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In this work, we prove a previously published conjecture that a prescription we gave for constructing states
that implement Gauss’s law for ‘‘pure glue’’ QCD is correct. We also construct a unitary transformation that
extends this prescription so that it produces additional states that implement Gauss’s law for QCD with quarks
as well as gluons. Furthermore, we use the mathematical apparatus developed in the course of this work to
construct gauge-invariant spinor~quark! and gauge~gluon! field operators. We adapt this SU~3! construction
for the SU~2! Yang-Mills case, and we consider the dynamical implications of these developments.
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I. INTRODUCTION

The need to implement Gauss’s law in QCD and Yang-
Mills theory, and the technical problems that complicate the
implementation of Gauss’s law in non-Abelian theories have
been discussed by a number of authors@1–4#. Strategies for
implementing Gauss’s law have also been developed@5#. In
earlier work @6#, we constructed states that implement
Gauss’s law for Yang-Mills theory and QCD — in fact, for
any ‘‘pure glue’’ gauge theory, in a temporal gauge formu-
lation that has a non-Abelian SU(N) gauge symmetry. In
that work, a state vectorC uf& was defined for which

$bQ
a ~k!1J0

a~k!%C uf&50 , ~1.1!

where bQ
a (k) and J0

a(k) are the Fourier transforms of
] iP i

a(r ) @P i
a(r ) is the momentum conjugate to the gauge

field# and of the gluon color charge density

J0
a~r !5g fabcAi

b~r ! P i
c~r ! , ~1.2!

respectively. Since the chromoelectric fieldEi
a(r )

52P i
a(r ), Eq. ~1.1! expresses the momentum space repre-

sentation of the non-Abelian ‘‘pure glue’’ Gauss’s law, and
$bQ

a (k)1J0
a(k)% is referred to as the ‘‘Gauss’s law operator’’

for the ‘‘pure glue’’ case;uf& is a perturbative state annihi-
lated by] iP i

a(r ). In Ref. @6#, we exhibited an explicit form
for the operatorC: namely,

C5i exp~A! i , ~1.3!

where bracketing between double bars denotes a normal or-
der in which all gauge fields and functionals of gauge fields
appear to the left of all momenta conjugate to gauge fields.
A was exhibited as an operator-valued series in Ref.@6#. Its
form was conjectured to all orders, and verified for the first
six orders.

In the work presented here we will extend our previously
published results in the following ways: we will prove our
earlier conjecture that the stateCuf& implements the ‘‘pure
glue’’ form of Gauss’s law; we will extend our work from
the ‘‘pure glue’’ form of the theory to include quarks as well
as gluons; we will construct gauge-invariant operator-valued
spinor ~quark! and gauge~gluon! fields; and we will adapt
the QCD formulation to apply to the SU~2! Yang-Mills
theory.

II. IMPLEMENTING THE ‘‘PURE GLUE’’ FORM
OF GAUSS’S LAW

Our construction ofC in Ref. @6# was informed by the
realization that the operatorC had to implement
$bQ

a (k)1J0
a(k)%C uf&5C bQ

a (k) uf&, or equivalently that

@bQ
a ~k!, C#52J0

a~k!C1BQ
a ~k! , ~2.1!

whereBQ
a (k) is an operator product that has] iP i

a(r ) on its
extreme right and therefore annihilates the same states as
bQ
a (k), so thatBQ

a (k) uf&50 as well asbQ
a (k) uf&50.

To facilitate the discussion of the structure ofC, the fol-
lowing definitions are useful:

ai
a~r !5ATi

a ~r ! ~2.2!

denotes the transverse part of the gauge field, and

xi
a~r !5ALi

a ~r ! ~2.3!

denotes the longitudinal part, so that@ai
a(r )

1xi
a(r )#5Ai

a(r ). We also will make use of the combina-
tions

Xa~r !5F ] i
]2
Ai

a~r !G , ~2.4!

and

Q~h!i
b ~r !5Faib~r !1

h

h11
xi

b~r !G , ~2.5!

whereh is an integer-valued index.
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We will furthermore refer to the composite operators

c~h!i
g ~r !5~21!h21f ~h!

aW bgR~h!
aW ~r !Q~h!i

b ~r ! , ~2.6!

in whichR(h)
aW (r ) is given by

R~h!
aW ~r !5 )

m51

h

Xa[m]~r ! , ~2.7!

and f (h)
aW bg is the chain of SU~3! structure functions

f ~h!
aW bg5 f a[1]bb[1] f b[1]a[2]b[2] f b[2]a[3]b[3]•••

3 f b[h22]a[h21]b[h21] f b[h21]a[h]g , ~2.8!

where repeated indices are to be summed. Forh51, the

chain reduces tof (1)
aW bg[ f abg; and forh50, f (0)

aW bg[2db,g .
Since the only properties of the structure functions that we
will use is their antisymmetry and the Jacobi identity, the
formalism we develop will be applicable to SU~2! as well as
to other models with an SU(N) gauge symmetry.

The composite operators introduced so far can help us to
understand qualitatively howC can implement Eq.~1.1!. We
observe, for example, the product

c~1!i
g ~r !5 f abgXa~r !Q~1!i

b ~r !

5 f abgXa~r ! @ai
b~r !1 1

2 xi
b~r !# , ~2.9!

which as part of the expression

A15 igE dr c~1!i
g ~r !P i

g~r ! , ~2.10!

has the property that its commutator withbQ
a (k),

FbQa ~k!,igE dr c~1!i
g ~r !P i

g~r !G
52g fabgE dr e2 ik–rAi

b~r !P i
g~r !

2
g

2
f abg E dr e2 ik–rXb@] iP i

g~r ! #,

~2.11!

generates2J0
a(k) when it acts on a state annihilated by

bQ
a (k). The expression exp(A1) would therefore have been
an appropriate choice forC, were it not for the fact that the
commutator@bQ

a (k), A1# fails to commute withA1. When
Eq. ~1.1! is applied to a candidateCcand5exp(A1), the
commutator@bQ

a (k), A1# is often produced within a polyno-
mial consisting of A1 factors — for example
A1
(n2s)@bQ

a (k), A1# A1
s . @bQ

a (k), A1# does not commute
with A1 , and cannot move freely to annihilate the state at the
right of Ccand, thereby excluding exp(A1) as a viable choice
for C.

The normal ordering denoted by bracketing between
double bars eliminates this problem, but only at the expense
of introducing another problem in its place—one that is more
benign, but that nevertheless must be addressed. When nor-

mal ordering is imposed, the result of commuting
iexp(A1)i with bQ

a (k) is not the formation ofJ0
a(k) to the

left of Ccand, but the formation of only
f abg*dr e2 ik–r Ai

b(r ) to the left of it, and ofP i
g(r ) to the

extremeright of all the gauge fields in the series representa-
tion of the exponential. Unwanted terms will be generated as
P i

g(r ) is commuted, term by term, from the extreme right of
Ccand to the extreme left to form the desiredJ0

a(k). To com-
pensate for these further terms, we modifyCcand by adding
additional expressions toA1 to eliminate the unwanted com-
mutators generated asP i

g(r ) is commuted from the right to
the left-hand sides of operator-valued polynomials. The
question naturally arises whether the process of adding terms
to remove the unwanted contributions from earlier ones,
comes to closure — whether an operator-valued seriesA,
that leads to aC for which Eq. ~1.1! is satisfied, can be
specified to all orders. In Ref.@6# we conjectured that this
question can be answered affirmatively, by formulating a re-
cursive equation forA, which we verified to sixth order.

In Ref. @6# we representedA as the seriesA5(n51
` An ;

we also showed that the requirement thatA must satisfy to
implement Eq.~1.1! can be formulated as

UUFbQa ~k!,(
n52

`

AnGexp~A! UU 2 UU g fabgE dr e2 ik–rAi
b~r !

3@exp~A!, P i
g~r !#UU'0 , ~2.12!

where' indicates a ‘‘soft’’ equality, that only holds when
the equation acts on a stateuf& annihilated bybQ

a (k). The
commutator@exp(A), P i

g(r )# in Eq. ~2.12! reflects the fact
that when the gluonic ‘‘color’’ charge density is assembled
to the left of the candidateC, the momentum conjugate to
the gauge field must be moved from the extreme right to the
extreme left ofi exp(A) i . SinceA is a complicated multi-
linear functional of the gauge fields, but has a simple linear
dependence onP i

g(r ), it is useful to represent it as

A5 i E dr Ai
g~r !P i

g~r ! , ~2.13!

where

Ai
g~r !5 (

n51

`

gnA~n!i
g ~r ! , ~2.14!

and theA(n) i
g (r ) are elements in a series whose initial term is

A(1)i
g (r )5c (1)i

g (r ). All the A(n) i
g (r ) consist of gauge fields

and functionals of gauge fields only; there are no conjugate
momenta,P i

g(r ), in any of theA(n) i
g (r ). We also showed in

Ref. @6# that Eq.~2.12! is equivalent to

@bQ
a ~k!, An#'g fabgE dr e2 ik–r Ai

b~r ! @An21 , P i
g~r !# ,

~2.15!

for An with n.1, where the An form the series
A5(n51

` An , and eachAn can be represented as
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An5 ignE dr A~n!i
g ~r !P i

g~r ! . ~2.16!

If An satisfies Eq.~2.15!, then theC defined in Eq.~1.3! will
also necessarily satisfy Eq.~1.1!, and the stateC uf& will
implement the non-Abelian ‘‘pure glue’’ Gauss’s law.

In Ref. @6# we gave the form ofA as a functional of the
auxiliary operator-valued constituents

M~h!
aW ~r !5 )

m51

h
] j
]2
Aj

a[m]~r !5 )
m51

h

Ya[m]~r !

5Ya[1]~r ! Ya[2]~r !•••Ya[h]~r ! , ~2.17!

and

B~h!i
b ~r !5ai

b~r !1S d i j2
h

h11

] i] j
]2 DAj

b~r ! , ~2.18!

where

Ya~r !5
] j
]2
Aj

a~r ! and Y~s!
a ~r !5

] j
]2
A~s! j

a ~r ! .

