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We present a generalization of the Frolov-Slavnov invariant regularization scheme for chiral fermion theo-
ries in curved spacetimes. The Lagrangian level regularization is explicitly invariant under all the local gauge
symmetries of the theory, including local Lorentz invariance. The perturbative scheme works forarbitrary
representations which satisfy the chiral gauge anomaly and the mixed Lorentz-gauge anomaly cancellation
conditions. Anomalous theories on the other hand manifest themselves by having divergent fermion loops
which remain unregularized by the scheme. Since the invariant scheme is promoted to include also local
Lorentz invariance, spectator fields which do not couple to gravity cannot be, and are not, introduced. Fur-
thermore, the scheme is truly chiral~Weyl! in thatall fields, including the regulators, are left handed; andonly
the left-handed spin connectionis needed. The scheme is, therefore, well suited for the study of the interaction
of matter with all four known forces in a completely chiral fashion. In contrast with the vectorlike formulation,
the degeneracy between the Adler-Bell-Jackiw current and the fermion number current in the bare action is
preserved by the chiral regularization scheme.@S0556-2821~97!02704-5#

PACS number~s!: 11.30.Rd, 04.62.1v, 11.15.2q

I. INTRODUCTION

It is believed that the existence of an invariant regulariza-
tion for a quantum field theory of chiral fermions is predi-
cated upon the absence of perturbative anomalies.1 It is in-
teresting to ask whether an explicitly invariant regularization
scheme for chiral fermions can be constructed so that it suc-
cessfully regularizes the theory when the representation of
the chiral fermion multiplet is anomaly free, and fails to do
so precisely when the representation is not. In the following,
we present a scheme of regularization at the Lagrangian level
incorporating this feature, which is suitable for describing
chiral theories in curved spacetimes.

Frolov and Slavnov@1# first proposed an explicitly gauge-
invariant regularization which makes essential use of an in-
finite tower of Pauli-Villars-Gupta regulators@2#. The theory
was originally based on the SO~10! multiplet @3# or, rather,
the 16-dimensional chiral representation of Spin~10!, with
the standard model embedded in it.2 Since invariant regulator
mass terms are required for this type of Pauli-Villars-Gupta
regularization, it is necessary to ‘‘double’’ in internal gauge
group space by also including fields which transform accord-
ing to the complex conjugate representation@4#. The tower

of regulators is therefore neutral with respect toG11 and can
regularize only the singlet part of the14 (12G11)(12g5) pro-
jection of the bare gauge current. However, it is shown that
the G11 part gives rise to no further divergences due to the
fact that the trace of four or less generators of Spin~10! with
G11 vanishes. Frolov and Slavnov also proposed a discretiza-
tion of the theory @5#. It is believed that the Nielsen-
Ninomiya no-go theorem@6# is surmounted by the presence
of the infinite tower of regulator fields. It was not immedi-
ately clear from this discussion if the method generalizes to
arbitrary anomaly-free chiral theories, although it was clear
how to regularize theories based upon SO(2n>10) groups.
Okuyama and Suzuki@7# clarified and generalized the origi-
nal Frolov-Slavnov idea to include fermion multiplets in ar-
bitrary real and pseudoreal representations. But the generali-
zation to curved spacetimes and Abelian gauge groups
remained somewhat unclear.

The scheme was considered in a different light by
Fujikawa @8# and by Narayanan and Neuberger@9#. They
doubled in external or Lorentz space by including right-
handed as well as left-handed regulator fields. In these
vectorlike formulations, no doubling in the internal symme-
try group is needed. To study nonperturbative effects, Naray-
anan and Neuberger@10# also proposed the ‘‘overlap formal-
ism’’ by treating the extra index associated with the tower
of regulators as an additional dimension of spacetime and
by defining the chiral fermion determinant as the overlap
of two different gound states of the higher dimensional
theory. As such, the Nielsen-Ninomiya no-go theorem of
putting chiral fermions on a lattice may be overcome by
treating the chiral theory in 2n dimensions as the target of
another in 2n11 dimensions in which there is no concept of
chirality.

In these vectorlike formulations, the tower is parity even
or g5 neutral. So doubling in external space by including
right-handed fields now regularizes the left-right symmetric
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1This does not necessarily mean that some version of the theory

cannot be defined. For instance, the anomalous chiral Schwinger
model can be solved exactly. However, the gauge invariance of the
theory is lost.
2Chirality in Spin~10! is defined relative toG11, which is propor-

tional to the product of all ten Dirac matrices spanning the Clifford
algebra in ten dimensional Euclidean space.
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part, leaving theg5 part of the bare gauge current untouched.
For anomaly-free theories, it can be argued that there are no
divergent parity-odd diagrams generated by the gauge cur-
rent. As a result, thegaugecurrent is regularized for arbi-
trary, perturbatively anomaly-free representations. However,
as noted by Fujikawa@8#, the parity-nonconserving ampli-
tude with gauge singlet currents can be divergent. For in-
stance, the fermion number current is not free of divergences
and is different from the axial or Adler-Bell-Jackiw~ABJ!
current at the regularized level@8#. On the other hand, in the
totally left-handed Frolov-Slavnov formulation, the degen-
eracy between the well-defined ABJ singlet current and the
fermion number current in the original bare action is pre-
served by the chiral regularization scheme.

What happens when the Frolov-Slavnov regularization
scheme is promoted to includelocal Lorentz invariance and
the effects of curved spacetimes? Two issues immediately
arise. First, it is known that chiral fermions in curved space-
times can introduce a further perturbative mixed Lorentz-
gauge anomaly@11#. Second, all fields couple to gravity, and
the trick of introducing spectators inherent in some methods
of defining chiral theories may not work@7,12#. For example,
in Ref. @1#, the standard model@or any anomaly-free sub-
group of SO~10!# can be recovered by taking the gauge field
Wm to lie only in the relevant subgroup. However, if the
regularization is extended to include invariance under local
Lorentz transformations, then the extra spectator ‘‘neu-
trino,’’ which is not coupled to any internal gauge field, be-
comesphysicalas a result of its coupling to gravity.

