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A functional formulation and partial solution is given of the non-Abelian eikonal problem associated with
the exchange of noninteracting, charged or colored bosons between a pair of fermions, in the larges small t
limit. A simple, functional ‘‘contiguity’’ prescription is devised for extracting those terms which exponentiate,
and appear to generate the leading, high-energy behavior of each perturbative order of this simplest non-
Abelian eikonal function; the lowest nontrivial order agrees with the corresponding SU(N) perturbative am-
plitude, while higher-order contributions to this eikonal generate an ‘‘effective Reggeization’’ of the ex-
changed bosons, resembling previous results for the perturbative amplitude. One exact and several approximate
examples are given, including an application to self-energy radiative corrections. In particular, for this class of
graphs and to all orders in the coupling, we calculate the leading-log eikonal for SU~2!. Based on this result,
we conjecture the form of the eikonal scattering amplitude for SU(N). @S0556-2821~97!08804-8#

PACS number~s!: 11.80.Fv, 12.38.Lg, 13.85.Dz

I. INTRODUCTION

One of the most persistent problems in the application of
field theory methods to particle scattering has been the in-
ability to generalize, in a direct functional, nonperturbative
way, Abelian eikonal models to their non-Abelian counter-
parts. Many efforts in this direction have of course been
made over the past several decades, using the partial, pertur-
bative summation of an eikonal function@1#, or a variety of
nonperturbative approximations@2#. In Ref. @2#, for example,
a ‘‘mean-field’’ approximation was made to the relevant
functional integrals corresponding to the exchange of neutral
vector mesons~NVM’s ! between scattering nucleons, which
include the restrictions of SU~2! isospin; and the result,
while ‘‘approximately correct,’’ left a certain unease in its
wake. A more modern example is the problem of how to
include SU~3! color restrictions in four-dimensional QCD,
which must be faced if one is to attempt any functional cal-
culation using the recent, exact and approximate Green’s
functionsGc(x,yuA) of that theory@3#; or, indeed, the new
dimensional-transmutation–flux-string expansion of quark-
quark scattering amplitudes@4#.

We give in this paper a complete, if formal, representation
of the simplest non-Abelian eikonal, corresponding to mul-
tiple gluon exchange between scattering quarkswithout vir-
tual gluon-gluon interactions; we extract that portion which
can be easily isolated, and define a particular, ordered-
exponential~OE! representation of the remainder, which can
be expanded or approximated in various ways. In particular,
we define a simple, functional procedure called ‘‘contigu-
ity,’’ which, in an immediate way, isolates at least a subset
of those terms that are definitely exponentiated, and can be
represented to all orders by a perturbative expansion of the
eikonal. These terms correspond to the leadings dependence
in the lowest, nontrivial order, and we argue that they corre-
spond to the extraction of the leadings dependence in every
perturbative order of the eikonal function. For quark-quark
scattering, the result duplicates the essence of well-known,

leading-log perturbative estimates previously calculated for
amplitudes@1#. The method will be illustrated in two con-
texts, and its applicability discussed for more general, non-
Abelian problems; in particular, for this class of graphs and
to all orders in the coupling, we calculate the leading-log
eikonal of SU~2!.

To our knowledge this is the first time that such estimates
have been obtained in a purely functional context, while the
contiguity technique opens the way for an attack on other,
more complicated, non-Abelian eikonal problems, such as
those which involve virtual gluon-gluon interactions~in par-
ticular, the so-called ‘‘towers’’ and their generalizations!, as
well as self-energy and vertex effects of non-Abelian,
virtual-gluon emission and absorption by a single quark.
However, by treating only boson exchange, without self-
interactions between the exchanged bosons, we are appar-
ently going to violate requirements of gauge invariance,
which for perturbative, Yang-Mills gluons, require the simul-
taneous computation of all relevant graphs of a given order,
and not just the simple eikonal graphs considered here.
Surely the same sort of inclusion must eventually be true for
any nonperturbative attempt. We ask the reader to suspend
judgment on this point until the final discussion presented in
the summary of Sec. VI; and to realize that, while gauge
invariance must of course be insured in any computation
whose results are going to be compared with experiment, we
are proposing a functional attack on that part of the problem
of immediate concern to the scattering quarks. This is impor-
tant because a functional treatment contains all powers of the
coupling; and it is useful because there exists an additional,
computational step by which gauge invariance can be
reestablished—including the relevant contributions gener-
ated by all gluon-gluon interactions—later on. The main
thrust of the present paper is the functional extraction of
leading-log, energy dependence of the simplest, non-Abelian
eikonal.

We begin at that stage of a quark-quark scattering ampli-
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tude where mass-shell amputation~MSA! has already been
carried out on the fermion Green’s functions
^p1,2uGc@A#up1,28 & approximated in a no-recoil fashion@5#,

and the essential structure of the eikonal function which de-
scribes non-Abelian~NVM ! exchange between a pair of fer-
mions @quarks, for SU~3!# has been recognized@6# as
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wherez1,2 andp1,2 are the fermions’ configuration and momentum coordinates, andQ mn
ab is the appropriate boson propagator.

Equation~1.1! defines ‘‘linkages’’ between a pair of OE’s, and the result will necessarily be a ‘‘doubly ordered exponential.’’
How this can be transformed into a pair of single OE’s, how the leading logs of the latter may be extracted, leaving but a single
OE, and how that OE can, for SU~2!, be summed explicitly over all perturbative orders, is the main content of this paper.

