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A functional formulation and partial solution is given of the non-Abelian eikonal problem associated with
the exchange of noninteracting, charged or colored bosons between a pair of fermions, in tisestaedet
limit. A simple, functional “contiguity” prescription is devised for extracting those terms which exponentiate,
and appear to generate the leading, high-energy behavior of each perturbative order of this simplest non-
Abelian eikonal function; the lowest nontrivial order agrees with the correspondindyl)SpK¥rturbative am-
plitude, while higher-order contributions to this eikonal generate an “effective Reggeization” of the ex-
changed bosons, resembling previous results for the perturbative amplitude. One exact and several approximate
examples are given, including an application to self-energy radiative corrections. In particular, for this class of
graphs and to all orders in the coupling, we calculate the leading-log eikonal 1@&.Rased on this result,
we conjecture the form of the eikonal scattering amplitude forMU{S0556-282(97)08804-4

PACS numbdss): 11.80.Fv, 12.38.Lg, 13.85.Dz

[. INTRODUCTION leading-log perturbative estimates previously calculated for
amplitudes[1]. The method will be illustrated in two con-
One of the most persistent problems in the application ofexts, and its applicability discussed for more general, non-
field theory methods to particle scattering has been the inAbelian problems; in particular, for this class of graphs and
ability to generalize, in a direct functional, nonperturbativeto all orders in the coupling, we calculate the leading-log
way, Abelian eikonal models to their non-Abelian counter-eikonal of SU2).
parts. Many efforts in this direction have of course been To our knowledge this is the first time that such estimates
made over the past several decades, using the partial, pertdrave been obtained in a purely functional context, while the
bative summation of an eikonal functi¢t], or a variety of  contiguity technique opens the way for an attack on other,
nonperturbative approximatiofig]. In Ref.[2], for example, more complicated, non-Abelian eikonal problems, such as
a “mean-field” approximation was made to the relevantthose which involve virtual gluon-gluon interactiofia par-
functional integrals corresponding to the exchange of neutrajcular, the so-called “towers” and their generalizatipnas
vector mesongNVM'’s) between scattering nucleons, which we|| as self-energy and vertex effects of non-Abelian,
include the restrictions of SW) isospin; and the result, jrtyal-gluon emission and absorption by a single quark.
while “approximately correct,” left a certain unease in its However, by treating only boson exchange, without self-

yva:<ed A more rr|10dern example isf thedproblem 0{ hOW 10jnteractions between the exchanged bosons, we are appar-
include SU3) color restrictions in four-dimensional QCD, ently going to violate requirements of gauge invariance,

Wh'ch must' be faced if one is to attempt any fpnctlonal Cal:which for perturbative, Yang-Mills gluons, require the simul-
culation using the recent, exact and approximate Green

functionsG,(x,y|A) of that theory[3]; or, indeed, the new aneous computation of all relevant graphs of a given order,

dimensional-transmutation—flux-string expansion of quark—gnd Inotthjust the S|tm;]2I_e (lalkqnal griphs ctonildgre;j hefre.
quark scattering amplitudéd]. urely the same sort of inclusion must eventually be true for

We give in this paper a complete, if formal, representatior@"y Nonperturbative attempt. We ask the reader to suspend
of the simplest non-Abelian eikonal, corresponding to mulJudgment on this point until the final discussion presented in

tiple gluon exchange between scattering quavithoutvir- (e summary of Sec. VI; and to realize that, while gauge

tual gluon-gluon interactions; we extract that portion whichinvariance must of course be insured in any computation
can be easily isolated, and define a particular, ordered¥hose results are going to be compared with experiment, we
exponentialOE) representation of the remainder, which canare proposing a functional attack on that part of the problem
be expanded or approximated in various ways. In particular9f immediate concern to the scattering quarks. This is impor-
we define a simple, functional procedure called “contigu-tant because a functional treatment contains all powers of the
ity,” which, in an immediate way, isolates at least a subsetcoupling; and it is useful because there exists an additional,
of those terms that are definitely exponentiated, and can beomputational step by which gauge invariance can be
represented to all orders by a perturbative expansion of theeestablished—including the relevant contributions gener-
eikonal. These terms correspond to the leadingpendence ated by all gluon-gluon interactions—Ilater on. The main

in the lowest, nontrivial order, and we argue that they correthrust of the present paper is the functional extraction of
spond to the extraction of the leadisglependence in every leading-log, energy dependence of the simplest, non-Abelian
perturbative order of the eikonal function. For quark-quarkeikonal.

scattering, the result duplicates the essence of well-known, We begin at that stage of a quark-quark scattering ampli-
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tude where mass-shell amputati@iSA) has already been and the essential structure of the eikonal function which de-
carried out on the fermion Green’s functions scribes non-AbeliatiNVM) exchange between a pair of fer-
(p1,dGc[Allp; approximated in a no-recoil fashidi],  mions[quarks, for SUB)] has been recognizdé] as

ix— _'J i i
et=eX 1 A, oA,

+ 00
exl{ _ing_ dthAﬁy(Zz_tpz))\g)

+
ex% _iglj7 dslij?u(Zl_Spl)}\;>

+

X , (1.1

+|A=A;=09;=0,=9

wherez, , andp, , are the fermions’ configuration and momentum coordinates,@ifdis the appropriate boson propagator.
Equation(1.1) defines “linkages” between a pair of OE’s, and the result will necessarily be a “doubly ordered exponential.”
How this can be transformed into a pair of single OE’s, how the leading logs of the latter may be extracted, leaving but a single
OE, and how that OE can, for $2), be summed explicitly over all perturbative orders, is the main content of this paper.
More precisely, the preferred method of obtaining the eikonal in the conventional case, where the conventional, no-recoil
approximation ofG.[A] destroys coordinate symmetry of this Green’s function, is to calculatd gobut, before MSA:

2 .
I Tei | S S —i[ 8 5AQS15A,

901992 010, 6(0) d3(0) ©

+o
eXl{ —iglJloo ds‘ﬁ(S)Pl'Al(Zl_Spl)')\l)

+

+ o
X ex;{—ing dt¢(t)p2~A,,(22—tp2)-)\”) (1.2
- +1(9)=(s) =LA =A; =0
|
and integrate overg;, [with the boundary conditions . g2
Tei(91,0)=Te(09,)=0] after the necessary functional ix=—15— v(S)Ko(ub), (1.4

linkages have been performédl; it has been assumed that

the RI—(lS(S) of Eq(1.2) is a function ofz;—z,, and the subse-

quent §(q,+q,) statement of four-momentum conserva- where v(s) = (s— 2m2)/ Js(s—2m?) is that factor depend-
tion has been suppressed. For simplicity we consider th 9 onyt(h()a s(pin of t?]e e(xchang()ad boson. of m,‘azspsthe
quantity of Eqg. (1.1) as representative of the correct fermion mass is denoted by, and in this equations de-
eikonal—it is exactly the eikonal in the absence of NON-qtes the total c.m(energy? of the two quarks. In all sub-

Abelian complications—even though it is quite possible tosequent expressions, we shall assume the high-energy limit,
produce, upon integration over the couplings of Ef2), where y(s)—1.

combinations which are more complic_ated than that of Eq. We give in the next section a new, functional formulation
(1'1)'_ However, Eq.(1.1) is representative of the fuII_, NON- ¢ the eikonal of Eq(1.1, and, in an appropriate kinematical
Abellan structure of the problem, an(_j we here restrict attenéituation, display one exact solution. More generally, a per-
tion to this quantity. The noncommuting objemas_are taken turbative expansion of this eikonal functional may be de-
tc_) be the Gell-Mann m_atrlces O.f SNj. We again empha- fined, and certain obvious ternawhich are the most elemen-
f'ze that mor’? complicated eikonal graphsz such as thf‘ary generalizations of the Abelian eikopare summed to
tower graphs” of Cheng and Wii1], are not included in 5 '5rders. In Sec. Ill, we define the statement of “functional
this analysis, although they can be formally inserted by the,,ntig ity which isolates those terms of E€.1) that are
functional methods outlined in the last chapters of REf$. definitely exponentiated, and which appears to generate the
and[5]. . a . leading In€/m) dependence of every perturbative term of
_Inthe Abelian case, whe), —A,,, and thek, are miss- o hon_Apelian eikonal, when the necessary, doubly ordered
ing, the functional operation of Eq1.1) may be performed o, nential is defined in a moderately elegant way. In the
immediately, yielding next section, we discuss the leading-log approximation, and
show how the extraction of such terrtfsom “nested” mo-
+o0 mentum integralscan reduce the complexity of the compu-
ix=i19%(p;- pz)f f dsd®A (z;—z—sp;+tpy) tations to operations upon a single OE; for(8)) these op-
o 1.3 erations are performed and summed to all orders, and
' suggest a conjecture for the corresponding eikonal scattering
amplitude of SUN). In Sec. V, we apply the analysis to
with a propagatoQ ,,(X1,Xz) = 8,,,Ac(X;—Xp). The proper-  self-energy processes, as well as to eikonal tower graphs and
time integrals are easily performed when a Fourier represenheir generalizations, while Sec. VI contains a summary of
tation of A; is inserted into Eq(1.3), and one finds our present understanding of this eikonal construction.



2432 H. M. FRIED AND Y. GABELLINI 55

[l. FORMULATION seen by breaking up theoe<s<+o range into small inter-

. . vals, and integrating over the,(s;) which leads to & func-

e B o o7 f e (). hose igraton medtelypoduces

tation: P the left-hand sidéLHS) of Eq. (2.1). The advantage of this
: procedure is that the functional linkages of Ef}.1) are now

Abelian, and may be performed immediately, yielding

+ o
exp{—igJ’ dspﬂAZ(z—sp))\a)
e .

eix:|l®.|2®ex+f J'j:ds dtaa(s)Qab(s,t),Bb(t)}

+
=N’f d[a]f d[u]exp(if_ dsa,(s)[ua(s) (2.2)
(2.1 These final operations are what is now needed, and may

+ 00
exr{iJ ds)\aua(s))
be delineated by the insertion of relevant source and param-
or, more simply, rewriting Eq. (21) as I® eter dependence, followed by a “Schwingerian search” for
exd —ifTads @AZ(z—sp)aa(s)], whereN' is an appropriate an appropriate “differential characterization.” With the defi-
normalization constant. That ER.1) is trivially true can be nition

|
R(s,t|§,77)=N’f d[a]f d[u]exp(ijj:a-u) exp(if_:)\'-u) exp(ifj:u-g)N’f d[ﬂ]f dlv]
xex;{if+:ﬁ-u) exr{iftw)\”m) exp(if+:v-n)ex+ff:ds'dt'aa<s'>Qab<s',t'>ﬁb<t'>},

(2.3
comparison with Eq(2.2) shows that the quantity needed iRl-,+/,0,0. One can create a variety of differential
equations involving the proper-time parametsys and the sourceg,(s), n,(t); but for present purposes, it seems to be
sufficient to work with onlys and 7, so that we consideR(s, +«|0,7) =R(s| 7).