Similar remarks apply to right-handed fermions. These
make an appearance in a chiral theory either as regulators, as
in vectorlike schemes, or as spectators in defining propaga-
tors @7#. All these fields get coupled to gravity and become
physically interacting degrees of freedom.3 The key point is
that there can beno passive spectators if the regularization
scheme is promoted to also respect local Lorentz invariance.

There is yet another issue we need to be aware of. Right-
handed multiplets can be introduced in a covariant way for
curved spacetimes only if one also allows for right-handed
spin connections. It is known through the work of Ashtekar
and others@13,14# that the ~anti-!self-dual formulation of
gravity which involves only the left-handed spin connection,
rather than the full spin connection, may provide a complete
description of gravity in four dimensions. These right-
handed spin connections are generally not independent of the
left-handed ones@13#, and their presence might therefore
complicate the gravity field equations unnecessarily.4 Indeed
in the ~anti-!self-dual formulation, no right-handed fermions
should be introduced@15,16#.

For these reasons, we examine in this paper a regulariza-
tion scheme that is based only upon left-handed fields, with

no spectators. This scheme extends the Frolov-Slavnov regu-
larization to anomaly-free chiral theories in arbitrary com-
plex representations in curved spacetimes.5 The regularized
chiral fermion action is explicitly gauge, Lorentz, and diffeo-
morphism invariant, and is truly chiral~Weyl! in the sense
that only left-handed spin connections and left-handed mul-
tiplets are introduced. The proposed regularization is there-
fore well suited for the study of the interaction of matter with
all the four known forces in a completely chiral manner@16#.

We shall show that the generalization regularizes the chi-
ral theory if and only if the theory is free of all perturbative
chiral gauge anomalies, including the Lorentz-gauge mixed
anomaly. In this explicitly invariant scheme, anomalous
theories manifest themselves by having divergent fermion
loops which remain unregularized.

II. BARE ACTION AND INVARIANT MASSES

The bare chiral fermion action may be taken to be

SFbare5E d4xeC̄L0
2 iD” PLCL0

2 , ~1!

where iD” 5gm@ i ]m1WmaT
a1( i /2)AmABs

AB#, sAB

5 1
4 @gA,gB#, ande denotes the determinant of the vierbein.

PL51/2(12g5) is the left-handed projection operator. We
adopt the convention

$gA,gB%52hAB, ~2!

with hAB5diag(21,11,11,11). Lorentz indices are de-
noted by uppercase Latin indices while Greek indices are
spacetime indices.

In general, the fermion multipletCL0
2 is in a complex

representation. Recall that if the generatorsTa satisfy

@Ta,Tb#5 i f abcT
c, ~3!

then (2Ta)* satisfy the same Lie algebra.6 If there exists an
S such thatS21(2Ta)*S5Ta, then the representation is
called real~pseudoreal! if S is symmetric~antisymmetric!.
Otherwise, the representation is termed complex.

With only a single left-handed multiplet, Lorentz invari-
ant mass terms are Majorana in nature. The simple form of
CL

TC4CL is not invariant under internal symmetry
transformations.7 However, with real representations, an in-
variant mass termmCL

TSC4CL can be constructed from a
singlemultiplet. Observe that for a nonvanishing mass term,
S has to be symmetric for anticommuting fields and antisym-
metric for commuting fields. For complex representations, a
gauge- and Lorentz-invariant mass term cannot be made out
of a single multiplet. This poses a challenge for the usual

3It can be shown later on that the regularized gauge current in
curved spacetimes does reduce to the original current as the regu-
lator masses go to infinity.
4Recall that even a Majorana fermion couples to both the left- and

right-handed spin connections.

5The representations may be reducible, as in the SU~5! grand uni-
fied theory~GUT! model.
6We adopt the convention of (Ta)†5Ta and real structure con-

stants. For invariance of the action, the representation has to be
unitary.
7C4 is the charge conjugation matrix in four dimensions with

C4
T5C4

215C4
†52C4.
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invariant Pauli-Villars-Gupta regularization, even though the
chiral fermions may belong to an anomaly-free representa-
tion.

We shall generalize the method of Frolov and Slavnov by
including regulators which are doubled in internal space.
This doubling is achieved by including fermions which
transform according to the (2Ta)* representation, and then
an invariant mass term can be formed because under

CLr
2→eiaaT

a
CLr

2 , CLr
1→eiaa~2Ta!*CLr

1 , ~4!

the combination@(CLr
1 )TC4CLr

2 1(CLr
2 )TC4CLr

1 1H.c.# is

invariant under internal gauge and Lorentz transformations.
We introduce in the enlarged space the quantities

Ta[S ~2Ta!* 0

0 TaD , s1[S 0 1d

1d 0 D ,
s3[S 1d 0

0 21d
D , ~5!

whered denotes the number of internal components of the
original multiplet. In this notation, the original multiplet can
be expressed as

F 0

CL0
2 G5

1

2
~12d2s3!CL0

, ~6!

and the mass terms for the regulator fermions,

CLr
5FCLr

1

CLr
2 G , ~7!

can be written asmr(CLr
T s1C4CLr

1H.c.). The doubled

regulator fermion multiplets are to be coupled to the
2d-dimensional representation of the gauge connection,
WmaTa.

TheCLr
fields are assumed to be anticommuting. Com-

muting doubled regulator fieldsFLs
are introduced in a simi-

lar manner. These have mass terms

msFLs
T ~2 is2!C4FLs

5ms@2~FLs
1 !TC4FLs

2

1~FLs
2 !TC4FLs

1 #, ~8!

with

2 is2[S 0 21d

1d 0 D 5s1s3. ~9!

Note that these invariant mass terms for the doubled anti-
commuting and commuting fields exist, because for theTa

representation, there is a symmetric (s1) and an antisymmet-
ric ( is2) matrix which satisfy8

~s1!Ta~s1!215~ is2!Ta~ is2!215~2Ta!* . ~10!