~2.19!

The defining equation forA is the recursive

A5 (
h51

`
igh

h! E dr $c~h!i
g ~r !

1 f ~h!
aW bg M~h!

aW ~r ! B~h!i
b ~r !%P i

g~r ! . ~2.20!

In Ref. @6#, we presented this form as a conjecture that we
had verified to sixth order only. In this work, we will prove
thatC uf& satisfies the ‘‘pure glue’’ Gauss’s law by show-
ing that theA given in Eq.~2.20! satisfies Eq.~2.15!.

The form ofA suggests that the proposition that it satis-
fies Eq.~2.15! is well suited to an inductive proof. We ob-
serve that two kinds of terms appear on the right-hand side of
Eq. ~2.20!. One is the inhomogeneous termc (h) i

g (r ); the

other is the product ofB(h) i
b (r ) andM(h)

aW (r ). B(h) i
b (r ) is a

functional ofAi
b(r ), andM(h)

aW (r ) is a multilinear functional
of Yb(r ), which is given as a functional ofAi

b(r ) in Eq.
~2.19!. It is useful to examine ther th order components of

M(h)
aW (r ) andB(h) i

b (r ). These are given, respectively, by

M~h,r !
aW ~r !5Q~r2h! (

r [1],•••,r [h]
d r [1]1•••1r [h]2r

3 )
m51

h

Y~r [m] !
a[m] ~r ! , ~2.21!

and

B~h,r !i
b ~r !5d r ai

b~r !1S d i j2
h

h11

] i] j
]2 DA~r ! j

b ~r ! ,

~2.22!

where the subscriptr is an integer-valued index that labels
the order in the expansion ofAi

g(r ), andd r is the Kronecker

‘‘ d ’’ that vanishes unlessr50. In Eqs. ~2.17! and ~2.21!,
h is a ‘‘multiplicity index’’ that defines the multilinearity of

M(h)
aW (r ) in Yb(r ). Equations~2.20!–~2.22! demonstrate that

anAr that appears on the left-hand side~LHS! of Eq. ~2.20!
is given in terms of ther th order inhomogeneous term
c (r ) j

g (r )P j
g(r ), andA(r 8) j

b terms on the RHS of this equation
in which r 8,r . To emphasize this very crucial observation,
we note that in addition to thegh that appears as an overall

factor in Eq.~2.20!, eachAj
b(r ) inM(h)

aW (r ) andB(h) i
b carries

its own complement of coupling constants —gr for each
orderr . The r th order term on the LHS of Eq.~2.20!, there-

fore, depends on RHS contributions fromM(h)
aW (r ) and

B(h) i
b (r ) whose orders do not add up tor , but only to

r2h. Since the summation in Eq.~2.20! begins withh51,
the highest possible order ofA(r 8) j

g that can appear on the
RHS of Eq.~2.20!, whenAr is on the LHS, isA(r21) j

g — and

that must stem from theM(h)
aW (r ) with the multiplicity index

h51. Contributions fromM(h)
aW (r ) with higher multiplicity

indices are restricted toA(r 8) j
g with even lower orderr 8. This

feature of Eq.~2.20! naturally leads us to consider an induc-
tive proof — one in which we assume Eq.~2.20! for all Ar
with r<N, and then use that assumption to prove it forAr
with r5N11.

The fact that Eq.~2.15! is a ‘‘soft’’ equation, is an im-
pediment to an inductive proof of the proposition thatAn ,
defined by Eq.~2.20!, satisfies it. In order to carry out the
needed inductive proof, we must infer correct ‘‘hard’’ gen-
eralizations of both these equations, in whichA is replaced
by i*dr Ai

g(r ) Vi
g(r ), whereVi

g(r ) is any field that trans-
forms appropriately, and] iVi

g(r ) is not required to annihilate
any states. The generalization we seek is an exact equality
between operator-valued quantities — one that is true in gen-
eral, and not only when both sides of the equation project on
a specified subset of states. Such a generalization would, in
particular, allow us to use many different spatial vectors in
the role ofVi

g(r ) in the course of the inductive proof.
We have made the necessary generalization, and have ar-

rived at the defining equation for thenth order term of
i*dr Ai

g(r )Vi
g(r ), that generalizes Eq.~2.20!:

ignE drA~n!i
g ~r !Vi

g~r !

5
ign

n! E dr c~n!i
g ~r !Vi

g~r !

1 (
h51

igh

h!
f ~h!

aW bg (
u50

(
r5h

d r1u1h2n

3E dr M~h,r !
aW ~r !B~h,u!i

b ~r !Vi
g~r ! . ~2.23!

The generalization of Eq.~2.15! —we make use of the
configuration-space representation of the Gauss’s law opera-
tor in this case, instead of its Fourier transform — is
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i E dr 8@] iP i
a~r !,A~n! j

g ~r 8!#Vj
g~r 8!1dn21f

amg Ai
m~r !Vi

g~r !2 (
h51

(
r5h

d r1h2~n21!

B~h!

h!
f amcf ~h!

aW cgAi
m~r !

3
] i
]2

@M~h,r !
aW ~r !] jVj

g~r !#1 (
h50

(
t51

(
r5h

d r1t1h2n~21! t21
B~h!

h! ~ t21!! ~ t11!
f ~ t !

mW al f ~h!
aW lg R~ t !

mW ~r !M~h,r !
aW ~r !] iVi

g~r !

1 f amdAi
m~r ! (

h50
(
t51

(
r5h

d r1t1h2~n21!~21! t
B~h!

h! ~ t11!!
f ~ t !

nWdl f ~h!
aW lg ] i

]2
@R~ t !

nW ~r !M~h,r !
aW ~r !] jVj

g~r !#

52 i f amsAi
m~r !E dr 8@P i

s~r !, A~n21! j
g ~r 8!#Vj

g~r 8! , ~2.24!

where B(h) denotes thehth Bernoulli number. Equation
~2.24! relatesA(n) j

g (r ) with n>1, on the LHS of the equa-

tion, toA(n21) j 8
g8 (r 8) on the RHS;A(n) j

g (r ) with n50 is not

required for the representation ofAi
g(r ) given in Eq.~2.14!,

and therefore does not have to be considered.A(n) j
g (r )

with n51 is required, but @] iP i
a(r ),A(1) j

g (r 8)# cannot
be described properly by Eq.~2.24!, unless A(0) j

g (r )
on the RHS of Eq.~2.24! is given an appropriate defini-
tion. The only equation like Eq.~2.24!, but with
*dr 8@] iP i

a(r )A(1) j
g (r 8)#Vj

g(r 8) appearing on its LHS, is Eq.
~2.11! with P i

g(r ) replaced byVi
g(r ). We have formulated

Eq. ~2.24! so that it includes the case of
*dr 8@] iP i

a(r ),A(1) j
g (r 8)#Vj

g(r 8) on the LHS, by including
the RHS of Eq.~2.11! for then51 case. To include that case

correctly, we define the degenerateM(h,r )
aW (r ) with

h5r50 asM(0,0)
aW (r )51, and the degenerateA(0) j

g (r )50.
We will refer to Eq.~2.24! as the ‘‘fundamental theorem’’
for this construction ofC.

The general plan for the inductive proof of Eq.~2.24! is as
follows: We assumeEq. ~2.24! for all values ofn<N. We
then observe that, in then5N11 case to be proven, the
RHS of Eq. ~2.24! becomes RHS(N11)

52 i f amsAi
m(r )*dr 8@P i

s(r ), A(N) j
g (r 8)#Vj

g(r 8). We use
Eq. ~2.23! to substitute for theA(N) j

g Vj
g in RHS(N11) , and

evaluate the resulting commutators@P i
s(r ), c (N) j

g (r 8)#,

@P i
s(r ), M(h,r )

aW (r 8)#, and @P i
s(r ), B(h,u) j

b (r 8)#. Since
c (N) j

g (r 8) is a known inhomogeneity in Eq.~2.23!,
@P i

s(r ), c (N) j
g (r 8)# can be explicitly evaluated. In expanding

the f (h)
aW bg@P i

s(r ), M(h,r )
aW (r 8)# that result from the substitu-

tion of Eq. ~2.23! into RHS(N11) , we make use of the iden-
tity

f ~h!
aW dg (

r5h
d r1h1u2N@Q~r !,M~h,r !

aW ~r 8!#

52@P~a,b[h21] !
~0! f adef ~h21!

bW eg #

3 (
p5h21

(
r [h]51

dp1r [h]1u1h2N@Q~r !, Y~r [h] !
a ~r 8!#

3M~h21,p!
bW ~r 8! , ~2.25!

whereQ(r ) is any arbitrary operator; at times, the commu-

tator @Q(r ) ,M(h,r )
aW (r 8)# will represent a partial derivative

] jM(h,r )
aW (r 8). P(a,b[h21])

(0) represents a sum over permuta-
tions over the indices labeling theY(r [h])

a[h] (r 8) factors that

constituteM(h,r )
aW (r 8), as shown in Eq.~2.17!. P(a,b[h21])

(0) is
defined by

@P~e,b[h21] !
~0! f ed f f ~h21!

bW fg #M~h21!
bW

5 (
s50

h21

f ~s!
bW duf uev f ~h2s21!

sW vg M~s!
bW M~h2s21!

sW . ~2.26!

Equations~2.25! and ~2.26! apply not only to those specific

cases, but also to all other operators — such asR(h)
aW (r 8) —

that similarly are products of factors, identical except for
their Lie group indices contracted over chains of structure
functions.