We next outline the steps which result in the differential equai®6), stated below. Calculation oB(ds)R(s| ) brings
down under the integrals the quantit),('aua(s), standing to the left of its OE, which may be represented';(ﬁ/éaa)(s)
acting upon exp [ « - &]; then a functional integration-by-parts moves i« ,(s) to act upon the last line of E¢R2.3), which
generates under the functional integrals the net quantity) [ *5dt\ LQ,,(s,t) By(t). The procedure may now the reversed,
representing € i) 8,(t) by the operation- &/ 6v,,(t) acting upon exp fv - B]; and using another functional integration-by-parts

o [ a0} s o) - e 30 e < )
x(exp(ij+:x"-v))+ exp(if v~77> 24

with Qa’b=gzp‘f ;’jbvp‘z‘, and where thd 1,Z_denote, from
Eq. (2.1), simultaneous functional operations to be per-

- gp,LA,‘i(z—Sp)]>
+ formed on thea,(s) and B,(t) variables.

o
Svp(t)

written in terms of the antiordered quantity

ex,J(_ijt”m.U” _

Ap(tliv)=

¥

| o ]| st 130
(eXp(i f))} 29

and observe that Eq2.4) may be rewritten as
o0 -1
(ex if Ay ) . _ | [t _
t . il 7p(t) +Ap(t| 8/ 6m)]| ex If Ao ex va-ﬂ
- .

We introduce the notation so that, finally, one obtains the differential equation
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aR(slﬂ)_iJ+°°d”\| ) iAu t E —2if LA” t 2
Js - 700 aQab(Ss Jt @ 577 - acd 5776(4[) d 577

S which, together with the boundary conditiontato, gener-
t o7 ‘R(s|7). (2.6) ates

X| pp(t) + A},

With the boundary conditiofR(—|7)=1, easily seen as A”(t’ i) :)\”_Zifacdfxdt, . Au(t, i)
appropriate from the definition d%(s| ), the solution to Eq. “e 2 t onc(t’) 2\ | on
(2.6) may be written as an OE (2.9
s o whose repeated iterations contain all therderings of the
R(s,t)= (ex;{i f ds’f dt’ N Qan(s’ ,t’)[ 7(t") problem, and where thi,,. are the structure constants of the
- - SU(N) algebra.
Conventional eikonal models repla@g , by 6, ,Q(s,t),
FAP ] — ) (2.7 and in the absence of any other isospin-color vector, we may
onllll ., expect that the result will generate the products\". The

latter may then be replaced by eigenvalues appropriate to the
with the Ordering indicated for ths’ variables Only. With Scattering prob'em; for examp'e, in the &)Jisospin scat-
s—+ and»—0, we then have a representation of E83)  tering of two nucleons, those eigenvalues are giverl [y
which apparently involves a single OE; however, it should+ 1)/2—3/4, for singlet(I=0) or triplet (I =1) total isospin;
be noted that the second ordering will be found in the defifor SU(3), the situation is somewhat more complicated, as
nition of A}, Eq. (2.5), so that there do exist two sets of one tries to extract the overall, contribution of the eikonal to
“orderings,” although they can now be addressed sepathe singlet scattering amplitudé].
rately. In fact, the ‘t orderings” can be defined from the While Eq.(2.7) is a formal solution of the problem, cer-
integral solution to the differential equation satisfied bytain terms of its expansion can be summed without difficulty.
Al(t| 81 67); the latter may immediately be obtained from its To see this, consider the expansion of E27) up to qua-
definition (2.5): dratic Q dependence:

3

) +o0 S1 +
+i2 f f ds;dt;\Qayp,(S1:t1) f ds, f dtohg,Qa, b,(S2,t2)

5
57

t/

+ oo
Rlsﬂm=1+iff ds’dt’)\;Qab(s’,t’){nb(t’)+A't:

X

+eee (2.9

1)
7, (t) +Ap | ty 5—”{rzbz<tz)+AEz(tz
n n—0

With the definition ofA'b'(t|5/577), it is clear that the only " 0o 0 (7,
contribution of the lineaQ terms is Ap|t 57 :Rb_z'fbcd)\dft dt sry F

(2.12

+ oo
i f f dsdth,Qan(S, Ay, (2.10
*“ will appear in every term of the complete expansionRof
and generates the OE:

(exp{iffwdsdt)\LQab(s,t))\gD . (213

+(s)

while the &/ §7-independent part of the quadra€terms of
Eqg. (2.9 yields

. e s
|2f fﬁw ds1dt1)\lalQalb1(51:tl))\lbllfiwdsz

If, as typical, Qup=6,,Q(s,1), all the \}-\} terms in the

v ; expansion of Eq(2.13 combine to form the products -\",

X f_w dtoh g, Qa,b,(S2.t2)Ap, - (2.1)  at which point the OE becomes an ordinary exponeftiat

This structure, obtained from the first teri, , in the itera- ox i()\'-)\“)f Fwds 41Qs) 2.1
tive expansion of\} , Eq. (2.9): - p
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where the combination'-\"" may be replaced by its appro- to a differential equation linear in parametric and functional

priate eigenvalue. The value of the integrals of E214) derivatives. However, because of the noncommutation of the

may be read off from Eqg1.3) and (1.4). N4, this route does not seem to lead to any real simplifica-
It is instructive to continue with the example of EQ.9)  tion.

and calculate the first commutator term, as in Egl2, to

this quadraticQ dependence; it is Il CONTIGUITY

+o0 S1 .
2if f J ds.dt.\! st f d A representation for the gene_ral structure of all such terms
oibyd | | dS10Aa Qapp,(S1ty) | ds, may be obtained by the following argument. Return to the

differential equation(2.6) for R(s|7) and make the ansatz:
% | " R=RyU,, where we shall assume in all that follows that
X tldtZ)\azQazbz(SZ'tZ))\d : (219 Q,,=6,,Q(s,t). The quantityRy(s) is defined by

If, again Q, ,= 5, ,Q(s,t), the antisymmetry of Eq(2.19

underb,,b, exchange is converted to a like antisymmetry B N D
undera, ,a, exchange, so that the paif, A\, may be re- Ro(s)=| ex 'f_ocds f_w dt'A5Q(s",t")

placed byifalazc)\'c. One then finds the double summation

Ealazfalachala2d=cz5cd, where C,(N)=N denotes the x[yia(t’)+)\g ) (3.2
value of the quadratic Casimir invariant of the adjoint repre- +(s")

sentation; and Eq2.15 becomes
and substitution of Eq(3.1) into Eq. (2.6) then yields

