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The representation theory of the maximally extended superalgebra with 32 fermionic and 528 bosonic
generators is developed in order to investigate nonperturbative properties of the democratic secret theory
behind strings and otherp-branes. The presence of Lorentz nonsinglet central extensions is emphasized, their
role for understanding up to 13 hidden dimensions and their physical interpretation as boundaries of
p-branes are elucidated. The criteria for a new larger set of BPS-like nonperturbative states is given and the
methods of investigation are illustrated with several explicit examples.@S0556-2821~97!04702-4#

PACS number~s!: 11.25.Mj, 11.25.Hf, 11.30.Pb

I. INTRODUCTION

String andp-brane dualities have led to the notion that
there is a mysterious, fascinating, secret supersymmetric
theory, which may be calledM theory,F theory,S theory,
. . . . It includes all possible closed and open~i.e., with
boundaries! p-branes, such as strings, membranes, five-
branes, . . . , interacting with each other in various flat,
curved, or compactified spacetimes. It has been proposed
that this theory, which includes up to 12~or 13, see below!
hidden dimensions, may be the mother, father, or sire of all
physical theories. Some of theM andF aspects have been
discussed by other authors@1–3#. D-branes@4# provide some
handle on the theory.

In this paper I will concentrate on some of theS proper-
ties of the secret theory, and will emphasize an algebraic
approach@5# based on a superalgebra with 32 fermionic and
528 bosonic generators@6,5#. The collection of all bosonic
operators form a 32332 symmetric matrixS given by the
anticommutator of the supercharges$Q,Q%;S. The struc-
ture and symmetries ofS are related top-branes, dualities,
and hidden dimensions. Global properties, certain states, and
certain nonperturbative properties of the underlying secret
theory may be studied by analyzing the representations of
this superalgebra. This line of investigation will be calledS
theory.

In this paper I will outline the elements ofS theory. One
of the points to be emphasized is the presence of Lorentz
nonsinglet central extensions inS, which so far received
little attention. In the usual treatment of nonperturbative
properties ofM or F theory, the Lorentz singlet central ex-
tensions play a major role@e.g., Bogomol’ni-Prasad-
Sommerfield~BPS-! like states or black holes#. Here, I will
argue that the Lorentz nonsinglets also play a major role and
that their presence is required in order to see the full extent
of hidden dimensions and duality symmetries. In Sec. II I
will give a physical interpretation of these central extensions
in terms of boundary variables forp-branes. In Sec. III the
symmetry structure of the generalized algebra and the con-
nection to hidden dimensions~up to a total of 13 dimensions!
will be explained. In Sec. IV the representations of the super-
algebra will be constructed and, as a special case, the criteria
for obtaining the quantum numbers of the generalized BPS-

type states will be given. As an application ofS theory, I will
show that there are new nonperturbative BPS states that
carry quantum numbers~eigenvalues of central extensions!
that are Lorentz nonsinglets, and I will construct some ex-
plicit examples. Since these quantum numbers have an inter-
pretation in terms ofp-brane boundaries these BPS states are
related to openp-branes. When they are included in the
spectrum along with more familiarD-brane BPS states they
form larger multiplet structures of symmetriesthat exhibit
additional hidden dimensions as well as dualities.

Results such as the ones described, which follow only
from the properties of the superalgebra, are assumed to be
valid nonperturbatively in the full theory. Therefore, they
must be useful handles for constructing and analyzing the
fundamental underlying theory.

II. LORENTZ NONSINGLET CENTRAL EXTENSIONS

In the generalized superalgebra$Qa
a ,Qb

b%5Sab
ab , where

Sab
ab5dab gab

m Pm1 ‘‘central extensions,’’ there are generally
Lorentz nonsinglet central extensionsZm1 . . .mp

ab with p Lor-

entz indices. The structure and properties of these additional
operators are explained more fully in the following sections.
As explained in@5# a nonzeroZm1 . . .mp

ab which is not a Lor-

entz singlet does not violate the no-go theorem of@7# as long
as there are extended objects. The Lorentz singletsZab, with
p50, are well known to represent the quantum numbers of
black holes inM theory. In this section I will clarify the
physical interpretation ofZm1 . . .mp

ab for p>1 as related to

p-branes.
For simplicity, I will assume that allp-branes propagate

in flat backgrounds~such as flat spacetime in direct product
with tori or their orbifolds in compactified dimensions!. Un-
der this assumption all 528 components ofS commute with
one another as justified below. Similar considerations in
curved backgrounds would yield a more complicated algebra
that is more difficult to analyze~for example, momenta do
not commute in curved backgrounds!.

Just like momentum, all possible values of these central
extensions must be included in the representation of the su-
peralgebra in order to take into account all possible states in
the representation consistent with the Lorentz group. But
physical considerations would determine if they are space-
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like, lightlike, or timelike, and hence there are classes of
representations, just like the Poincare´ group.

These central extensions are closely associated with the
boundaries ofp-branes as well as the topology of the back-
ground geometry in which they propagate. In a flat
d-dimensional spacetime, as assumed in this paper, the Lor-
entz nonsinglets are present only if thep-brane has bound-
aries. This is seen as follows: In the low energy effective
theory, the gauge potential withp11 antisymmetric Lorentz
indices has a source term in its equation of motion~the no-
tation is explained in@5#!:

]l] [lAab
m0m1 . . .mp]~x!5Jab

m0m1 . . .mp~x!. ~1!