With the substitution of Eq.~2.23! into RHS(N11) , and
extensive integration by parts, we have replaced the commu-
tator @P i

s(r ), A(N) j
g (r 8)# which appears inRHS(N11) , with

products of chains ofA(n8) j
b8 (r 8) and one commutator

@P i
s(r ), A( l ) j

g (r 8)# with l<N21. Although the
@P i

s(r ), A(N) j
g (r 8)# in RHS(N11) is not covered by the in-

ductive axiom — it is the RHS of the equation for the
n5N11 case — the @P i

s(r ), A( l ) j
g (r 8)# with l<N21,

which have been substituted intoRHS(N11) , are covered by
this axiom. We can therefore use the inductive axiom to
replace all these latter commutators by their corresponding
left-hand side equivalents from Eq.~2.24!. After extensive
algebraic manipulations, we can demonstrate that
RHS(N11) has been transformed into theleft-hand sideof
Eq. ~2.24! for the case in which alln have been replaced by
n5N11. This, then, completes the inductive proof of Eq.
~2.24!. The details of the argument are given in two appen-
dices. Appendix A proves some necessary lemmas; Appen-
dix B proves the fundamental theorem.

Finally, in this section, we will make some general re-
marks about the stateC uf&. It is important to realize that
C uf& implements the non-Abelian Gauss’s law, but that it
is not an eigenstate of the QCD Hamiltonian. Also,C uf&
does not have a bounded norm. This follows from the fact
that
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@$bQ
a ~k!1J0

a~k!%,Ai
b~r !#5@dabki2 ig f acbAi

c~r !#

3exp@2 ik•r # ~2.27!

and that, because Eq.~1.1! holds, the matrix element

M5^fu C!@$bQ
a ~k!1J0

a~k!%,Ai
b~r !#C uf& ~2.28!

can be represented either asM5^fu C!
„dabki

2 ig f acbAi
c(r )…C uf& or, alternatively, as

M5@0•^fu C! C uf&#. The apparent incompatibility be-
tween these two expressions forM has led some authors to
argue that QCD in the temporal gauge is inconsistent@7#.
However, as was pointed out by Rossi and Testa@8#, the
appropriate inference from these two identities is not that
QCD in the temporal gauge is inconsistent, but that the
gauge-invariant states that implement the non-Abelian
Gauss’s law do not have bounded norms. The quantity
@0•^fu C! C uf& # only makes sense when the product of
0 and an infinite norm is carefully defined. This has been
done in Ref.@8# in the context of a functional formulation in
which a redundancy of gauge-invariant states is eliminated
with a constraint that controls the residual gauge invariance
that remains after the temporal gauge has been selected. The
identical argument — that the norms of the states that imple-
ment Gauss’s law are unbounded, but that the criticism made
in Ref. @7# is unjustified — was also made in the context of
an analogy with ordinary quantum mechanics@9#. With
proper care, states with unbounded norms can be used in
canonical formulations. Even theuf& states, whose structure
was given in Ref.@6#, have unbounded norms and were used
in connection with the Fermi formulation of the subsidiary
condition for QED in covariant gauges@10#.

III. THE INCLUSION OF QUARKS

In Eq. ~1.1!, we have implemented the ‘‘pure glue’’ form
of Gauss’s law. The complete Gauss’s law operator, when
the quarks are included as sources for the chromoelectric
field, takes the form

Ĝa~r !5] iP i
a~r !1g fabcAi

b~r !P i
c~r !1 j 0

a~r ! , ~3.1!

where

j 0
a~r !5g c†~r !

la

2
c~r ! , ~3.2!

and where thela represent the Gell-Mann matrices. To
implement the ‘‘complete’’ Gauss’s law—a form that incor-
porates quark as well as gluon color—we must solve the
equation

Ĝa~r ! Ĉ uf&50 . ~3.3!

Our approach to this problem will be based on the fact that
Ĝa(r ) andGa(r ) are unitarily equivalent, so that

Ĝa~r !5UC Ga~r ! UC21 , ~3.4!

whereUC5eC0eC̄ and whereC0 and C̄ are given by

C05 i E dr Xa~r ! j 0
a~r ! and C̄5 i E dr Ya~r ! j 0

a~r ! .

~3.5!

We can demonstrate this unitary equivalence by noting that
Eq. ~3.4! can be rewritten as

e2C0 Ĝa~r ! eC05eC̄ Ga~r ! e2 C̄ . ~3.6!

In this form, the unitary equivalence can be shown to be a
direct consequence of the fundamental theorem—i.e., Eq.
~2.24!. We observe that the LHS of Eq.~3.6! can be ex-
panded, using the Baker-Hausdorff-Campbell~BHC! theo-
rem, as

e2C0 Ĝa~r ! eC05Ĝa~r !1S~1!
a 1•••1S~n!

a 1••• ,
~3.7!

where S(1)
a 52@C0 , Ĝa(r )# and S(n)

a 52(1/n)@C0 , S(n21)
a #.

We observe that

S~1!
a 52Fda,c1g fabcXb~r !1g fabcAi

b~r !
] i
]2G j 0c~r ! ,

~3.8!

and that

S~n!
a 5

~21!n11

n ! S @gn21f ~n21!
aW ag R~n21!

aW ~r !

1gn f ~n!
aW ag R~n!

aW ~r !# j 0
g~r !1gnf abc f ~n21!

aW cg Ai
b~r !

3
] i
]2

@R~n21!
aW ~r ! j 0

g~r !# D . ~3.9!

Equation ~3.9! shows that twognf (n)
aW ag R(n)

aW (r ) j 0
g(r ) terms

will appear in this series: one inS(n)
a , and one inS(n11)

a . The
sum of these terms will have the coefficient
@1/n!21/(n11)!#51/(n11)(n21)!. When the BHC se-
ries is summed, we find that

e2C0 Ĝa~r ! eC05Ĝa~r !2 j 0
a~r !2g fabcAi

b~r !
] i
]2
j 0
c~r !2 (

n51
~21!ngn

1

~n21!! ~n11!
f ~n!

aW ag R~n!
aW ~r ! j 0

g~r !1g fabcAi
b~r !

3 (
n51

~21!ngn
1

~n11!!
f ~n!

aW cg ] i
]2

@R~n!
aW ~r ! j 0

g~r !# . ~3.10!

To prepare for the evaluation ofeC̄ Ga(r ) e2 C̄, the RHS of Eq.~3.6!, we multiply both sides of Eq.~2.24! for thenth order
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term,A(n) i
g (r ), by gn, and then sum over the integer-valued indicesr andn ~in that order!. The result—a formulation of the

fundamental theorem that no longer applies to the individual orders,A(n) j
g (r ), but to their sum,Aj

g(r )—is

i E dr 8@] iP i
a~r !, Aj

g~r 8!# Vj
g~r 8!1 ig f abdAi

b~r !E dr 8@P i
d~r !, Aj

g~r 8!# Vj
g~r 8!

52g famd Ai
m~r ! Vi

d~r !1 (
h51

gh11B~h!

h!
f abcf ~h!

aW cg Ai
b~r !

] i
]2

@M~h!
aW ~r ! ] jVj

g~r !#

2 (
h50

(
t51

~21! t21gt1h
B~h!

h! ~ t21!! ~ t11!
f ~ t !

mW al f ~h!
aW lg R~ t !

mW ~r ! M~h!
aW ~r ! ] iVi

g~r !

2g fabdAi
b~r ! (

h50
(
t51

~21! tgt1h
B~h!

h! ~ t11!!
f ~ t !

mW dl f ~h!
aW lg ] i

]2
@R~ t !

mW ~r ! M~h!
aW ~r ! ] jVj

g~r !# . ~3.11!

If we again use the BHC expansion, as in Eq.~3.7!, but this time to represent

eC̄ Ga~r ! e2 C̄5Ga~r !1S̄~1!
a 1•••1S̄~n!

a 1•••, ~3.12!

we find that the first order term,S̄(1)
a can be obtained directly from Eq.~3.11! and is

S̄~1!
a 52g famg Ai

m~r !
] i
]2
j 0
g~r !1(

s51

gs11B~s!

s!
f abcf ~s!

aW cg Ai
b~r !

] i
]2

@M~s!
aW ~r ! j 0

g~r !#

2(
s50

(
t51

~21! t21gt1s
B~s!

s! ~ t21!! ~ t11!
f ~ t !

mW al f ~s!
aW lg R~ t !

mW ~r ! M~s!
aW ~r ! j 0

g~r !

2g fabd Ai
b~r ! (

s50
(
t51

~21! tgt1s
B~s!

s! ~ t11!!
f ~ t !

mW dl f ~s!
aW lg ] i

]2
@R~ t !

mW ~r ! M~s!
aW ~r ! j 0

g~r !# ; ~3.13!

the kth order term is

S̄~k!
a 5

gk

k !
f amdf ~k21!

aW dg Ai
m~r !

] i
]2

@M~k21!
aW ~r ! j 0

g~r !#1(
s51

gs1kB~s!

s! k!
f abcf ~s1k21!

aW cg Ai
b~r !

] i
]2

@M~s1k21!
aW ~r ! j 0

g~r !#

2(
s50

(
t51

~21! t21gt1s1k21
B~s!

s!k! ~ t21!! ~ t11!
f ~ t !

mW al f ~s1k21!
aW lg R~ t !

mW ~r ! M~s1k21!
aW ~r ! j 0

g~r !

2g fabd Ai
b~r !(

s50
(
t51

~21! tgt1s1k21
B~s!

s!k! ~ t11!!
f ~ t !

mW dl f ~s1k21!
aW lg ] i

]2
@R~ t !

mW ~r ! M~s1k21!
aW ~r ! j 0

g~r !# . ~3.14!

When we sum over the entire series, we can change variables in the integer-valued indices toh5k1s21, and perform the
summation overh and s, with k5h2s11. The summation overs then involves nothing but the Bernoulli numbers and
fractional coefficients, so that we obtain

eC̄ Ga~r ! e2 C̄5Ga~r !2g fabg Ai
b~r !

] i
]2
j 0
g~r !1 (

h51
gh11D0

h~h! f abcf ~h!
aW cg Ai

b~r !
] i
]2

@M~h!
aW ~r ! j 0

g~r !#

1 (
h50

(
t51

~21! tgt1h
D0

h~h!

~ t21!! ~ t11!
f ~ t !

mW al f ~h!
aW lg R~ t !

mW ~r ! M~h!
aW ~r ! j 0

g~r !