It is clear that these constructs work for arbitrary groups and
representationsTa. Note also that all the fields are left
handed.

We shall next show that this generalization of the Pauli-
Villars-Gupta method can regularize chiral fermions pertur-
batively in the original sense of Frolov and Slavnov if and
only if the conditions for perturbative anomaly cancellations,
including the mixed Lorentz-gauge anomaly, are satisfied.

III. REGULARIZED ACTION

The total regularized action which is explicitly gauge and
Lorentz and, also, diffeomorphism invariant is taken to be9

SFreg5E d4xeF (
r50,2, . . .

$CLr
iD” CLr

11/2mr~CLr
T s1C4CLr

1CLr
s1C4

†CLr
T !%2 (

s51,3, . . .
$FLss

3iD” FLs

11/2ms~FLs
T s1s3C4FLs

1FLs
C4
†s3s1FLs

T !%G . ~11!

The sums are over all even natural numbers for the anti-
commuting fields and over all odd natural numbers for the
commuting fields. The usefulness of this convention will be-
come apparent later on. Except for

CL0
5
1

2
~12s3!CL0

5F 0

CL0
2 G , ~12!

which is the original and undoubled chiralmassless
(m050) fermion multiplet, all other anticommutingCLr

and

commuting FLs
multiplets are generalized Pauli-Villars-

Gupta regulator fields, doubled in internal space, and en-
dowed with Majorana masses, which we take for definiteness
to satisfymn5nL. We emphasize that due to the fact that all
the multiplets are left handed, there are no couplings to the
right-handed spin connection which does not need to be in-
troduced for the Weyl action.

In matrix notation, the regularized fermion action can be
reexpressed as

8A set of conditions for generalized Pauli-Villars regularization is
also given in@7#.
9We also allow all the fields to transform under general coordinate

transformations. Here, we regularize only fermion loops in back-
ground fields, and do not address the question of the regularization
of the gauge and gravitational fields. Gauge propagators may be
regularized by other methods. Full quantum gravity effects are be-
yond the scope of this paper.
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SFreg5E dxE dy
1

2 H (
r

@C̃Lr
T ~x! C̃̄Lr

~x!#FMr~x,y!s1C4 2 iD” T~x,y!

iD” ~x,y! Mr~x,y!s1C4
†GF C̃Lr

~y!

C̃̄Lr
T ~y!

G2(
s

@F̃Ls
T ~x!F̃̄Ls

~x!#

3FMs~x,y!s1s3C4 iD” T~x,y!s3

s3iD” ~x,y! Ms~x,y!C4
†s3s1GF F̃Ls

~y!

F̃̄Ls
T ~y!

G J , ~13!

with

Mn~x,y!5mnd~x2y!,

iD” ~x,y!5e1/2~x!gm~x!F S i ]m
x 1Wma~x!Ta1

i

2
AmAB~x!sABD

3d~x2y!]e2 1/2~y!,

iD” T~x,y!5e2 1/2~x!F H i ]m
y 1Wma~y!~Ta!T1

i

2
AmAB~y!

3~sAB!T%d~y2x!]gmT~y!e
1
2~y!. ~14!

To be compatible with the diffeomorphism-invariant mea-
sure@17#

)
x,r

D@CLr
~x!e1/2~x!#D@e1/2~x!CLr

~x!#, ~15!

for the fields in curved spacetimes, we have also chosen to
use densitized variables defined by

C̃̄Lr
[C̄Lr

e1/2, C̃Lr
[e1/2CLr

, ~16!

with a similar set forF̃̄Ls
andF̃Ls

.
For clarity, we shall use the explicit chiral representation

g55S 12 0

0 212
D , gA5S 0 i tA

i t̄A 0 D . ~17!

In the above,ta52 t̄a (a51,2,3! are Pauli matrices, and
t05 t̄052I 2.

By writing in terms of left-handed two-component Weyl
fermions,

CLr5F 0c r
G , FLs5F 0fs

G ~18!

and10

@c r 0#[CLr , @fs 0#[F̄Ls; ~19!

the propagators in background gauge and gravitational fields
can then be read off as

^T$C̃Lr
~x!C̃̄Lr

~y!%&5F 0 0

^T$c̃Lr
~x!c̄̃Lr

~y!%& 0G
52PLe

21/2~ iDm!†gme1/2

3
1

mr
21e1/2gmiDme

21~ iD n!†gne1/2

3d~x2y!. ~20!

We have used the identities

s1~Ta!T~s1!2152~Ta!†,

C4~sAB!T~C4!
2152sAB. ~21!

Furthermore, with respect to the Euclidean inner product
^X̃uỸ&5*d4xX̃†(x)Ỹ(x), the Euclidean Dirac operator
obeys11

~ iD” !†[~e1/2iD” e21/2!†5~e1/2gmiDme
21/2!†

5e21/2~ iDm!†gme1/2,
~23!

where12

~ iDm!†5 i ]m1WmaTa†1
i

2
AmABs

AB. ~24!

The Euclidean propagator is, therefore,

^T$C̃Lr
~x!C̃̄Lr

~y!%&52PL~ iD” !†
1

mr
21~ iD” !~ iD” !†

d~x2y!.

~25!

In a similar manner, for the commuting regulators,

10For Lorentzian signature spacetimes,c r5c r
†g0, whereas for

Euclidean signature,c r is treated as an independent field.

11In writing down the propagator, we do not in general assume the
absence of torsion. If the torsion vanishes, then

Dmegm f5egmDm f . ~22!

12The gauge fieldsWma andAmAB are real and,gA and isAB are
Hermitian for Euclidean signature manifolds.
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^T$F̃Ls
~x!Ls~y!%&5F 0 0

^T$f̃Ls
~x!f̃̄Ls

~y!%& 0G
5PLs

3(D” !†
1

ms
21~ iD” !~ iD” !†

d~x2y!.

