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The representation theory of the maximally extended superalgebra with 32 fermionic and 528 bosonic
generators is developed in order to investigate nonperturbative properties of the democratic secret theory
behind strings and othgr-branes. The presence of Lorentz nonsinglet central extensions is emphasized, their
role for understanding up to 13 hidden dimensions and their physical interpretation as boundaries of
p-branes are elucidated. The criteria for a new larger set of BPS-like nonperturbative states is given and the
methods of investigation are illustrated with several explicit examp&@3556-282(97)04702-4

PACS numbgs): 11.25.Mj, 11.25.Hf, 11.30.Pb

[. INTRODUCTION type states will be given. As an application®theory, | will
show that there are new nonperturbative BPS states that
String andp-brane dualities have led to the notion that carry quantum number&igenvalues of central extensigns
there is a mysterious, fascinating, secret supersymmetriat are Lorentz nonsinglets, and | will construct some ex-
theory, which may be callet theory, F theory, S theory,  Plicit examples. Since these quantum numbers have an inter-
ot inc'udes a” possib'e C|osed and Opér_-e_, W|th pretation in terms Op'brane boundaries theS.e BPS StE.lteS are
boundaries p-branes, such as strings, membranes, fivel€latéd to operp-branes. When they are included in the
branes, . .., interacting with each other in various flat, SPectrum along with more familidv-brane BPS states they
curved, or compactified spacetimes. It has been proposefam.'.Iarger _multlplgt structures of symmetn&_pat exhibit
that this theory, which includes up to 1ar 13, see below additional hidden dimensions as weI_I as duaI!tles.
hidden dimensions, may be the mother, father, or sire of al# Reshults such as t?ehones deslcrltt))ed, which fOHOV\é onl)t/)
physical theories. Some of thd and F aspects have been rom the properheg 0 t.e superaigebra, are assumed to be
. ) valid nonperturbatively in the full theory. Therefore, they
discussed by other authdib-3]. D-braned 4] provide some must be useful handles for constructing and analyzing the
handle on the theory. fundamental underlying theory.
In this paper | will concentrate on some of tBeproper-
ties of the secret theory, and will emphasize an algebraic
approacH5] based on a superalgebra with 32 fermionic and
528 bosonic generatof$,5]. The collection of all bosonic In the generalized superalgeb{@i,QZ}zSﬁ%, where
operators form a 3232 symmetric matrixS given by the Si%z 5P vasP .t “central extensions,” there are generally
anticommutator of the supercharg®,Q}~S. The struc-  Lorentz nonsinglet central extensioﬁ%ﬁ_._ L. With p Lor-
ture and symmetries d$ are related tg-branes, dualities, ot jngices. The structure and properties of these additional
and hldden dlmenS|o.ns. Global properues, certain _states, arHﬂerators are explained more fully in the following sections.
certain nonperturbat_we properties of the underlying Secrefq explained in5] a nonzeraz®? which is not a Lor-
theory may be studied by analyzing the representations of i i By Hp
this superalgebra. This line of investigation will be calgd €Ntz singlet does not violate the no-go theorerfi7fas long
theory. as there are extended objects. The Lorentz sing@tswith
In this paper | will outline the elements & theory. One P=0, are well known to represent the quantum numbers of
of the points to be emphasized is the presence of Lorent2lack holes inM theory. '”bth's section | will clarify the
nonsinglet central extensions ® which so far received Physical interpretation oZy> , for p=1 as related to
little attention. In the usual treatment of nonperturbativep-branes.
properties ofM or F theory, the Lorentz singlet central ex-  For simplicity, | will assume that alp-branes propagate
tensions play a major rolge.g., Bogomol'ni-Prasad- in flat backgroundgsuch as flat spacetime in direct product
Sommerfield(BPS) like states or black hol¢sHere, | will  with tori or their orbifolds in compactified dimensign&Jn-
argue that the Lorentz nonsinglets also play a major role ander this assumption all 528 componentsSofommute with
that their presence is required in order to see the full extenbne another as justified below. Similar considerations in
of hidden dimensions and duality symmetries. In Sec. Il Icurved backgrounds would yield a more complicated algebra
will give a physical interpretation of these central extensionghat is more difficult to analyzéfor example, momenta do
in terms of boundary variables f@-branes. In Sec. Ill the not commute in curved backgrounds
symmetry structure of the generalized algebra and the con- Just like momentum, all possible values of these central
nection to hidden dimensioriap to a total of 13 dimensiops extensions must be included in the representation of the su-
will be explained. In Sec. IV the representations of the superperalgebra in order to take into account all possible states in
algebra will be constructed and, as a special case, the criterfhe representation consistent with the Lorentz group. But
for obtaining the quantum numbers of the generalized BPSphysical considerations would determine if they are space-