2g famd Ai
m~r ! (

h50
(
t51

~21! tgt1h
D0

h~h!

~ t11!!
f ~ t !

mW dl f ~h!
aW lg ] i

]2
@R~ t !

mW ~r ! M~h!
aW ~r ! j 0

a~r !# , ~3.15!
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whereD0
h(h) is the sum over Bernoulli numbers defined in

Eq. ~B18!. D0
h(h) has the valuesD0

h(h)50 for hÞ0, and

D0
0(0)51. Sincef (0)

aW lg52dl,g , we find that substitution of
these values into Eq.~3.15! reduces it identically to Eq.
~3.10! and thereby proves Eqs.~3.4! and~3.6!, demonstrating
the unitary equivalence ofĜa(r ) andGa(r ).

The demonstration of unitary equivalence ofĜa(r ) and
Ga(r ) enables us to assign two different roles toGa(r ). On
the one hand,Ga(r ) can be viewed as the Gauss’s law op-
erator for ‘‘pure glue’’ QCD andĜa(r ) as the Gauss’s law
operator for the theory that includes quarks as well as gluons.
But Ga(r ) can also be viewed as the Gauss’s law operator for
QCDwith interacting quarks and gluons, in a representation
in which all operators and states have been transformed with
a similarity transformation that transformsĜa(r ) into Ga(r )
and that similarly transforms all other operators and states as
well, but that leaves matrix elements unchanged. We will
designate the representation in whichĜa(r ) represents the
Gauss’s law operator for QCD with quarks as well as gluons,
and in which Ga(r ) represents the ‘‘pure glue’’ Gauss’s
law operator, as the ‘‘common’’ orC representation. The
unitarily transformed representation, in whichGa(r ) repre-
sents the Gauss’s law operator for QCD with interacting
quarks and gluons, will be designated theN representation.
We can use the relationship between these two representa-
tions to construct states that implement the ‘‘complete’’
Gauss’s law—Eq.~3.3!—from

Ga~r ! C uf&50, ~3.16!

which is the ‘‘pure glue’’ form of Gauss’s law in theC rep-
resentation. We can simply view Eq.~3.16! as the statement
of the complete Gauss’s law—the version that includes in-
teracting quarks and gluons—but in theN representation. In
order to transform Eq.~3.16!—now representing Gauss’s law
with interacting quarks and gluons—from theN to the C
representation, we make use of the fact that

Ĝa~r ! Ĉ uf&5UC Ga~r ! UC21 UC C uf&50 , ~3.17!

identifying Ĉ uf&5UC C uf& as a state that implements
Gauss’s law for a theory with quarks and gluons, in theC
representation. In Sec. IV, we will discuss the relation be-
tween gauge invariance and the implementation of Gauss’s
law. As was reiterated in Ref.@4#, the Gauss’s law operator is
the generator of local gauge transformations—which are
time-independent in the temporal gauge—so that functional
integrals over gauge-invariant states are annihilated by the
Gauss’s law operator. The apparatus we developed in this
and preceding sections for constructing states that implement
Gauss’s law will therefore be instrumental in finding explicit
operator-valued representations of gauge-invariant spinor
and gauge fields.

IV. GAUGE-INVARIANT SPINOR AND GAUGE FIELDS

We can apply the unitary equivalence demonstrated in the
preceding section to the construction of gauge-invariant
spinor and gauge field operators. We observe that Gauss’s
Law has a central role in generating local gauge transforma-

tions, in which the operator-valued gauge and spinor fields in
a gauge theory—QCD in this case—are gauge-transformed
by an arbitrary c-number fieldva(r ) consistent with the
gauge condition that underlies the canonical theory. In this,
the temporal gauge, such gauge transformations are imple-
mented by

O~r !→O8~r !5expS 2
i

gE Ĝa~r 8!va~r 8! dr 8DO~r !

3expS igE Ĝa~r 8! va~r 8! dr 8D , ~4.1!

whereva(r ) is time-independent, and whereO(r ) represents
any of the operator-valued fields of the gauge theory and
O8(r ) its gauge-transformed form@11#. Equation~4.1! ap-
plies to QCD with quarks and gluons, and is expressed in the
C representation. It is obvious that any operator-valued field
that commutes withĜa(r ) is gauge-invariant.

We can also formulate the same gauge transformations in
theN representation, in which case they take the form

ON~r !→ON8 ~r !5expS 2
i

gE Ga~r 8! va~r 8! dr 8DON~r !

3expS igE Ga~r 8! va~r 8! dr 8D , ~4.2!

whereON(r ) now represents a spinor or gauge field in the
N representation. Equation~4.2! has the same form as the
equation that implements gauge-transformations for ‘‘pure
glue’’ QCD in theC representation, but it has a very different
meaning. In Eq.~4.2!, the operator-valued fieldON(r ), and
Ga(r ) which here represents theentireGauss’s law — quarks
and gluons included — both are in theN representation.

It is easy to see that the spinor fieldc(r ) is a gauge-
invariant spinor in theN representation, becausec(r ) and
Ga(r 8) trivially commute. To producecGI(r ), this gauge-
invariant spinor transposed into theC representation, we
make use of

cGI~r !5UC c~r ! UC21 and cGI
† ~r !5UC c†~r ! UC21 .

~4.3!

We can easily carry out the unitary transformations in Eq.
~4.3! to give

cGI~r !5VC~r ! c~r ! and cGI
† ~r !5c†~r ! VC

21~r ! ,
~4.4!

where

VC~r !5expS 2 igYa~r !
la

2 DexpS 2 igXa~r !
la

2 D ,

~4.5!

and

VC
21~r !5expS igXa~r !

la

2 DexpS igYa~r !
la

2 D . ~4.6!

Because we have given an explicit expression forYa(r ) in
Eqs. ~2.19! and ~2.20!, Eq. ~4.4! represents complete, non-
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perturbative expressions for gauge-invariant spinors in the
C representation. We can, if we choose, expand Eqs.~4.4! to
arbitrary order. We then find that toO(g3), we agree with
Refs. @12,13# in which a perturbative construction of a
gauge-invariant spinor is carried out toO(g3). Furthermore,
in the C representation,c(r ) gauge-transforms as

c~r !→c8~r !5expS iva~r !
la

2 Dc~r ! . ~4.7!

SincecGI(r ) has been shown to be gauge-invariant, it imme-
diately follows thatVC(r ) gauge-transforms as

VC~r !→VC~r !expS 2 iva~r !
la

2 D and

VC
21~r !→expS iva~r !

la

2 DVC21~r ! . ~4.8!

The procedure we have used to construct gauge-invariant
spinors is not applicable to the construction of gauge-
invariant gauge fields, because we do not have ready access
to a form of the gauge field that is trivially gauge invariant in
either theC or theN representation. We will, however, dis-
cuss two methods for constructing gauge-invariant gauge
fields. One method is based on the observation that the states
uf& for which

ĜaĈuf&5ĜaUCCuf&50 ~4.9!

include any stateufA
T i
b (r )& in which the transverse gauge

field AT i
b (r ) acts on anotheruf& state. This is an immediate

consequence of the fact thatĜa Ĉ5ĈbQ
a (k)1BQ

a (k), and
that AT i

b (r ) trivially commutes with] iP i
a(r 8). We use the

commutator algebra for the operator-valued fields to maneu-
ver the transverse gauge field, along with all further gauge
field functionals generated in this process, to the left of
UCC in UCCAT i

b (r ) uf&. We then obtain the result that

ĈAT i
b ~r !uf&5AGI i

b ~r !Ĉuf&, ~4.10!

whereAGI i
b (r ) is a gauge-invariant gauge field created in the

process of commutingAT i
b (r ) past theC to its left. The

gauge-invariance ofAGI i
b (r ) follows from the fact that the

Gauss’s law operatorĜa annihilates both sides of Eq.~4.10!.
Equations ~4.9! and ~4.10! require that the commutator

@ Ĝa, AGI i
b (r ) #50, and it then follows directly from Eq.

~4.1! thatAGI i
b (r ) is gauge-invariant. It only remains for us

to find an explicit expression forAGI i
b (r ). We first observe

from Eqs.~3.4! and ~3.5! that the gauge field and all func-
tionals of gauge fields commute withUC . We further see that

AGI i
b ~r !C5@C, AT i

b ~r !#1AT i
b ~r !C. ~4.11!

When we expandC as

C5uuexp~A!uu5UUexpS i E dr Ak
g~r ! Pk

g~r ! DUU511 i E dr1Ak
g~r1! Pk

g~r1!

1
~ i !2

2 E dr1 dr2 Ak1

g1~r1! Ak2

g2~r2! Pk1

g1~r1! Pk2

g2~r2!1•••1
~ i !n

n ! E dr1 dr2 ••• drn Ak1

g1~r1! Ak2

g2~r2! •••

3 Akn

gn~rn! Pk1

g1~r1! Pk2

g2~r2! ••• Pkn

gn~rn!1••• ~4.12!

it becomes evident that

@C, AT i
b ~r !#5S d i j2

] i] j
]2 DAj

b~r ! 1S d i j2
] i] j
]2 DAj

b~r ! i E dr1 Ak
g~r1! Pk

g~r1!1•••

1S d i j2
] i] j
]2 DAj

b~r !
~ i !n21

~n21! ! E dr1 dr2 ••• drn21 Ak1

g1~r1! Ak2

g2~r2! ••• Akn21

gn21~rn21!

3 Pk1

g1~r1!Pk2

g2~r2! ••• Pkn21

gn21~rn21!1•••

5S d i j2
] i] j
]2 DAj

b~r ! C , ~4.13!
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and therefore that the gauge-invariant gauge field is

AGI i
b ~r !5AT i

b ~r !1Fd i j2 ] i] j
]2 GAj

b~r !

5ai
b~r !1Ai

b~r !2] iYb~r ! . ~4.14!

Confirmation of this result can be obtained from the fact
that AGI i

b (r ) commutes withGa — and therefore also with

Ĝa. We observe that

@Ga~r !, AGI i
b ~r 8!#5FGa~r !, SAi T

b ~r 8!