~26!

IV. REGULARIZED CURRENTS

The original gauge current is

Jma5
dSF

dWma
5C̃̄L0

gmTa
1

2
~12s3!C̃L0

. ~27!

With the regulators, the classical current coupled toWma is

Jma5C̃̄L0
gmTa

~12s3!

2
C̃L0

1 (
r52,4, . . .

C̃̄Lr
gmTaC̃Lr

1 (
s51,3, . . .

F̃̄Ls
gmTaF̃Ls

. ~28!

Note that there is a12(12s3) projection associated with the
undoubled original fermion multiplet. As with conventional
Pauli-Villars-Gupta regularization, the regulated composite
current operator is summarized by@8#

^Jma~x!& reg5 lim
x→y

TrH 2gm~x!TaF12 ~12s3!^T$C̃L0
~x!C̃̄L0

~y!%&1 (
r52,4, . . .

^T$C̃Lr
~x!C̃̄Lr

~y!%&

1s3 (
s51,3, . . .

^T$F̃Ls
~x!F̃̄Ls

~y!%&G J . ~29!

The trace runs over Dirac and Yang-Mills indices.
With the expressions for the propagator, and the choice ofmn5nL for the regulator masses, we obtain

^Jma~x!& reg5 lim
x→y

TrH gm~x!TaPLF12 ~12s3!~ iD” !†
1

~ iD” !~ iD” !†
1 (

r52,4, . . .
~ iD” !†

1

r 2L21~ iD” !~ iD” !†

2 (
s51,3, . . .

~ iD” !†
1

s2L21~ iD” !~ iD” !†
Gd~x2y!J

5 lim
x→y

TrH gm~x!Ta
1

2
PLF 1iD” S (

n42`

`
_

_

~2!nD”D” †

n2L21D”D” †
2s3D Gd~x2y!J

[ lim
x→y

TrH gm~x!Ta
1

2
PLF 1

iD”
@ f ~D”D” †/L2!2s3#Gd~x2y!J . ~30!

In the above, note thatn is summed overall integers.
The effect of the tower of regulators is to replace the

divergent bare expression

^Jma&bare5 lim
x→y

TrH gm~x!TaPLF 1
iD”

1

2
~12s3!G

3d~x2y!J ~31!

by

^Jma& reg5 lim
x→y

TrH gm~x!Ta
1

2
PLF 1

iD”
@ f ~D”D” †/L2!

2s3#Gd~x2y!J . ~32!

This general feature of the effect of the tower shows up in all
the regularized gauge currents.

The regulator function

f ~z![ (
n52`

`
~21!nz

n21z
5

pAz
sinh~pAz!

~33!

has the required properties@1,7,8# to ensure convergence.
For instance, it falls rapidly to zero asz→`, and when the
regulator masses are taken tò, f (0)51. However, thes3

part of the current remains unmodified, essentially because
the tower consists of regulators which are doubled in internal
space and is ‘‘s3 neutral.’’ It, therefore, can regularize only
the singlet part of the12 (12s3) projection of the bare cur-
rent. Thus, it remains to be checked that for chiral theories
free of perturbative anomalies, thes3 part gives rise to no
further divergences, and can in fact be argued to be conver-
gent. When this is true, the total current is then successfully
regularized by the tower of regulators.
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As an example, to specialize to the original Frolov-
Slavnov proposal@1# for SO~10!, we take thed516 dimen-
sional representation of Spin~10! and set
CL

25C16,CL
15C10C16, ands35G11. Note that under a

gauge transformation,

C16→expS i aa

2
Sa~12G11! DC16,

C10C16→expS 2 i
aa

2
@Sa~12G11!#* DC10C16, ~34!

as a result of C10S
aC10

2152(Sa)T52(Sa)* and
$C10,G11%50. HereSa denote the generators of SO~10! in
the 32-dimensional representation. Frolov and Slavnov first
observed that for the SO~10! theory with a 16-dimensional
Spin~10! chiral multiplet, it can be argued that theG11 part of
the current gives rise to no divergences in four dimensions
since by power counting the amplitudes for the relevant di-
vergent fermion loop diagrams are proportional to the traces
of four or fewer generators of Spin~10! with G11. These
traces vanish identically. For arbitrary anomaly-free repre-
sentations, we shall next argue in the same spirit that the
analogouss3 part of the currents gives rise to no further
divergences.

V. ANOMALIES AND CONDITIONS
FOR REGULARIZATION

We shall expand the vierbein asEA
m5dA

m1hA
m and the rest

of the fields about zero. Then

iD”5e1/2iD” e21/2[ i ]” f1B” ~35!

where

i ]” f5 igAdA
m]m ~36!

is the flat spacetime Dirac operator in the absence of all
gauge fields, and

B”5gAFhAmi ]m1~dA
m1hA

m!S i2AmABs
AB2

i

2
Gnm

n 1WmaTaD G ,
Gnm

n []m~ lne!. ~37!

The inverse operator has the expansion

1

iD”
5

1

i ]” f
1

1

i ]” f
~2B” !

1

i ]” f
1

1

i ]” f
~2B” !

1

i ]” f
~2B” !

1

i ]” f
1 . . . ,

~38!

which can be substituted into expression~32!. Fermion loops
or perturbative multipoint correlation functions can be gen-
erated by functionally differentiating the regularized currents
with respect to the fields.