The current is nonvanishing when constructed from a
p-braneXm(t,s1 ,•••,sp) and its superpartners

Jm0m1...mp

ab ~x!5E dtds1•••dsp(
i
zi
abdd„x2X~ i !

3~t,s1, . . .sp!…]tX[m0

~ i ! . . . ]sp
Xmp]

~ i !

3~t,s1, . . .sp!1•••, ~2!

where the indexi is a label for manyp-branes andzi
ab is

their coupling to the pair of supercharges labeled bya,b.
The Lorentz nonsinglet central extension is the integral of
the current over a spacelike ‘‘slice’’ in spacetime

Zm1 . . .mp

ab 5E dd21Sm0Jm0m1 . . .mp

ab ~x!, ~3!

where, e.g., one may use a noncovariant notation by choos-
ing m050, dd21S05dd21x, i.e., the volume of space at
fixed time. This is one expression forZm1 . . .mp

ab . Another

expression is obtained by substituting the left-hand side of
Eq. ~1! in Eq. ~3!. Then, the integrand is a total divergence
and, therefore, it can be expressed as a surface integral in-
volving the asymptotic values ofAab

0m1 . . .mp at infinity of
physical space (r→`). Therefore, in any classical solution
of the effective low energy theory, a nontrivial asymptotic
behaviorAab

0m1 . . .mp;Zab
m1 . . .mp/r d22 would have an interpre-

tation in terms ofp-branes through Eq.~2!.
Now, what property of thep-brane is represented by

Zm1 . . .mp

ab ? As an example, let us perform the integral in Eq.

~3! for p51, i.e., for a string. The result is1

Zm
ab5(

i
zi
abE ds]sXm

~ i !~t,s!1•••, ~4!

where the dots represent additional pieces in a conserved
current. If the remaining integral overs is for closed strings
propagating in flat spacetime, then the closed string condi-

tion Xm
( i )(t,0)5Xm

( i )(t,2p) gives (Zm
ab)closed50.2 But if there

are open strings, then the result depends only on the end
points

~Zm
ab!open5(

i
zi
ab
„Xm

~ i !~t,p!2Xm
~ i !~t,0!…1•••. ~5!

Note that this is a Lorentz vector, and~unless identically
zero! it is a continuous spacelike or lightlike variable, but is
not timelike. It is obviously translationally invariant.

Similarly, for the generalp-brane in flat spacetime the
central extensionsZm1 . . .mp

ab can be shown to be related to

boundary variables that commute with one another as well as
with the momentum operators. Hence, all these operators are
simultaneously diagonalizable and their continuous eigenval-
ues must label the physical states at an equal footing with the
eigenvalues of momentum, since they are not distinguishable
under the symmetries of the superalgebra.

III. THE EXTENDED SUPERALGEBRA

The maximum number of supercharges in a physical
theory is 32. This constraint comes from four dimensions,
which admits at the most eight supercharges, each with four
real components, since there can be no supermultiplet of
massless particles with spins higher than two. In an arbitrary
number of dimensions, we label the 32 supercharges as

Qa
a5H a5spinor in d dims.,

a51,2, . . . ,N,spinor in c12 dims.,
~6!

whereN51, when d511; N52, when d510, . . . , N58
when d54. Here,d is the dimension of spacetime. Let us
define c as the number of compactified string dimensions
such thatd1c510. It was argued that there are two extra
hidden dimensions, one spacelike and one timelike, and that
N corresponds to the dimension of the spinor inc12 dimen-
sions@5#. Furthermore,N also corresponds to a dimension of
an irreducible representation of the groupK, which is the
maximal compact subgroup ofU duality.

The extended superalgebra has the form

$Qa
a ,Qb

b%5~S!ab
ab ,

~S!ab
ab5dabgab

m Pm1 (
p50,1,2, . . .

gab
m1 . . .mpZm1 . . .mp

ab , ~7!

where the permutation symmetry of (ab) must be the same
as (ab) in each term on the right-hand side. The structure of
(S)ab

ab is of central interest in this paper. From it we will
learn about the symmetries of the underlying theory~many
of them hidden from the point of view of conventional string
theories! as well as about the representation space that is
related to the physical states of the theory.

1It is useful, but not necessary to choose the timelike gauge
X0(t,s)5t, uset5x0 because of the delta function, and take the
spacetime ‘‘surface’’ to be the usual integral over all space at con-
stant time.

2A similar expression in compactified dimensions is nonzero be-
cause of the closed cycles in a nontrivial topology. Similarly, if
spacetime is curved instead of flat, there could be nontrivial contri-
butions for closed strings, if the topology is nontrivial.
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For d>10 there are two types of superalgebras A,B that
are outlined below. From the construction ofg matrices
given in the appendix, one can see that the type A and type B
superalgebras originate with different formsSA ,SB embed-
ded in a higher 64364 spinor space in 13 dimensions. For
d<9 there is a one-to-one correspondence between type A,B
superalgebras, which are then related byT duality. As we
will see below certain hidden symmetries in the form~7!
become manifest in the covariant formsSA ,SB given below
in higher dimensions. Hence, theT,U duality between A and
B versions may find its roots in 13 dimensions~13D!.