II. LORENTZ NONSINGLET CENTRAL EXTENSIONS
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like, Iightlik_e, or .time!ike, and hqnce there are classes Ofijon XS)(T,O)ZXS)(T,Z’IT) gives (Zib)dosedzo-z But if there

representations, just I|ke. the Poinca@up. . ! are open strings, then the result depends only on the end
These central extensions are closely associated with “Y?oints

boundaries op-branes as well as the topology of the back-

ground geometry in which they propagate. In a flat ) )

d-dimensional spacetime, as assumed in this paper, the Lor-  (Z2%)gperi= 2 Z2°(XY)(7,m) =X (1,0)+---.  (5)

entz nonsinglets are present only if thebrane has bound- !

aries. This is seen as follows: In the low energy effective

theory, the gauge potential witi+ 1 antisymmetric Lorentz

indices has a source term in its equation of mofitve no-

tation is explained in5)):

Note that this is a Lorentz vector, ardnless identically
zerg it is a continuous spacelike or lightlike variable, but is
not timelike. It is obviously translationally invariant.

Similarly, for the generap-brane in flat spacetime the
central extensionii‘iu_ﬂp can be shown to be related to
boundary variables that commute with one another as well as

with the momentum operators. Hence, all these operators are
a'simultaneously diagonalizable and their continuous eigenval-

Gy AR Kl () = gHOKL - tip () (1)

The current is nonvanishing when constructed from

p-braneX, (7,04, - -,0p) and its superpartners ues must label the physical states at an equal footing with the
eigenvalues of momentum, since they are not distinguishable
b b i i
\]Zoﬂl"'ﬂp(x):f deUl-~-dUp2i 72 59(x— XM under the symmetries of the superalgebra.
X(r, oy .. 'UP)MTXEQO N 'aﬂpxg,),] Ill. THE EXTENDED SUPERALGEBRA
The maximum number of supercharges in a physical
X(7,09,. . op) -y 2 theory is 32. This constraint comes from four dimensions,

) o ab - which admits at the most eight supercharges, each with four
where the index is a label for manyp-branes andz™ is  real components, since there can be no supermultiplet of
their coupling to the pair of supercharges labeledably.  massless particles with spins higher than two. In an arbitrary

The Lorentz nonsinglet central extension is the integral ohumber of dimensions, we label the 32 supercharges as
the current over a spacelike “slice” in spacetime

a a=spinor in d dims.,

Q.= N , (6)
ab _ d-1 ab ¢ |la=1,2,...,N,spinor inc+2 dims.,
Z/.Ll.../.Lp_J d EMO‘J,U,OMI...MP(X)! (3) p
. . where N=1, whend=11; N=2, whend=10,...,N=8

where, e.g., one may use a noncovariant notation by choogvhen d=4. Here,d is the dimension of spacetime. Let us
ing po=0, d*"%7=d""x, i.e, the voltjme of space at definec as the number of compactified string dimensions
fixed time. This is one expression fat,” , . Another such thatd+c=10. It was argued that there are two extra
expression is obtained by substituting the left-hand side ohidden dimensions, one spacelike and one timelike, and that
Eq. (1) in Eq. (3). Then, the integrand is a total divergence N corresponds to the dimension of the spinocth2 dimen-
and, therefore, it can be expressed as a surface integral isions[5]. FurthermoreN also corresponds to a dimension of
volving the asymptotic values wggl---up at infinity of ~ an irreducible representation of the grokp which is the
physical spacer(—). Therefore, in any classical solution Maximal compact subgroup &f duality.
of the effective low energy theory, a nontrivial asymptotic | "€ €xtended superalgebra has the form
behaviorA2#1 - #p— 71 #pjrd=2 woyld have an interpre-

o 1 ab P {Q2.Q%=(5)%8,
tation in terms ofp-branes through Ed2).

Now, what property of thep-brane is represented by
Z3 . ? As an example, let us perform the integral in Eq.  (S)33= 5aby§ﬂPM+p=O§,2 yg‘;"'“PZZ?___Mp, 7
(3) for p=1, i.e., for a string. The result’s B

where the permutation symmetry o&8) must be the same
Zabzz 2| dga XO(70)+ -+, (4) as (@b) in each term on the right-hand side. The structure of
S TH (S)'Z% is of central interest in this paper. From it we will
learn about the symmetries of the underlying thegnany
where the dots represent additional pieces in a conservenf them hidden from the point of view of conventional string
current. If the remaining integral over is for closed strings theorieg as well as about the representation space that is
propagating in flat spacetime, then the closed string condirelated to the physical states of the theory.