1S d i j2
] i] j
]2 DAj

b~r 8! D G
5E dy $@Ga~r !, Aj

b~y!#

1@Ga~r !, Aj
b~y!#%Vi j ~y2r 8!50 ,

~4.15!

where

Vi j ~y2r 8!5S d i j2
] i] j
]2 D d~y2r 8! . ~4.16!

Equation ~4.15! follows directly from Eq. ~3.11!;
*dy @Ga(r ), Aj

b(y)# Vi j (y2r 8) can be identified as the first
line of that equation, when the integration overy in Eq.
~4.15! is identified with the integration overr 8 in Eq. ~3.11!,
and when the tensor elementVi j (y2r 8), with r 8 andi fixed,
is substituted for the vector componentVj

g in Eq. ~3.11!.
Similarly, *dy@Ga(r ), Ai

b(y)# Vi j (y2r 8) can be identified
as the second line of Eq.~3.11!. The remaining three lines of
Eq. ~3.11! vanish because] jVi j (y2r 8)50 is an identity. In
this way, Eq.~3.11! accounts for the gauge-invariance of
AGI i
b (r ).
Another method for constructing a gauge-invariant gauge

field is based on the observation thatVC(r ) can be written as
an exponential function. We can make use of the BHC theo-
rem thateuev5ew, wherew is a series whose initial term is
u1v, and whose higher order terms are multiples of succes-
sive commutators ofu andv with earlier terms in that series.
Since the commutator algebra of the Gell-Mann matrices
la is closed, VC(r ) must be of the form
exp@2igZa(la/2)#, where

expF2 igZa
la

2 G5expF2 igȲa
la

2 GexpF2 igXa
la

2 G
~4.17!

andZa is a functional of gauge fields~but not of their ca-
nonical momenta!. VC(r ) therefore can be viewed as a par-
ticular case of the operator exp@iva(r )(la/2)# that gauge-
transforms the spinor fieldc(r ); va in this case isZa and
therefore a functional of gauge fields that commutes with all
other functionals of gauge and spinor fields. Moreover, we
can refer to the Euler-Lagrange equation~in the A050
gauge! for the spinor fieldc(r ):

F im1g j S ] j2 ig Aj
a~r !

la

2 D1g0]0Gc~r !50, ~4.18!

where we have used the same noncovariant notation for the
gauge fields as in Ref.@3# @i.e.,Aj

a(r ) designates contravari-
ant and ] j covariant quantities#, and whereg05b and
g j5ba j . Although the gauge fields are operator-valued,
they commute with all other operators in Eq.~4.18!—with
the exception of the derivatives] j —so that, when only time-
independent gauge-transformations are considered,VC(r ),
acting as an operator that gauge-transformsc, behaves as
thoughZa were ac number. The gauge-transformed gauge
field, that corresponds to the gauge-transformed spinor
cGI(r )5VC(r ) c(r ), therefore also is gauge-invariant; it is
given by

FAGI i
b ~r !

lb

2 G5VC~r !FAi
b~r !

lb

2 GVC21~r !

1
i

g
VC~r ! ] iVC

21~r ! . ~4.19!

Since further gauge transformations must be carried out si-
multaneously onc(r ) andVC(r ), and must leavecGI(r ) un-
transformed,AGI i

b (r ) must also therefore remain untrans-
formed by further gauge transformations.AGI i

b (r ) thus is
identified as a gauge-invariant gauge field.

To find an explicit form for@AGI i
b (r )(lb/2)# from the

RHS of Eq. ~4.19!, we use Eq. ~2.23!, with Vj
g(r )

5d i j (l
g/2), to obtain

Faig~r !1Ai
g~r !2 (

h51

`
gh

h!
f ~h!

aW bg M~h!
aW ~r ! B~h!i

b ~r !Glg

2

5Faig~r !1 (
h51

`
gh

h!
c~h!i

g ~r !Glg

2
. ~4.20!

It is straightforward but tedious to show that

Faig~r !1 (
h51

`
gh

h!
c~h!i

g ~r !Glg

2

5expS 2 ig Xa~r !
la

2 D FAi
g~r !

lg

2
1

i

g
] i GexpS ig Xa~r !

la

2 D ,

~4.21!

Faig~r !2 (
h51

`
gh

h!
f ~h!

aW bg M~h!
aW ~r ! ai

b~r !Glg

2

5expS ig Ya~r !
la

2 D Faig~r !
lg

2 GexpS 2 ig Ya~r !
la

2 D ,

~4.22!
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F ] iYg~r !2 (
h51

`
gh

h!
f ~h!

aW bg M~h!
aW ~r ! ] iYb~r !Glg

2

5expS ig Ya~r !
la

2 D F ] iYg~r !
lg

2 GexpS 2 ig Ya~r !
la

2 D ,

~4.23!

and

FAi
g1] iYg~r !2 (

h51

`
gh

h!
f ~h!

aW bg M~h!
aW ~r !

3SAi
b~r !1

1

h11
] iYb~r !D Glg

2

5expS ig Ya~r !
la

2 D FAi
g~r !

lg

2
1

i

g
] i G

3expS 2 ig Ya~r !
la

2 D . ~4.24!

Equations~4.20!–~4.24! lead to

VC~r !FAi
b~r !

lb

2 GVC21~r !1
i

g
VC~r ! ] iVC

21~r !

5AT i
b ~r !

lb

2
1Fd i j2 ] i] j

]2 GAj
b~r !

lb

2
, ~4.25!

so that the identical gauge-invariant gauge field is given in
Eqs.~4.14! and~4.19!. In the gauge-invariant gauge field, as
in the earlier case of the gauge-invariant spinor, we find that
when we expand Eq.~4.14!—this time toO(g2)—we agree
with Refs.@12,13# in which a perturbative construction of a
gauge-invariant gauge field is carried out to that order.

V. THE CASE OF YANG-MILLS THEORY

Because of the simplicity of the SU~2! structure constants,
it is instructive to examineAj

a(r )—its defining equation and

its role in the ‘‘fundamental theorem’’—for the case of
Yang-Mills theory. For that purpose, we substituteeabc—
the structure constants of SU~2!—for the f abc required for

SU~3!, in the equations that pertain toAj
a(r ). e (h)

aW bg , the

SU~2! equivalent of thef (h)
aW bg that are important in the defi-

nition of Aj
a(r ), is given by

e~h!
aW bg5~21!h/221da[1]a[2]da[3]a[4] •••

3da[h23]a[h22] ea[h21]bb eba[h]g ~5.1!

and

e~h!
aW bg5~21!~h21!/2da[1]a[2]da[3]a[4] •••

3da[h22]a[h21] ea[h]bg ~5.2!

for even and oddh, respectively. We can use Eqs.~5.1! and
~5.2! to write the SU~2! version of Eq.~2.20! for Ai

g(r ),
which appears~implicitly ! as the coefficient of theP i

g(r ) on
the LHS of that equation. In doing so, we separateAi

g(r )
into two parts

Ai
g~r !5Ai

g~r !X1Ai
g~r !Y , ~5.3!

whereAi
g(r )X represents the part ofAi

g(r ) that depends only
on ‘‘known’’ quantities that stem from thec (n) i

g (r ) and are
functionals of gauge fields;Ai

g(r )Y represents the part that
implicitly contains theAi

g(r ) itself. In Sec. II, we showed
how the perturbative expansion ofAi

g(r ) proceeds with the
construction of thenth order term,A(n) i

g (r ), from the
c (n) i

g (r ) of the same order, and fromA(n8) i
g (r ) of lower

orders—in the SU~2! case, the latter originating from
Ai

g(r )Y . The explicit forms ofAi
g(r )X andAi

g(r )Y are

Ai
g~r !X5geabgXa~r ! Ai

b~r !
sin~N!

N 2geabgXa~r !] iXb~r !
12cos~N!

N 2 2g2eabbebmgXm~r !Xa~r !Ai
b~r !

12cos~N!

N 2

1g2eabbebmgXm~r !Xa~r !] iXb~r !F 1

N 2 2
sin~N!

N 3 G ~5.4!

and

Ai
g~r !Y5geabg Ya~r !S AT i

b ~r !1S d i j2
] i] j

]2 DAj
b~r !D sin~N!

N
1geabg Ya~r !] iYb~r !

12cos~N!

N 2
1g2eabbebmg Ym~r ! Ya~r !

3S AT i
b ~r !1S d i j2

] i] j

]2 DAj
b~r !D 12cos~N!

N 2
1g2eabbebmg Ym~r ! Ya~r !] iYb~r !F 1

N 2
2
sin~N!

N 3
G , ~5.5!

where
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N~r ![N5@g2Xd~r !Xd~r !#1/2 , ~5.6!

and

N~r ![N5@g2 Yd~r ! Yd~r !#1/2 . ~5.7!

There is a striking resemblance in the structure of Eqs.~5.4! and ~5.5! on the one hand, and (Ag) i8 , the gauge-transformed
gauge fieldAi

g , where the gauge transformation is by a finite gauge functionvg. (Ag) i8 is given by

~Ag! i85SAi
g1

1

g
] iv

gD2eabgS va Ai
b sin~ uvu!

uvu
1
1

g
va ] iv

b
12cos~ uvu!

uvu2 D
2eabbebmgS vmva Ai

b12cos~ uvu!
uvu2

1
vmva] iv

b

g S 1

uvu2
2
sin~ uvu!

uvu3 D D . ~5.8!

The SU~2! version of Eq.~3.11!—our so-called ‘‘fundamental theorem’’—can similarly be given. In that case, the summations
over order and multiplicity indices can be absorbed into trigonometric functions, and we obtain the much simpler equation

i E dr 8@] iP i
a~r !, Aj

g~r 8!#Vj
g~r 8!1 igeabdAi

b~r !E dr 8@P i
d~r !, Aj

g~r 8!#Vj
g~r 8!