The Lorentz generators for SO(d21,1) do not commute
with the supercharges or with the bosonic generators~except

for p50 case!, since these are spinors or antisymmetric
p-tensors under Lorentz transformations, respectively. In ad-
dition to the Lorentz transformations that act as isometries,
there are other isometries that act such as~i! Lorentz trans-
formations in c12 compact plus hidden dimensions SO
(c11,1) and~ii ! discreteU2duality transformations that in-
duce continuous transformations through the maximal com-
pact subgroupK ~see@5#!. The supercharges, bosonic gen-
erators, and the physical states of the theory are classified
by the isometries SO(d21,1)^ SO(c11,1) or by SO
(d21,1)^K. Displaying one of these classifications may
hide the other one. The isometries and their intersecting sub-
group structure was given in@5# as follows:

c compact1 two intersecting

2 hidden dims
→

classifications

SO~c11,1! of multiplets of

↓ generators and states
~8!

SO~c11!1 hidden dim.

SO~c!is common subgroup

SO~c!L^SO~c!R
J → ↑

K

maximal compact inU 6 U
→

duality
.

↑
T duality SO~c,c!

In this paper I will assume a flat background and hence all
bosonic generators commute among themselves and with the
supercharges as explained in Sec. II. In this case it is easy to
find all the representations of the superalgebra and analyze
the physical states as discussed in Sec. IV.

A. Type A

In 11D there are only three terms@6#

$Qa ,Qb%5~SA!ab ,

~SA!ab5~Cgm!abPm1~Cgm1m2!abZm1m2

1~Cgm1 . . .m5!abXm1•••m5
, ~9!

wherem50,1,2,. . . ,10, and theg matrices are 32332 ~for
more details see the Appendix!. When reduced to lower di-
mensions, this 32332 matrix (SA)ab takes the form of Eq.
~7!. As is well known, in 10D (SA)ab is distinguishable from
the type-B (SB)ab given below, but in nine dimensions or
less the reduced (SA)ab and reduced (SB)ab have similar
content that is related byT duality.

It is also possible to consider 12 dimensions with signa-
ture ~10,2! @8# since the Weyl spinor is real and 32 dimen-
sional. Then, the extended superalgebra can be written covar-
iantly in 12D @5#:

$Qa ,Qb%5~SA!ab ,

~SA!ab5~CgM1M2!abZM1M2
1~CgM1 . . .M6!abZM1 . . .M6

1 ,

~10!

whereM508,m, andm50,1,2,. . . ,10,with two timelike
dimensions denoted byM508, 0. The relation between 11-
and 12-dimensionalg matricesgab

m , gab
M , Gab

M is given in
the Appendix. Similarly, the bosonic generators are related
by

ZM1M2
→Pm%Zm1m2

66511155,

ZM1•••M6

1 →Xm1 . . .m5
4625462. ~11!

The six-index tensor is self-dual in 12D.
Note that there is no 12D translation operatorPM in the

~10,2! version ~10!. Therefore, the extension of the theory
from ~10,1! to ~10,2! is not the naive extension that would
have implied two time coordinates, since the corresponding
canonical conjugate momenta are not present in the theory.
There is only one time translation operatorP0, hence there is
only one time coordinate that can be recognized after the
reduction to 11 or lower dimensions. Nevertheless, there is
an obvious SO~10,2! covariance in the form~10!. Therefore,
there is a hidden SO~10,2! covariance in the forms~9! or in
Eq. ~7! for d<9, since they are equivalent to Eq.~10!. We
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emphasize again that the 12D SO~10,2! generatorsLMN do
not appear on the right-hand side; i.e.,ZM1M2

are not the

LMN .

B. Type B

The type-A superalgebra ind510 can be written as~see
Appendix!

$Qā
ā ,Qb̄

b̄
%5~SB! ā b̄

ā b̄
,

~SB! ā b̄
ā b̄

5ḡ ā b̄
m̄

~ct̄ i !
ā b̄Pm̄

i 1ḡ
ā b̄

m̄1m̄2m̄3cā b̄Ym̄1m̄2m̄3

1ḡ
ā b̄

m̄1 . . . m̄5~ct̄ i !
ā b̄Xm̄1 . . . m̄5

i , ~12!

where ā,b̄51,2, . . . ,16 andā,b̄51,2 while m̄50,1, . . . ,9
and i508,18,28. The Xm1 . . .m5

i are self-dual in 10D. Here

ḡ ā b̄
m̄

are 16316 10D g matrices obtained from the list of
13D g matrices in Eq.~A1! by omitting the first two factors
in the direct products~i.e., g051^18 , g95t3^18 , etc.!.
The t̄ i

ab[( i t2 ,t3 ,t1) are 232g matrices in a hidden 3D
Minkowski space, with a charge conjugation matrix
cab5 i t2

ab5«ab. They are obtained from the 13Dg matrices
in the Appendix by keeping only the first factor in
(G08,G10,GA) which corresponds tot̄ i . The reason for the
split of 13D into 10D13D is the type-B chiral projection, as
explained in the Appendix. The 13D covariance is lost be-

cause of the projection, but a clear identification of the di-
mensions labeled bym̄,i survives. This algebra is covariant
under SO~1,9!^SO(1,2)B .