Ut is useful, but not necessary to choose the timelike gauge A similar expression in compactified dimensions is nonzero be-
XO(r,0) =7, user=x° because of the delta function, and take the cause of the closed cycles in a nontrivial topology. Similarly, if
spacetime “surface” to be the usual integral over all space at conspacetime is curved instead of flat, there could be nontrivial contri-
stant time. butions for closed strings, if the topology is nontrivial.
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For d=10 there are two types of superalgebras A,B thafor p=0 case, since these are spinors or antisymmetric
are outlined below. From the construction ¢f matrices p-tensors under Lorentz transformations, respectively. In ad-
given in the appendix, one can see that the type A and type Hition to the Lorentz transformations that act as isometries,
superalgebras originate with different forrBg,Sg embed- there are other isometries that act suchiag.orentz trans-
ded in a higher 64 64 spinor space in 13 dimensions. For formations inc+2 compact plus hidden dimensions SO
d<9 there is a one-to-one correspondence between type A8+ 1,1) and(ii) discreteU — duality transformations that in-
superalgebras, which are then relatedTbyluality. As we duce continuous transformations through the maximal com-
will see below certain hidden symmetries in the fof®  pact subgrouK (see[5]). The supercharges, bosonic gen-
become manifest in the covariant forr8g,Sg given below erators, and the physical states of the theory are classified
in higher dimensions. Hence, tieU duality between A and by the isometries SQ@(—1,1)® SO(c+1,1) or by SO
B versions may find its roots in 13 dimensiofis8D). (d—1,1)®K. Displaying one of these classifications may

The Lorentz generators for S&¢1,1) do not commute hide the other one. The isometries and their intersecting sub-
with the supercharges or with the bosonic generdixsept  group structure was given irb] as follows:

C compact- two intersecting
2 hidden dims classifications
—
SQ(c+1,1) of multiplets of
l generators and states
\ tS)
SA(C+ 1)1 hidden dim. T
SQ(c)is common subgroup — K U
SQ(c), ®SO(C)k maximal compact inU -
1 duality
T duality SQc,c) )
|
In this paper | will assume a flat background and hence all {Q..Qp}=(Sa)up

bosonic generators commute among themselves and with the B MM M. M +
supercharges as explained in Sec. Il. In this case it is easy td SA)ap= (CYT12) gpZm,m, + (Cy T G)Ofﬁz'\"l ---Mg>
find all the representations of the superalgebra and analyze (10
the physical states as discussed in Sec. IV.
whereM=0',m, andm=0,1,2,...,10, with two timelike
A. Type A dimensions der.10ted 0] =-0’, 0. The '\aelati?ﬂn l_Jetvyeen -11-
and 12-dimensionay matncesﬁﬁ, Yap> | ap IS Qiven in
the Appendix. Similarly, the bosonic generators are related

1Q. 'Qﬁ}: (SA)aB! by

In 11D there are only three ternp§]

ZM1M2—> Pm® Zmlm2 66: 11+ 55,

(Sa)ap=(C¥Y™) apPmt (CY™2) 457 m
1Mo +
Zhy = Xmy..mg 462=1462. (1D)

(Y™ T8) X ©)

m5!
The six-index tensor is self-dual in 12D.
wherem=0,1,2,. ..,10, and they matrices are 3% 32 (for Note that there is no 12D translation operalyy in the
more details see the AppendidWhen reduced to lower di- (10,2 version (10). Therefore, the extension of the theory
mensions, this 32 32 matrix (Sa), takes the form of Eq. from (10,1 to (10,2 is not the naive extension that would
(7). As is well known, in 10D §,) .4 is distinguishable from have implied two time coordinatesince the corresponding
the type-B Sg) .z given below, but in nine dimensions or canonical conjugate momenta are not present in the theory.
less the reducedS,),; and reduced %), have similar  There is only one time translation operaky, hence there is
content that is related by duality. only one time coordinate that can be recognized after the
It is also possible to consider 12 dimensions with signa+eduction to 11 or lower dimensions. Nevertheless, there is
ture (10,2 [8] since the Weyl spinor is real and 32 dimen- an obvious SQL0,2 covariance in the forn10). Therefore,
sional. Then, the extended superalgebra can be written covahere is a hidden SQ@0,2 covariance in the form&9) or in
iantly in 12D [5]: Eq. (7) for d=9, since they are equivalent to EJ.0). We
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emphasize again that the 12D 80,2 generatord., do  cause of the projection, but a clear identification of the di-
not appear on the right-hand side; i.&y v, are not the mensions labeled by,i survives. This algebra is covariant
under S@1,9® SO(1,2).

Again, as in the type-A algebra, there is only one time
translation operator. The usual 10D momentum operator
P, corresponds to the=0" component oﬂD' or, equiva-

Iently, to the trace part ofc(r,)abP' leeW|se the 3D mo-

LMN .

B. Type B
The type-A superalgebra ih=10 can be written atsee

Appendi
PP ¥ mentum operatoP' corresponds to the=0 component of
{Q Q%} B)Z:z_' P'# or to the trace part ofya—ﬁ o The time translatl?n op-
@b e erator for either 10D or 3D is the same one, namef/, and
(Se)op= Yagptci) e ﬁyaﬁ, Y m, it corresponds to the trace part of the full 832 matrix
—R1- M5 abyi (S )— This is the same time translation operator that ap-
LR TR G (12 (Ss

pears as the trace @,in the type-A superalgebra, given

wherea_ﬂ_zl 2 16 anda.b=12 while z=0,1 g @above in the 12D or 11D covariant form.

andi=0',1,2". The Xiﬂll__ﬂ5 are self-dual in 10D. Here

7,5 are 16<16 10D y matrices obtained from the list of C. More about the duality map A= B