In order to obtain the conditions that guarantee no diver-
gences from the unregulateds3 part of Eq. ~32!, we may
note that Tr(s3)50 andB” is linear in Ta. The only term
containingTa is EA

mWmaTa. Furthermore, nonvanishing dia-
grams from the unregulateds3 part must involve

Tr$s3Ta1 . . . Tan%Þ0 ~39!

for some value ofn. Here, the trace is over internal indices.
To obtain the condition for convergence, we can consider

a generic fermion loop diagram with nonvanishing amplitude
involving this condition. The vertices can be separated into
those which involveTa and those which do not. Letn and
k be the number of these vertices, respectively. Potential
complications due to curved spacetimes come essentially
from thehA

m terms. Contributions from the Lorentz connec-
tion are rather straightforward since the coupling involves no
derivatives and there is also no coupling betweenAmAB and
Ta. Diagrams involving vertices due to theC̄LhA

migA]mCL

terms have derivative couplings. These vertices carry weight
gAi ]m and diverge linearly. Thus, the most divergent ferm-
ion loop diagrams obeying Eq.~39! involve, in general, up to
k of theseigA]m vertices,m vertices due to couplings of the
type C̄LhA

migAWmaTaCL , and (n2m) vertices from
C̄Lig

AdA
mWmaTaCL couplings.

13 Note also that each propa-
gator between vertices costs]” f

21. For the purpose of power
counting such fermion loops, the amplitude therefore be-
haves symbolically like

;Tr@s3Ta1•••Tan#S ]k
1

]” f
m1~n2m!1kD . ~40!

In momentum space in four dimensions, on integrating over
the loop momentum, this goes like

;E d4p
1

pn
Tr$s3Ta1•••Tan%. ~41!

Clearly, the degree of divergence is (42n). Therefore, if we
demand that

Tr$s3Ta1•••Tan%50 for n<4, ~42!

we can argue, as Frolov and Slavnov did for SO~10!, that the
s3 part of the current gives rise to no further divergences,
and the whole expression~32! is indeed regularized by the
tower of regulators. The condition~42! also suggests gener-
alizations to spacetime dimensions other than 4. In terms of
theTa representation of the original multiplet, Eq.~42! trans-
lates into

Tr$Ta1•••Tan%5Tr$~2Ta1!* •••~2Tan!* %, n<4.
~43!

For real and pseudodreal representations, where
(2Ta)*5STaS21, the condition is obviously satisfied. This
means that all such representations are free of perturbative
gauge anomalies since the proposed regularization which ex-
plicitly preserves the gauge symmetries works. Although it is

13The number of the two type of vertices involvingTa must sum
up ton to be compatible with Eq.~39!.

55 2415INVARIANT REGULARIZATION OF ANOMALY-FREE . . .



true that with a different set of regulator masses it may be
possible to regularize a theory with real representation by a
finite tower instead of the infinite one we have presented, we
nevertheless would like to discuss the issue in a more general
context. In this fashion, we will obtain a general condition
and regularization scheme for arbitrary representations in-
cluding both complex and real and pseudoreal representa-
tions@7#. However, it may be worthwhile to note that for real
and pseudoreal representations, the condition

Tr$s3Ta1•••Tan%50 ~44!

is satisfied forall values ofn. Thus thes3 contribution of
the current can be argued to be absent even forconvergent
diagrams. Therefore one can argue that the regularized cur-
rent is

^Jma& reg5 lim
x→y

TrH gm~x!Ta
1

2
PL

1

iD”
f ~D”D” †/L2!

3d~x2y!J . ~45!

A more careful consideration with different choices of the
regulator masses shows that it is in fact possible to write the
regularized currents for real and pseudoreal representations
in the above form with the appropriate regulator functions
@7#.

We shall now present the complete solution for arbitrary
representations including complex ones, and show that the
invariant regularization scheme works if and only if the chi-
ral theory is free of all perturbative gauge anomalies, includ-
ing the mixed Lorentz-gauge anomaly.

To begin, note that since the generators are Hermitian,
(Ta)*5(Ta)T, and condition~43! is the same as

Tr$Ta1•••Tan%5~21!nTr$~Ta1!T•••~Tan!T%

5~21!nTr$~Tan!•••~Ta1!%, n<4. ~46!

For n52, the equation is trivially statisfied due to the cyclic
property of the trace, and this imposes no constraints on
Ta. The casesn51 andn53 translate precisely into

Tr~Ta!50 ~47!

and

Tr~Ta$Tb,Tc%!50, ~48!

respectively.
The case ofn54 imposes no new restrictions if the con-

dition for n53 is satisfied. To see this, we decompose the
n54 condition into antisymmetric and symmetric parts by
writing

Tr~s3TaTbTcTd!5 1
2 Tr~s3@Ta,Tb#TcTd!1 1

2 Tr~s3$Ta,Tb%TcTd!

5
i

2
f abeTr~s3TeTcTd!1 1

4 Tr~s3$Ta,Tb%@Tc,Td# !1 1
4 Tr~s3$Ta,Tb%$Tc,Td%!. ~49!

The first two of these terms vanish due to@Ta,Tb#5 i f abcTc, and then53 condition

Tr~s3TaTbTc!50. ~50!

The final term also vanishes, since, in terms ofTa,

Tr~s3$Ta,Tb%$Tc,Td%!5Tr~$Ta,Tb%$Tc,Td%!2Tr„$~Ta!* ,~Tb!* %$~Tc!* ,~Td!* %…

5Tr~$Ta,Tb%$Tc,Td%!2Tr„$~Ta!T,~Tb!T%$~Tc!T,~Td!T%…

5Tr~$Ta,Tb%$Tc,Td%!2Tr~$Tc,Td%$Ta,Tb%!T50. ~51!

Thus the constraints onTa come only from then51 and
n53 restrictions. The first traceless constraint is precisely
the condition in four dimensions for the cancellation of the
mixed Lorentz-gauge anomaly@11#, while the second is the
requirement for the cancellation of perturbative chiral gauge
anomalies@18#. Therefore, we can conclude that the success
of this invariant scheme is synonymous with the absence of
all perturbative gauge anomalies. In this scheme, it is clear
that anomalous chiral theories manifest themselves by hav-
ing unregularized divergent fermion loops, whereas
anomaly-free theories are regularized in an explicitly invari-
ant manner.