More precisely, the preferred method of obtaining the eikonal in the conventional case, where the conventional, no-recoil
approximation ofGc[A] destroys coordinate symmetry of this Green’s function, is to calculate notTeik but, before MSA:
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and integrate overg1,2 @with the boundary conditions
Teik(g1,0)5Teik~0,g2!50# after the necessary functional
linkages have been performed@6#; it has been assumed that
the RHS of Eq.~1.2! is a function ofz12z2 , and the subse-
quent d~4!(q11q2) statement of four-momentum conserva-
tion has been suppressed. For simplicity we consider the
quantity of Eq. ~1.1! as representative of the correct
eikonal—it is exactly the eikonal in the absence of non-
Abelian complications—even though it is quite possible to
produce, upon integration over the couplings of Eq.~1.2!,
combinations which are more complicated than that of Eq.
~1.1!. However, Eq.~1.1! is representative of the full, non-
Abelian structure of the problem, and we here restrict atten-
tion to this quantity. The noncommuting objectsla are taken
to be the Gell-Mann matrices of SU(N). We again empha-
size that more complicated eikonal graphs, such as the
‘‘tower graphs’’ of Cheng and Wu@1#, are not included in
this analysis, although they can be formally inserted by the
functional methods outlined in the last chapters of Refs.@1#
and @5#.

In the Abelian case, whereA m
a→Am , and thela are miss-

ing, the functional operation of Eq.~1.1! may be performed
immediately, yielding

ix5 ig2~p1•p2!E E
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dsdtDc~z12z22sp11tp2!

~1.3!

with a propagatorQmn(x1 ,x2)5dmnDc(x12x2). The proper-
time integrals are easily performed when a Fourier represen-
tation ofDc is inserted into Eq.~1.3!, and one finds

ix52 i
g2

2p
g~s!K0~mb!, ~1.4!

whereg(s)5(s22m2)/As(s24m2) is that factor depend-
ing on the spin of the exchanged boson, of massm; the
fermion mass is denoted bym, and in this equation,s de-
notes the total c.m.~energy!2 of the two quarks. In all sub-
sequent expressions, we shall assume the high-energy limit,
whereg(s)→1.

We give in the next section a new, functional formulation
of the eikonal of Eq.~1.1!, and, in an appropriate kinematical
situation, display one exact solution. More generally, a per-
turbative expansion of this eikonal functional may be de-
fined, and certain obvious terms~which are the most elemen-
tary generalizations of the Abelian eikonal! are summed to
all orders. In Sec. III, we define the statement of ‘‘functional
contiguity,’’ which isolates those terms of Eq.~1.1! that are
definitely exponentiated, and which appears to generate the
leading ln(E/m) dependence of every perturbative term of
the non-Abelian eikonal, when the necessary, doubly ordered
exponential is defined in a moderately elegant way. In the
next section, we discuss the leading-log approximation, and
show how the extraction of such terms~from ‘‘nested’’ mo-
mentum integrals! can reduce the complexity of the compu-
tations to operations upon a single OE; for SU~2!, these op-
erations are performed and summed to all orders, and
suggest a conjecture for the corresponding eikonal scattering
amplitude of SU(N). In Sec. V, we apply the analysis to
self-energy processes, as well as to eikonal tower graphs and
their generalizations, while Sec. VI contains a summary of
our present understanding of this eikonal construction.
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II. FORMULATION

In order to perform the functional operation of Eq.~1.1!,
it is useful to introduce for each OE the functional represen-
tation:
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or, more simply, rewriting Eq. ~2.1! as I ^

exp@2i*2`
1`ds pmAm

a(z2sp)aa(s)#, whereN8 is an appropriate
normalization constant. That Eq.~2.1! is trivially true can be

seen by breaking up the2`,s,1` range into small inter-
vals, and integrating over theaa(st) which leads to ad func-
tional of theua(s), whose integration immediately produces
the left-hand side~LHS! of Eq. ~2.1!. The advantage of this
procedure is that the functional linkages of Eq.~1.1! are now
Abelian, and may be performed immediately, yielding
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with Qa,b5g2p 1
mQ mn

abp 2
m, and where theI 1,2 denote, from

Eq. ~2.1!, simultaneous functional operations to be per-
formed on theaa(s) andbb(t) variables.

These final operations are what is now needed, and may
be delineated by the insertion of relevant source and param-
eter dependence, followed by a ‘‘Schwingerian search’’ for
an appropriate ‘‘differential characterization.’’ With the defi-
nition
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comparison with Eq.~2.2! shows that the quantity needed is lnR~1`,1`u,0,0!. One can create a variety of differential
equations involving the proper-time parameterss,t and the sourcesja(s),hb(t); but for present purposes, it seems to be
sufficient to work with onlys andh, so that we considerR(s,1`u0,h)5R(suh).

We next outline the steps which result in the differential equation~2.6!, stated below. Calculation of (]/]s)R(suh) brings
down under the integrals the quantityila

I ua(s), standing to the left of its OE, which may be represented asla
I (d/daa)(s)

acting upon exp@i*a•j#; then a functional integration-by-parts moves thisd/daa(s) to act upon the last line of Eq.~2.3!, which
generates under the functional integrals the net quantity (2 i )* 2`

1`dtl a
I Qab(s,t)bb(t). The procedure may now the reversed,

representing (2 i )bb(t) by the operation2d/dvb(t) acting upon exp@i*v•b#; and using another functional integration-by-parts
to convert this to the operation
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and observe that Eq.~2.4! may be rewritten as
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so that, finally, one obtains the differential equation
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With the boundary conditionR~2`uh!51, easily seen as
appropriate from the definition ofR(suh), the solution to Eq.
~2.6! may be written as an OE
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with the ordering indicated for thes8 variables only. With
s→1` andh→0, we then have a representation of Eq.~2.3!
which apparently involves a single OE; however, it should
be noted that the second ordering will be found in the defi-
nition of Lb

II , Eq. ~2.5!, so that there do exist two sets of
‘‘orderings,’’ although they can now be addressed sepa-
rately. In fact, the ‘‘t orderings’’ can be defined from the
integral solution to the differential equation satisfied by
La
II(tud/dh); the latter may immediately be obtained from its

definition ~2.5!:
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whose repeated iterations contain all thet orderings of the
problem, and where thef abc are the structure constants of the
SU(N) algebra.