13D y matrices in Eq(A1) by omitting the first two factors Once the theory is compactified t=9 (or fewer dimen-

in the direct productdi.e., yo=1®1g, y9=73®1g, €tC).  siong, the two typesS,,Sg reduce to two forms that are in
The 77°=(i,,75,7;) are 2<2y matrices in a hidden 3D one-to-one correspondence to each other, but are not identi-
Mmkowskl space, with a charge conjugation matrix cal. Both of these forms display $81)® SQO(2,1) isometry,
c?=i78°=¢" They are obtained from the 13pmatrices  one in the form S@,1)®SO(2,1)5 coming from S@9,1)

in the Appendix by keeping only the first factor in ®S0O2,1)g and the other S@,)®SO2,1) , coming from
(I'gr,I'10,T"4) which corresponds te;. The reason for the SO(10,2. By comparing the reduced forms 8f ,Sg given

split of 13D into 10D+3D is the type-B chiral projection, as below we find the map between the A,B types in nine dimen-
explained in the Appendix. The 13D covariance is lost besions:

S5= 745 CT) PPyt Vog(CTi) 2P+ (Y 12) g g, + VY (TP B R CT) 20K,
=(0',10A)=(0",1",2"), w=0,1,...,8, (13

' +
Sa=(CY)apZiat (CY*Y) apZu +(CY142) 7, + (Cy1#283y% y2y10) (o7 ove10

+(C'yl’“l"'l’v4’y|‘l)aBZ;l.”M4|J I=(0,10,9, u=0,1,...,8. (14)

These expressions are obtained by rewriting the original exisometriesK (CU) in addition to the Lorentz isometry SO
pressions forS,,Sg, that were given in terms of the 64 (d—1,1). The classification of the various generators has
X 64 y matricesI’ in the appendix, and specializing the in- been tabulated in various dimensiors, ) elsewhere5].
dicesM = (u,1) or (u,i), respectlvely There is a correspon- The physical states of the theory must be classified as the
dence term by tern, ;< &, Ps , Z,+<P,,, etc. However, representation spaces of the superalgebra. Therefore, it is ex-
the 32<32y matrices of type A that mullplithese coeffi- pected that the physical states form supermultiplets consis-
cients are not of the direct product form® y of type B.  tent with these isometries and that they reveal the structures
Furthermore, the type A,B indicési, respectively, label dif- of the hidden dimensions and dualities displayed in @By.
ferent sets of compactified dimensions embedded in 133ome work in this direction has been reported befég].
(1=0',10,9, versus=0',10,A, whereA labels the 13th di- Here, we describe a more systematic approach and provide
mension). Hence, th& duality that exists between types A examples of new BPS states that belong in larger multiplets
and B is closely related to the map provided by the abovelong with previously known BPS states. The new element is
expressions, and it involves ‘&uality” transformation that  the inclusion of quantum numbers that carry Lorentz indices.
corresponds to relabeling some of the 13 dimensions In the case of Abelian bosonic generators, as assumed in
this paper, all representations are found by analogy to repre-
sentations of standard supersymmetry. The main new ingre-
dient is that instead of the standard momentum operators, we
The superalgebra id dimensions(7) has two types of now have 528 Abelian operators $that are simultaneosly
isometries: spacetimelike isometries $@(1,1) and duality ~diagonalizable. In previous work only the Lorentz singlet

IV. REPRESENTATIONS, BPS STATES
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central extensions were included in addition to the standard de(S)=0. (18
momentum in seeking representations, but here we include

all bosonic operators. Recall that those that c@ryorentz By writing out the secular equation d&¢\)=0, the mul-
indices are physically relevant for the description of bound+iplicity of the zero eigenvaluéi.e., 2n) can be determined.
aries ofp-branes in ordinary spacetingeot just in compac- |n our notation the energy term iSis proportional to the
tified spacetimg These 528 operators are at an equal footinddentity S~P,+ - - - as described at the end of Sec. Il B.
since they are mixed with the momenta and with one anothefence, adding tha is superfluous; we can instead count the

by the SO€+1,1) andK isometries. multiplicity of the energy eigenvalue at which d8}&0.
The representation space is constructed as follows. A reffhis condition is consistent with all the isometries and,
erence state is chosen such that it is labeled by therefore, the collection of all BPS-like states that satisfy it

must form a shorter supermultiplet of the superalgebra and of
the isometries. It is worth emphasizing that all the informa-

8tion about the multiplet is contained in the reference state
(15).

ISR;) or |SRk), (15

where S represents the eigenvalues of all commuting 52
bosonic generators, ar}, ¢ is a representation of the isom-
etry SOd—1,1)®SO(c+1,1) or a representation of SO
(d—1,1)®K, respectively(as discussed if6] R, must form V. HIGHER DIMENSIONS AND BPS STATES

a collection of irreducible representations that can be ex- A giscussed in Sec. lll, the form & in (d,c) dimen-

panded in terms oR, and vice versa Then all possible sions is a rewriting of the origin&, 5 embedded in 12 or 13

powers of the fermionic ggnerators are apphed to the r(a]ceraimensions. Furthermore, the criteria for the BPS-like states
ence state in order to obtain the full supermultiplet.