52geamd Ai
m~r ! Vi

d~r !2
g2

2
eabceacg Ai

b~r !
] i

]2
„Ya~r ! ] jVj

g~r !…

2g3eabce~2!
aW cg Ai

b~r !
] i

]2 SM~2!
aW ~r !F 1

2N
cotS N2 D 2

1

N 2
G ] jVj

g~r !D
1gemagXm~r !F sin~N!

N
2
12cos~N!

N 2 G ] iVi
g~r !1g2 e~2!

mW ag R~2!
mW ~r ! F cos~N!

N 2 2
sin~N!

N 3 G ] iVi
g~r !

1
g2

2
emalealgXm~r !Ya~r ! F sin~N!

N
2
12cos~N!

N 2 G ] iVi
g~r !

1
g3

2
e~2!

mW ag ealgR~2!
mW ~r ! Ya~r !F cos~N!

N 2 2
sin~N!

N 3 G ] iVi
g~r !1g3emal e~2!

aW lgXm~r !M~2!
aW ~r ! F sin~N!

N
2
12cos~N!

N 2 G
3S 1

2N
cotS N2 D 2

1

N 2
D ] iVi

g~r !1g4 e~2!
mW al e~2!

aW lgR~2!
mW ~r ! M~2!

aW ~r !F cos~N!

N 2 2
sin~N!

N 3 G S 1

2N
cotS N2 D 2

1

N 2
D ] iVi

g~r !

2g2eabdemdgAi
b~r !

] i

]2 S Xm~r !
12cos~N!

N 2 ] jVj
g~r !D 2g3eabde~2!

mW dgAi
b~r !

] i

]2 SR~2!
mW ~r !

sin~N!2N
N 3 ] jVj

g~r !D
2
g3

2
eabdemdlealgAi

b~r !
] i

]2 S Xm~r ! Ya~r !
12cos~N!

N 2 ] jVj
g~r !D

2
g4

2
eabde~2!

mW dlealgAi
b~r !

] i

]2 SR~2!
mW ~r ! Ya~r !

sin~N!2N
N 3 ] jVj

g~r !D
2g4eabdemdle~2!

aW lgAi
b~r !

] i

]2 S Xm~r ! M~2!
aW ~r !

12cos~N!

N 2 F 1

2N
cotS N2 D 2

1

N 2
G ] jVj

g~r !D
2g5eabde~2!

mW dle~2!
aW lgAi

b~r !
] i

]2 SR~2!
mW ~r ! M~2!

aW ~r !
sin~N!2N
N 3 F 1

2N
cotS N2 D 2

1

N 2
G ] jVj

g~r !D . ~5.9!
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To account for the general structure of Eqs.~5.4! and
~5.5!, we observe from Eqs.~4.17! and~4.18! that the unitary
transformation that transforms the spinor field to its gauge-
invariant formis itself a gauge transformation. VC(r ) there-
fore is an operator that gauge-transforms the spinorc(r ) to a
form that is then invariant to any further gauge transforma-
tions. And AGI i

b (r ), which is the corresponding gauge trans-
form of the gauge fieldAi

b(r ), is similarly invariant to any
further gauge transformations. Equation~4.14! identifies
Ai
b(r ) as an essential constituent ofAGI i

b (r ), and Eqs.~5.4!
and ~5.5! specializeAi

b(r ) to its SU~2! structure. It is there-
fore not surprising to find that the relation betweenAi

b(r )
and Ai

b(r ) anticipates the relation betweenAGI i
b (r ) and

Ai
b(r )—i.e., thatAGI i

b (r ) is the gauge-transform ofAi
b(r ) by

the finite gauge functionZb(r ), defined in Eq.~4.17!.

VI. DISCUSSION

This paper has addressed four main topics: The first has
been a proof of a previously published conjecture that states,
constructed in an earlier work@6# and given in Eqs.~1.1!,
~1.3!, and ~2.20!, implement the ‘‘pure glue’’ form of
Gauss’s law for QCD. Another has been the construction of
a unitary transformation that extends these states so that they
implement Gauss’s law for QCD with quarks as well as glu-
ons. The third topic is the construction of gauge-invariant
spinor and gauge field operators. And the last topic is the
application of the formalism to the SU~2! Yang-Mills case.

Implementation of Gauss’s law is always required in a
gauge theory, but in earlier work it was shown that in QED
and other Abelian gauge theories, the failure to implement
Gauss’s law does not affect the theory’s physical conse-
quences@14,15#. And, in fact, it is known that the renormal-
izedSmatrix in perturbative QED is correct, in spite of the
fact that incident and scattered charged particles are detached
from all fields, including the ones required to implement
Gauss’s law. In contrast, the validity of perturbative QCD is
more limited. It is not applicable to low energy phenomena.
And, it is likely that all perturbative results in QCD are ob-
scured, in some measure, by long-range effects, so that the
implications of QCD for even high-energy phenomenology
are still not fully known. In particular, color confinement is
not well understood. One possible avenue for exploring QCD
dynamics beyond the perturbative regime is the use of
gauge-invariant operators and states in formulating QCD dy-
namics. Although dynamical equations for gauge-invariant
operator-valued fields have not yet been developed, we be-
lieve that the mathematical apparatus we have constructed in
this paper can serve as a basis for reaching such an objective.

We also note a feature of this work that is most clearly
evident in the SU~2! example. The recursive equation for
Ai
b(r ) — Eq. ~2.20! in the SU~3! case, with an arbitrary

Vi
g(r ) replacing theP i

g(r ), and Eqs.~5.3!–~5.5! in the SU~2!
Yang-Mills theory — have many of the features that we as-
sociate with finite gauge transformations applied to a gauge
field. This is particularly conspicuous for the parts of
Ai

g(r )X and Ai
g(r )Y that correspond to the ‘‘pure gauge’’

components of (Ag) i8 displayed in Eq.~5.8!. These ‘‘pure
gauge’’ parts areAi

g(r )X
(pg) andAi

g(r )Y
(pg) , respectively, and

are given by

Ai
g~r !X

~pg!52geabg Xa~r ! ] iXb~r !
12cos~N!

N 2

1g2eabbebmgXm~r !Xa~r !] iXb~r !

3F 1

N 2 2
sin~N!

N 3 G ~6.1!

and

Ai
g~r !Y

~pg!
5geabg Ya~r !] iYb~r !

12cos~N!

N 2

1g2eabbebmg Ym~r ! Ya~r ! ] iYb~r !

3F 1

N 2
2
sin~N!

N 3
G . ~6.2!

The ‘‘pure gauge’’ parts ofAi
g(r )X andAi

g(r )Y correspond
to the pure gauge part of (Ag) i8 , with 2gXg(r ) and
gYg(r ) corresponding to the gauge functionvg(r ), andN
andN corresponding touvu, respectively. This correspon-
dence suggests that, in addition to the iterative solution of
Eq. ~2.20!, which we have discussed extensively in this
work, there may be nonperturbative solutions that cannot be
represented as an iterated series and that are related to the
nontrivial topological sectors of non-Abelian gauge fields
@16#.

ACKNOWLEDGMENTS

This research was supported by the Department of Energy
under Grant No. DE-FG02-92ER40716.00.

APPENDIX A: SOME NECESSARY LEMMAS

In this appendix we will prove a number of lemmas re-
quired for the inductive proof of Eq.~2.24! — the fundamen-
tal identity that enables us to construct states that implement
the non-Abelian Gauss’s law. The first group of lemmas per-
tains to the sums over permutations of structure constants
that arise whenP i

s(r ) and ] iP i
a(r ) are commuted with

Aj
g(r 8). The first of these identities is

@P~e,b[m21] !
~0! f ed f f ~m21!

bW fg #U~m21!
bW

5 (
s50

m21
m!

~m2s21!! ~s11!!
f ~m2s21!

bW dg

3 f g fg f ~s!
sW e f U~m2s21!

bW U~s!
sW . ~A1!

U(h)
aW 5)m51

h Ua[m] (r ) is a product of operator-valued func-
tionsUa[m] (r ) that differ only in the indexa@m# that refers
to the adjoint representation of the Lie group to which the
gauge fields belong, and for which@Ug(r ), Ul(r 8)#50. To
prove Eq. ~A1! we generalize Eq.~2.26! by defining the
more general permutation operator
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@P~e,b[m2 j21] !
~ j ! f ed f f ~m2 j21!

bW fg #U~m2 j21!
bW

5 (
s50

m2 j21
~s1 j !!

s! j !
f ~s!

bW duf uev f ~m2s2 j21!
sW vg U~s!

bW U~m2s2 j21!
sW .

~A2!

We can designate the individual permutations that appear
in Eq. ~A2! as

pe,b[m2 j21]~s!5 f ~s!
bW duf uev f ~m2 j2s21!

tWvg U~s!
bW U~m2 j2s21!

tW

~A3!

for s50,1,2,. . . ,m2 j21, so that Eq.~A2! can be ex-
pressed as

@P~e,b[m2 j21] !
~ j ! f ed f f ~m2 j21!

bW fg #U~m2 j21!
bW

5 (
s50

m2 j21
~s1 j !!

s! j !
pe,b[m2 j21]~s! . ~A4!

We can transformpe,b[m2 j21](s) by using the Jacobi
identity

f ceb[1] f b[1]bb[2]5 f cb[2]b[1] f beb[1]1 f cbb[1] f eb[2]b[1] .
~A5!

As we use the Jacobi identity to transform each permutation
in Eq. ~A4!, turn by turn, each such transformation augments
the coefficient of the immediately following permutation by
the accumulated sum of all preceding permutations@i.e., ap-
plying the Jacobi identity tope,b[m2 j21](s) contributes an
additional pe,b[m2 j21](s11) term#. Since
(n50
s (n1 j )!/n! j !5(s1 j11)!/s!( j11)!, we find, after

the Jacobi identity has been applied to the last possible set of
permutations on the RHS of Eq.~A4!, that we obtain

@P~e,b[m2 j21] !
~ j ! f ed f f ~m2 j21!

bW fg # U~m2 j21!
bW

5@P~ f ,b[m2 j22] !
~ j11! f fdgf ~m2 j22!

bW gg # f es fU~m2 j22!
bW Us

1
m!

