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Invariant regularization of anomaly-free chiral theories
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We present a generalization of the Frolov-Slavnov invariant regularization scheme for chiral fermion theo-
ries in curved spacetimes. The Lagrangian level regularization is explicitly invariant under all the local gauge
symmetries of the theory, including local Lorentz invariance. The perturbative scheme worbitoary
representations which satisfy the chiral gauge anomaly and the mixed Lorentz-gauge anomaly cancellation
conditions. Anomalous theories on the other hand manifest themselves by having divergent fermion loops
which remain unregularized by the scheme. Since the invariant scheme is promoted to include also local
Lorentz invariance, spectator fields which do not couple to gravity cannot be, and are not, introduced. Fur-
thermore, the scheme is truly chif@Veyl) in thatall fields, including the regulators, are left handed; anty
the left-handed spin connectigmneeded. The scheme is, therefore, well suited for the study of the interaction
of matter with all four known forces in a completely chiral fashion. In contrast with the vectorlike formulation,
the degeneracy between the Adler-Bell-Jackiw current and the fermion number current in the bare action is
preserved by the chiral regularization schefi$0556-282197)02704-3

PACS numbdss): 11.30.Rd, 04.62:v, 11.15—q

[. INTRODUCTION of regulators is therefore neutral with respecitg and can
regularize only the singlet part of tH1—1T";,)(1— y°) pro-

It is believed that the existence of an invariant regularizajection of the bare gauge current. However, it is shown that
tion for a quantum field theory of chiral fermions is predi- the I"1; part gives rise to no further divergences due to the
cated upon the absence of perturbative anomalless in-  fact that the trace of four or less generators of Shwith
teresting to ask whether an explicitly invariant regularizationl" ;; vanishes. Frolov and Slavnov also proposed a discretiza-
scheme for chiral fermions can be constructed so that it sudion of the theory[5]. It is believed that the Nielsen-
cessfully regularizes the theory when the representation dflinomiya no-go theorerf6] is surmounted by the presence
the chiral fermion multiplet is anomaly free, and fails to do of the infinite tower of regulator fields. It was not immedi-
so precisely when the representation is not. In the followingately clear from this discussion if the method generalizes to
we present a scheme of regularization at the Lagrangian levelrbitrary anomaly-free chiral theories, although it was clear
incorporating this feature, which is suitable for describinghow to regularize theories based upon S@%£20) groups.
chiral theories in curved spacetimes. Okuyama and Suzuki7] clarified and generalized the origi-

Frolov and Slavnoy1] first proposed an explicitly gauge- nal Frolov-Slavnov idea to include fermion multiplets in ar-
invariant regularization which makes essential use of an inbitrary real and pseudoreal representations. But the generali-
finite tower of Pauli-Villars-Gupta regulatofg]. The theory  zation to curved spacetimes and Abelian gauge groups
was originally based on the $T0) multiplet [3] or, rather, remained somewhat unclear.
the 16-dimensional chiral representation of $pd), with The scheme was considered in a different light by
the standard model embedded iR 8ince invariant regulator Fujikawa [8] and by Narayanan and Neuberd®i. They
mass terms are required for this type of Pauli-Villars-Guptadoubled in external or Lorentz space by including right-
regularization, it is necessary to “double” in internal gauge handed as well as left-handed regulator fields. In these
group space by also including fields which transform accordvectorlike formulations, no doubling in the internal symme-
ing to the complex conjugate representatjdi The tower try group is needed. To study nonperturbative effects, Naray-

anan and Neuberggt0] also proposed the “overlap formal-
ism” by treating the extra index associated with the tower
*Electronic address: laynam@vt.edu of regulators as an additional dimension of spacetime and
TElectronic address: soo@vpihel.phys.vt.edu. Present addreddy defining the chiral fermion determinant as the overlap
Department of Physics, University of Winnipeg, Winnipeg, Canadaof two different gound states of the higher dimensional
R3C 2E9. theory. As such, the Nielsen-Ninomiya no-go theorem of
This does not necessarily mean that some version of the theorputting chiral fermions on a lattice may be overcome by
cannot be defined. For instance, the anomalous chiral Schwingédreating the chiral theory inr2 dimensions as the target of
model can be solved exactly. However, the gauge invariance of thanother in 2+ 1 dimensions in which there is no concept of

theory is lost. chirality.

2Chirality in Spirn(10) is defined relative td";;, which is propor- In these vectorlike formulations, the tower is parity even
tional to the product of all ten Dirac matrices spanning the Cliffordor »° neutral. So doubling in external space by including
algebra in ten dimensional Euclidean space. right-handed fields now regularizes the left-right symmetric
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part, leaving they® part of the bare gauge current untouched.no spectators. This scheme extends the Frolov-Slavnov regu-
For anomaly-free theories, it can be argued that there are rlarization to anomaly-free chiral theories in arbitrary com-
divergent parity-odd diagrams generated by the gauge cuplex representations in curved spacetim@he regularized
rent. As a result, thgaugecurrent is regularized for arbi- chiral fermion action is explicitly gauge, Lorentz, and diffeo-
trary, perturbatively anomaly-free representations. Howevernorphism invariant, and is truly chirdlVeyl) in the sense

as noted by Fujikaw48], the parity-nonconserving ampli- that only Ie_ft-handed spin connections and Ie_ft-h_and_ed mul-
tude with gauge singlet currents can be divergent. For intiPlets are introduced. The proposed regularization is there-
stance, the fermion number current is not free of divergence®re well suited for the study of the interaction of matter with
and is different from the axial or Adler-Bell-JackipaBJ) &l the four known forces in a completely chiral manfeg].
current at the regularized levi8]. On the other hand, in the We sha_ll show that_ the generah_zauon regularizes the_ chi-
totally left-handed Frolov-Slavnov formulation, the degen-ral theory if and only if the theory is free of all perturbative

eracy between the well-defined ABJ singlet current and thé:hlral gauge anomalies, including the Lorentz-gauge mixed

fermion number current in the original bare action is re_anomaly. In this explicitly invariant scheme, anomalous
. the orig P theories manifest themselves by having divergent fermion
served by the chiral regularization scheme.