VI. GRAVITATIONAL CURRENTS

We emphasize that in this proposed regularization
scheme, all the fermions are left handed, and these are
coupled to only the left-handed projection of the spin con-
nection rather than the full spin connection. In the chiral
representation,

i

2
AmABs

ABPL5F 0 0

0 Ama
2

ta

2
G . ~52!
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Note that

Ama
2

ta

2
5F iAm0a2

1

2
ea

bcAmbcGta2 52
i

4
AmABt̃

AtB

~53!

is also precisely the Ashtekar connection in the~anti-!self-
dual formulation of gravity in four dimensions@13,14#. In
this context, only left-handed fermions are allowed@15,16#.
Thus the regularization scheme studied here is well suited for
the description of all the four known forces in a completely
chiral fashion@16#. In what follows, we will suppose, as in
the first order formulation, that the spin connection and the

vierbein are independent, and that the torsion is not neces-
sarily zero.

We can compute the the current coupled to the spin con-
nection,AmAB , by using the method of the previous sections.
In effect, the currents are obtained by the replacement of
Ta by (i /2)sAB in expressions~28!–~30!. The results are

JmAB5C̃̄L0
gm

i

2
sABPL

1

2
~12s3!C̃L0

~54!

and

^JmAB~x!& reg5 lim
x→y

TrH gm~x!
i

2
sABPLF12 ~12s3!~ iD” !†

1

~ iD” !~ iD” !†
1 (

r52,4, . . .
~ iD” !†

1

r 2L21~ iD” !~ iD” !†

2 (
s51,3, . . .

~ iD” !†
1

s2L21~ iD” !~ iD” !†
Gd~x2y!J

5 lim
x→y

TrH gm~x!
i

2
sAB

1

2
PLF 1

iD”
@ f ~D”D” †/L2!2s3#Gd~x2y!J . ~55!

Again, the presence of the tower of regulators serves to re-
place the divergent bare expression

^JmAB&bare5 lim
x→y

TrH gm~x!
i

2
sABPLF 1

iD”
1

2
~12s3!G

3d~x2y!J ~56!

by

^JmAB& reg5 lim
x→y

TrH gm~x!
i

2
sAB

1

2
PLF 1

iD”
~ f ~D”D” †/L2!

2s3!Gd~x2y!J . ~57!

The arguments of the last section with regard to the unregu-
lateds3 part can be repeated, and we conclude that Eqs.~47!
and~48! are again the precise conditions for the current to be
free of divergences.

Next, we discuss the energy-momentum tensor. Various
proposals for defining the energy momentum tensor have
been suggested@17#. If the classical bare action is regarded
as SF(CL0

,CL0
,EA

m ,Wma ,AmAB), then the energy momen-

tum tensor,Qmn is obtained from

eQmn5emA

dSF
dEA

n 5CL0
gmiD nCL0

2gmnL, ~58!

whereL is the Lagrangian. On the other hand, if the vari-
ablesC! L andC̃L are to be treated as independent integration
variables as is suggested by the diffeomorphism-invariant
measure~15!, then the energy-momentum tensorTmn re-
garded as the source current for the background vierbein is

eTmn5emA

dS̃F
dEA

n , ~59!

with

S̃F~C! L0
,C̃L0

,EA
m ,Wma ,AmAB!

5E d4xC̃̄L0
e1/2iD” e21/2C̃L0

5E d4xC̃̄L0
EA

mgAF iDm2
i

2
~]mlne!GC̃L0

.

~60!

The expression for the corresponding energy-momentum
tensor is then

eTmv5C̃̄L0
gmi SDn2

1

2
Gan

a D C̃L0
2

i

2
gmn]a~ C̃̄L0

gaC̃L0
!.

~61!
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In terms of variables which are not densitized,

Tmn5CL0
gmiD nCL0

2
i

2
gmn@]a~CL0

gaCL0
!

1Gba
b CL0

gaCL0
!]. ~62!

As a result,Tmn andQmn are related by

eTmn5eQmn1
1

2
gmnS C̃̄L0

dS̃F

dC̃̄L0

1
dS̃F

dC̃L0

C̃L0D . ~63!

The difference between the two is therefore not significant
classically when the equations of motion can be imposed.
However, at the quantum level, there can be subtleties@17#.
Because of the choice of the densitized variables, all bare
mass terms and, in particular, regulator mass terms are inde-
pendent of the vierbein and therefore donot contribute to
Tmn . The total energy-momentum tensor will include the
kinetic, but no mass, contributions of all the anticommuting
and commuting regulators. The regularized expression be-
comes

^eTmn& reg5 lim
x→y

TrH gmi S Dn2
1

2
Gan

a D 1

iD”
PL

1

2

3F f SD”D” †L2 D 2s3Gd~x2y!J
1

i

2
gmn^]aJ5

a&, ~64!

whereJ5
a is the ABJ current which will be discussed more

fully in the next section:

J5
m52 (

r50,2, . . .
C̃̄Lr

gmC̃Lr
1 (

s51,3, . . .
F̃̄Ls

s3gmF̃Ls
.

~65!

Again, a slight variation of the previous arguments with re-
gard to relevant diagrams proves that thes3 part of the
energy-momentum tensor gives rise to no divergent fermion
loops if conditions~47! and~48! hold. Hence the expression
for the energy-momentum tensor is regularized for finiteL.

In our present discussion, we do not densitize theback-
ground variables and eschew use, for instance, of
WAa[e1/2EA

mWma instead ofWma . This choice would be
useful if an explicitly diffeomorphism-invariant measure
)DWAa , is required when the path integral formalism is to
be applied to the quantization of the gauge fields@17#. In this
paper, gauge and gravitational fields are to be treated as
background fields only.