—zcz(x'-x”)f fjxds dtQs,t)

s oc (9—Uo=if+mdt Ry 1(s)NLQ(s,1)
xf_mdsljt dt,Q(sy,ty). (2.16 Js o

)
1l

In a typical eikonal situation corresponding to NVM ex- XAAa(t 5_,]) Ro(s)-Uo(s),
change,Q(s,t) =g?(p1- P2)Ac(z1—Z,—Spy +tp,), and the
integrals of Eq(2.16) may be evaluated to yield the leading NI
In(E/m) dependence: AAa=Az—Aa,
- Co
r

2\ 2 _ -
(%) (7\"?\")|H(E/m)KS(Mb), 2.17) with the solution

S + oo
where &2 denotes the total c.nfenergy? of the scattering Uo(S)=(eXF{iJ dS'f dt'Ry *(s")AQ(s',t")
quarks. The form of Eq(2.17) is worth noting, for it con- o o
tains the new feature of a IB(m) dependence multiplying
reasonable, impact-parameter dependence; as explained in xAAg(t’
great detail in Ref[1], it is the first appearance of an effec-
tive Reggeization of the exchanged gluon, and it appears
directly in the eikonal function. from which we require the limits—, »—0. To quadratic
Before discussing how such contributions may be exorder inQ, one finds that the expansion 0f, generates Eq.
tracted and summed in this functional context, it may be2.16), as it must; but because of tRg factors inside the OE
appropriate to note that there is at least one kinematical corpf Eq. (3.2), higher-order terms will, at least in part, involve
text in which Eq.(2.13 is the exact result. This is the special commutators of the. dependence oR, with neighboring
case whereQ, p(s1)=Qan(S) 8(s—t), when the functional \'\" dependence of Eq3.2); those terms will be different
derivatives of Eq(2.12) can never appeddue to a misor- from the simple exponentiation of E¢R.16), but they will
dering of subsequent, proper-time variahles always be of higher perturbative order than that of Eq.
Another example where differences may be expected2.16), and are not the leading terms of their own perturba-
from the usual eikonal forms results from the appearance ofve order. Note that the Combina'[iqn/\g of Eq. (3.2) con-
a Qg p=TfancfcQ(s,t), whereg, is a color vector in the flux-  tains all the multiple commutators, indicated in E8.12),
string model of Ref[4]. Because thi® is proportional to @  whose functional derivatives act upon thedependence of
delta function of the square of thg —x, variables of Eq. Ro-
(1.3), it produces an OE with onlg dependence, and the  To find that term in the eikonal of orde?" ") which is
kinematical forms which appear are quite different from thethe leading term of that order, let us now write
examples noted above.
Other formulations of the solution to ER2.6) are pos-
sible, such as the representatiorRgf| ») by a Fourier func- AAIIH i
tional transform, and the subsequent conversion of(E) | oy

) (3.2

+(s’)

1)
5—7]) Ro(s")

zngl AnAg(t‘ 5—57]), (3.9
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o . s oo
AnAg(t 5_77):(_Zl)nfacldlfdlczdz'"fdn_l,cndn}\ldln Ul(s)=(ex+J’ ds’J dt'[Ry(s")Ry(s')] 72
X xdtrdt---r R ,
ft o IR M XALQ(s' t )ngz ApAj|t 5
wdt, — °
"o (t) I (tn) X[Ro(s’)Rl(s’)]D
+(s’)

and setU,=R,U,, where we define

Ry(s)= ex;{ir ds’fwdt’Rgl(s’))\LQ(s’,t’) Performing this operation sequentially, i_t is clear that the
— —o general structure of the result may be written as

)
5_7]) Ro(sl])

Then, by again solving the appropriate differential equation,
we find where

xAlAg(t'

R(s[7)=Ro(8)Ry(S):*Ry(s) - Un(s)=[sp]U(5),

+(s")

) (3.9

+(s’)

Rn(S)Z(ex;{iF ds f”dt'[s']n_llng(s',t'>~AnA!(t’

5 !
%) [S ]n—l

and

| e

+(s")

5 !
5_77 [S]n

Because each functional derivativigS, will generate a terniwhen operating oiR,(s) ] proportional toQ~g?A., the log of
R, contains all powers of?", with m=n+1. The lowest order term, witm=n-+1, will contain the largest power of
In"(E/m), while higher-order terms constructed from the sa&Rpawill have no higher-order log; rather, the terms containing
IN™(E/m), m>n+1, will come from the corresponding, lowest-order termsRgf.

In order to define “contiguity,” imagine thaR, is expanded in powers @, by expanding its OE:

Un(s)=(ex+Js ds’J+wdt'[s'];l>\gQ(s',t')- > A/A';(t'
% — /=n+1

+oo ) +o0 )
Rols= 11 f Lds dts]n11x;Qab<s,t>AnA2(t‘5—n)[s]n_1+i2 f Lds d{s]nﬂng(s,t)AnA!(t‘&—ﬂ)[s]n_l

1)
_)[Sl]n—1+"' ) (3.9

s + oo
x f dsy f dtl[sl];_llxglmsl,tlmnAL{l(tl re

where [5],,_1=Ry(8)...R,_1(8). “Contiguity” suggests where the factor-pairing notation is meant to express the sub-
that the leading dependence of Ry} will be obtained if set of terms extracted by contiguity.