... loops which remain unregularized.
What happens when the Frolov-Slavnov regularization P g

scheme is promoted to includecal Lorentz invariance and
the effects of curved spacetimes? Two issues immediately
arise. First, it is known that chiral fermions in curved space- The bare chiral fermion action may be taken to be
times can introduce a further perturbative mixed Lorentz-
gauge anomalj11]. Second, all fields couple to gravity, and
the trick of introducing spectators inherent in some methods
of defining chiral theories may not wofK,12]. For example,

in Ref. [1], the standard moddbr any anomaly-free sub- Where D =y[id,+W, T2+ (i/2)A, ag0"?],  o"®
group of S@10)] can be recovered by taking the gauge field= 3[ y*,7®], ande denotes the determinant of the vierbein.
W, to lie only in the relevant subgroup. However, if the P =1/2(1— y°) is the left-handed projection operator. We
regularization is extended to include invariance under locahdopt the convention

Lorentz transformations, then the extra spectator “neu-

trino,” which is not coupled to any internal gauge field, be- {¥* %} =27"%, 2

comesphysicalas a result of its coupling to gravity. . AB Lo
Similar remarks apply to right-handed fermions. Theseth 7" °=diag(-=1,+1,+1+1). Lorentz indices are de-

make an appearance in a chiral theory either as regulators, pgted .by uppercase Latin indices while Greek indices are
in vectorlike schemes, or as spectators in defining propage1t°'J:"”“:6t'me indices. . . _ .

tors[7]. All these fields get coupled to gravity and become In general, the fermion multiple®, is in a complex
physically interacting degrees of freeddrithe key point is ~ representation. Recall that if the generafofssatisfy

that there can beo passive spectators if the regularization a b1 :cab ~c

scheme is promoted to also respect local Lorentz invariance. [T TP) =125 T, @)

There is yet another issue we need to be aware of. Right{hen (- T%)* satisfy the same Lie algebfaf there exists an
handed multiplets can be introduced in a covariant way for, such thatS 1(— T8)*S=T2, then the representation is

cu_rved spacetimes (_)nly if one also allows for right-hande called real(pseudorealif S is symmetric(antisymmetrig.
spin connections. It is known through the work of AShtekarOther\Nise the representation is termed complex

and others[13,14 that the (anti)self-dual formulation of With only a single left-handed multiplet, Lorentz invari-
gravity which involves only the left-handed spin connection, 5+ mass terms are Majorana in nature. The simple form of
rather than the full spin connection, may provide a completgy, T ; ; ; ;
description of raviFt) in four dimens)go%s These ri pht-e\P"C“q,L s hot Invariant under _internal Symmetry

P 9 y ' 9Nt transformationd. However, with real representations, an in-

handed spin connections are generally not independent of the, .2t mass ternnn‘IfISC4\P|_ can be constructed from a
left-handed oneg13], and their presence might therefore gjn g6 multiplet. Observe that for a nonvanishing mass term,

_complicate the gravity field equations_unneCGSSér"}de‘?d S has to be symmetric for anticommuting fields and antisym-
in the (anti-)self-dual formulation, no right-handed fermions metric for commuting fields. For complex representations, a
should be introducefil5,16. gauge- and Lorentz-invariant mass term cannot be made out

For these reasons, we examine in this paper a regularizaf a single multiplet. This poses a challenge for the usual
tion scheme that is based only upon left-handed fields, with

II. BARE ACTION AND INVARIANT MASSES

e, = f d*xeW iBP W, (1)

5The representations may be reducible, as in thé58grand uni-
fied theory(GUT) model.
3t can be shown later on that the regularized gauge current in ®We adopt the convention offf)"=T? and real structure con-
curved spacetimes does reduce to the original current as the regstants. For invariance of the action, the representation has to be
lator masses go to infinity. unitary.
“Recall that even a Majorana fermion couples to both the left- and ’C, is the charge conjugation matrix in four dimensions with
right-handed spin connections. Ci=C,'=cl=-cC,.
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invariant Pauli-Villars-Gupta regularization, even though therepresentation, there is a symmetric'] and an antisymmet-
chiral fermions may belong to an anomaly-free representaric (i o) matrix which satisf§
tion.

We shall generalize the method of Frolov and Slavnov by 1 I=1_ i 2vq8 2\—1_ (_ 7av*
including regulators which are doubled in internal space. (e () (05T (o) (=7)*. (10
This doubling is achieved by including fermions which
transform according to the{T#®)* representation, and then Itis clear that these constructs work for arbitrary groups and

an invariant mass term can be formed because under representationsT?. Note also that all the fields are left
handed.
TR b (=T g+ We shall next show that this generalization of the Pauli-
q’Lr—’e é \PL,’ ‘I’L,—’e a q’L,v 4) Villars-Gupta method can regularize chiral fermions pertur-

batively in the original sense of Frolov and Slavnov if and
the combination[(\lf*)TC4\If[ +(\If’)TC4\IfL+ tHC] | only if the conditions for perturbative anomaly cancellations,

including the mixed Lorentz-gauge anomaly, are satisfied.
invariant under mternal gauge and Lorentz transformatlons

We introduce in the enlarged space the quantities Il REGULARIZED ACTION

(—T®* 0 0 14 The total regularized action which is explicitly gauge and
TE( 0 Ta)’ ot= 1 0 ) Lorentz and, also, diffeomorphism invariant is taken t6 be
d
0-35 1d 0 (5) SFreg:f d4xe[ Z {ELriD\PLr—i— 1/2mr(EIr0'1C4‘I’Lr
0 _ 1d ’ r=0,2, ...
T T S :
whered denotes the number of internal components of the +‘I’LrUlC4‘I’Lr)}_5:123_” ‘{(I’LS‘TE"UM)LS

original multiplet. In this notation, the original multiplet can
be expressed as

0

and the mass terms for the regulator fermions,

+1/2my(®] 0'o°C® + @ Clolold[)}|. (11)

1

1 v 6
2( 207 0") Lo’ ®) The sums are over all even natural numbers for the anti-
commuting fields and over all odd natural numbers for the
commuting fields. The usefulness of this convention will be-

come apparent later on. Except for

v
5

0
\I’[O

q’L:

r

(@)