For “lona” multiplets th 3212 binati £l (as well as for longer multipletsare consistent with the
or “long" multiplels there are combinations of fin- higher symmetries that are displayed by the origiBak .

th : tafifermionic plus b ) . I:|'herefore, the long or shorter supermultiplets that are iden-
€ reference stafgermionic pius bosonic SpInor Tepresen- gy any dimension must also be consistent with the sym-

ta}tions of S@32)]. Sinpe thg reference state has dimens@or}netry structure of the hidden 12 or 13 dimensions, i.e.,

d|1rg1(RC,_K), then the dimension c_>f the full supermultiplet is SO(10,2 , or SA9,1)®S02,1) 5. Some examples are pro-

27X dim(R; k). Furthermore, since each supergenerator I/ided below.

classified under S@-1,1)®SO(c+1,1) or SO

(d—1,1)®K, it is straightforward to obtain the representa-

tion content of each state under these groups. We will argue

in the next section that these supermultiplets hide even big- As is well known by now the black holes of type IIA

ger structures associated with 12D or 13D. superstring can be thought of as Kaluza-Klein states of 11D
Some of the irreducible supermultiplets are shorter tharsupergravity compactified to 10D. In our language these BPS

the naive counting would indicate. This happens whenevestates correspond to a reference state

there is a linear combination of fermionic generators that

vanishes on the reference state |pu:P10s  Rek=1), (19

A. From type llA superstring to 12D supergravity

€aQalS R k>=0, k=0,1,...,2n. (16)  where, in addition to momentum, the only nonzero central
extension in 10D is the quantized 11th momentum
The supermultiplets associated with such reference states ag,=n/R whereR is the radius of compactificatiofrelated
the BPS-type states. This gives the analogue of shorter mulo the coupling constant as argued by Witfdn). The re-
tiplets of ordinary supersymmetry with central extensionsmaining bosonic 517+528—11) central extensions are set
but here the possibilities are much richer since there argqual to zero. Then Eq€) and(10) and the BPS conditions

many more central extensions. simplify to
It is important to emphasize that since the momentum
P, (and, in particular, the masg mixed with all other 528 Sa=p(Cy*)+ P1o(Cy19),

guantum numbers under SE©(1,1), these multiplets can
contain states of different mass&¥e see then that the mul- 2_ 22 2 \16_ 16 16
tiplets have plenty of information about the hidden dimen- de(Sy)~(p5 =P~ Plo) 7= (M1~ P10) (Mgt P1o) 20
sions or duality symmetries of the theory. The more familiar
string states at various excitation levels are part of the mul-
tiplet; the additional states needed to complete the multiplet
become the prediction d& theory. In previous work some ) ) 22 o
simple examples in this direction were provid&js]. whereM, is the mass in 10DMj=py—p°. Sixteen super-
Now, we give the covariant criteria, consistent with all the Symmetries vanish and 3216=16 act nontrivially. There-
isometries, for the presence of BPS-like supermultipletsfore, the dimension of this short supermultiplet is

detS,=0+Mo=|p1g, multiplicity=16,

Since Eq.(16) must hold, then it implies that the 332  2'®=256, consisting of 2 bosons plus 2 fermions. This
matrix S must have zero eigenvalues with multiplicity has the same content as the degrees of freedom of 11D su-
pergravity. As is well known, the presence of the 11th mo-
€§<k){Qi ,Qg}|s, Rek)=0— E§<k)52%:0- (17) mentump,y, as a central extension, indicates the presence of

the 11th dimension. In addition, 11D manifests itself in the
Therefore, the determinant vanishes 256-dimensional supermultiplet of states, since this multiplet
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is constructed from the direct products of the 32 superSuch a reformulation would provide one of the simplest low

charges that form a spinor basis for 11D. energy effective field theories that describe a sector of the
Now, we discuss the hidden 12D structure. The first hinffundamental theory consistently with §0,2). In view of

is that the 32 supercharges form a basis for the chiral spindhe present remarks it may be useful to revive some old

representation for 12D. Therefore, the multiplicity 256 isattempts in such a directidd0]. Toward this goal, perhaps,

consistent with 12D Lorentz transformations @0,2. a first step should be generalizing the superparticle action

However, there is no 12th momentum. Indeed, as discusseglith additional degrees of freedom in 12D, sucﬁsag’ and

in Sec. lll, a 12th momentum should not be expected, since §uperpartners. The canonical quantization of such a general-

does not appear in the superalgebra of typ@®AO. Instead, ized superparticle should yield the specialized form of the

one should seek the central extensichy v, Z;;ll“'M6' superalgebra in Eq10):