eachAnA'e{_(tj|5/577) operates directly upon th&]] ,  ; fac- The entire g?" dependence of the eikonal, that is,
tor contigdous to it, that is, immediately to its right. This can©f IN(R), can be obtained by considering the following
be seen in the simplest, nontrivial terms of orgérandg®, ~ Seduence of asczzendlng powers gt in the limit of s—o°,

and, we subsequently argue, is true for all terms; however7 >0:  All - g°  dependence is given by Ry,
what is clear from this definition is that terms contributing to N(Ro) =i\ -AD)Jf Zods dtQ(s,t); all (91) dependence is
each order of the contiguity operation can be summed an@iven by the contiguity calculation dR”, which generates
calculated directly from the OE form d&,,, writing our previous result,

Ry |smoo= (exp

+ o0
i//:o dsdt [s]71, M Q(s,t) AAY (t[%) [S]MD In(Ry) = —2C2(7\'->\”)f f_oc dsdtQs,t)

+(s)

3.7 xf_m dslft dt;Q(sy,th);
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all (g%°
R,, and by theg? expansion of theq] 5 * and [s], factors of
Ry; all (g9)*
tion of R, by theg? expansion of thed] ;X and [s], factors
of R,, and by theg* expansion of theg] ,* and [s] , factors
of Ry; etc.

In this way, one constructs the complet&"*) depen-

dence of InR)=In(R,...R,). Those exponential, eikonal

terms obtained directly from contiguity will contain one or

more terms proportional to a single factondfA", while the
g%P expansions of theg] and [s] ! appear to generate

more complicated group factors, similar to those found in the

perturbative calculations of the amplitufig]. We argue in
the next section that the leading EY(m) dependence to the
eikonal of ordery?™* Y comes only from the contiguity cal-
culations ofR,, when the functional differentiation is per-
formed only on thery(s) factor of [s],,. Using simple func-

H. M. FRIED AND Y. GABELLINI

dependence is given by the contiguity calculation ofWe have neglected

55

in thisRy(s) its exponential
iV A" f8..ds' [ T2dt’Q(s’,t’') dependence because, as

dependence is given by the contiguity calcula-explained below, it can only contribute to ordey®, p>n

+1, and carries no additional IB(M) factors. Suppressing

the superscript | for eadm'c, the functional operations of Eq.

(4.1) yield

izﬁmdtlj:dtzjsxdslj:dSZQ(Slvtl)Q(Szatz)

X[)\cl)\cze(sl_sz)+7\02)\010(52_51)] (4-2)

and suggest the obvious generalizationticr2 as

tional techniques, the sum of these leading contributions over

all ordersn is constructed for the eikonal of $B).

IV. LEADING LOGS

We here give a qualitative discussion of the leadindein(
m) dependence of this class of non-Abelian eikorfalsere,

we again remind the reader, interacting gluons are not in-

cluded. For this, consider first those terms of orggf" %)
in the expression for Iig,,) arising from the contiguity op-
eration ofAnA'; upon the factor §],_, standing to its im-
mediate right, as in Eq3.7). In particular, the leading terms
of that order will come from the\,A} operation upon the
Ro(s) functional in [s],_; [rather than the samg®order
contribution to the eikonal from If,,_;), with AnlAg act-
ing uponR,(s) in [s],_>, etd.

For clarity, we carry the discussion through for2, and
then generalize to arbitrany; for the moment, we suppress
the f,,. factors arising in thet-dependent iterations of
Ag(t| 8l 87), but we explicitly write thes-dependent permu-

0 s} S
i”f dt, f dt, >, ds, -
t tn—l

2],
Sn—1
X B dSn-7\C1'")\CHQ(Slytl)"'Q(Sn1tn),

4.3

in which then ¢, indices are permuted, with a corresponding
permutation of thes; , in n! different ways.

For our estimates of the I&E(m) dependence, we use the
standard Fourier propagator representatiom\.(x)
=(27) " *fd*k(k?>+ u’—ie) te' %, and(improperly take
the kinematic limits for eaclimass-shell quark: E—p=0,
rather than the more accurae- p=m?/2E. Any integral
that we find containing an UV log divergence is really pro-
portional to a corresponding factor of B{m), which depen-
dence appears when propdiut much more complicated
kinematics are used.

tations that are generated by the functional differentiation of For n=2, let us examine both permutations, and include

AzAg(t|5/677) uponRy(s), which are proportional to
dt] ——— | dty, ————
ft ! 57]01(t1) ty 2 é\77(:2(':2)
s +oo
ex;{if ds’f dt’

XQ(S' ")\ 74(t")

X

4.9

)+(S’)|7ﬁ0

the i)\;ffds dtQ(s,t) factor of Eq.(3.7), whose E];* has
been replaced by unitjbecause it can only contribute to
higher orders with no corresponding increase in the number
of In(E/m) factord. Each factor of Q carries with it

p;- P>~ E2 dependence, which is removed by the expligit
factors associated with treandt integrations, in standard
eikonal fashion; and we suppress all such cancdingpen-
dence. With Q(s,t)=g%(p;-p,)A(z—sp;+tp,), where
z=27,—2,=(b,z3,7p) is the difference of configuration co-
ordinates of the scattering quarks, the first of the two permu-
tations of Eq.(4.2) will lead to

f d4F*)e”‘_25(F“)5(F’))f dzklf dzsz dkg“f dk({)f dk(;)f dki™)

X[ w?(k—ky— k) + (ki + K (kT +ks ) —ie]l HowZ+k ki —ie]?