Again, as in the type-A algebra, there is only one time
translation operator. The usual 10D momentum operator
Pm̄ corresponds to thei508 component ofPm̄

i or, equiva-
lently, to the trace part of (ct̄ i)

abPm̄
i . Likewise, the 3D mo-

mentum operatorPi corresponds to them̄50 component of

Pm̄
i or to the trace part ofḡ ā b̄

m̄
Pm̄
i . The time translation op-

erator for either 10D or 3D is the same one, namely,P0
08 and

it corresponds to the trace part of the full 32332 matrix

(SB) ā b̄
ā b̄
. This is the same time translation operator that ap-

pears as the trace ofSAin the type-A superalgebra, given
above in the 12D or 11D covariant form.

C. More about the duality map A⇔B

Once the theory is compactified tod59 ~or fewer dimen-
sions!, the two typesSA ,SB reduce to two forms that are in
one-to-one correspondence to each other, but are not identi-
cal. Both of these forms display SO~8,1!^SO~2,1! isometry,
one in the form SO~8,1!^SO~2,1!B coming from SO~9,1!
^SO~2,1!B and the other SO~8,1!^SO~2,1!A coming from
SO~10,2!. By comparing the reduced forms ofSA ,SB given
below we find the map between the A,B types in nine dimen-
sions:

SB5ḡ ā b̄
9

~ct̄ i !
ā b̄P9

i 1ḡ ā b̄
m

~ct̄ i !
ā b̄Pm

i 1~ ḡ9ḡm1m2! ā b̄c
ā b̄Y9m1m2

1ḡ
ā b̄

m1m2m3cā b̄Ym1m2m3
1~ ḡ9ḡm1 . . .m4! ā b̄~ct̄ i !

ā b̄X9m1•••m4

i

i5~08,10,A!5~08,18,28!, m50,1, . . . ,8, ~13!

SA5~Cg IJ!abZIJ1~Cgmg I !abZmI1~Cgm1m2!abZm1m2
1~Cgm1m2m3g08g9g10!abZm1m2m308910

1

1~Cgm1•••m4g IJ!abZm1 . . .m4IJ
1 I5~08,10,9!, m50,1, . . . ,8. ~14!

These expressions are obtained by rewriting the original ex-
pressions forSA ,SB , that were given in terms of the 64
364 g matricesG in the appendix, and specializing the in-
dicesM5(m,I ) or (m,i ), respectively. There is a correspon-
dence term by term:ZIJ↔« IJKP9

K , ZmI↔Pm
i , etc. However,

the 32332g matrices of type A that multiply these coeffi-
cients are not of the direct product formt̄ ^ ḡ of type B.
Furthermore, the type A,B indicesI ,i , respectively, label dif-
ferent sets of compactified dimensions embedded in 13D
(I508,10,9, versusi508,10,A, whereA labels the 13th di-
mension). Hence, theT duality that exists between types A
and B is closely related to the map provided by the above
expressions, and it involves a‘‘duality’’ transformation that
corresponds to relabeling some of the 13 dimensions.

IV. REPRESENTATIONS, BPS STATES

The superalgebra ind dimensions~7! has two types of
isometries: spacetimelike isometries SO(c11,1) and duality

isometriesK (,U) in addition to the Lorentz isometry SO
(d21,1). The classification of the various generators has
been tabulated in various dimensions (d,c) elsewhere@5#.
The physical states of the theory must be classified as the
representation spaces of the superalgebra. Therefore, it is ex-
pected that the physical states form supermultiplets consis-
tent with these isometries and that they reveal the structures
of the hidden dimensions and dualities displayed in Eq.~8!.
Some work in this direction has been reported before@9,5#.
Here, we describe a more systematic approach and provide
examples of new BPS states that belong in larger multiplets
along with previously known BPS states. The new element is
the inclusion of quantum numbers that carry Lorentz indices.

In the case of Abelian bosonic generators, as assumed in
this paper, all representations are found by analogy to repre-
sentations of standard supersymmetry. The main new ingre-
dient is that instead of the standard momentum operators, we
now have 528 Abelian operators inS that are simultaneosly
diagonalizable. In previous work only the Lorentz singlet
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central extensions were included in addition to the standard
momentum in seeking representations, but here we include
all bosonic operators. Recall that those that carryp Lorentz
indices are physically relevant for the description of bound-
aries ofp-branes in ordinary spacetime~not just in compac-
tified spacetime!. These 528 operators are at an equal footing
since they are mixed with the momenta and with one another
by the SO(c11,1) andK isometries.

The representation space is constructed as follows. A ref-
erence state is chosen such that it is labeled by

uS,Rc& or uS,RK&, ~15!

whereS represents the eigenvalues of all commuting 528
bosonic generators, andRc,K is a representation of the isom-
etry SO(d21,1)^SO(c11,1) or a representation of SO
(d21,1)^K, respectively~as discussed in@5# Rc must form
a collection of irreducible representations that can be ex-
panded in terms ofRK and vice versa!. Then all possible
powers of the fermionic generators are applied to the refer-
ence state in order to obtain the full supermultiplet.

For ‘‘long’’ multiplets there are 232/2 combinations of lin-
early independent powers of fermionic operators applied on
the reference state@fermionic plus bosonic spinor represen-
tations of SO~32!#. Since the reference state has dimension
dim(Rc,K), then the dimension of the full supermultiplet is
2163 dim(Rc,K). Furthermore, since each supergenerator is
classified under SO(d21,1)^SO(c11,1) or SO
(d21,1)^K, it is straightforward to obtain the representa-
tion content of each state under these groups. We will argue
in the next section that these supermultiplets hide even big-
ger structures associated with 12D or 13D.