Conventional eikonal models replaceQa,b by da,bQ(s,t),
and in the absence of any other isospin-color vector, we may
expect that the result will generate the productslI•lII . The
latter may then be replaced by eigenvalues appropriate to the
scattering problem; for example, in the SU~2! isospin scat-
tering of two nucleons, those eigenvalues are given byI (I
11)/223/4, for singlet~I50! or triplet ~I51! total isospin;
for SU~3!, the situation is somewhat more complicated, as
one tries to extract the overall, contribution of the eikonal to
the singlet scattering amplitude@1#.

While Eq. ~2.7! is a formal solution of the problem, cer-
tain terms of its expansion can be summed without difficulty.
To see this, consider the expansion of Eq.~2.7! up to qua-
draticQ dependence:
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With the definition ofLb
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contribution of the linearQ terms is
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while thed/dh-independent part of the quadraticQ terms of
Eq. ~2.9! yields
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This structure, obtained from the first term,lb
II , in the itera-

tive expansion ofLb
II , Eq. ~2.8!:
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will appear in every term of the complete expansion ofR,
and generates the OE:
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If, as typical,Qab5dabQ(s,t), all the la
I
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expansion of Eq.~2.13! combine to form the productslI•lII ,
at which point the OE becomes an ordinary exponential~oe!:
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where the combinationlI•lII may be replaced by its appro-
priate eigenvalue. The value of the integrals of Eq.~2.14!
may be read off from Eqs.~1.3! and ~1.4!.

It is instructive to continue with the example of Eq.~2.9!
and calculate the first commutator term, as in Eq.~2.12!, to
this quadraticQ dependence; it is
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In a typical eikonal situation corresponding to NVM ex-
change,Q(s,t)5g2(p1•p2)Dc(z12z22sp11tp2), and the
integrals of Eq.~2.16! may be evaluated to yield the leading
ln(E/m) dependence:

i
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where 4E2 denotes the total c.m.~energy!2 of the scattering
quarks. The form of Eq.~2.17! is worth noting, for it con-
tains the new feature of a ln(E/m) dependence multiplying
reasonable, impact-parameter dependence; as explained in
great detail in Ref.@1#, it is the first appearance of an effec-
tive Reggeization of the exchanged gluon, and it appears
directly in the eikonal function.

Before discussing how such contributions may be ex-
tracted and summed in this functional context, it may be
appropriate to note that there is at least one kinematical con-
text in which Eq.~2.13! is the exact result. This is the special
case whereQa,b(s,t)5Qa,b(s)d(s2t), when the functional
derivatives of Eq.~2.12! can never appear~due to a misor-
dering of subsequent, proper-time variables!.

Another example where differences may be expected
from the usual eikonal forms results from the appearance of
aQa,b5 f abcjcQ(s,t), wherejc is a color vector in the flux-
string model of Ref.@4#. Because thisQ is proportional to a
delta function of the square of thex12x2 variables of Eq.
~1.3!, it produces an OE with onlys dependence, and the
kinematical forms which appear are quite different from the
examples noted above.

Other formulations of the solution to Eq.~2.6! are pos-
sible, such as the representation ofR(suh) by a Fourier func-
tional transform, and the subsequent conversion of Eq.~2.6!

to a differential equation linear in parametric and functional
derivatives. However, because of the noncommutation of the
la , this route does not seem to lead to any real simplifica-
tion.

III. CONTIGUITY

A representation for the general structure of all such terms
may be obtained by the following argument. Return to the
differential equation~2.6! for R(suh) and make the ansatz:
R5R0U0 , where we shall assume in all that follows that
Qa,b5da,bQ(s,t). The quantityR0(s) is defined by
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and substitution of Eq.~3.1! into Eq. ~2.6! then yields
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from which we require the limitss→`, h→0. To quadratic
order inQ, one finds that the expansion ofU0 generates Eq.
~2.16!, as it must; but because of theR0 factors inside the OE
of Eq. ~3.2!, higher-order terms will, at least in part, involve
commutators of thel dependence ofR0 with neighboring
lI,lII dependence of Eq.~3.2!; those terms will be different
from the simple exponentiation of Eq.~2.16!, but they will
always be of higher perturbative order than that of Eq.
~2.16!, and are not the leading terms of their own perturba-
tive order. Note that the combinationDLa

II of Eq. ~3.2! con-
tains all the multiple commutators, indicated in Eq.~2.12!,
whose functional derivatives act upon theh dependence of
R0.

To find that term in the eikonal of orderg2(n11) which is
the leading term of that order, let us now write

DLa
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dh D[ (
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`

DnLa
IIS tU d
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2434 55H. M. FRIED AND Y. GABELLINI



DnLa
IIS tU d

dh D5~22i !nf ac1d1f d1c2d2••• f dn21 ,cndn
ldn
II

3E
t

`

dt1E
t1

`

dt2•••E
tn21

`

3dtn
d

dhc1
~ t1!