~m2 j21!! ~ j11!!
f ~m2 j21!

bW d f f e fg U~m2 j21!
bW .

~A6!

The last term on the RHS of Eq.~A6! is the last permu-
tation in Eq.~A4!, whose coefficient has now been increased
to (s1 j11)!/s!( j11)! with s5m2 j21 by the applica-
tion of the Jacobi identity to all the earlier permutations. In

this permutation, the structure constant that containse is al-
ready on the extreme right of all other structure constants, so
that the Jacobi identity can no longer be applied to its prod-
uct with the structure constant on its right. For that reason,
the sum over permutations on the RHS of Eq.~A6! contains
one fewer elements than the sum over permutations on the
LHS of that equation.

Applying Eq. ~A6! sequentially to

@P~e,b[m2s21] !
~s! f eduf ~m2s21!

bW ug # U~m2s21!
bW , ~A7!

for s5 j , j11,j12, . . . ,m22, thus decreasing the number
of terms in the sum over permutations by one with each
operation until the last permutation has vanished, leads to

@P~e,b[m2 j21] !
~ j ! f eduf ~m2 j21!

bW ug #U~m2 j21!
bW

5 (
s5 j

m21
m!

~m2s21!! ~s11!!
f ~m2s21!

bW dv f vug f ~s2 j !
sW eu

3U~m2s21!
bW U~s2 j !

sW , ~A8!

one of the important lemmas established in this appendix.
For j50, Eq. ~A8! becomes Eq.~A1!. Equation~A8! with
different values forj can be combined to obtain other useful
identities. By combining thej50 and j51 versions of Eq.
~A8!, we obtain

@P~e,b[m21] !
~0! f eduf ~m21!

bW ug #U~m21!
bW

5mfeduf ~m21!
bW ug U~m21!

bW 2 (
t50

m22
m! ~m2t21!

~m2t !! t!

3 f ~ t !
bW dv f vug f ~m2t21!

sW eu U~ t !
bW U~m2t21!

sW , ~A9!

and

@P~e,b[m21] !
~0! f eduf ~m21!

bW ug #U~m21!
bW

5 f eduf ~m21!
bW ug U~m21!

bW 1 (
s50

m22
~m21!!

~s11!! ~m2s22!!

3 f ~m2s21!
bW dv f vug f ~s!

sW eu U~m2s21!
bW U~s!

sW . ~A10!

Our next objective is to evaluate the contribution to Eq.
~2.24! from (i /n!)*dr 8c (n) j

g (r 8)Vj
g(r 8), the inhomogeneous

term in the recursive equation fori*dr 8Aj
g(r 8)Vj

g(r 8). From
Eq. ~2.6! we observe that

i

n! E dr 8@P i
d~r !, c~n! j

g ~r 8!#Vj
g~r 8!5

i

n!
~21!n21f ~n!

aW bgE dr 8 R~n!
aW ~r 8! @P i

d~r !, Q~n! j
b ~r 8!#Vj

g~r 8!

1
i

n!
~21!n21f ~n!

aW bgE dr 8@P i
d~r !, R~n!

aW ~r 8!#Q~n! j
b ~r 8!Vj

g~r 8! . ~A11!

We use integration by parts and the identity

f ~m!
aW dg @Q, U~m!

aW #52@P~a,b[m21] !
~0! f adef ~m21!

bW eg #@ Q, Ua~r !# U~m21!
bW , ~A12!
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whereQ represents an arbitrary operator for which@Q, Ug(r )# commutes withUl(r 8), to obtain

i

n! E dr 8@P i
d~r !, c~n! j

g ~r 8!#Vj
g~r 8!5

1

n!
~21!n21f ~n!

aW dg R~n!
aW ~r ! Vi

g~r !1
1

~n11!!
~21!nf ~n!

aW dg ] i
]2
„R~n!

aW ~r ! ] jVj
g~r !…

1
1

~n11!!
~21!n11@P~a,s[n21] !

~0! f adef ~n21!
sW eg #

] i
]2
„xj

a~r ! R~n21!
sW ~r ! Vj

g~r !…

1
1

n!
~21!n21@P~d,s[n21] !

~0! f dbef ~n21!
sW eg #

] i
]2
„R~n21!

sW ~r ! Q~n! j
b ~r ! Vj

g~r !… . ~A13!

Equation~A1! enables us to rewrite Eq.~A13! as

i

n! E dr 8@P i
d~r !, c~n! j

g ~r 8!# Vj
g~r 8!5

1

n!
~21!n21f ~n!

aW dg R~n!
aW ~r ! Vi

g~r !1
1

~n11!!
~21!nf ~n!

aW dg ] i
]2
„R~n!

aW ~r ! ] jVj
g~r !…

2 (
s50

n21
1

~n11!~s11!! ~n2s21!!
f ~s!

tWbef eug f ~n2s21!
sW du ~21!n11

3
] i
]2
„R~s!

tW ~r ! R~n2s21!
sW ~r ! xj

b~r ! Vj
g~r !…1 (

s50

n21
1

s! ~n2s!!
f ~n2s21!

sW du f eug f ~s!
tWbe~21!n11

3
] i
]2
„R~n2s21!

sW ~r ! R~s!
tW ~r ! Q~n! j

b ~r ! Vj
g~r !… , ~A14!

and the identity

1

s! ~n2s!!
Q~s! j

a ~r !5
1

s! ~n2s21!! F 1

~n2s!
Q~n! j

a ~r !2
1

~n11!~s11!
xj

a~r !G , ~A15!

finally leads to

i

n! E dr 8@P i
d~r !, c~n! j

g ~r 8!#Vj
g~r 8!5

1

n!
~21!n21f ~n!

aW dg R~n!
aW ~r ! Vi

g~r !1
1

~n11!!
~21!nf ~n!

aW dg ] i
]2
„R~n!

aW ~r ! ] jVj
g~r !…

1
1

n!
f ~n21!

sW du f eug~21!n
] i
]2
„R~n21!

sW ~r ! aj
e~r ! Vj

g~r !…

1 (
s51

n21
1

s! ~n2s!!
f ~n2s21!

sW du f eug~21!n2s
] i
]2
„R~n2s21!

sW ~r ! c~s! j
e ~r ! Vj

g~r !… . ~A16!

Similarly, the same algebraic identities used to obtain Eq.~A16! can be used to transform

i

n! E dr 8@] iP i
b~r !, c~n! j

g ~r 8!#Vj
g~r 8!5

1

n!
~21!n21f ~n!

aW bgE dr 8 R~n!
aW ~r 8!@] iP i

b~r !, Q~n! j
b ~r 8!# Vj

g~r 8!

1
i

n!
~21!n21f ~n!

aW bgE dr 8@] iP i
b~r !, R~n!

aW ~r 8!#Q~n! j
b ~r 8!Vj

g~r 8! ~A17!

to
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i

n! E dr 8@] iP i
b~r !, c~n! j

g ~r 8!#Vj
g~r 8!5

1

~n21!! ~n11!
~21!n21f ~n!

aW bg R~n!
aW ~r ! ] jVj

g~r !

1
1

~n21!!
~21!n21f bbef ~n21!

sW eg Aj
b~r ! R~n21!

sW ~r ! Vj
g~r !

1
n21

n!
~21!n21f edg f ~n21!

tWbd R~n21!
tW ~r ! aj

e~r ! Vj
g~r !

1 (
s51

n22
n2s21

s! ~n2s!!
~21!n2s21f edg f ~n2s21!

tWbd R~n2s21!
tW ~r ! c~s! j

e ~r ! Vj
g~r ! .

~A18!

We can combine Eqs.~A16! and ~A18! to obtain

2 f bmd Ai
m~r !

i

~n21!! E dr 8@P i
d~r !, c~n21! j

g ~r 8!#Vj
g~r 8!

5
i

n! E dr 8@] iP i
b~r !, c~n! j

g ~r 8!# Vj
g~r 8!2

1

~n21!! ~n11!
~21!n21f ~n!

aW bg R~n!
aW ~r ! ] jVj

g~r !

2
n21

n!
~21!n21f edg f ~n21!

tWbd R~n21!
tW ~r ! aj

e~r ! Vj
g~r !2 (

s51

n22
n2s21

s! ~n2s!!
~21!n2s21f edg f ~n2s21!

tWbd

3R~n2s21!
tW ~r ! c~s! j

e ~r ! Vj
g~r !2 f bmdAi

m~r !
1

n!
~21!n21f ~n21!

aW dg ] i
]2
„R~n21!

aW ~r ! ] jVj
g~r !…

2 f bmdAi
m~r !

1

~n21!!
f ~n22!

sW dh f ehg~21!n21
] i
]2
„R~n22!

sW ~r ! aj
e~r ! Vj

g~r !…2 f bmdAi
m~r !

3 (
s51

n22
1

s! ~n2s21!!
f ~n2s22!

sW dh f ehg~21!n2s21
] i
]2
„R~n2s22!

sW ~r ! c~s! j
e ~r ! Vj

g~r !… . ~A19!

APPENDIX B: PROOF OF FUNDAMENTAL THEOREM

In this section we will prove Eq.~2.24! by an inductive argument that assumes that Eq.~2.24! holds for alln<N, and then
demonstrates that it must also hold forn5(N11). The theorem is trivial forn52 andn51, in the latter case with the
previously established convention thatA(0) j

a (r )50. The structure of Eq.~2.23!, which definesA(n) j
g (r )Vj

g(r ) recursively in
terms of the inhomogeneous term (ign/n!)*drc (n) j

g (r )Vj
g(r ) as well as otherA(n8) j 8

g (r )Vj 8
g (r ) with n8,n, is ideally suited to

an inductive argument.
We will transform2 ig f bmdAi

m(r ) *dr 8@P i
d(r ), A(N) j

a (r 8)#Vj
a(r 8)—the RHS of Eq.~2.24! for n5N11—into the corre-

sponding LHS of that equation, using Eq.~2.24! as an inductive axiom only for thoseA(n) j
a (r 8) that haven,N. We set

2 ig f bmdAi
m~r ! E dr 8@P i

d~r !, A~N! j
a ~r 8!# Vj

a~r 8!5A1B1C , ~B1!

where

A52g fbmd Ai
m~r !

igN

N! E dr 8@P i
d~r !, c~N! j

g ~r 8!# Vj
g~r 8! , ~B2!