X[ w3+ Kk —ie] UKy +ie) UK Ky Hie) UK —ie) UK K —ie) 7t
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where k=k+k;+k,, kiF)=ks+k,, w?’=u?+k?, and processes of scalar “tower” exchange. There also one ex-
w?(k—k;—k,)?=pu2+(k—k;—h,) 2, with . components pectsk{~)~0 and large, nestet,") momenta. What is dif-
referring to the transverse 1,2 directioftise impact param- ferent here(aside from trivial, complex, multiplicative fac-
eter vectorb) in the c.m. of the scattering quarks; all mo- tors) is that one must also include the sums over all
mentum integrals run from-o to +w. Theie factors are Ne, "Ne, permutations, and the general form of such a sum
important, and—aside from theie of the standard Feyn- s not clear for SUK).

man propagator denominators—arise upon calculating For SUZ2), however, this computation can be carried
fsioodslfsfwdsz andffdtlffldtz, when one insists upon the through, and we now sketch that calculation. Its essence is to
proper definition of the integrand at thex limits of inte-  replace the leading-log dependence by another method of
gration. The second permutation of E@.2) leads to the extraction which does not arise from the neStéa) integra-

same form with the interchange kf~ andk’” and, it will  tions, but yields, term-for-term and order-by-order, the same
become clear immediately, to the same leading-log deperfesults. This method is defined by retaining the séfigg
dence. factors obtained from th&, A interactions, and multiplying

It is best to begin by performing thid k(lfz), integrations, those that contribute to order by the terms
which by simple contour evaluation requitg™>0 and
k{"'+k{">0, and generate

iﬂ S Sp—1 [
mz j dSl"'f dSnJ dt,---
del d2 ) * perms J —o» —x t
5 €

2

(_27T|)2f d_seibkLJ ib~k1f l; eib-k2 )
w (.Ul (U2 ®

Xft dth(Sl’tl)"'Q(Snitn))\cl"')\cn (4.9

Kdiky™ ko dkT) kiH w?
XL ki) L k5P + k(™) [1+ kS s+ k(f)w%]' and then summing over ah. It is easy to see that the
leading-log contributions of Eq4.5) are identical to those of
(44 Eq. (4.9; the only difference is that thé <dk(+)/k(+)

) contributions of Eq(4.5) are not nested, and that thre!)~*
where we have inserted uppef)(and lower(e) cutoffs for  \hich follows from Eq.(4.4) because of nesting is, in Eq.
the k1’7 integrations, and have replaced the transvérse (4.5 inserted by hand. This replacement can be made for
variable by k+ki+ky), . Each of the three factors arpitrary SUN); but the next step, summing over all permu-
Jd°k o~ e"™" generates a term (@ Kq(ub), and the “1”  ations of thes ordering, seems to be straightforward only for
of the curly bracket of Eq(4.4) produces a “nested” con-  gyy2).
tribution ~for the kiJ integrals of amount  Because th¢ integrals of Eq.4.5 are not ordered, we
(1/2)In2(K/26)H(_1/2)In2(E2/m ), when the replacement introduce the symbol Ay(t)=[ Fdt'[8/67(t')], and
E—ps=m“/2E is used. In contrast, the second term of thes!r o] as the sum of all functional operations, which when
curly bracket of Eq.4.4) generates a contribution propor- performed onRy(S), generate the correct sequenceegf
tional to In(E/m), and can be dropped as subleading. QUit&.yefficients multiplying Eq.(4.5). AS"[A] corresponds Cto
generally, a “nesting” of thek(*) momenta follows directly 1o set of all the iterations of the ) version of
from the ordered limits of the iterates of\,A}, while the AA"(t|8167), where a factor ofn!) L is inserted for eachth
sum over all permutations of the, ---A._follows from the  order, and the operatorA, A, replace thet-ordered
ordereds limits of the terms obtained upon functional differ- P TIRL
entiation ofRy(s) by A,A". The leading-log result for each fedtfdte -y, dtal o one,(t)] <[ o o, (t,)] of the

Ne,'" "N permutation is proportional t@/nh)In"(E2/m?). expansion of Eq(2.8). We work directly with the contiguity

. i approximation toU, (rather than to the&r, separately in

_ Ion?l can ef‘f'ly see that any expansion of th§ynich R; 1 is replaced by unity, and the leading-log simpli-
I(N-AT)[ZdsfZ.dt Q(s,t) portion of the exponent of fication of R, is used, as in Eq(4.5); everywhere, the
Ro(s), in conjunction with the above forms, must always fabc— €anc, aNd Ac— .. One may now examine the first
produce subleading, dependence, because at least one of {38 terms of this expansion, and it then becomes clear, by

ngstedk@ denominators needed for leading-log behaviorinspection, that the full sum over all sughdependence may
will be missing. Further, one can also see the reason for thge written as

importance of the contiguity prescription, for—when the
OE’s defining eachR, are each expanded in powers of

g>—all the noncontiguoush, A'(t|8/6%) operations will ) 1

display “improper,” or out-of-sequence, limits for thein- Aia: [A]=[A%6an—AsAb]o A2 {coshA)—1}
tegrals, which will generate a similar sort of subleading be-

havior. For this standard choice of propagator, contiguity ) sinh(A)

generates a first subdivision of terms containing the desired, ~l€acaTa-Ac A (4.6

leading-log dependence; and the latter are then isolated by

the retention of onlyRy(s) in each factor of §],,_,, and the

neglect of every §] ,1,, in eachR,(s) . whereA2=3 A2 andA=[A?]Y2 To obtain Eq.(4.6), one
Perturbative eikonal analyses quite similar to the aboveepeatedly uses the %R property = €apc€cde=

have appeared long ago, in connection with multiperipherab,6pe— 62e0pq-
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The functional expression of contiguity, AfS'[A] oper- = ac€acd€ace= 24¢), and including theR, contribution of the
ating onRy(s), can be performed by first introducing the productR=R,U,, one finds the eikonal given by
representations

| vetoroh [ [ asaasy

sinnfA) 1 3 -y Jd ua
a A —EJC'U5(U —1)(9—uae (47) . <
wl1— 2112 K
and 1 3 1 cosK+23|nK
1 2. _
[Azéab_AaAb] E {COSKA)_ 1} + § I[K coK+2 SHK] . (414)
1 (1d\ 3 I Finally, if one imagines expanding E¢.14 in powers of
o f d°u §(u°—-1) K(s,t), and combines eadk"(s,t) with the remaining inte-
grand ofU,, one may use the easily verified property, cor-
2\2 9 9 - rect for the leading-log dependence of each order:
X| Sapl =5 —=— ehiA (4.9
Ju &ua &ub 2

f f“cds dtQ(s,t)K"(s,t)=| —i %In(E/m)KO(,ub)}

where(\, u) are dummy integration variables. The quantity
e i"ARy(5), o is then the OE