•••
d

dhcn
~ tn!

and setU05R1U1 , where we define

R1~s!5XexpF i E
2`

s

ds8E
2`

1`

dt8R0
21~s8!la

IQ~s8,t8!

3D1La
IIS t8U d

dh DR0~s8#C
1~s8!

.

Then, by again solving the appropriate differential equation,
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Performing this operation sequentially, it is clear that the
general structure of the result may be written as
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Because each functional derivatived/dh will generate a term@when operating onR0(s)# proportional toQ;g2Dc , the log of
Rn contains all powers ofg2m, with m>n11. The lowest order term, withm5n11, will contain the largest power of
lnn(E/m), while higher-order terms constructed from the sameRn will have no higher-order log; rather, the terms containing
lnm(E/m), m.n11, will come from the corresponding, lowest-order terms ofRm .

In order to define ‘‘contiguity,’’ imagine thatRn is expanded in powers ofg2, by expanding its OE:

Rnus→`.11 i E E
2`

1`

ds dt@s#n21
21 la

IQab~s,t !DnLa
IIS tU d

dh D @s#n211 i 2E E
2`

1`

ds dt@s#n21
21 la

IQ~s,t !DnLa
IIS tU d

dh D @s#n21

3E
2`

s

ds1E
2`

1`

dt1@s1#n21
21 la1

I Q~s1 ,t1!DnDa1
II S t1U d

dh D @s1#n211••• , ~3.6!

where [s] n215R0(s)...Rn21(s). ‘‘Contiguity’’ suggests
that the leading dependence of ln(Rn) will be obtained if
eachDnLaj

II (t j ud/dh) operates directly upon the [Sj ] n21 fac-

tor contiguous to it, that is, immediately to its right. This can
be seen in the simplest, nontrivial terms of orderg4 andg6,
and, we subsequently argue, is true for all terms; however,
what is clear from this definition is that terms contributing to
each order of the contiguity operation can be summed and
calculated directly from the OE form ofRn , writing

~3.7!

where the factor-pairing notation is meant to express the sub-
set of terms extracted by contiguity.

The entire g2n dependence of the eikonal, that is,
of ln(R), can be obtained by considering the following
sequence of ascending powers ofg2, in the limit of s→`,
h→0: All g2 dependence is given by R0,
ln(R0)5 i ~lI•lII!**2`

1`ds dtQ(s,t); all ~g2!2 dependence is
given by the contiguity calculation ofR1, which generates
our previous result,

ln~R1!522C2~l I
•l II !E E

2`

1`

dsdtQ~s,t !

3E
2`

s

ds1E
t

`

dt1Q~s1,t1!;
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all ~g2!3 dependence is given by the contiguity calculation of
R2, and by theg

2 expansion of the [s] 0
21 and [s] 0 factors of

R1; all ~g2!4 dependence is given by the contiguity calcula-
tion of R3, by theg

2 expansion of the [s] 1
21 and [s] 1 factors

of R2, and by theg
4 expansion of the [s] 0

21 and [s] 0 factors
of R0; etc.

In this way, one constructs the completeg2(n11) depen-
dence of ln(R)5ln(R0 ...Rn). Those exponential, eikonal
terms obtained directly from contiguity will contain one or
more terms proportional to a single factor oflI•lII , while the
g2p expansions of the [sj ] and [si ]

21 appear to generate
more complicated group factors, similar to those found in the
perturbative calculations of the amplitude@1#. We argue in
the next section that the leading ln(E/m) dependence to the
eikonal of orderg2(n11) comes only from the contiguity cal-
culations ofRn , when the functional differentiation is per-
formed only on theR0(s) factor of [s] n . Using simple func-
tional techniques, the sum of these leading contributions over
all ordersn is constructed for the eikonal of SU~2!.

IV. LEADING LOGS

We here give a qualitative discussion of the leading ln(E/
m) dependence of this class of non-Abelian eikonals~where,
we again remind the reader, interacting gluons are not in-
cluded!. For this, consider first those terms of orderg2(n11)

in the expression for ln(Rn) arising from the contiguity op-
eration ofDnLa

II upon the factor [s] n21 standing to its im-
mediate right, as in Eq.~3.7!. In particular, the leading terms
of that order will come from theDnLa

II operation upon the
R0(s) functional in [s] n21 @rather than the same-g2-order
contribution to the eikonal from ln(Rn21), with Dn1

La
II act-

ing uponR1(s) in [s] n22, etc#.
For clarity, we carry the discussion through forn52, and

then generalize to arbitraryn; for the moment, we suppress
the f abc factors arising in thet-dependent iterations of
La
II(tud/dh), but we explicitly write thes-dependent permu-

tations that are generated by the functional differentiation of
D2La

II(tud/dh) uponR0(s), which are proportional to

E
t

`

dt1
d

dhc1
~ t1!

E
t1

`

dt2
d

dhc2
~ t2!

3S expF i E
2`

s

ds8E
2`

1`

dt8

3Q~s8,t8!la
I ha~ t8! G D

1~s8!uh→0

. ~4.1!

We have neglected in thisR0(s) its exponential
i ~lI•lII! * 2`

s ds8* 2`
1`dt8Q(s8,t8) dependence because, as

explained below, it can only contribute to ordersg2p, p.n
11, and carries no additional ln(E/M ) factors. Suppressing
the superscript I for eachlc

I , the functional operations of Eq.
~4.1! yield

i 2E
t

`

dt1E
t1

`

dt2E
2`

s

ds1E
2`

s

ds2Q~s1 ,t1!Q~s2 ,t2!