Some of the irreducible supermultiplets are shorter than
the naive counting would indicate. This happens whenever
there is a linear combination of fermionic generators that
vanishes on the reference state

ea~k!
a Qa

a uS,Rc,K.50, k50,1, . . . ,2n. ~16!

The supermultiplets associated with such reference states are
the BPS-type states. This gives the analogue of shorter mul-
tiplets of ordinary supersymmetry with central extensions,
but here the possibilities are much richer since there are
many more central extensions.

It is important to emphasize that since the momentum
Pm ~and, in particular, the mass! is mixed with all other 528
quantum numbers under SO(c11,1), these multiplets can
contain states of different masses. We see then that the mul-
tiplets have plenty of information about the hidden dimen-
sions or duality symmetries of the theory. The more familiar
string states at various excitation levels are part of the mul-
tiplet; the additional states needed to complete the multiplet
become the prediction ofS theory. In previous work some
simple examples in this direction were provided@9,5#.

Now, we give the covariant criteria, consistent with all the
isometries, for the presence of BPS-like supermultiplets.
Since Eq.~16! must hold, then it implies that the 32332
matrix Smust have zero eigenvalues with multiplicityn

ea~k!
a $Qa

a ,Qb
b%uS,Rc,K&50→ea~k!

a Sab
ab50. ~17!

Therefore, the determinant vanishes

det~S!50. ~18!

By writing out the secular equation det(S2l)50, the mul-
tiplicity of the zero eigenvalue~i.e., 2n) can be determined.
In our notation the energy term inSis proportional to the
identity S;P01••• as described at the end of Sec. III B.
Hence, adding thel is superfluous; we can instead count the
multiplicity of the energy eigenvalue at which det(S)50.
This condition is consistent with all the isometries and,
therefore, the collection of all BPS-like states that satisfy it
must form a shorter supermultiplet of the superalgebra and of
the isometries. It is worth emphasizing that all the informa-
tion about the multiplet is contained in the reference state
~15!.

V. HIGHER DIMENSIONS AND BPS STATES

As discussed in Sec. III, the form ofS in (d,c) dimen-
sions is a rewriting of the originalSA,B embedded in 12 or 13
dimensions. Furthermore, the criteria for the BPS-like states
~as well as for longer multiplets! are consistent with the
higher symmetries that are displayed by the originalSA,B .
Therefore, the long or shorter supermultiplets that are iden-
tified in any dimension must also be consistent with the sym-
metry structure of the hidden 12 or 13 dimensions, i.e.,
SO~10,2!A or SO~9,1!^SO~2,1!B . Some examples are pro-
vided below.

A. From type IIA superstring to 12D supergravity

As is well known by now the black holes of type IIA
superstring can be thought of as Kaluza-Klein states of 11D
supergravity compactified to 10D. In our language these BPS
states correspond to a reference state

upm ,p10, Rc,K51&, ~19!

where, in addition to momentum, the only nonzero central
extension in 10D is the quantized 11th momentum
p105n/R whereR is the radius of compactification~related
to the coupling constant as argued by Witten@1#!. The re-
maining bosonic 517 (5528211) central extensions are set
equal to zero. Then Eqs.~9! and~10! and the BPS conditions
simplify to

SA5pm~Cgm!1p10~Cg10!,

det~SA!;~p0
22pW 22p10

2 !165~M102p10!
16~M101p10!

16,
~20!

detSA50↔M105up10u, multiplicity516,

whereM10 is the mass in 10D,M10
2 5p0

22pW 2. Sixteen super-
symmetries vanish and 32216516 act nontrivially. There-
fore, the dimension of this short supermultiplet is
216/25256, consisting of 27 bosons plus 27 fermions. This
has the same content as the degrees of freedom of 11D su-
pergravity. As is well known, the presence of the 11th mo-
mentump10, as a central extension, indicates the presence of
the 11th dimension. In addition, 11D manifests itself in the
256-dimensional supermultiplet of states, since this multiplet
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is constructed from the direct products of the 32 super-
charges that form a spinor basis for 11D.

Now, we discuss the hidden 12D structure. The first hint
is that the 32 supercharges form a basis for the chiral spinor
representation for 12D. Therefore, the multiplicity 256 is
consistent with 12D Lorentz transformations SO~10,2!.
However, there is no 12th momentum. Indeed, as discussed
in Sec. III, a 12th momentum should not be expected, since it
does not appear in the superalgebra of type A~9,10!. Instead,
one should seek the central extensionsZM1M2

, ZM1...M6

1 .

Consider a reference state labeled by

uZM1M2
Þ0, ZM1 . . .M6

1 50 , Rc,K51&, ~21!

with the further special condition (Z3)M1M2
50 which is still

SO~10,2! covariant@contractions of indices require the~10,2!
metric#. A form of ZM1M2

that satisfies this requirement is

ZM1M2
5LM1

N1ZN1N2
0 LM2

N2 ,

ZM1M2

0 5S 0 p10 pm

2p10 0 0

2pm 0 0
D , ~22!

whereL is a SO~10,2! boost andZM1M2

0 is the solution in Eq.