: (12

1 3
V=510V =

can be written asmr(\PI o'C, ¥, +H.c.). The doubled ) ) o )
. T r which is the original and undoubled -chiraihassless
regulator fermion multiplets are to be coupled to the

my=0) fermion multiplet, all other anticommuti and
2d-dimensional representation of the gauge connectlo( 0=0) P ”g'-
W, 7% commuting CDL multiplets are generalized Pauli- V|Ilars-

The V¥, fields are assumed to be anticommuting. Com-Gupta regulator fields, doubled in internal space, and en-
muting doubled regulator fieldb, are introduced in a simi- dowed with Majorana masses, which we take for definiteness
| Th h ts to satisfym,=nA. We emphasize that due to the fact that all
ar manner. These have mass terms the multiplets are left handed, there are no couplings to the
right-handed spin connection which does not need to be in-

m®{ (—i0?)Cy® =md — (P )TCo®__ troduced for the Weyl action. _ .
In matrix notation, the regularized fermion action can be
+(PL)TC ], (8) reexpressed as

with 8A set of conditions for generalized Pauli-Villars regularization is
also given in[7].
0 -1y We also allow all the fields to transform under general coordinate
—IO'ZZ( 1 0 )20'10'3. 9 transformations. Here, we regularize only fermion loops in back-
d ground fields, and do not address the question of the regularization
of the gauge and gravitational fields. Gauge propagators may be
Note that these invariant mass terms for the doubled antiregularized by other methods. Full quantum gravity effects are be-
commuting and commuting fields exist, because forThe yond the scope of this paper.
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1 ~ — M. (x,y)olC, —iDT(x,y) YY)
Sk =f dxf dyz

vl —S 3T (0D,
200 W 00) incy) Myt T 2 [B (0P ()]

M¢(x,y)oto®C,  iDT(x,y)0° P (y)

. — 13
b (x,y) My(x,y)Clo3a? ‘DIS(Y) (13
|
with 0 0
(¥, (x)¥ = ~ -
M(X,y)=ma3(x—Y), (T 0%, b (T{, (0w (Y} 0]
i =—PpP —1/2 iD T A mall2
D (x,y) = €"(x)¥*(x)| | 17+ W,a(0) T+ 5 A, np(X) 7® e Tbuye
1
X 8(x—y)le” Y¥y), Xm +e'2y#iD ,e7(iD,)"y"e'"?
: X 8(X—Y). (20)
iDT(x,y)=e" Y2(x)|{id"+W )T+ A )
(xy) ) g wal¥)( 2 unelY We have used the identities
1
X (a*B)THs(y—x)] y*T(y)ex(y). 14
(o™5) F(y—x)] v (y)ea(y) (14 T (o) 1= — ()
To be compatible with the diffeomorphism-invariant mea- AB\T “1__ _AB
sure[17] Cy(a™) (Cy) "=—0"" (2D

— o o __Furthermore, with respect to the Euclidean inner product
I;Ir DLW (x)e7(x)ID[e )V ()], (15 <X|Y>de4xXT(x)Y(x), the Euclidean Dirac operator

obeys
for the fields in curved spacetimes, we have also chosen to
use densitized variables defined by (iD)'=(eiDe 1) '=(e"2yiD e )T
TI}_LrE\?Lrellzv {I”,LrEellzq,Lr’ (16) e VZiD )Ty el?,
(23
with a similar set ford, and E)L . 2
) s S . wheré
For clarity, we shall use the explicit chiral representation
1, 0 o i L
5_ A_ 1 (|D ) :|(9 +W Ta + = A ABO’ (24)
Y (o —12)’ YZliE o 7 : :
In the above,r®=—7% (a=1,2,3 are Pauli matrices, and The Euclidean propagator is, therefore,
To—_TU— - I 2.
By writing in terms of left-handed two-component Weyl _ — 1
fermions, TV, ()P, (Y =—P(iD)' ———8(x—Y).
({W L, ()W (V) L( M2+ (iD)(iD) (X=y
0 0
Wy, = t D = be (18 (29
and® In a similar manner, for the commuting regulators,
¢, 0]=v by 0]=0
[ O1=Wir, [ds 0150y (19 i writing down the propagator, we do not in general assume the
the propagators in background gauge and gravitational fiel&Sence of torsion. If the torsion vanishes, then

can then be read off as D, ey*f=ey*D,,f. (22

OFor Lorentzian signature spacetimeg,= i/ y°, whereas for  12The gauge fieldV,, and A, g are real andy” andic”® are
Euclidean signature, is treated as an independent field. Hermitian for Euclidean signature manifolds.
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0 0 With the regulators, the classical current coupledMp, is

O, () (YP=| _~ =
HPLIID G 0T 0

—_— 1 — ~
\]Ma: ’\PL ’}/M/Ia "I’L + ‘PL 'y’u/]a\IIL
_p US(P)T 5(x—y) 0 2 0 (=27 ... r r
- m2+(iD) (D)t ' _ N
(26) D DT (28)

IV. REGULARIZED CURRENTS

The original gauge current is Note that there is g(1— o®) projection associated with the
undoubled original fermion multiplet. As with conventional
Pauli-Villars-Gupta regularization, the regulated composite
current operator is summarized (g

F_&._

1 -
W P TS (1= 0T (27)

Jra— =
na

1 ~ — - —_—
5 (1= 3 (T{FL (O ()} + (T{L 0V (V)]

(IH3(X))reqg= IimTr[ —yH(X)T? -

X—Yy

s=13, ...