The energy-momentum tensor should be symmetrized if it
is to be regarded as the source of the metric. It is known that
there are no perturbative Lorentz anomalies in four dimen-
sions@19#. This isverified by the explicitly Lorentz-invariant
regularization schemeproposed here. If the vierbein and the
left-handed spin connection are to be dynamically described
by the ~anti-!self-dual formulation of gravity@13,14#, then
the energy-momentum tensor appears as the source on the

right-hand side of the corresponding equation of motion. We
also do not Hermitize the Weyl action. The difference be-
tween the Weyl action and the Hermitian version is given in
Ref. @16#. As a result, the energy-momentum tensor pre-
sented here picks up an imaginary term~in Lorentzian sig-
nature spacetimes! proportional to the divergence of the chi-
ral current. Since the expectation value of the divergence of
the ABJ current is not zero quantum mechanically, there can
be subtle violations of discrete symmetries due to the ABJ
anomaly @20#, especially in the presence of topologically
nontrivial gauge and gravitational instantons. Details of con-
sequences of these violations will be presented elsewhere.

VII. g5 ANOMALY

The regularization of gauge singlet currents requires a
separate discussion. The ABJ current has aleady appeared
above in the regularized expression for the energy-
momentum tensor, Eq.~64! and, as we shall see, plays a
critical role in constraining the fermion content of the theory
@16#.

Under a singlet chiralg5 rotation,

C̃Lr
→eiag5C̃Lr

5e2 iaC̃Lr
,C̃Lr
→C̃̄Lr

eiag55C̃̄Lr
eia,

~66!

and similarly for F̃Ls
andF! Ls

. Kinetic terms are invariant
under this global tranformation, but mass terms are not. The
bare massless action is invariant under such a global trans-
formation, and the associated ABJ org5 current,

J5
m5C̃̄L0

gmg5C̃L0
52C̃̄L0

gmC̃L0
52JF

m , ~67!

is conserved classically, i.e.,]mJ5
m50. However, the bare

quantum composite current

^J5
m&bare52 lim

x→y
TrH gm~x!PLF 1

iD”
1

2
~12s3!Gd~x2y!J ~68!

is divergent. The regularized current is not necessarily con-
served. In the generalized Pauli-Villars-Gupta scheme, the
mass terms of the regulators break the symmetry explicitly.
So for the ABJ current, even at the classical level, the current
including the regulators is only partially conserved. The re-
lation is

]mJ5
m5 i F (

r52,4, . . .
mr~C̃Lr

T s1C4C̃Lr
2C̃̄Lr

C4
†s1C̃̄Lr

T !

2 (
s51,3, . . .

ms~F̃Ls
T s1s3C4F̃Ls

2 F̃̄Ls
C4
†s3s1F̃̄Ls

T !G ,
~69!

with

J5
m52 (

r50,2, . . .
C̃̄Lr

gmC̃Lr
1 (

s51,3, . . .
FLs

s3gmF̃Ls
.

~70!

The expectation value of the regularized ABJ current is
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^J5
m~x!& reg52 lim

x→y
TrH gm~x!

i

2
PLF12 ~12s3!~ iD” !†

1

~ iD” !~ iD” !†
1 (

r52,4, . . .
~ iD” !†

1

r 2L21~ iD” !~ iD” !†

2 (
s51,3, . . .

~ iD” !†
1

s2L21~ iD” !~ iD” !†
Gd~x2y!J

52 lim
x→y

TrH gm~x!
1

2
~12g5!

1

iD”
1

2
@ f ~D”D” †/L2!2s3#d~x2y!J . ~71!

The previous arguments concerning the unregulateds3

part are still valid. Within this context, we have in effect
regularized the ABJ current, and the associated amplitudes
can be computed explicitly.

There is nevertheless a subtlety which we have glossed
over. The transformation given by Eq.~66! rotates fields by
the same phase, independently of their quantum numbers un-
der the gauge group. That is the reason why mass terms are
not left invariant. We could suppose, on the other hand, that
the phase transformation onC̃L0

is generated by fermion
number and consider the regulator fields to consist of fermi-
ons and antifermions. In this fashion, the relevant fermion
number current can be written as

Jf
m5 (

r50,2, . . .
C̃̄Lr

s3gmC̃Lr
1 (

s51,3, . . .
F! Ls

gmF̃Ls
. ~72!

This current should be conserved classically. However, a
straightforward repeat of the arguments above now shows
that it is not regularized. The factor of (12s3) that appears
in the primary fieldC̃L0

is modified upon regularization to

(12 fs3). As a result, regularization affects the part of the
amplitude which was convergent because of Eqs.~47! and
~48!, but leaves the remainder divergent.

It is interesting to note that a similar phenomenon takes
place in the vectorlike formulation@8#. If we double in ex-
ternal rather than internal space by including bispinors regu-
lators, then the corresponding result for the fermion current
is

^Jf
m& reg5 lim

x→y
TrH gm~x!

1

2
@ f ~D”D” †/L2!2g5#

3
1

iD”
1

2
~12s3!d~x2y!J . ~73!

In this scheme,14 potentially unregularized divergences can
come from theg5(12s3) part of Jf

m . For gaugecurrents,
parity-odd divergent contributions from fermion loops cancel
for anomaly-free gauge theories. However, forJf

m parity-odd
amplitudes from triangle diagrams remain unaffected by
these restriction, and are divergent@8#. For the axial current,

the regularized chiral projection operator appears as
(12 fg5), and there are potential divergences in the parity-
conserving part of the amplitude. Nonetheless, it can be
shown that the divergent diagrams cancel when the anomaly
cancellation conditions hold@7#.

In the chiral scheme, it is possible to define the fermion
current via the ABJ current,JF

m52J5
m with both currents

carrying weight 1 as a result of the choice of the densitized
commuting and anticommuting variables. This identification
is consistent with the original degeneracy present in the bare
action. Note that thechiral regularization preserves this
degeneracy.15 No such definition of regularized singlet cur-
rents free of divergences is possible within the vectorlike
scheme without further auxilliary regularization prescriptions
@8#.

The ABJ anomaly can be explicitly computed by taking
the divergence of the expectation value of the regularized
expression~71!. Either side of the equation may be used, and
they lead to the same result. Here we choose to compute the
explicit divergence of the chiral current as

^]mJ5
m& reg52]m lim

x→y
TrH gm

1

2
~12g5!

1

iD”
1

2

3@ f ~D”D” †/L2!2s3#d~x2y!J . ~74!