~20!. This form is equivalent to the cross product of two 12D
vectors that are orthogonal and one of them is null in 12D:

ZM1M2
5 1

2 ~ P̃M1
P̃M2

8 2 P̃M2
P̃M1

8 !,

P̃• P̃85 P̃• P̃50. ~23!

The tildes are used to emphasize that these are 12D vectors.
SA and its determinant have the form

SA5CgM1M2P̃M1
P̃M2

8 ,

detSA5@ P̃2P̃822~ P̃• P̃8!2#16. ~24!

Therefore, the zero eigenvalue is 16-fold degenerate. Written
in this form the reference state is covariant under SO~10,2!,
but yet it is equivalent to the 11D reference state in Eq.~20!
up to a SO~10,2! boost. Combining this reference state with
the fact that the 32 supercharges form a spinor representation
of SO~10,2!, the resulting supermultiplet with a 256 degen-
eracy ~just as in 11D supergravity! must also be consistent
with SO~10,2!.

Therefore, I conjecture that there should be a reformula-
tion ~or generalization, perhaps, by including auxiliary fields!
of 11D supergravity that is consistent with more hidden di-
mensions, is SO~10,2! covariant, and contains the same 256
physical components of fields that are present in 11D super-
gravity. However, for covariance, the fields should be al-
lowed to depend on more than 11 dimensions, and be con-
sistent with the covariant central extensions given above in
the form of equations of motion for the fields

P̃2f1•••50, P̃•P̃8f1•••50. ~25!

Such a reformulation would provide one of the simplest low
energy effective field theories that describe a sector of the
fundamental theory consistently with SO~10,2!. In view of
the present remarks it may be useful to revive some old
attempts in such a direction@10#. Toward this goal, perhaps,
a first step should be generalizing the superparticle action
with additional degrees of freedom in 12D, such asP̃,P̃8 and
superpartners. The canonical quantization of such a general-
ized superparticle should yield the specialized form of the
superalgebra in Eq.~10!:

$Qa ,Qb%5~CgM1M2!abP̃M1
P̃M2

8 . ~26!

The form ~24! can satisfy detSA50 with a slightly less
constrained SO~10,2! vectors P̃,P̃8. This corresponds to a
larger class of solutions that are not connected to Eq.~20! by
SO~10,2! boosts.

1. More 11D↔12D solutions

It is possible to display some special solutions with more
central extensions consistent with 11D, and covariantized to
12D by boosts. For example, using 11Dg matrices as in Eq.
~10!, one may take

SA5CP” 1CP” 8P” 1CX” 1X” 2X” 3X” 4P” , ~27!

whereP”[P•g,P” 8[P8•g,X” i[Xi•g are 11D vectors dotted
with g matrices. To ensure the antisymmetry of
Zmn ,Xm1...m5

, the vectors are taken orthogonal to one an-

other. Furthermore, takingPm lightlike in 11D @i.e.,
M105up10u as in Eq.~20!# guarantees that the BPS condition
is satisfied

detSA5det~C1CZ”1CX” 1X” 2X” 3X” 4!det~P” !50. ~28!

Since

det~P” !5~M101p10!
16~M101p10!

16, ~29!

the multiplicity of the zero eigenvalue is again 16. In this
case the reference state has more nonzero central extensions
describing more complicatedp-branes. These are probably
related to one another by various dualities.

Any 11D solution can be boosted to a 12D covariant form
by applying an overall SO~10,2! transformation and then
identifying the ZM1M2

, ZM1 . . .M6

1 . In the present solution

both of these are nonzero, albeit of special forms rather than
being the most general. It is because of their special form
that the degeneracy of the zero eigenvalue is still 16. With
more general forms the degeneracy~and hence the size of the
shorter supermultiplets! would be different.

2. Excited levels

The excited states of type IIA~perturbative! string give
only a subset of the states of the full secret theory. We have
conjectured in the past that the correct set should correspond
to supermultiplets in 11D and found some evidence for this
@9,5#. We now modify this conjecture because we expect the
full theory to be consistent with representations of the supe-
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ralgebra as described in Sec. III. Then, the excited levels
should be classified according to reference states with non-
trivial Rc,K , but the same form ofSA as the base. The well-
known ~perturbative! excited string states should fill part of
these multiplets. The remainder of the multiplet is a predic-
tion about the properties of the underlying secret theory, as
seen in examples in our previous work.

B. Example of a vector central extension

Consider superstring theory of type II compactified to 9D.
The base state is labeled with a 9D momentumpm , a quan-
tized Kaluza-Klein momentumk9 , and a winding number
w9 . If these are the only nontrivial central extensions then
they are embedded in the 12DZMN as follows ~where the
order of the indices is taken asM ,N59,10,08,0,1,2,. . . ,8)

ZMN5S 0 2w9 2k9 0 0 ••• 0

w9 0 0 0 0 ••• 0

k9 0 0 p0 p1 ••• p8

0 0 2p0 0 0 ••• 0

0 0 2p1 0 0 ••• 0

A A A A A � 0

0 0 2p8 0 0 0 0

D ,

~30!

while ZM1 . . .M2

1 50. This form is covariant under Lorentz

transformations SO~8,1! but noncovariant under the isome-
tries of the superalgebra given in Eq.~8!. The perturbative
string states are well known at all excited levels. The non-
perturbative black hole states satisfy the well-known BPS

condition M95uk96w9u, whereM9
25p0

22pW 2. This corre-
sponds to requiring the vanishing of the determinant

detS5~M92w92k9!
8~M92w91k9!