+o° <T{5>Ls(x>3is(y>}>} } : (29

The trace runs over Dirac and Yang-Mills indices.
With the expressions for the propagator, and the choiomef nA for the regulator masses, we obtain

1
a T Lo 3 + _ )
(J#8(X) )reg )l(Lanr{ YH(X) TP 2(1 a°)(iD) —(i'D)(i@)T—’—r:;... (iID) AT D)D)
— caay T 3
gy P s2A2+<i1D><i7D>*]5(X y)}

=limTr ”(X)TB‘EP i ﬂ_ 3) S(x—y)

_X~>y 4 2 L iD n=—ow n2A2+,D’DT o y
. 1 1

EI|mTr{ '}//"(X)'ZaEPL _—[f(@@T/AZ)_O_B] 5(X—y)} (30)
x—y iD

In the above, note that is summed oveall integers This general feature of the effect of the tower shows up in all
The effect of the tower of regulators is to replace thethe regularized gauge currents.
divergent bare expression The regulator function
o (-DZ w2z
f= X = (33

2 - .
=~ N°+z S|n|’(’7T\/E)

has the required propertid4,7,8] to ensure convergence.
For instance, it falls rapidly to zero a&s—«, and when the

X 5(X—Y)] (31)  regulator masses are taken«gf(0)=1. However, thes?
part of the current remains unmodified, essentially because
the tower consists of regulators which are doubled in internal

11 3
—@5(1—0)

<‘]'ua>bare: IimTr[ 'YM(X)IZaPL -
|

X—Yy

by space and is & neutral.” It, therefore, can regularize only
a ) 1 1 T the singlet part of thé (1— o) projection of the bare cur-

(I reg=IMTr y* ()T 5 P %[f(@@ A7) rent. Thus, it remains to be checked that for chiral theories
ntd ! free of perturbative anomalies, the® part gives rise to no

further divergences, and can in fact be argued to be conver-
5(x—y)] ] (32  gent. When this is true, the total current is then successfully

3
-
] regularized by the tower of regulators.
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As an example, to specialize to the original Frolov-
Slavnov proposdll] for SO(10), we take thed=16 dimen-
sional representation of  SpiD) and set
Y =W, =Cq¥1, ando®=I"1;. Note that under a
gauge transformation,

. Qg
Wie—ex '723(1_F11) WYy,

Ay
ClO“Pl_G_’eXF{ —i5 [RA-T ] ) Cio¥:, (34

as a result of C;23C;i=—-(23)"=—(2%* and
{C10,I'114=0. HereX? denote the generators of &) in

the 32-dimensional representation. Frolov and Slavnov firsryAia

observed that for the S@0) theory with a 16-dimensional
Spin(10) chiral multiplet, it can be argued that thg; part of

the current gives rise to no divergences in four dimension
since by power counting the amplitudes for the relevant di-="
vergent fermion loop diagrams are proportional to the traced L

of four or fewer generators of Spit0) with I'y;. These

traces vanish identically. For arbitrary anomaly-free repre
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Tr{o37% .. . TP} #0 (39

for some value oh. Here, the trace is over internal indices.
To obtain the condition for convergence, we can consider

a generic fermion loop diagram with nonvanishing amplitude

involving this condition. The vertices can be separated into

those which involve7? and those which do not. Let and

k be the number of these vertices, respectively. Potential

complications due to curved spacetimes come essentially

from the hi terms. Contributions from the Lorentz connec-

tion are rather straightforward since the coupling involves no

derivatives and there is also no coupling betwéeng and

7°. Diagrams involving vertices due to thE h4i yAaM‘If,_

terms have derivative couplings. These vertices carry weight

. and diverge linearly. Thus, the most divergent ferm-

ion loop diagrams obeying E@39) involve, in general, up to

k of thesei yAaM vertices,m vertices due to couplings of the

?ype \I’LhﬁiyAW#a’]a\PL, and (—m) vertices from

i YAOXW,,7%W couplings'® Note also that each propa-
gator between vertices costs 1. For the purpose of power

counting such fermion loops, the amplitude therefore be-

sentations, we shall next argue in the same spirit that thBaves symbolically like

analogouso® part of the currents gives rise to no further
divergences.

V. ANOMALIES AND CONDITIONS
FOR REGULARIZATION

We shall expand the vierbein &= 64 +h/ and the rest
of the fields about zero. Then

iD=e"iDe Y’=ih;+B (35)
where

ibe=iy o8, (36)

is the flat spacetime Dirac operator in the absence of all

gauge fields, and

8-

[ [
hiid,+(Sx+hk) EAMABO'AB— §F5M+Wﬂa7ﬂ”,

~Tr{ %771 . -Tan]( o~ (40)

&¥n+(nm)+k) '

In momentum space in four dimensions, on integrating over
the loop momentum, this goes like

Nf d4piTr{o-3’]al. - TP} (41
p" '

Clearly, the degree of divergence is{4). Therefore, if we
demand that

Tr{o37?. .. 7%} =0 for n<4, (42
we can argue, as Frolov and Slavnov did for($@), that the

o part of the current gives rise to no further divergences,
and the whole expressiaf32) is indeed regularized by the

I’ =a,(ne). (37)  tower of regulators. The conditiof2) also suggests gener-
rooH alizations to spacetime dimensions other than 4. In terms of
The inverse operator has the expansion the T2 representation of the original multiplet, E42) trans-
lates into
1 _ 1 N 1 B 1 N 1 B 1 B 1 N
D 0 iﬁf( )i/)f iﬁf( )iﬁf( )i/)f Tr{Ta. .. Tan} =Tr{(=T)*...(—T)*}, n<4.
which can be substituted into expressi@2). Fermion loops For real and pseudodreal representations, where

or perturbative multipoint correlation functions can be gen-(—T?)*=ST8S™!, the condition is obviously satisfied. This
erated by functionally differentiating the regularized currentsmeans that all such representations are free of perturbative
with respect to the fields. gauge anomalies since the proposed regularization which ex-

In order to obtain the conditions that guarantee no diverplicitly preserves the gauge symmetries works. Although it is
gences from the unregulatet part of Eq.(32), we may
note that Trg°)=0 andB is linear in 7%. The only term
containing7® is EAW,,7%. Furthermore, nonvanishing dia-
grams from the unregulates® part must involve

3The number of the two type of vertices involvirf§ must sum
up ton to be compatible with Eq(39).
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true that with a different set of regulator masses it may be We shall now present the complete solution for arbitrary
possible to regularize a theory with real representation by aepresentations including complex ones, and show that the
finite tower instead of the infinite one we have presented, wénvariant regularization scheme works if and only if the chi-
nevertheless would like to discuss the issue in a more generedl theory is free of all perturbative gauge anomalies, includ-
context. In this fashion, we will obtain a general conditioning the mixed Lorentz-gauge anomaly.