=[—iL]" (4.19
S o0 . . .
: / / ' s . so that, upon resumming these terms into the equivalent of
EX[{I Jfocds Jt drQ(s’.thA (- 1) )+(s'> “.9 Eq. (4.14), in effect the quantity(s,t) may be replaced by
—iL of Eq. (4.19), yielding
and may be replaced by the oe o 4 5
—_ = ([} _ _ b _ L
exdin(d'- DK (s 1)], (4.10 X="o (00 )KO(“b)[l zll-elt3 Le)

(4.16
whereK(s,t)=f% .ds' [ "dt’'Q(s',t"). In effect, the lack _ _ _ o
of A ordering for these leading-log terms has transformed®s the complete eikonal in leading-log approximation for the
their operation upoiR,(s) into an ordinary exponential with SU(2) problem (e.g., of nucleon-nucleon scattering by the

weightings to be determined by the integrations of E4<)

exchange of neutral and charged vector mesons, with con-

and (4.8). These last steps are now easily performed, by théerved isospin

replacement of Eq. (4.10 by cosfuK)+i(a-0)
[sin(\uK)/u], and its substitution into Eq44.7) and (4.8),
whose evaluations yield

sinh(A) P )
A, —a ~R0(s)|w0=§ o4(K coK+ 2 sirK)

(4.10)

and
) 1
[A?8a5=Aap] 27 {cOSHA) ~ 1}Ro(S)] .0

4
=3 Sab

3 (4.12

K
cogK)—1- 5 sin(K)}

From Egs.(4.6) and (4.10, (4.11), and(4.12), one obtains

1
A2 [ATRo(9)],-0=3 €acaqoe[K coK +2 sirk]
a

K .
coK—1— = sinK

LA
3 2

3"Iel

(4.13
Multiplying Eq. (4.13 on the left byo,, antisymmetrizing

Perhaps the most obvious feature of E416 is its pro-
portionality to ¢'-¢"', which quantity takes on isoscalar or
isovector eigenvalues depending on the nature of the initial
scattering states. A second interesting property is that, by
expressing the exp]] factors of Eq.(4.16) in terms of

eL — (S/ mZ)(gz/2772)K0(Mb)

one finds an “effective Reggeization” of the eikonal, where
s here again denotes total c.fenergy® For u#0, there is
little contribution to the scattering amplitude for smiajland
hence ifKy(ub) is approximated as-exd —ub], one ob-
tains forms similar to those found in the Regge-eikonal ap-
proximation of multiperipheral scattering, except that this ei-
konal is real. In fact, the amplitude, constructed in the
generic form(and suppressing all inessential facjors

T~isfmb db J(gb)[1—ex(sD)] (4.17
0

exhibits a variant of a “hard disk” scattering solution, in that
there are two regions of impact parametesb,, which
produce different contributions to the amplitude. This can be
seen by definingb, as that impact parameter where
L(bg)=1, bp=p Yn[(g?27?)Y]>u "1, Y=2In(E/m), and
writing the contributions to the amplitude of E¢.17) in
terms of integrations over these two regions lof Since

where appropriate(together with the Casimir relation L(b)=exgdu(by,—Db)], and we assume thatis large, when
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b<bg, L is large, as is the eikonal of E(t.16), and the only ) _
significant contribution to the amplitude comes from the R(s|é§)=N Jd[u]f d[a]exy{d’ aU)

“1” of the first term of Eq. (4.17). Whenb>b,, L is small,

and the only significant contribution to the eikonal comes s i
from the “1” of the bracket of Eq.(4.16, which we shall X exp( if NU) eXP(E f f aaQabab)
call xo; this is the contribution coming from the origingl, o +
term of Eq.(2.14). This argument leads to the representation
of the amplitude of Eq(4.17) as the sum of two parts: ><exp< if u-f) (5.0
bo o , . - ) .
o i _aixo in the limit of s—c and /,(s’)—0. Here,Q, ,(s,t) is con-
T |sfo b db Jo(qb)+|sfb0b db b(qbj{1-e] siderably more complicated than the corresponding function

(4.18  of an eikonal scattering amplitudelthough the resemblance
becomes closer if an improper, no-recoil approximation is
or as adopted, but must satisfyQ, ,(s,t) =Qp4(t,S).
Using techniques modeled after those sketched above, it
is easy to see that a representation of &dl) is given by the

b . © _
TNiSf Ob db ‘Jo(qb)eIX0+iSJ b db Jo(C]b)[l—e'XO] formal OE
0 0

419 R(s|§)=(ex+ f_s ds’ fjxdt’)\aQab(s’,t’)[gb(t’)+0(5’

in which the amplitude is characterized by its simplest eiko-
nal approximationy,, and by the range parametej(E/m) —tHA (S, t! ﬁ)
which defines that impact parameter beyond which leading- b\ > " | 5&
log corrections force the eikonal to become extremely large
and oscillatory, thereby removing its contribution from the \nere Ap(s,t]iu)=[exp( S S\ - u) T A [exp(—if S\ -u)] .
amplitude. _ , The same, formal expansion corresponding to E8i€) and
Could the same mechanism be operative for the gener%_a may be defined, except thit is now multiplied by the
case of SUN)? Even though_ we cannot perf(_)rm the Closedexponential factor exp[(2)f£Q¢], which has the effect of
sum over all orders of leading-log contributions WNE>2,  jhserting polynomiak dependence into all the exponents of

one can anticipate that for_ a _simila)rO(E(m) the.eik.onal subsequenR,, and the power-counting arguments given
becomes very large, contributing a rapidly oscillating and;p6ve must be appropriately modified.