8~M91w91k9!
8

3~M91w92k9!
8, ~31!

which has an eightfold degeneracy for the zero eigenvalue.
This means that eight supergenerators vanish and
3228524 of them act nontrivially on the reference state,
giving a well-known shorter supermultiplet of dimension
224/252bosons

11 12fermions
11 .

First, I generalize this by including the central extension
P10 which is a Lorentz singlet, and whose presence is re-
quired byU duality.3 Then

ZMN5S 0 2w9 2k9 0 0 ••• 0

w9 0 2k10 0 0 ••• 0

k9 k10 0 p0 p1 ••• p8

0 0 2p0 0 0 ••• 0

0 0 2p1 0 0 ••• 0

A A A A A � 0

0 0 2p8 0 0 0 0

D
~32!

gives

detS5@~M92w9!
22k9

22k10
2 #8@~M91w9!

22k9
22k10

2 #8,
~33!

which has manifestK^SO(8,1) symmetry. The degeneracy
of the zero eigenvalue is still eight, hence the size of the
supermultiplet is 2bosons

11 12fermions
11 but the base has one more

quantum number, and it displays the explicitK isometry.
The mass formula isK invariant.

M95uw96Ak921k10
2 u. ~34!

So far, this is insufficient to also display the SO
(c11,1)5SO(2,1) isometry given in Eq.~8!. As explained
there, the SO~2! subgroup is the same as the one appearing in
K. The SO~2,1! transformations mix the indices
M508,9,10. When these are applied to theZMN above they
require the more general covariant form4

ZMN5S 0 2w9 2k9 z90 z91 ••• z98

w9 0 2k10 z100 z101 ••• z108

k9 k10 0 p0 p1 ••• p8

2z90 2z100 2p0 0 0 ••• 0

2z91 2z101 2p1 0 0 ••• 0

A A A A A � 0

2z98 2z108 2p8 0 0 0 0

D .

~35!

The additionalz9m ,z10m are Lorentz vectors that are inter-
preted as positions of end points of strings in 9D as ex-
plained in Sec. II. Therefore, they must be spacelike vectors.
Together with the timelikepm[z08m , they form a triplet
zim of SO~2,1!. When these are included in the reference
state, we obtain a supermultiplet consistent with SO
(2,1)^SO(8,1). The determinant ofS;CgMNZMN is

detS5FTrZ42S TrZ22 D 2G8. ~36!

3In this caseU5SL(2)3SO(1,1) which has the maximal com-
pact subgroupK5SO(2)3Z2. UnderK the Lorentz singlet central
extensions form a doublet (k9 ,k10) plus a singletw9 .

4ZM1 . . .M2

1 50 is still consistent with the isometries so far, but
without turning on this central extension as well, the full 12D co-
variance remains hidden.
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The BPS determinant condition is evidently invariant under
SO(2,1)̂ SO(8,1), the degeneracy of the zero eigenvalue is
eight, and the size of the supermultiplet is
2bosons
11 12fermions

11 . This supermultiplet is consistent with the
isometries SO(2,1)̂ SO(8,1) ~as well as withK) since all
supercharges and all central extensions are complete multip-
lets of the isometries~for their classification in every dimen-
sion see@5#!.

In this way we have extended the perturbative superstring
multiplets to the larger supermultiplets containing nonpertur-
bative states of the secret theory consistent with 12D or 13D.

VI. CONCLUSIONS

In the examples of Sec. IV only some of the central ex-
tensions were turned on. This was sufficient to illustrate the
method of investigation as well as the relevance and proper-
ties of the Lorentz nonsinglet central extensions. Even with
this limited set of examples it is clear that the spectrum and
multiplet structure of the secret theory is much richer than
previously thought. More work is needed to find all the so-
lutions of detSA,B50 and identify all the distinct shorter
multiplets. The number of supersymmetries on BPS states in
the examples of this paper were 8,16, but all numbers from 0
to 32 are possible in more general examples. The algebraic
approach outlined in this paper seems to be sufficiently pow-
erful to elucidate some of the nonperturbative global proper-
ties of the secret theory. For example, by starting with
known perturbative string states at any excitation level and
using the multiplets ofS theory one can, in principle, make
predictions on the spectrum of the secret theory. Some pre-
liminary examples of this type were given before@9,5#. Simi-
lar considerations should also apply to scattering amplitudes,
etc. In S theory one finds that there are up to 13 hidden
dimensions, some of which remain hidden from the point of
view of perturbative approaches involvingp-branes. One of
the appealing aspects of theS theory approach is to treat all
528 bosonic generators on an equal footing, thus elucidating
the duality and hidden dimensions as simple consequences of
the isometries of the maximally extended superalgebra.

There should be many variations ofS theory by taking
some of the 528 bosonic generators to be non-Abelian. Some
of them may also have nontrivial commutation relations with
the supergenerators@11#. Such variations of the superalgebra
must be related to the geometrical properties of the back-
ground in which thep-branes propagate, as opposed to the
flat background assumed in the present paper. Evidently, the
representation theory of the corresponding superalgebra will
be more difficult but more interesting. In this way it should
be possible to find relations between the results ofM , F,
andS theories.

