

C1~j!2, ~40!

k@ i→'1'#5
a6

2p2

\13

m16c24
B6sin6u

v5

30
C2~j!2, ~41!

k@'→i1'#52
a6

2p2

\13

m16c24
B6sin6u

v5

30
C2~j!2. ~42!

The conversion of' to i1' proceeds through two channels,
hence the twofold increase in the opacity for this process.
C1 andC2 are defined by

]3L Adler

]F 3 U
G50,F5~1/2!B2

5
64

4p
.
]3L1
]I 3 U

K50,I52B2
~43!

52
a3\6

2p2m8c10
C1~j!

52
a

2p2Bk
4C1~j!, ~44!

]3L Adler

]F]G2 uG50,F5~1/2!B252
128

4p
.

]2L1
]I ]K

uK50,I52B2 ~45!

52
a

2p2Bk
4C2~j!, ~46!

andu is the angle between the direction of propagation of the
photon and the external magnetic field. The factors of 128
and 64 result from the definitions of Adler’sF and G in
terms ofI andK:

FIG. 1. The left panel depicts the imaginary part ofX0 as a function of 1/y. For weak fields the imaginary component is approximately
p21exp(2p/y). The right panel depicts the pair-production rate for near and supercritical fields.
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F5
1

2
~ uBW u22uEW u2!5

I

4
, ~47!

G5BW •EW 5
1

4
A2K. ~48!

An additional factor of 4p appears because we are using
rationalized Gaussian units, while Adler employs unrational-
ized units.

Given the analytic forms forX0 andX1, we obtain

C1~j!5
1

4j7 FX0
~3!S 1j D13X0

~2!S 1j D j23X0
~1!S 1j D j2G ,

~49!

C2~j!52
1

4j5 FX1
~1!S 1j D12X1S 1j D j G . ~50!

The functionsC1 and C2 have the appropriate limits as
j→0 which correspond to the lowest order hexagon dia-
grams for the splitting process:

C1~ I !516(
j52

`
2 j21~ j21!B2~ j11!

2 j11 S I

Bk
2D j22

~51!

563
8

315
2

64

105

I

Bk
2 1

320

99 S I

Bk
2D 2•••,

~52!

C2~ I !5
1

3(
j52

`
2 j11~ j21!~6B2~ j11!2~2 j11!B2 j !

j ~2 j11! S I

Bk
2D j22

~53!

563
13

945
2
176

945

I

Bk
2 1

332

495S I

Bk
2D 2•••. ~54!

In the strong-field limit, we obtain

C1~j!5
1

3
j242

3

4
j25S lnj2 lnp1

2

3D2j26

2(
j53

`
~21! j

2 j
j 224

j21
z~ j21!j2 j24, ~55!

C2~j!5
1

6
j231j24S 161

1

3
g24lnAD

1
3

4
j25S lnj2 lnp1

5

3
2
1

18
p2D

1
1

2
j26S 11

1

3
z~3! D1(

j53

`
~21! j~ j12!

2 j

3S j22

j ~ j21!
z~ j21!1

z~ j11!

6 D j2 j24. ~56!

These expressions for the photon-splitting rate are valid only
in the low-frequency limit since the Heisenberg-Euler La-
grangian neglects the gradients of the field. When these gra-
dients are neglected, the results from Schwinger’s proper-

time integration @3# used by Adler @10# reduce to these
results obtained from the Heisenberg-Euler Lagrangian.
Baı̌er, Milstein, and Shaisultanov@11# have also obtained
similar results for arbitrary field strengths~and photon fre-
quencies! using an operator diagram technique.

Baı̌er et al. and Adler’s methods differ in spirit, but yield
the same results. Baıˇer, Katkov, and Strakhovenko devel-
oped the operator diagram technique@12#. In this formalism,
the photon-splitting matrix element is evaluated with Feyn-
man diagrams@13# using electron propagators in an external
field. On the other hand, Adler@10# calculates the expecta-
tion value of the current@^ j m(x)&# order by order in the
external photon fields using Schwinger’s formalism@3# and
relates this expectation value to the photon-splitting matrix
element.

V. PHOTON-SPLITTING OPACITIES AND APPLICATION
TO NEUTRON STARS

Adler @10# argues that because of dispersive effects, the
processi→'1' dominates the opacity of photons traveling
through a strong field. Therefore, we are interested in the
function C2(j) which determines the splitting rate for all
magnetic field strengths at photon energies small compared
to the mass of the electron. We see immediately from the
expansions ofC2 that the opacity has the following behavior
for weak and strong fields

k@ i→'1'#55 0.116 cm
21SBsinuBk

D 6S \v

mc2D
5

, B!Bk ,

0.472 cm21sin6uS \v

mc2D
5

, B@Bk .

~57!

We find, in agreement with the recent result of Baıˇer et al.
@11# and as well as with earlier results@14,15# that the
photon-splitting opacity approaches a constant value in the
limit of strong fields.

The left panel of Fig. 2 depicts the opacity for photons
with E5mc2 as a function ofj. Our formulas are not valid
for these high-energy photons, but for low energies the opac-
ity scales as this quantity times the photon energy to the fifth
power. The right panel applies these opacities to neutron
stars. Neutron stars are observed to have magnetic fields
;1012 G ~e.g.,@16#! and a subset of these objects known as
magnetars are suspected to have much stronger fields
;1016G or larger@17#. The figure illustrates the energy of
photons with a mean-free path of 10 km. All parallel-
polarized photons with this energy or larger would tranverse
an optical depth of one or larger, while escaping from the
neutron star.

Because of the asymptotic behavior of the function
C2(j), even in immensely large fields, photons with energies
less than 37 keV have opacities less than
~10 km! 21. This energy corresponds to a temperature of
43108 K, so we must conclude that unless the strong mag-
netic field of the neutron star extends over a distance much
greater than 10 km, photon splitting affects the thermal ra-
diation of only the youngest neutron stars.
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VI. CONCLUSION

We have derived a closed form expression for the
Heisenberg-Euler effective Lagrangian for quantum electro-
dynamics as a function of the gauge and Lorentz invariant
quantitiesI andK in the limit of smallK. We have calcu-
lated from this analytic expression the photon-splitting and
pair-production rates in the intense field and found them to
agree with previous work. Furthermore, the expressions for
the dielectric and permeability tensors in an external field
derived from our analytic expression also agree with previ-
ous results@18#. We expect that these expressions may be

applied to a wide variety of problems in strong electromag-
netic fields, including Compton scattering, photon-photon
scattering, and bremsstrahlung.
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