Consider a reference state labeled by Mo ==,
{Qu.Qpt=(Cy"172) 5P\, Py, - (26)

z #0, Z =0, R.x=1), (22)
1Zum, Mi--Ms k=1 The form (24) can satisfy de&,=0 with a slightly less
constrained SQ0,2 vectorsP,P’. This corresponds to a

ith the further special conditio =0 which is still .
W N . pecl . " rz(g.)M%M? W.I 'S St larger class of solutions that are not connected to(&g). by
SQO(10,2 covariant contractions of indices require tli&0,2 SO(10,2 boosts

metric]. A form of Zy,m, that satisfies this requirement is

ZmlmzzAullZ%lNzAuzz, 1. More 11D 12D solutions
0 P P It is possible to display some special solutions with more
0 * central extensions consistent with 11D, and covariantized to
ZM1M2: “Pw 0 0, (22) 12D by boosts. For example, using 13Dmatrices as in Eq.
-p, 0 O (10), one may take
whereA is a SA10,2 boost andZy, . is the solution in Eq. Sa=CP+CP'P+CX X X5X,P, 27

(20). This form is equivalent to the cross product of two 12D yherep=p. v,P'=P’-y,X;=X;-y are 11D vectors dotted
vectors that are orthogonal and one of them is null in 12D:ith y matrices. To ensure the antisymmetry of

_ o~ _ o~ Z,,, X, u the vectors are taken orthogonal to one an-
Zyv. =% (Pu.Pi.—Pu.Pi) r : htlike i i
MiMp™ 21T M T M, T MMy other. Furthermore, takingP, lightlike in 11D [i.e.,
o M10=]|p1id as in Eq.(20)] guarantees that the BPS condition
P.P'=P.-P=0. (23) s satisfied

The tildes are used to emphasize that these are 12D vectors. ~ d€Sa=de(C+CZ+CX XoX5X,)de(P)=0. (28)

S, and its determinant have the form Since

SA:CYMlelepllwza detP)=(M 1o+ P10 (Mot p10)™, (29

the multiplicity of the zero eigenvalue is again 16. In this
case the reference state has more nonzero central extensions
. . . describing more complicatep-branes. These are probably
.Ther.efore, the zero eigenvalue is 16—folq degenerate. Writtepu|ated to one another by various dualities.

in this form the reference state is covariant unde( D), Any 11D solution can be boosted to a 12D covariant form
but yet it is equivalent to the 11D ref(_arence state in 26) . by applying an overall SQ0,2 transformation and then

up to a S@10,2 boost. Combining this refe_rence state W|th_ identifying the Zy v, Zi; .. In the present solution

the fact that the 32 supercharges form a spinor representation %2 176 )

of SQ(10,2, the resulting supermultiplet with a 256 degen- oth of these are nonzero, albeit of special forms rather than

eracy (just as in 11D supergravitymust also be consistent being the most general. It is because of their special form
with SQ(10,2). that the degeneracy of the zero eigenvalue is still 16. With

more general forms the degenerdand hence the size of the
shorter supermultipletsvould be different.

deS,=[P?P'?—(P-P")2]%®. (24)

Therefore, | conjecture that there should be a reformula
tion (or generalization, perhaps, by including auxiliary figlds
of 11D supergravity that is consistent with more hidden di-
mensions, is S0,2 covariant, and contains the same 256 ]
physical components of fields that are present in 11D super- 2. Excited levels
gravity. However, for covariance, the fields should be al- The excited states of type llAperturbative string give
lowed to depend on more than 11 dimensions, and be corbnly a subset of the states of the full secret theory. We have
sistent with the covariant central extensions given above ionjectured in the past that the correct set should correspond
the form of equations of motion for the fields to supermultiplets in 11D and found some evidence for this

_ o [9,5]. We now madify this conjecture because we expect the
P2¢+...=0, P-P'¢+---=0. (25 full theory to be consistent with representations of the supe-
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ralgebra as described in Sec. Ill. Then, the excited levels 0 —-wg —-kg 0 O
should be classified according to reference states with non-

trivial R, i, but the same form d8, as the base. The well- Wo 0 —kp O 0 0
known (perturbative excited string states should fill part of K kio O Ppo p1 -+ Ps
these multiplets. The remainder of the multiplet is a predic- Zun=| O 0 -pp 0 O 0
tion about the properties of the underlying secret theory, as 0 0 “p, 0 0 0
seen in examples in our previous work. 1 0

0 0 -pg 0 0O O O

32
B. Example of a vector central extension (32

Consider superstring theory of type Il compactified to gD.gwes
The base state is labeled with a 9D momentn a quan-
tized Kaluza-Klein momentunky, and a winding number  deS=[(Mg—wg)?—k3—kZ,]%[(Mg+wg)?— k3 — k3,12,
Wy. If these are the only nontrivial central extensions then (33
they are embedded in the 120, as follows (where the

order of the indices is taken &8,N=9,10,0,0,1,2,. . . ,8) which has manifesKk ® SO(8,1) symmetry. The degeneracy

of the zero eigenvalue is still eight, hence the size of the

supermultiplet is 2. 4+2i1 . but the base has one more

0 —wy —ko 0 quantum number, and it displays the explikitisometry.
The mass formula iK invariant.
wg O 0 0
Kg 0 O Ppo P1 -+ Ps
s 0o - 0 Mg=|wo= vVk5+ki. (34)
MN= Po ,
0 0O -pp O O 0 So far, this is insufficient to also display the SO
: . 0 (c+1,1)=S0(2,1) isometry given in Eg8). As explained
there, the S@) subgroup is the same as the one appearing in
0 0 —pg 0 0 0 O K. The S@2,1) transformations mix the indices