3@lc1
lc2

u~s12s2!1lc2
lc1

u~s22s1!# ~4.2!

and suggest the obvious generalization forn.2 as

i nE
t

`

dt1•••E
tn21

`

dtn(
perm

E
2`

s

ds1•••

3E
2`

sn21
dsn•lc1

•••lcn
Q~s1 ,t1!•••Q~sn ,tn!,

~4.3!

in which then c1 indices are permuted, with a corresponding
permutation of thesi , in n! different ways.

For our estimates of the ln(E/m) dependence, we use the
standard Fourier propagator representation,Dc(x)
5(2p)24*d4k(k21m22 i e)21eik2x, and ~improperly! take
the kinematic limits for each~mass-shell! quark:E2p50,
rather than the more accurateE2p.m2/2E. Any integral
that we find containing an UV log divergence is really pro-
portional to a corresponding factor of ln(E/m), which depen-
dence appears when proper~but much more complicated!
kinematics are used.

For n52, let us examine both permutations, and include
the ila

I **ds dtQ(s,t) factor of Eq.~3.7!, whose [s] 1
21 has

been replaced by unity@because it can only contribute to
higher orders with no corresponding increase in the number
of ln(E/m) factors#. Each factor ofQ carries with it
p1•p2;E2 dependence, which is removed by the explicitE
factors associated with thes and t integrations, in standard
eikonal fashion; and we suppress all such cancelingE depen-
dence. With Q(s,t)5g2(p1•p2)Dc(z2sp11tp2), where
z5z12z25(b,z3 ,z0) is the difference of configuration co-
ordinates of the scattering quarks, the first of the two permu-
tations of Eq.~4.1! will lead to

E d4k̄~1 !ei k̄ zd~ k̄~1 !!d~ k̄~2 !!E d2k1E d2k2E dk1
~1 !E dk1

~2 !E dk2
~1 !E dk2

~2 !

3@v2~ k̄2k12k2!1~k1
~1 !1k2

~1 !!~k1
~2 !1k2

~2 !!2 i e#21@v1
21k1

~1 !k1
~2 !2 i e#21

3@v2
21k2

~1 !k2
~2 !2 i e#21~k2

~2 !1 i e!21~k1
~2 !1k2

~2 !1 i e!21~k2
~1 !2 i e!21~k1

~1 !1k2
~1 !2 i e!21,
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where k̄5k1k11k2 , k(6)5k36k0 , v25m21k'
2 , and

v2( k̄2k12k2)
25m21( k̄2k12h2)'

2 , with ' components
referring to the transverse 1,2 directions~the impact param-
eter vectorb! in the c.m. of the scattering quarks; all mo-
mentum integrals run from2` to 1`. The i e factors are
important, and—aside from the2i e of the standard Feyn-
man propagator denominators—arise upon calculating
*2`
s ds1*2`

s1 ds2 and* t
`dt1* t1

`dt2, when one insists upon the

proper definition of the integrand at the6` limits of inte-
gration. The second permutation of Eq.~4.2! leads to the
same form with the interchange ofk1

~2! andk2
~2! and, it will

become clear immediately, to the same leading-log depen-
dence.

It is best to begin by performing the*dk1,2
~2!, integrations,

which by simple contour evaluation requirek1
~1!.0 and

k 1
(1)1k 2

(1).0, and generate

~22p i !2E d2k

v2 eib•k'E d2k1
v1
2 eib•k1E d2k2

v2
2 eib•k2

3E
e

K dk2
~1 !

k2
~1 ! E

e

K dk1
~1 !

k2
~1 !1k1

~1 ! H 11
k2

~1 !v1
2

k2
~1 !v1

21k1
~1 !v2

2 J ,
~4.4!

where we have inserted upper (K) and lower~e! cutoffs for
the k1,2

~1! integrations, and have replaced the transversek̄'

variable by (k1k11k2)' . Each of the three factors
*d2k v22eik•b generates a term (2p)K0(mb), and the ‘‘1’’
of the curly bracket of Eq.~4.4! produces a ‘‘nested’’ con-
tribution for the k1,2

~1! integrals of amount
~1/2!ln2~K/e!→~1/2!ln2(E2/m2), when the replacement
E2p3.m2/2E is used. In contrast, the second term of the
curly bracket of Eq.~4.4! generates a contribution propor-
tional to ln(E/m), and can be dropped as subleading. Quite
generally, a ‘‘nesting’’ of thek i

(1) momenta follows directly
from the orderedt limits of the iterates ofDnLa

II , while the
sum over all permutations of thelc1

•••lcn
follows from the

ordereds limits of the terms obtained upon functional differ-
entiation ofR0(s) by DnL

II . The leading-log result for each
lc1

•••lcn
permutation is proportional to~1/n!!lnn(E2/m2).