and regularization scheme for arbitrary representations in- To begin, note that since the generators are Hermitian,
cluding both complex and real and pseudoreal representgT?)* =(T?)", and condition(43) is the same as

tions[7]. However, it may be worthwhile to note that for real

and pseudoreal representations, the condition Tr{Ta. .. Tanl=(—1)"Tr{(T2)T...(T2)T}

TrH{o37%. .. Tl =0 (44) =(—D)"Tr{(T%)---(T3)}, n<4.  (46)

is satisfied forall values ofn. Thus thes® contribution of
the current can be argued to be absent evercdowergent
diagrams. Therefore one can argue that the regularized c

Forn=2, the equation is trivially statisfied due to the cyclic
roperty of the trace, and this imposes no constraints on
8 The casem=1 andn=23 translate precisely into

rent is
1 1 Tr(T%=0 (47
<‘]Ma>reg: limTr ')’#(X)?ﬂi P —f(DD'IA?)
X—Yy iD
and
><5(X—Y)] . (45 Tr(Ta{Tb,TC}):o, (48)

A more careful consideration with different choices of therespectively.

regulator masses shows that it is in fact possible to write the The case oh=4 imposes no new restrictions if the con-

regularized currents for real and pseudoreal representatiomlition for n=3 is satisfied. To see this, we decompose the
in the above form with the appropriate regulator functionsn=4 condition into antisymmetric and symmetric parts by
[7]. writing

Tr(o* TP TPTeTY) = 3 Tr( o3[ T2, T°) T°T%) + 3 Tr(a®{ T8, TPV T°T9)
= izfabeTr(o37ﬁ’]t’]ﬂ)+ FTr(®{ 72, Y[ 16, 797) + $Tr(a3{ 12, TP 1¢,1%)). (49)

The first two of these terms vanish due[t#,7°]=if2,7¢, and then=3 condition
Tr(o37%7°7%) =0. (50)
The final term also vanishes, since, in termsTéf
T T PHT T = Tr({T8 TPHTE T = Tr(( (T * (T H(TO)* . (T * )
=Tr({ToTHTE T = Tr{(T) (T THT) T(TH T
=Tr({T3,T°HTC, T9) — Tr({TC, TIH T3, T°H) =0. (51)

Thus the constraints om? come only from then=1 and VI. GRAVITATIONAL CURRENTS
n=3 restrictions. The first traceless constraint is precisely

the condition in four dimensions for the cancellation of the We emphasize that in this proposed regularization

ied L t 1], while th dis th scheme, all the fermions are left handed, and these are
mixed Lorentz-gauge anomaly1], while the second is the coupled to only the left-handed projection of the spin con-

requirement for the cancellation of perturbative chiral gaugq,ection rather than the full spin connection. In the chiral
anomalieq18]. Therefore, we can conclude that the Smces?epresentation

of this invariant scheme is synonymous with the absence of
all perturbative gauge anomalies. In this scheme, it is clear

that anomalous chiral theories manifest themselves by hav- 0 0
ing unregularized divergent fermion loops, whereas i

. . K .. . . —A ABP — Ta (52)
anomaly-free theories are regularized in an explicitly invari- 2 MuABY TFLT A= |

ant manner. ua 2
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Note that vierbein are independent, and that the torsion is not neces-
sarily zero.
e} 1 e} i We can compute the the current coupled to the spin con-
Auas = iA,an_EeabcA,ubc 5= ZAMAB’;ATB nection,A ,ag, by using the method of the previous sections.

(53) In effect, the currents are obtained by the replacement of
T8 by (i/2)0*B in expression§28)—(30). The results are

is also precisely the Ashtekar connection in tlamti-)self-

dual formulation of gravity in four dimensiond3,14. In _ i 1

this context, only left-handed fermions are allowds,16. JHAB= i _ghBP T (13 W, (54)
Thus the regularization scheme studied here is well suited for o7 2 2 0

the description of all the four known forces in a completely

chiral fashion[16]. In what follows, we will suppose, as in

the first order formulation, that the spin connection and theand

o [ S S n
(I*5(X) )reg )I(ILT:,T"[ ')’"(X)ZO' PL 2(1 a°)(iD) (i@)(i@)T+r:2,4,...(lp) N (D)D)
- i T _
s:l,s,.__(lp) 32A2+(i@)(ip)‘r]5(x y)}

i 1
=lim Tr[ 7M(X)§ o"B=P,

1
—f(DD'A2) -3
fim, 5 m[( )— 0]

5(X—Y)]- (59

Again, the presence of the tower of regulators serves to rewhere £ is the Lagrangian. On the other hand, if the vari-

place the divergent bare expression ables¥_ and¥, are to be treated as independent integration
variables as is suggested by the diffeomorphism-invariant

AB i NS 11 3 measure(15), then the energy-momentum tensoy,, re-
(I pare= IM Ty y#(X)5 0P, D 5(1=07) garded as the source current for the background vierbein is
X—Yy
X 5(x—y)] (56) N 55
ET'U“V_eMAﬁ_EK' (59)
by
] 1 1 with
[
(I#8B) o= M Tr{ y#(X)5 "B P | —(f(DD'/A?)
X—y 2 2 iD ~ = ~
SV LWL ER W0, A ue)
-0 | 8(x—y) . 5 — ~
)| o y) ( 7) _ f d4X\I,L0e1/2iDe* 1/2\I,L0
The arguments of the last section with regard to the unregu- e A i ~
latedo part can be repeated, and we conclude that &J3. =J d*x¥ EXy"|iD,— 5 (dulne) W .
and(48) are again the precise conditions for the current to be
free of divergences. (60)