APPENDIX

The g matrices in 12D with signature~10,2!, or in 13D
with signature~11,2!, may be given explicitly in the follow-
ing 64364 purely real~Majorana! representation, using di-
rect products of Pauli matrices,

G085 i t2^1^1^18 , G95t1^ s1^ t3^18 ,

G05t1^ is2^1^18 , G85t1^ s1^ t1^18 ,

G105t1^ s3^1^18 , G i5t1^ s1^ t2^gi ,

GA5t3^1^1^18 , C51^ is2^1^18 ,

GB51^ s3^1^18 , ~A1!

where thegi are purely imaginary 838 antisymmetricg
matrices for the remaining seven dimensions.C is the charge
conjugation matrix, it has the property thatCGM is symmet-
ric for the 12D g matrices, M508,0,1, . . . ,10, or
CGMC

2152(GM)
T.

GA is a 13thg matrix that is the product of the 12DGM
and it anticommutes with them~i.e., analogue ofg5 in 4D!.
GA commutes with C and GB . The chiral projector
1
2(11GA) serves to project to the 32332 subspace that is of
interest for the type A sector of the theory. Since the chirally
projected sector distinguishes the 13thg matrix, the maximal
covariance is broken down from 13D to 12D in the type A
sector.

When the antisymmetric products ofp g matrices
GM1M2 . . .Mp

are multiplied by the projector 11GA, only

the 12D covariant 66→ 1
2 (11GA)CGM1M2

and 462

→ 1
2 (11GA)CGM1M2 . . .M6

are symmetric matrices. There-
fore, only the two-index and self-dual~in 12D! six-index
tensors can appear in the 12D type-A superalgebra. Thus,
SA is a linear combination of these as in Eq.~9!. In this 32
332 subspace we may replace eachGM by 1

2(1
1GA)GM

1
2(12GA) → gM , where we denote the 32332g

matrices gM by gM5(1,gm), with g0851 and
gm , m50,1, . . . ,10 given by omitting the firstt i factors in
the expressions of the other 11Gm given above, i.e.,
g05 is2^1^185C, g105s3^1^18, etc. This form may
be used in Eq.~10! to simplify it to the 11D notation of Eq.
~9!.

1
2(11GB) is the projector to the 32-dimensional subspace

relevant for the type-B sector of the theory.GB is the product
of the usual 10DGmg matricesGB;G0G1...G9. One can
also write

GB;G08G10GA;G0G1 . . .G9 . ~A2!

GB commutes with eachG i[ (G08,G10,GA) and anticom-
mutes withC and eachGm5(G0 ,G1 , . . . ,G9)

@GB ,G i #50, $GB ,Gm%5$GB ,C%50. ~A3!

Therefore, this projection breaks the symmetry from 13D to
10D^3D since it treats the 3D differently than the 10D. The
threeG i may be regarded as theg matrices for a 3D hidden
Minkowski space just as the tenGm are theg matrices for the
10D Minkowski space. This extra space is evidently related
to the geometrical origin of the SL~2,R) symmetry of the
type B sector.

SB is constructed from 528 linearly independent symmet-
ric 32332 matrices of type B. In 64364 notation these are
given by
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1

2
~11GB!CGm1m2m3m4m5

~GAG i ! :
1

2

1039383736

132333435
335378,

1

2
~11GB!CGm1m2m3

~GA! :
103938

13233
5120,

1

2
~11GB!CGm1

~GAG i ! : 1033530, ~A4!

where the chirally projected five-indexg matrices are self-
dual in 10D. In the chirally projected B sector, these matrices
reduce to 32332 blocks which may be conveniently written
in the form of direct products of 232 times 16316 matrices
t̄ ^ ḡ as in Eq.~12!, where the 232 part comes directly from
the first factor and the 16316 part comes from the last three
factors in theg matrix expressionsG in Eqs.~A1! and~A4!.

One may consider SO~1,2!5SL~2,R) rotations ofSB in
the extra 3D subspace, leaving unaffected the usual ten di-
mensions. To make the connection to 13D, we give it in the
form of rotations in the 64364 spinor space

dSB5@e i jG i j ,SB#. ~A5!

One can show that

e i jG i j S 12 ~11GB!CGm1•••mpD
5S 12 ~11GB!CGm1•••mpDGAe i jG i jGA ~A6!

whenp5odd. Using this identity we see easily that the fol-
lowing commutators simplify

Fe i jG i j ,S 12 ~11GB!CGm1•••mp
~GAGk•••! D G

5
1

2
~11GB!CGm1•••mp

GA@e i jG i j ,~Gk•••!#. ~A7!

The last commutator is just the rule for performing rotations
in the 3D subspace. This shows that only the 3D indices
rotate under these SO~1,2! rotations embedded in 13D rota-
tions and, hence, verifies that the construction of the 528
matrices~A4! is the right one. Furthermore, this result is
consistent with using the direct product notation of Eq.~12!.
The construction of Eq.~A4! is useful because it exhibits the
precise embedding of the type-B space in the spinor space of
13D.

From the constructions given above, we see that the type
A and type B are different projections within the same 64
364 spinor space of 13D. Hence, the duality of the type-A
and type-B sectors of the theory has its origins in the spinor
space for 13D.
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