One can easily see that any expansion of the
i (l I

•l II)*2`
1`ds*2`

1`dt Q(s,t) portion of the exponent of
R0(s), in conjunction with the above forms, must always
produce subleading, dependence, because at least one of the
nestedk~1! denominators needed for leading-log behavior
will be missing. Further, one can also see the reason for the
importance of the contiguity prescription, for—when the
OE’s defining eachRn are each expanded in powers of
g2—all the noncontiguousDl LII(tud/dh) operations will
display ‘‘improper,’’ or out-of-sequence, limits for thes in-
tegrals, which will generate a similar sort of subleading be-
havior. For this standard choice of propagator, contiguity
generates a first subdivision of terms containing the desired,
leading-log dependence; and the latter are then isolated by
the retention of onlyR0(s) in each factor of [s] n21, and the
neglect of every [s] n21

21 , in eachRn(s) .
Perturbative eikonal analyses quite similar to the above

have appeared long ago, in connection with multiperipheral

processes of scalar ‘‘tower’’ exchange. There also one ex-
pectsk i

(2);0 and large, nested,k i
(1) momenta. What is dif-

ferent here~aside from trivial, complex, multiplicative fac-
tors! is that one must also include the sums over all
lc1

•••lc1
permutations, and the general form of such a sum

is not clear for SU(N).
For SU~2!, however, this computation can be carried

through, and we now sketch that calculation. Its essence is to
replace the leading-log dependence by another method of
extraction which does not arise from the nestedk i

(1) integra-
tions, but yields, term-for-term and order-by-order, the same
results. This method is defined by retaining the samef abc
factors obtained from theDnLa

II interactions, and multiplying
those that contribute to ordern by the terms

i n

n! (
perms

E
2`

s

ds1•••E
2`

sn21
dsnE

t

`

dt1•••

3E
t

`

dtnQ~s1 ,t1!•••Q~sn ,tn!lc1
•••lcn

~4.5!

and then summing over alln. It is easy to see that the
leading-log contributions of Eq.~4.5! are identical to those of
Eq. ~4.4!; the only difference is that the* e

Kdk(1)/k(1)
contributions of Eq.~4.5! are not nested, and that the~n!!21

which follows from Eq.~4.4! because of nesting is, in Eq.
~4.5!, inserted by hand. This replacement can be made for
arbitrary SU(N); but the next step, summing over all permu-
tations of thes ordering, seems to be straightforward only for
SU~2!.

Because thet integrals of Eq.~4.5! are not ordered, we
introduce the symbol Ac(t)5* t

`dt8[d/dhc(t8)], and
(a
II@A# as the sum of all functional operations, which when

performed onR0(s), generate the correct sequence ofeabc
coefficients multiplying Eq.~4.5!. D(II [A] corresponds to
the set of all the iterations of the SU~2! version of
DLII~t ud/dh!, where a factor of~n!!21 is inserted for eachnth
order, and the operatorsAc1

•••Acn
replace thet-ordered

* t
`dt1* t1

`dt2•••* tn21

` dtn@d/dnc1(t1)#•••@d/dhcn
(tn)# of the

expansion of Eq.~2.8!. We work directly with the contiguity
approximation toU0 ~rather than to theRn separately!, in
which R0

21 is replaced by unity, and the leading-log simpli-
fication of R0 is used, as in Eq.~4.5!; everywhere, the
f abc→eabc , and lc→sc . One may now examine the first
four terms of this expansion, and it then becomes clear, by
inspection, that the full sum over all suchA dependence may
be written as

D(
a

@A#5@A2dab2AaAb#sb

1

A2 $cosh~A!21%

2 i eacdsd•Ac

sinh~A!

A
, ~4.6!

whereA25(cA c
2, andA5[A2] 1/2. To obtain Eq.~4.6!, one

repeatedly uses the SU~2! property (ceabcecde5
daddbe2daedbd .

55 2437NON-ABELIAN EIKONALS



The functional expression of contiguity, ofD(a
II@A# oper-

ating onR0(s), can be performed by first introducing the
representations

Aa

sinh~A!

A
5

1

2p E d3u d~uW 221!
]

]ua
euW •A

W
~4.7!

and

@A2dab2AaAb#
1

A2 $cosh~A!21%

5
1

2p E
0

1 dl

l E d3u d~uW 221!

3FdabS ]

]uW D 22 ]

]ua

]

]ub
GeluW •AW , ~4.8!

where~l, u! are dummy integration variables. The quantity

eluW •AWR0(s)uh→0 is then the OE

S expF i E
2`

s

ds8E
t

`

dt8Q~s8,t8!l~sW I
•uW !G D

1~s8!

~4.9!

and may be replaced by the oe

exp@ il~sW I
•uW !K~s,t !#, ~4.10!

whereK(s,t)5*2`
s ds8* t

1`dt8Q(s8,t8). In effect, the lack
of A ordering for these leading-log terms has transformed
their operation uponR0(s) into an ordinary exponential with
weightings to be determined by the integrations of Eqs.~4.7!
and ~4.8!. These last steps are now easily performed, by the
replacement of Eq. ~4.10! by cos(luK)1i(sW I•uW)
@sin(luK)/u#, and its substitution into Eqs.~4.7! and ~4.8!,
whose evaluations yield

Aa

sinh~A!

A
•R0~s!uh→05

i

3
sa
I ~K cosK12 sinK !

~4.11!

and

@A2dab2AaAb#
1

A2 $cosh~A!21%R0~s!uh→0

5
4

3
dabFcos~K !212

K

2
sin~K !G . ~4.12!

From Eqs.~4.6! and ~4.10!, ~4.11!, and~4.12!, one obtains

D(
a

II

@A#R0~s!uh→05
1

3
eacdsd

IIsc
I @K cosK12 sinK#

1
4

3
sa
IIFcosK212

K

2
sinKG .

~4.13!

Multiplying Eq. ~4.13! on the left bysa
I , antisymmetrizing

where appropriate~together with the Casimir relation

(aceacdeace52dde!, and including theR0 contribution of the
productR5R0U0 , one finds the eikonal given by

x5~s I
•s II !E E

2`

1`

ds dt Q~s,t !