Next, we discuss the energy-momentum tensor. Various
proposals for defining the energy momentum tensor have

been suggestefd 7]. If the classical bare action is regarded The exprission for the corresponding energy-momentum
as SF(\I',_O,‘II,_O,Eﬁ,WMa,AMAB), then the energy momen- tensor is then

tum tensor® ,, is obtained from

—_ 1 _ i - _
5S. eT, =V, y,i DV——FZV)\]I A )
SF :‘I’LO')’,u,iqufLo_g,u,,ﬁ, (58) # LO’yM 2 Lo Zg'u“ ( I‘O’y Lo

e =CunEr 61)
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In terms of variables which are not densitized, right-hand side of the corresponding equation of motion. We
also do not Hermitize the Weyl action. The difference be-
tween the Weyl action and the Hermitian version is given in
Ref. [16]. As a result, the energy-momentum tensor pre-
sented here picks up an imaginary te(im Lorentzian sig-

_ i _
T#V: ‘I’Lo)’#l D Vq,LO_ Eguv[&a(\PLoya\PLo)

TGP L Y WL )] (62)  nature spacetimgproportional to the divergence of the chi-
ral current. Since the expectation value of the divergence of
As aresultT,, and® ,, are related by the ABJ current is not zero quantum mechanically, there can
- - be subtle violations of discrete symmetries due to the ABJ
= 65 65 ~ anomaly[20], especially in the presence of topologically
€Ty =€0,,+ ngw Wi, —+ 5V Y, |- (63 nontrivial gauge and gravitational instantons. Details of con-

Lo sequences of these violations will be presented elsewhere.
The difference between the two is therefore not significant
classically when the equations of motion can be imposed.
However, at the quantum level, there can be subtl¢fi@k The regularization of gauge singlet currents requires a
Because of the choice of the densitized variables, all bareeparate discussion. The ABJ current has aleady appeared
mass terms and, in particular, regulator mass terms are indebove in the regularized expression for the energy-
pendent of the vierbein and therefore dot contribute to  momentum tensor, Eq64) and, as we shall see, plays a
T,,. The total energy-momentum tensor will include the critical role in constraining the fermion content of the theory
kinetic, but no mass, contributions of all the anticommuting[16].

and commuting regulators. The regularized expression be- Under a singlet chiral® rotation,

comes

VIl. y°> ANOMALY

_ . g~ o~ —_ —_ . g =
\I]Lr*)elﬂf’y \I,Lr:e Ia\I’Lr,\PLr—)\I’Lrelay :'\IILre“Y’

1 1 1
<eTﬂy>,eg=1er1yTr{ Y, DV—EFgV)EDPLE 3 : (66)
and similarly forCD,_S and CI),_S. Kinetic terms are invariant
f @_7DT 3 B under this global tranformation, but mass terms are not. The
X A? o= |8(x=y) bare massless action is invariant under such a global trans-
formation, and the associated ABJ gt current,
i
*g0udads), (64 B=V T =y =, (67)

where Jg is the ABJ current which will be discussed more js conserved classically, i.ed,J¢=0. However, the bare

fully in the next section: quantum composite current
H=— Wy + Doy _ 11
g Vg e <Jé‘>bare=—"m“| P OOP 5 (1=0%) |8x=y) (69

(65 -y

Again, a slight variation of the previous arguments with re-is divergent. The regularized current is not necessarily con-

gard to relevant diagrams proves that tbé part of the served. In the genera“zed PaU“'V”larS'GUpta SCheme, the

energy-momentum tensor gives rise to no divergent fermiofnass terms of the regulators break the symmetry explicitly.

loops if conditions(47) and (48) hold. Hence the expression SO for the ABJ current, even at the classical level, the current

for the energy-momentum tensor is regularized for finite ~ including the regulators is only partially conserved. The re-
In our present discussion, we do not densitize ihek-  1ation is

ground variables and eschew use, for instance, of

Wao=e?E4W,,, instead ofW,,,. This choice would be 5 ju—i| > m(¥] olC, ¥, — ¥, Clo™wT)
useful if an explicitly diffeomorphism-invariant measure r=24,... ' ' ' '
[IDW,,, is required when the path integral formalism is to _ _

be applied to the quantization of the gauge fi¢tid. In this — ms(c'f)[ olo3C,d, -, Clodaid] )|,
paper, gauge and gravitational fields are to be treated as s=13,... S s s S
background fields only. (69)

The energy-momentum tensor should be symmetrized if it
is to be regarded as the source of the metric. It is known thagith
there are no perturbative Lorentz anomalies in four dimen-

sions[19]. This isverified by the explicitly Lorentz-invariant B - =~ = 4 =
regularization schemproposed here. If the vierbein and the 75~ L& \PLJMPHJFS:M Doy
left-handed spin connection are to be dynamically described (70)

by the (anti-)self-dual formulation of gravity13,14], then
the energy-momentum tensor appears as the source on the expectation value of the regularized ABJ current is
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i |1 1 1
— i _ (1 — 3N\ t_ - H T
(IE(X))reg l@yTr{v"(x)zPL 5(1=0°)(iD) (iP)(i@)T+r=2,4,...(lp) A (D)D)
_ i T _
s=13 ... (D) 32A2+(m)(m)*]5(x y)]
=—IlimTr "(x)l(l— S)E[f(mT/AZ)— 318(x—y) (71)
ey |72 2 7 b

The previous arguments concerning the unregulatdd the regularized chiral projection operator appears as
part are still valid. Within this context, we have in effect (1—fvs), and there are potential divergences in the parity-
regularized the ABJ current, and the associated amplitudesonserving part of the amplitude. Nonetheless, it can be

can be computed explicitly. shown that the divergent diagrams cancel when the anomaly
There is nevertheless a subtlety which we have glossedancellation conditions holf7].
over. The transformation given by E(6) rotates fields by In the chiral scheme, it is possible to define the fermion

the same phase, independently of their quantum numbers uburrent via the ABJ current)¢=—J& with both currents
der the gauge group. That is the reason why mass terms agarrying weight 1 as a result of the choice of the densitized
not left invariant. We could suppose, on the other hand, thatommuting and anticommuting variables. This identification
the phase transformation off, is generated by fermion is consistent with the original degeneracy present in the bare
number and consider the regulator fields to consist of fermi@ction. Note that thechiral regularization preserves this
ons and antifermions. In this fashion, the relevant fermiordegeneracy” No such definition of regularized singlet cur-

number current can be written as rents free of divergences is possible within the vectorlike
scheme without further auxilliary regularization prescriptions
- ~ = ~ [8].
— 3
‘w_r:OEZ Vo 7’M\PLr+s:13 DLy O (72) The ABJ anomaly can be explicitly computed by taking

the divergence of the expectation value of the regularized
This current should be conserved classically. However, gxpressior(71). Either side of the equation may be used, and
straightforward repeat of the arguments above now showthey lead to the same result. Here we choose to compute the
that it is not regularized. The factor of {10-%) that appears explicit divergence of the chiral current as
in the primary fieId‘I’L0 is modified upon regularization to