negligible contribution to the amplitude, which may P? Writ- " perhaps the most interesting generalization of the forms
ten in the form of Eqs(4.1|8) or (4.19, with the o -0 in- o Sec. 11l should appear in eikonal quark-scattering models
variant of x, replaced by\'-\". We think it a reasonable | nan gluon-gluon interaction®.g., the “tower graphs” and
conjecture that this simple form is the actual result of they,qir generalizationsare taken into account. Before a func-
complete SUN) calculation. Of course, this point is SOMe- (5| treatment can be attempted, even in the relatively
what academic, since when energies are large enough to tagﬁnple models described in the last chapters of Réfsand
leading-logs serious_ly, qther processes which h_ave here be?g]' it is necessary to have a decent representation—as a
neglectede.g., multiperipheral productiorare going to ap-  fnctional of an equivalent gluon source used to represent
pear. Nevertheless, it is of some theoretical interest to eXaMhternal, “s-channel” gluon exchanges—for the Green's
ine an amplitude constructed from the eikonal of E§16,  fnction corresponding to thechannel gluons exchanged
under the assumption that B(m)>1; and it will be most  penyveen quarks. For the eikonal situation where different
interesting to see if similar structures and simplifying ap-gpin_one hosonic fields are used to describe distinend
proximations are going to appear in the study of other eikox_hannel exchanges, respectively, such a representation now
nal processes which reflect the growth of inelastic particle,yisis[7], and can be written down without undue complica-
production with increasing energies. tions; for the single gluonic field of real QCD, the situation is
similar but not as straightforward.
V. OTHER PROCESSES If these calculati_ons can be carried through for the tower
graphs(corresponding to two-gluort;channel exchange be-
An important variation of the non-Abelian eikonal scat- tween scattering quarkén a functional context, using con-
tering problem is found when self-energy proces&esin tiguity as appropriate, there should then be an immediate
radiative corrections to other QCB-point functiong are  functional generalization which includes multiptegchannel
attempted. Here, one may make use of the new, exact, argluon exchanges. Such estimates of the QCD eikonal would
approximate representations for the needed Green’s funde most relevant to high-energy particle scattering experi-
tions of Ref.[3] in which dependence on the source fields,ments.
A, andF ,, is that of an OE of linear form; for the simplest
example, we omit thd=,, terms, and work in a quenched VI. SUMMARY
approximation, so that the sum of all radiative corrections to
the fermion propagator will require evaluation of the quan- In this paper we have shown how the formidable, non-
tity Abelian eikonal combinatiofil.1) may be written as the OE

) , (5.2

+(s’)
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R(s|7) in the limit ass—c, and »—0; and have, by conti- problem attempted from first principles by Verlinde and Ver-
guity, isolated a subset of terms which exponentiate and corinde [8]—while at the same time, one is trying to sum over
tribute directly to the eikonal function, and which contain the contributions of all perturbative orders for the classes of
appropriate InE/m) dependence associated with the graphs considered; and, simultaneously, one must insist on
leading-log behavior of every perturbative order. Fo®y  the restrictions of gauge invariance. o .
these terms may be summed to all orders, generating an ei- The eikonal calculation of the present paper, with its abil-
konal dependent on the total isospin of the scattering charly t0 extract leading-In¢) dependence, is intended to be
nel, which displays a form of Reggeization peculiar to thisused as an initial stepin a complete fgncyonal expression for
set of graphs summed. the scattering of a pair of quaIks, wh|ch |ncILides aII_quomc
Contiguity may also be phrased in terms of the originalself"nteraCt'onS as part of a “gluonic sector” described by
ansatz,R(s| 7) =R,U,, by replacing the exactl, of Eq. the methods of Halperf9], or its slight generalization by
(3.2 by its contiguity approximation, as used for the 8U Fried [10]. The A, deper_‘de”“? of these formula_tlons takes
calculation. However, at least for the specifically perturba—the form of an expanential of linear am_j quadratic forms, so
tive estimates of Ing), it appears to be simpler to adopt that theQ(s,t) propagator Of Eq(1.1) is now depende.nt
contiguity in the context of th&, . As explained in Sec. Ill, upon auxiliary fields, and is linked to subsequent functional

contiguity together with the elimination of obviously sub- integrals which describe the gluon self-interactions; extra

leading terms provides a straightforward method for the esf_unqtlonal Integrations maintain gauge restrictions. _The In-
sertion of the forms of this paper then leads, as an interme-

timation of the eikonal’'s leading-log terms in every pertur- > : ; . ]
bative order. We have found an elementary method fog'at(.E step, _toarather complicated set of fgnctlonal integrals;
summing all such terms in SB), and conjecture the form of ut in the integrands of these functional integrals, one has
a simplified eikonal amplitude ,for aNl already extracted the leading 8)(behavior of the simple
In summary, we cannot here claim to have given the com-e'konal wheres is e_ssentlally given by quark_ klner_natlcs. For
' larges, by a rescaling of the auxiliary functional integrands,

plete solution to the problem of non-Abelian field-theory v t imat dt tract rel tal
structure; but, rather, a new and complete functional formyOne€ can now try to approximate and to extract reievant giuon
self-interaction structure, in this large smallt limit, and in

lation (for eikonals and related self-ener raphand a . . .
( gy grap a gauge invariant way. These calculations are presently un-

“contiguity” method of extracting those terms which are - :
certainly going to be exponentiated, and which seem to Corc_jerway, and whether they will succeed is not yet known, but

respond to the identification of leading EB(m) dependence this is the reason why a func_tional evaluation of the leading-
appearing in the construction of specifically non—AbeIianIOg behavior of the simple eikonal form of EQL.1) can be
eikonals. It is hoped that these new techniques will be usefLﬁe'(aVant to quarks and gluons.
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