The trace can be evaluated by using the complete sets of
eigenvectors,$Xn% and $Yn%, of the positive-semidefinite
Hermitian operators with

D”D” †Xn5ln
2Xn , D” †D” Yn5ln

2Yn . ~75!

For the modes with nonzero eigenvalues,Xn and Yn are
paired by16

Xn5D” Yn /ln , Yn5D” †Xn /ln . ~76!

Consequently, this yields

14In the vectorlike formulation, the doubling is in external space,
and the covariant derivative in Eq.~73! containsWmaT

a rather than
WmaTa.

15See also Eqs.~66! and ~67!.
16It is assumed that zero modes have been subtracted from the

expectation value of the current. They do not occur in the action in
the path integral formulation@21#.
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^]mJ5
m& reg52]mF(

n
Xn
†gmPL~ iD” !†

1

D”D” †
1

2

3@ f ~D”D” †/L2!2s3#XnG
5 i ]mF(

n
Xn
†gmPL

1

2ln
@ f ~ln

2/L2!2s3#YnG
5 i F(

n
]m~Xn

†gm!PL

1

2ln
@ f ~ln

2/L2!2s3#Yn

1(
n

Xn
†PR

1

2ln
@ f ~ln

2/L2!2s3#gm]mYnG
52

i

2(n $Yn
†1/2~12g5!@ f ~D” †D” /L2!2s3#Yn

2Xn
†1/2~11g5!@ f ~D”D” †/L2!2s3#Xn%. ~77!

The traces overs3 as well as the parity-even part drop out.
On taking the limit of infinite regulator masses (L→`), the
result for Euclidean signature is

^]mJ5
m& reg5 lim

L→`

i

4(n @Yn
†g5f ~D” †D” /L2!Yn

1Xn
†g5f ~D”D” †/L2!Xn#

5
i3d

768p2FabABe
abmnFmn

AB

1
i

32p2Tr~eabmnGabaT
aGmnbT

b!. ~78!

Gmna andFmnAB are, respectively, the curvatures ofWma and
AmAB . Note that in the first line of Eq.~78! there is a factor
of 1/4 in the trace over 2d-dimensional internal space and
Dirac indices. This gives the result which isone-halfof the
chiral anomaly of a vector theory. Because all the fields are
Weyl, the factor we get for the gravitational part is alsod
rather than 2d. This is in agreement with the fact that there
ared Weyl fermions coupled to gravity in the bare action.

VIII. REMARKS

We have presented a generalization of the Frolov-Slavnov
invariant regularization scheme for chiral fermion theories in
curved spacetimes. The Lagrangian level regularization is
explicitly invariant under all the local gauge symmetries of
the theory, including local Lorentz invariance. The perturba-
tive scheme works if and only if the chiral-gauge anomaly
and the mixed Lorentz-gauge anomaly cancellation condi-
tions hold. Anomalous theories manifest themselves in hav-
ing divergent fermion loops which remain unregularized by
the scheme. Since the invariant scheme is promoted to in-
clude local Lorentz invariance, spectator fields which do not
couple to gravity cannot be, and are not, introduced. Further-
more, in the proposed scheme, the theory is truly chiral
~Weyl! in that all fields are left handed, including the regu-

lators, and only the left-handed spin connection is needed.
The scheme is therefore well suited for the study of the in-
teraction of matter with all the four known forces in a com-
pletely chiral manner. In contrast with the vectorlike formu-
lation, the degeneracy between the ABJ current and the
fermion number current in the bare action is preserved by the
regularization.

How would nonperturbative effects such as global anoma-
lies appear in the scheme? As presented, the scheme is per-
turbative and the success of the scheme is predicated upon
the absence of perturbative gauge anomalies. A general dis-
cussion on nonperturbative effects is outside of the scope of
this paper. Instead, we will focus on two ways these effects
can be recognized, together with one significant conse-
quence. For instance, it is clear that the perturbative scheme
regularizes a theory with a single left-handed internal SU~2!
doublet. Yet, it is known that such a theory suffers from the
SU~2! global anomaly@22,23#. By embedding SU~2! in
SU~3!, the gauge SU~2! global anomaly is shown to be re-
lated to the perturbative SU~3! chiral gauge anomaly@24#.
Within the present context, there are then fermion loops con-
taining SU~3! vertices which fail to be regularized. Anoma-
lies also manifest themselves in path integrals as nontrivial
Jacobians in the measure under a change of variables@21#.
From this perspective, the global SU~2! anomaly gives rise
to an inconsistent Jacobian when the transformation of
(21! is considered both as a 2p rotation in SU~2! and as a
p rotation induced byg5 in nontrivial u vacua@23,16#. The
present regularization scheme will not control all divergent
amplitudes in these sectors. Thus a path integral formulation
dependent on the tower of regulators may yield further con-
sistency conditions from cancellation of nontrivial
Jacobians.17 As an example, if a Euclidean path integral is to
include all topologies for four manifolds@25# and hence the
required generalized spin structures@26#, then a further glo-
bal Lorentz anomaly cancellation condition selects grand
unified theories with multiples of 16 Weyl fermions@16,27#.

Finally, it may be worthwhile to calculate the effective
action generated by the theory. For instance, it is known@28#
that the Einstein-Hilbert-Palatini action and the cosmological
term are among the counterterms when a fermion is quan-
tized in background curved spacetime with parity conserva-
tion. The explicitly chiral-invariant regularization scheme
presented here may be used to check the resultant requisite
counterterms with parity nonconservation. It is possible, for
example, if the torsion is not assumed to vanish, that the
Samuel-Jacobson-Smolin@14# action of the~anti-!self-dual
formulation of gravity may emerge instead from integration
over the fermion and regulator fields.

ACKNOWLEDGMENTS

The research for this work has been supported by the
U. S. Department of Energy under Grant No. DE-FG05-
92ER40709-A005.

17In this respect, the situation may be clearer in a truly nonpertur-
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