3H 12
4

3 F12cosK1
K

2
sinKG

1
2

3
i @K cosK12 sinK#J . ~4.14!

Finally, if one imagines expanding Eq.~4.14! in powers of
K(s,t), and combines eachKn(s,t) with the remaining inte-
grand ofU0, one may use the easily verified property, cor-
rect for the leading-log dependence of each order:

E E
2`

1`

ds dtQ~s,t !Kn~s,t !.F2 i
g2

p2 ln~E/m!K0~mb!Gn
[@2 iL #n ~4.15!

so that, upon resumming these terms into the equivalent of
Eq. ~4.14!, in effect the quantityK(s,t) may be replaced by
2iL of Eq. ~4.15!, yielding

x52
g2

2p
~s I

•s II !K0~mb!H 12
4

3
@12eL#1

2

3
LeLJ

~4.16!

as the complete eikonal in leading-log approximation for the
SU~2! problem ~e.g., of nucleon-nucleon scattering by the
exchange of neutral and charged vector mesons, with con-
served isospin!.

Perhaps the most obvious feature of Eq.~4.16! is its pro-
portionality to sI

•sII , which quantity takes on isoscalar or
isovector eigenvalues depending on the nature of the initial
scattering states. A second interesting property is that, by
expressing the exp[L] factors of Eq.~4.16! in terms of

eL5~s/m2!~g2/2p2!K0~mb!

one finds an ‘‘effective Reggeization’’ of the eikonal, where
s here again denotes total c.m.~energy!2. For mÞ0, there is
little contribution to the scattering amplitude for smallb; and
hence ifK0(mb) is approximated as;exp@2mb#, one ob-
tains forms similar to those found in the Regge-eikonal ap-
proximation of multiperipheral scattering, except that this ei-
konal is real. In fact, the amplitude, constructed in the
generic form~and suppressing all inessential factors!

T; isE
0

`

b db J0~qb!@12eix~s,b!# ~4.17!

exhibits a variant of a ‘‘hard disk’’ scattering solution, in that
there are two regions of impact parameter,b"b0 , which
produce different contributions to the amplitude. This can be
seen by definingb0 as that impact parameter where
L(b0)51, b05m21ln[(g2/2p2)Y].m21, Y52 ln(E/m), and
writing the contributions to the amplitude of Eq.~4.17! in
terms of integrations over these two regions ofb. Since
L(b)5exp@m(b02b)#, and we assume thatY is large, when
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b,b0 , L is large, as is the eikonal of Eq.~4.16!, and the only
significant contribution to the amplitude comes from the
‘‘1’’ of the first term of Eq. ~4.17!. Whenb.b0 , L is small,
and the only significant contribution to the eikonal comes
from the ‘‘1’’ of the bracket of Eq.~4.16!, which we shall
call x0; this is the contribution coming from the originalR0
term of Eq.~2.14!. This argument leads to the representation
of the amplitude of Eq.~4.17! as the sum of two parts:

T; isE
0

b0
b db J0~qb!1 isE

b0

`

b db J0~qb!@12eix0#

~4.18!

or as

T; isE
0

b0
b db J0~qb!eix01 isE

0

`

b db J0~qb!@12eix0#

~4.19!

in which the amplitude is characterized by its simplest eiko-
nal approximation,x0, and by the range parameterb0(E/m)
which defines that impact parameter beyond which leading-
log corrections force the eikonal to become extremely large
and oscillatory, thereby removing its contribution from the
amplitude.

Could the same mechanism be operative for the general
case of SU(N)? Even though we cannot perform the closed
sum over all orders of leading-log contributions forN.2,
one can anticipate that for a similarb0(E/m) the eikonal
becomes very large, contributing a rapidly oscillating and
negligible contribution to the amplitude, which may be writ-
ten in the form of Eqs.~4.18! or ~4.19!, with thesI

•sII in-
variant of x0 replaced bylI•lII . We think it a reasonable
conjecture that this simple form is the actual result of the
complete SU(N) calculation. Of course, this point is some-
what academic, since when energies are large enough to take
leading-logs seriously, other processes which have here been
neglected~e.g., multiperipheral production! are going to ap-
pear. Nevertheless, it is of some theoretical interest to exam-
ine an amplitude constructed from the eikonal of Eq.~4.16!,
under the assumption that ln(E/m)@1; and it will be most
interesting to see if similar structures and simplifying ap-
proximations are going to appear in the study of other eiko-
nal processes which reflect the growth of inelastic particle
production with increasing energies.

V. OTHER PROCESSES

An important variation of the non-Abelian eikonal scat-
tering problem is found when self-energy processes~as in
radiative corrections to other QCDn-point functions! are
attempted. Here, one may make use of the new, exact, and
approximate representations for the needed Green’s func-
tions of Ref.@3# in which dependence on the source fields,
Am andFmn is that of an OE of linear form; for the simplest
example, we omit theFmn terms, and work in a quenched
approximation, so that the sum of all radiative corrections to
the fermion propagator will require evaluation of the quan-
tity

R~suj!5N8E d@u#E d@a#expS i E a•uD
3FexpS i E

2`

s

l•uD G
1

expS i2 E E aaQababD
3expS i E u•j D ~5.1!

in the limit of s→` andza(s8)→0. Here,Qa,b(s,t) is con-
siderably more complicated than the corresponding function
of an eikonal scattering amplitude~although the resemblance
becomes closer if an improper, no-recoil approximation is
adopted!, but must satisfyQa,b(s,t)5Qba(t,s).