(1—fod). As a result, regularization affects the part of the i )
amplitude which was convergent because of E43) and (9,98 ) reg= — 9, liMTr
X—

1 5
75 (1=7°)
(48), but leaves the remainder divergent. y

D2

It is interesting to note that a similar phenomenon takes
place in the vectorlike formulatiof8]. If we double in ex- x[f(@@T/AZ)_Ufﬂ]g(x_y)]_ (74
ternal rather than internal space by including bispinors regu-
lators, then the corresponding result for the fermion current

IS The trace can be evaluated by using the complete sets of
eigenvectors{X,} and {Y,}, of the positive-semidefinite

. 1 Hermiti t ith
<J¢>reg: )I(Lmy-l-r[ ’y’“(X)E[f(@@T/AZ)— ’}’5] ermitian operators wi
DD'X,=\2X,, D'DY,=\2Y,. (75)
. (73)

11
X— =(1=0%)8(x=y)
iD For the modes with nonzero eigenvalueg, and Y, are

; 6
In this schemé? potentially unregularized divergences can paired by

come from they®(1—¢°) part of J#. For gaugecurrents,
parity-odd divergent contributions from fermion loops cancel Xp=DYn/\y,
for anomaly-free gauge theories. However, Jgr parity-odd
amplitudes from triangle diagrams remain unaffected byConsequently, this yields
these restriction, and are diverg¢8i. For the axial current,

Y, =D, /N, . (76)

15See also Eqg66) and (67).
Min the vectorlike formulation, the doubling is in external space, 18t is assumed that zero modes have been subtracted from the
and the covariant derivative in E(Z3) containswW,,T® rather than  expectation value of the current. They do not occur in the action in
W, 7% the path integral formulatiof21].
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1 1 lators, and only the left-handed spin connection is needed.
(9,96 ) reg= — 2 XIyHP( —T > The scheme is therefore well suited for the study of the in-
DD teraction of matter with all the four known forces in a com-

pletely chiral manner. In contrast with the vectorlike formu-
lation, the degeneracy between the ABJ current and the
fermion number current in the bare action is preserved by the
regularization.

How would nonperturbative effects such as global anoma-
lies appear in the scheme? As presented, the scheme is per-
turbative and the success of the scheme is predicated upon
the absence of perturbative gauge anomalies. A general dis-
cussion on nonperturbative effects is outside of the scope of
this paper. Instead, we will focus on two ways these effects
can be recognized, together with one significant conse-
quence. For instance, it is clear that the perturbative scheme
regularizes a theory with a single left-handed interna(ZU

i + 5 . 5 5 doublet. Yet, it is known that such a theory ;uffers fro.m the
:_EZ Y L2(1= ) [ f(D'"DINY) - °]Y, SU(2) global anomaly[22,23. By embedding S(2) in
SU(3), the gauge SI2) global anomaly is shown to be re-
—)(;21/2(]_-1-75)[f(p@T/A2)—0-3]Xn}_ (770 lated to the perturbative SB) chiral gauge anomaly24].
Within the present context, there are then fermion loops con-
The traces oveo? as well as the parity-even part drop out. taining SU3) vertices which fail to be regularized. Anoma-
On taking the limit of infinite regulator masse& {~«), the  lies also manifest themselves in path integrals as nontrivial
result for Euclidean signature is Jacobians in the measure under a change of varigBlgs
From this perspective, the global 8) anomaly gives rise
to an inconsistent Jacobian when the transformation of

X[f(DDA?) - o3]X,

2 X y"PLz—[f()\Z/A )— Y,

=i{2 d,(X! V)P [f(xZ/AZ) 1Y,

1
+ 2 XiPro[fONIAY) = 01949, Y,
n n

[
(0,98 ) reg= A“m Z? [YIr HD'DIAY)Y, (—1) is considered both as am2rotation in SU2) and as a
o ar rotation induced byy® in nontrivial 6 vacua[23,16. The
bef(ppT/AZ)xn] present regularization scheme will not control all divergent
amplitudes in these sectors. Thus a path integral formulation
_ixd afuviAB dependent on the tower of regulators may vyield further con-
" 76872 Fapase o sistency conditions from cancellation of nontrivial

Jacobiang! As an example, if a Euclidean path integral is to
include all topologies for four manifold®5] and hence the
required generalized spin structuf@$], then a further glo-
bal Lorentz anomaly cancellation condition selects grand
G,.a andF g are, respectively, the curvaturesWf,, and  unified theories with multiples of 16 Weyl fermioh$6,27].
A, ag- Note that in the first line of E(78) there is a factor Finally, it may be worthwhile to calculate the effective
of 1/4 in the trace over &dimensional internal space and action generated by the theory. For instance, it is knp2@h
Dirac indices. This gives the result whichase-halfof the  that the Einstein-Hilbert-Palatini action and the cosmological
chiral anomaly of a vector theory. Because all the fields argerm are among the counterterms when a fermion is quan-
Weyl, the factor we get for the gravitational part is al$o tized in background curved spacetime with parity conserva-
rather than @. This is in agreement with the fact that there tion. The explicitly chiral-invariant regularization scheme
ared Weyl fermions coupled to gravity in the bare action. presented here may be used to check the resultant requisite
counterterms with parity nonconservation. It is possible, for
VIIl. REMARKS example, if the torsion is not assumed to vanish, that the
Samuel-Jacobson-Smol[i4] action of the(anti-)self-dual
We have presented a generalization of the Frolov-Slavnoormulation of gravity may emerge instead from integration
invariant regularization scheme for chiral fermion theories ingyer the fermion and regulator fields.
curved spacetimes. The Lagrangian level regularization is
explicitly invariant under all the local gauge symmetries of
t_he theory, including_ local Loren_tz invariance. The perturba- ACKNOWLEDGMENTS
tive scheme works if and only if the chiral-gauge anomaly
and the mixed Lorentz-gauge anomaly cancellation condi- The research for this work has been supported by the
tions hold. Anomalous theories manifest themselves in havd). S. Department of Energy under Grant No. DE-FGO05-
ing divergent fermion loops which remain unregularized by92ER40709-A005.
the scheme. Since the invariant scheme is promoted to in-
clude local Lorentz invariance, spectator fields which do not—
couple to gravity cannot be, and are not, introduced. Further-'In this respect, the situation may be clearer in a truly nonpertur-
more, in the proposed scheme, the theory is truly chirabative formulation such as the overlap formalism for the fermion
(Weyl) in that all fields are left handed, including the regu- determinan{9].