(30 M=0',9,10. When these are applied to thgy above they

require the more general covariant férm

while ZI\-;Il...MZZO' This form is covariant under Lorentz

transformations S@,1) but noncovariant under the isome- 0 ~Wy —Kg Zeo Zex - Zog

tries of the superalgebra given in E@®). The perturbative Wy 0 —Kio Zioo0 Zio1 - Zios
string states are well known at all excited levels. The non- K K 0 D b, - p
perturbative black hole states satisfy the well-known BPS o 10 0 ! 8
condition Mg=|ko*Wg|, where M2=p2—p2. This corre- ZMN=| ~Z90 ~Zio ~Po 0 0 0
sponds to requiring the vanishing of the determinant ~Zgy —Zjn —P1 O 0
. . . 0

—Zgg —Zj08 —Pg O 0 0 0

desS=(Mo—Wo—Kg)*(Mg—Wq+ko)*(Mg+ W +Kg)® (35)
X (Mg+Wg—Kg)8, (3)  The additionalzy, ,z,q, are Lorentz vectors that are inter-

preted as positions of end points of strings in 9D as ex-

plained in Sec. Il. Therefore, they must be spacelike vectors.
which has an eightfold degeneracy for the zero eigenvaluelogether with the timelikep, =z, ,, they form a triplet
This means that eight supergenerators vanish ang, of SO(2,1). When these are included in the reference
32—8=24 of them act nontrivially on the reference state,state, we obtain a supermultiplet consistent with SO
giving a well-known shorter supermultiplet of dimension (2,1)® SO(8,1). The determinant & CyMNz,, is

24/2__ »11 11
2 _Zbosons_l_ 2fermion’s‘

First, | generalize this by including the central extension 2\ 218
P19 which is a Lorentz singlet, and whose presence is re- deS= TrZ“—(Tr—) } (36)
quired byU duality® Then 2/ |

3In this caseU = SL(2)x SO(1,1) which has the maximal com- 4Z|\+/|1_..M2=0 is still consistent with the isometries so far, but
pact subgroufK = SO(2)X Z,. UnderK the Lorentz singlet central without turning on this central extension as well, the full 12D co-
extensions form a doublek{,kqp) plus a singletg. variance remains hidden.
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The BPS determinant condition is evidently invariant underr ;, =i, 1®1®14, ly=m®0,®738®1g,
S0O(2,1)»S0(8,1), the degeneracy of the zero eigenvalue i%

eightt and the size of the supermultiplet is 0= @108 11, Fa=m©018n0 1,
2l 2 . . This supermultiplet is consistent with the I'10=T1®03®1®1s, I'i=718018 7,849,
isometries SO(2,19S0(8,1) (as well as withK) since all Fp=m0101®1;, C=1Qi0,®1®1g,

supercharges and all central extensions are complete muItipF
lets of the isometrie§for their classification in every dimen- B

sion se€5)). where theg; are purely imaginary 88 antisymmetricy

In this way we have extended the perturbative SUperStrin%atrices for the remaining seven dimensiddss the charge

multiplets to the larger supermultiplets containing nonpertur'conjugation matrix, it has the property tHaf',, is symmet-

bative states of the secret theory consistent with 12D or 13D “tor the 12D y matrices, M=0',0,1,...,10, or
Cr'yC l=—(T'w)".

I'» is a 13thy matrix that is the product of the 12Dy,
and it anticommutes with theiti.e., analogue ofys in 4D).
I'n commutes withC and I's. The chiral projector

In the examples of Sec. IV only some of the central ex-2(1+T'») serves to project to the 3232 subspace that is of

tensions were turned on. This was sufficient to illustrate thénterest for the type A sector of the theory. Since the chirally

method of investigation as well as the relevance and propeRroiected sector distinguishes the 13tmatrix, the maximal