Using techniques modeled after those sketched above, it
is easy to see that a representation of Eq.~5.1! is given by the
formal OE

R~suj!5XexpFi E
2`

s

ds8E
2`

1`

dt8laQab~s8,t8!Fjb~ t8!1u~s8

2t8!LbS s8,t8U d

dj D G GC
1~s8!

, ~5.2!

where Lb(s,tu iu)5@exp(i* t
sl•u)#1lb@exp~2i* t

sl•u)#2 .
The same, formal expansion corresponding to Eqs.~3.4! and
~3.5! may be defined, except thatR0 is now multiplied by the
exponential factor exp[(i /2)*jQj], which has the effect of
inserting polynomialj dependence into all the exponents of
subsequentRn , and the power-counting arguments given
above must be appropriately modified.

Perhaps the most interesting generalization of the forms
of Sec. III should appear in eikonal quark-scattering models
when gluon-gluon interactions~e.g., the ‘‘tower graphs’’ and
their generalizations! are taken into account. Before a func-
tional treatment can be attempted, even in the relatively
simple models described in the last chapters of Refs.@1# and
@5#, it is necessary to have a decent representation—as a
functional of an equivalent gluon source used to represent
internal, ‘‘s-channel’’ gluon exchanges—for the Green’s
function corresponding to thet-channel gluons exchanged
between quarks. For the eikonal situation where different
spin-one bosonic fields are used to describe distinctt- and
s-channel exchanges, respectively, such a representation now
exists@7#, and can be written down without undue complica-
tions; for the single gluonic field of real QCD, the situation is
similar but not as straightforward.

If these calculations can be carried through for the tower
graphs~corresponding to two-gluon,t-channel exchange be-
tween scattering quarks! in a functional context, using con-
tiguity as appropriate, there should then be an immediate
functional generalization which includes multiple,t-channel
gluon exchanges. Such estimates of the QCD eikonal would
be most relevant to high-energy particle scattering experi-
ments.

VI. SUMMARY

In this paper we have shown how the formidable, non-
Abelian eikonal combination~1.1! may be written as the OE
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R(suh) in the limit ass→`, andh→0; and have, by conti-
guity, isolated a subset of terms which exponentiate and con-
tribute directly to the eikonal function, and which contain
appropriate ln(E/m) dependence associated with the
leading-log behavior of every perturbative order. For SU~2!,
these terms may be summed to all orders, generating an ei-
konal dependent on the total isospin of the scattering chan-
nel, which displays a form of Reggeization peculiar to this
set of graphs summed.

Contiguity may also be phrased in terms of the original
ansatz,R(suh)5R0U0 , by replacing the exactU0 of Eq.
~3.2! by its contiguity approximation, as used for the SU~2!
calculation. However, at least for the specifically perturba-
tive estimates of ln(U), it appears to be simpler to adopt
contiguity in the context of theRn . As explained in Sec. III,
contiguity together with the elimination of obviously sub-
leading terms provides a straightforward method for the es-
timation of the eikonal’s leading-log terms in every pertur-
bative order. We have found an elementary method for
summing all such terms in SU~2!, and conjecture the form of
a simplified eikonal amplitude for allN.

In summary, we cannot here claim to have given the com-
plete solution to the problem of non-Abelian field-theory
structure; but, rather, a new and complete functional formu-
lation ~for eikonals and related self-energy graphs!, and a
‘‘contiguity’’ method of extracting those terms which are
certainly going to be exponentiated, and which seem to cor-
respond to the identification of leading ln(E/m) dependence
appearing in the construction of specifically non-Abelian
eikonals. It is hoped that these new techniques will be useful
for other processes, as discussed in the previous sections.

In particular, it is now appropriate to explain to the patient
reader how this procedure—which lacks manifest gauge in-
variance in a Yang-Mills context—can be incorporated
within a large scheme, in order to obtain strictly gauge-
invariant results for physical scattering amplitudes. There are
three separate issues involved. In any eikonal calculation,
one is searching for the proper separation of longitudinal/
timelike momenta from transverse momenta—this is the

problem attempted from first principles by Verlinde and Ver-
linde @8#—while at the same time, one is trying to sum over
the contributions of all perturbative orders for the classes of
graphs considered; and, simultaneously, one must insist on
the restrictions of gauge invariance.

The eikonal calculation of the present paper, with its abil-
ity to extract leading-ln(s) dependence, is intended to be
used as an initial step in a complete functional expression for
the scattering of a pair of quarks, which includes all gluonic
self-interactions as part of a ‘‘gluonic sector’’ described by
the methods of Halpern@9#, or its slight generalization by
Fried @10#. TheAm dependence of these formulations takes
the form of an exponential of linear and quadratic forms, so
that theQ(s,t) propagator of Eq.~1.1! is now dependent
upon auxiliary fields, and is linked to subsequent functional
integrals which describe the gluon self-interactions; extra
functional integrations maintain gauge restrictions. The in-
sertion of the forms of this paper then leads, as an interme-
diate step, to a rather complicated set of functional integrals;
but in the integrands of these functional integrals, one has
already extracted the leading ln(s) behavior of the simple
eikonal wheres is essentially given by quark kinematics. For
larges, by a rescaling of the auxiliary functional integrands,
one can now try to approximate and to extract relevant gluon
self-interaction structure, in this larges, small t limit, and in
a gauge invariant way. These calculations are presently un-
derway, and whether they will succeed is not yet known, but
this is the reason why a functional evaluation of the leading-
log behavior of the simple eikonal form of Eq.~1.1! can be
relevant to quarks and gluons.
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