i
afuv b
+ WT“G P GaBaTaGﬂbe ). (78)



55

[1] S. A. Frolov and A. A. Slavnov, Phys. Lett. 6, 159(1992.

[2] W. Pauli and F. Villars, Rev. Mod. Phy21, 434(1949; S. N.
Gupta, Proc. Phys. Soc. Lond#®6, 129 (1953.

[3] H. Georgi, inParticles and Fields—1974dited by C. E. Carl-
son, AIP Conf. Proc. No. 23AIP, New York, 1975; H.
Fritzsch and P. Minkowski, Ann. Phy&\.Y.) 93, 193(1975.

[4] See also S. Aoki and Y. Kikukawa, Mod. Phys. Lett8A3517
(1993.

[5] S. A. Frolov and A. A. Slavnov, Phys. Lett. 809, 344(1993;
Nucl. Phys.B411, 647 (1994).

[6] H. B. Nielsen and M. Ninomiya, Nucl. PhyB183 20 (1981);
B193 173(1981); Phys. Lett.105B, 219 (198J.

[7] K. Okuyama and H. Suzuki, Report No. hep-th/9603062-
published; Phys. Lett. B382 117 (1996.

[8] K. Fujikawa, Nucl. PhysB428 169 (1994); in Festschrift in
Honor of H. BanerjedIndian J. Phys(in pres3], Report No.
hep-th/9506003unpublishedl

[9] R. Narayanan and H. Neuberger, Phys. LetB@, 62(1993.

[10] R. Narayanan and H. Neuberger, Phys. Rev. L&if. 3251
(1993; Nucl. Phys.B412 574(1994; B443 305 (1995.

[11] H. T. Nieh, Phys. Rev. Lett53, 2219 (1984; L. Alvarez-
Gaume and E. Witten, Nucl. PhyB234, 269 (1984; S. Ya-
jima and T. Kimura, Phys. Lett. B73 154 (1986.

[12] L. Alvarez-Gaumeand P. Ginsparg, Nucl. Phy&243 449
(1984).

[13] A. Ashtekar, Phys. Rev. Letb7, 2244(1986; Phys. Rev. D
36, 1587(1987); New Perspectives in Canonical Graviib-
liopolis, Naples, 1988 Lectures on Non-perturbative Canoni-
cal Gravity (World Scientific, Singapore, 1991and refer-
ences therein.

[14] J. Samuel, Pramana, J. Phg8, L429(1987); Class. Quantum

Grav.5, L123(1988; T. Jacobson and L. Smolin, Phys. Lett.

B 196, 39 (1987; Class. Quantum Graw, 583(1988.

INVARIANT REGULARIZATION OF ANOMALY-FREE ...

2421

[15] A. Ashtekar, J. D. Romano, and R. S. Tate, Phys. Red0D
2572 (1989; T. Jacobson, Class. Quantum Grdy. L143
(1988; H. Kodama, Int. J. Mod. Phys. I, 439(1993.

[16] L. N. Chang and C. Soo, Phys. Rev.93, 5682(1996.

[17] K. Fujikawa, Phys. Rev. 29, 285 (1984.

[18] H. Georgi and S. Glashow, Phys. Rev.6D429(1972; D. J.
Gross and R. Jackiwbid. 6, 477 (1972; C. Bouchiat, J. IlI-
liopoulos, and P. Meyer, Phys. Le88B, 519 (1972.

[19] L. N. Chang and H. T. Nieh, Phys. Rev. Lef3, 21 (1984);
also the second referencel[ibl].

[20] S. L. Adler, Phys. Revl177, 2426(1969; J. S. Bell and R.
Jackiw, Nuovo Cimento A60, 47 (1969; W. A. Bardeen,
Phys. Rev184, 1848(1969.

[21] K. Fujikawa, Phys. Rev. 25, 2584(1982; 21, 2848(1980);
22, 1499E) (1980; 23, 2262(1981); Phys. Rev. Lett42, 1195
(1979; 44, 1733(1980.

[22] E. Witten, Phys. Lett.117B, 324 (1982; Commun. Math.
Phys.100, 197 (1985.

[23] S. P. de Alwis, Phys. Rev. B2, 2837(1985.

[24] E. Witten, Nucl. PhysB223 422(1983; S. Elitzur and V. P.
Nair, ibid. B243 205(1984.

[25] See, for instancésuclidean Quantum Gravifyedited by G. W.
Gibbons and S. W. HawkingWorld Scientific, Singapore,
1993.

[26] S. W. Hawking and C. N. Pope, Phys. Let8B, 42(1978; A.
Back, P. G. O. Freund, and M. Forgdrid. 77B, 181(1978;
S. J. Avis and C. J. Isham, Commun. Math. Phy2, 103
(1980.

[27] L. N. Chang and C. Soo, Proceedings of the 4th Drexel
Symposium—1994in press.

[28] See, for instance, N. D. Birrell and P. C. W. Davi€gjantum
Fields in Curved Space&ambridge University Press, Cam-
bridge, England, 1982