ties of the Lorentz nonsinglet central extensions. Even witrfevanance is broken down from 13D to 12D in the type A
this limited set of examples it is clear that the spectrum an ector. . . .
multiplet structure of the secret theory is much richer tha When the antisymmetric products_ g y matrices
previously thought. More work is needed to find all the so-" MiM2---M, are multiplied by the projector &I, only
lutions of deB, g=0 and identify all the distinct shorter the 12D covariant 66>%(1+1“A)C1“,\,|1,\,|2 and 462
multiplets. The number of supersymmetries on BPS states in 1 ; :
the examples of this paper were 8,16, but all numbers from 0’ 2(1+FA)CFM1MZ,‘ M &r€ symmetric matnce-s.- There-
to 32 are possible in more general examples. The algebral@'® Only the two-index and self-duain 12D) six-index
approach outlined in this paper seems to be sufficiently pow€NSOrs can appear in the 12D type-A superalgebra. Thus,
erful to elucidate some of the nonperturbative global properSa IS @ linear combination of these as in H§). In th'sl32
ties of the secret theory. For example, by starting with™32 sulbspace we may replace eadhy by 3(1
known perturbative string states at any excitation level and” I A)l'm2(1=1'a) — yu, where we denote the 3232y
using the multiplets oS theory one can, in principle, make Matrices yv by yu=(l,ym), with y,=1 and
predictions on the spectrum of the secret theory. Some pré¢m» M=0.1,...,10 given by omitting the first; factors in
liminary examples of this type were given bef¢ge5]. Simi- ~ the expressions of the other 1, given above, i.e.,
lar considerations should also apply to scattering amplitude/0=10281®1g=C, y;0=0301®1g, etc. This form may
etc. In'S theory one finds that there are up to 13 hiddenP® used in Eq(10) to simplify it to the 11D notation of Eg.
dimensions, some of which remain hidden from the point of(g)-1 ) ) ) )
view of perturbative approaches involvipgbranes. One of 3(1+1'g) is the projector to the 32-dimensional subspace
the appealing aspects of tiSstheory approach is to treat all relevant for the type-B sector of the theol is the product
528 bosonic generators on an equal footing, thus elucidatingf the usual 10DI",y matricesI’g~1I'l';...I's. One can
the duality and hidden dimensions as simple consequences 850 Write
the isometries of the maximally extended superalgebra.

There should be many variations 8ftheory by taking
some of the 528 bosonic generators to be non-Abelian. Some
of them may also have nontrivial commutation relations with ] )
the supergeneratof41]. Such variations of the superalgebra I'e commutes with eacti'i= (I'o,I';0,I's) and anticom-
must be related to the geometrical properties of the backutes withC and each’,=(I'o,I'y, ... .I')
ground in which thep-branes propagate, as opposed to the
flat background assumed in the present paper. Evidently, the
representation theory of the corresponding superalgebra will
be more difficult but more interesting. In this way it should ) o
be possible to find relations between the resultdviof F, Therefore, this projection breaks the symmetry from 13D to
andsS theories. 10D® 3D since it treats the 3D differently than the 10D. The

threel’; may be regarded as thematrices for a 3D hidden
Minkowski space just as the tdh, are they matrices for the
APPENDIX 10D Minkowski space. This extra space is evidently related
to the geometrical origin of the $2,R) symmetry of the
The y matrices in 12D with signaturél0,2), or in 13D  type B sector.
with signature(11,2, may be given explicitly in the follow- Sg is constructed from 528 linearly independent symmet-
ing 64X 64 purely real(Majorana representation, using di- ric 32X 32 matrices of type B. In 6464 notation these are
rect products of Pauli matrices, given by

=1®030111g, (A1)

VI. CONCLUSIONS

FB~FOVF10I‘A~FOF1 .. .Fg. (AZ)

[Fg.Ii1=0, {[s.I',}={l's,C}=0. (A3)
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1
5(1+Tg)CT (Tal)

e Lo /Ul

1
S(L4TE)CT (T

1
5(1+Tg)CL, (Tal)

where the chirally projected five-index matrices are self-

2381
1 10X9X8XT7X6 3-378
2 IX2X3%X4x5 37318
10X 9% 8 120
1x2x3 7
10X 3=30, (A4)

when p=odd. Using this identity we see easily that the fol-

dual in 10D. In the chirally projected B sector, these matricedowing commutators simplify

reduce to 3X 32 blocks which may be conveniently written

in the form of direct products of22 times 16< 16 matrices

7® v as in Eq.(12), where the X 2 part comes directly from
the first factor and the 2616 part comes from the last three

factors in they matrix expression§ in Eqs.(Al) and(A4).
One may consider S@,2=SL(2,R) rotations ofSg in

the extra 3D subspace, leaving unaffected the usual ten d.ll.
mensions. To make the connection to 13D, we give it in the

form of rotations in the 64 64 spinor space

8Sg=[€'T};, Sgl. (A5)
One can show that
T ! I'g)CT
€ ij E(l"‘ B)C TR
1 .
= §(1+FB)CFﬂl“p FAEJFijFA (AG)

1
iry, ,(§(1+FB)CFM1,__MP(FAF,(_‘,)H

:§(1+FB)CFM1,,_MpFA[e'JFi]—,(l“k_,,)]. (A7)
he last commutator is just the rule for performing rotations
in the 3D subspace. This shows that only the 3D indices
rotate under these 02) rotations embedded in 13D rota-
tions and, hence, verifies that the construction of the 528
matrices(A4) is the right one. Furthermore, this result is
consistent with using the direct product notation of Ec®).
The construction of EqA4) is useful because it exhibits the
precise embedding of the type-B space in the spinor space of
13D.

From the constructions given above, we see that the type
A and type B are different projections within the same 64
X 64 spinor space of 13D. Hence, the duality of the type-A
and type-B sectors of the theory has its origins in the spinor
space for 13D.
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