B52g fbmd Ai
m~r ! (

m51

igN

m!
f ~m!

aW dg (
u50

(
r5m

d r1u1m2N E dr 8@P i
d~r !, M~m,r !

aW ~r 8!# B~m,u! j
d ~r 8! Vj

g~r 8! , ~B3!

and

C52g fbmd Ai
m~r ! (

m51

igN

m!
f ~m!

aW dg (
u50

(
r5m

d r1m1u2N E dr 8M~m,r !
aW ~r 8!@P i

d~r !, B~m,u! j
d ~r 8!# Vj

g~r 8! . ~B4!

We will representA, B, andC by dividing each of them into parts as shown by
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A5A~1!1A~2!1A~3! , ~B5!

so that the subscript~1! designates those terms that contain commutators with] iP i
b(r ), the subscript~3! designates terms that

contain ] iVi
a(r ), and the subscript~2! labels residues, most of which cancel as the proof proceeds to its conclusion. The

representation ofA as a sum of its properly subscripted constituents is easily obtained from Eq.~A19!. We use Eq.~A12! to
representB as

B52g fbmd Ai
m~r ! (

m51

igN

m!
@P~a,b[m21] !

~0! f adef ~m21!
bW eg # (

u50
(

p5m21
(

r [m]51
dp1r [m]1u1m2N

3E dr 8@P i
d~r !, A~r [m] ! j

a ~r 8!#
] j
]2
„M~m21,p!

bW ~r 8! B~m,u!k
d ~r 8! Vk

g~r 8!… , ~B6!

and invoke the inductive axiom to representg fbmdAi
m(r ) i*dr 8@P i

d(r ), A(r [m]) j
a (r 8)# Vj

a(r 8) in terms of the LHS
of Eq. ~2.24! for all values of r @m#,N. When we equate the operator-valued vector quantity

(gN/m!) @P(a,b[m21])
(0) f adef (m21)

bW eg #(] j /]
2)„M(m21,p)

bW (r 8) B(m,u)k
d (r 8) Vk

g(r 8)… in Eq. ~B6! to the arbitrary vector fieldVj
a(r 8) in

Eq. ~2.24!, we obtain

B~1!5 (
m51

igN11

m!
@P~a,b[m21] !

~0! f adef ~m21!
bW eg # (

u50
(

p5m21
(

r [m]50
dp1r [m]1m1u2N

3E dr 8@] iP i
b~r !, A~r [m]11! j

a ~r 8!#
] j
]2
„M~m21,p!

bW ~r 8! B~m,u!k
d ~r 8! Vk

g~r 8!… , ~B7!

and, after summing overr @m# and representing the sums over permutations by using the lemma given in Eq.~A1!,

B~2!5 f bmaAi
m~r ! (

m51
(
u50

(
v50

m21

(
r5m2v21

(
q5v

d r1q1m1u2N

gN11

~v11!! ~m2v21!!
f ~m2v21!

bW dg f g fg f ~v !
sW a f

3
] i
]2
„M~m2v21,r !

bW ~r !M~v,q!
sW ~r !B~m,u! j

d ~r !Vj
g~r !…2 (

m51
(
u50

(
n51

(
v50

m21

(
r5m2v21

(
q5n1v

d r1q1m1n1u2N

3 f ~m2v21!
bW dh f ahg f ~n1v !

sW ca f bmc
gN11B~n!

n! ~v11!! ~m2v21!!
Ai

m~r !
] i
]2
„M~n1v,q!

sW ~r ! M~m2v21,r !
bW ~r ! B~m,u! j

d ~r ! Vj
g~r !…

1 (
m51

(
u50

(
n50

(
t51

(
v50

m21

(
r5m2v21

(
q5n1v

d r1q1n1t1u1m2~N11!~21! t21
gN11B~n!

n! ~ t21!! ~ t11!~v11!! ~m2v21!!

3 f ~m2v21!
bW dh f ahg f ~n1v !

sW la f ~ t !
mW bl R~ t !

mW ~r ! M~n1v,q!
sW ~r !M~m2v21,r !

bW ~r ! B~m,u!i
d ~r ! Vi

g~r !

1 (
m51

(
u50

(
n50

(
t51

(
v50

m21

(
r5m2v21

(
q5n1v

d r1q1n1t1m1u2N~21! t
gN11B~n!

n! ~ t11!! ~v11!! ~m2v21!!

3 f ~m2v21!
bW dh f ahg f ~n1v !

sW la f bmdf ~ t !
nWdl Ai

m~r !
] i
]2
„R~ t !

nW ~r !M~n1v,q!
sW ~r ! M~m2v21,r !

bW ~r ! B~m,u! j
d ~r ! Vj

g~r !… . ~B8!

We will representC as

C5C~a!1C~A! , ~B9!

whereC(a) includes the commutator ofP i
a(r ) with the aj

d(r 8) part of B(m,u) j
d (r 8) andC(A) includes the commutator of

P i
a(r ) with theA(u) j

d (r 8) part ofB(m,u) j
d (r 8). C(a) is given by

C~a!52g fbmd Ai
m~r ! (

m51
(
r5m

d r1m2N

gN

m!
f ~m!

aW dgS d i j2
] i] j
]2 D „M~m,r !

aW ~r ! Vj
g~r !… ~B10!

andC(A) is given by
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C~A!52g fbmd Ai
m~r ! (

m51

igN

m!
f ~m!

aW dg (
u51

(
r5m

d r1m1u2NE dr 8@P i
d~r !, A~u! j

d ~r 8!#S d jk2
m

m11

] j]k
]2 D „M~m,r !

aW ~r 8! Vk
g~r 8!….

~B11!

We again invoke the inductive axiom to transformC(A) by representingig f bmd Ai
m(r ) * dr 8@P i

d(r ), A(u) j
d (r 8)# Vj

d(r 8) in

terms of the LHS of Eq. ~2.24! for values of u,N, and identify (gN/m!) f (m)
aW dg@d jk2m/(m11)

3(] j]k /]
2)] „M(m,r )

aW (r 8)Vk
g(r 8)… as the vector fieldVj

a(r 8) in Eq. ~2.24!; after summing over the common integer-valued
variable in the two Kroneckerd functions in the resulting expression, we obtain

C~A!5C~A!~1!1C~A!~2!1C~A!~3! , ~B12!

with

C~A!~1!5 (
m51

igN11

m!
f ~m!

aW dg (
u50

(
r5m

d r1m1u2NE dr 8@] iP i
b~r !, A~u11! j

d ~r 8!#S d jk2
m

m11

] j]k
]2 D „M~m,r !

aW ~r 8! Vk
g~r 8!… ,

~B13!

C~A!~2!5 f bmd Ai
m~r ! (

m51

gN11

m!
f ~m!

aW dg (
r5m

d r1m2NS d i j2
m

m11

] i] j
]2 D „M~m,r !

aW ~r !Vj
g~r !…

2 (
m51

(
r5m

gN11

~m11!!
f ~m!

aW dg (
n51

(
s5n

ds1n1r1m2N

B~n!

n!
f bmcf ~n!

sW cd Ai
m~r !

] i
]2
„M~n,s!

sW ~r ! ] jM~m,r !
aW ~r ! Vj

g~r !…

1 (
m51

(
r5m

gN11

~m11!!
f ~m!

aW dg (
n50

(
t51

(
s5n

d r1m1s1n1t2~N11! ~21! t21
B~n!

n! ~ t21!! ~ t11!
f ~ t !

mW bl f ~n!
sW ldR~ t !

mW ~r !

3M~n,s!
sW ~r ! ] iM~m,r !

aW ~r ! Vi
g~r !1 (

m51
(
r5m

gN11

~m11!!
f ~m!

aW dg f bmd Ai
m~r !

3 (
n50

(
t51

(
s5n

d r1m1s1n1t2N~21! t
B~n!

n! ~ t11!!
f ~ t !

nWdl f ~n!
sW ld ] i

]2
„R~ t !

nW ~r ! M~n,s!
sW ~r ! ] jM~m,r !

aW ~r ! Vj
g~r !… , ~B14!

and

C~A!~3!52 (
m51

(
r5m

gN11

~m11!!
f ~m!

aW dg (
n51

(
s5n

d r1m1s1n2N

B~n!

n!
f bmcf ~n!

sW cd Ai
m~r !

] i
]2
„M~n,s!

sW ~r ! M~m,r !
aW ~r ! ] jVj

g~r !…

1 (
m51

(
r5m

gN11

~m11!!
f ~m!

aW dg (
n50

(
t51

(
s5n

d r1m1s1n1t2~N11!~21! t21
B~n!

n! ~ t21!! ~ t11!

3 f ~ t !
mW bl f ~n!

sW ldR~ t !
mW ~r !M~n,s!

sW ~r ! M~m,r !
aW ~r !] iVi

g~r !1 (
m51

(
r5m

gN11

~m11!!
f ~m!

aW dg f bmdAi
m~r !

3 (
n50

(
t51

(
s5n

d r1m1s1n1t2N~21! t
B~n!

n! ~ t11!!
f ~ t !

nWdl f ~n!
sW ld ] i

]2
„R~ t !

nW ~r !M~n,s!
sW ~r !M~m,r !

aW ~r !] jVj
g~r !… . ~B15!

When we transform] iM(m,r )
aW (r ) and] jM(m,r )

aW (r ) in C(A)(2) by using Eq.~A12! and transform the resulting expression by
applying Eq.~A1!, we obtain an equation that so resembles Eq.~B8! in structure, that it becomes very natural to addB(2) and
C(A)(2) . In carrying out this addition, we note that

B~m,u! j
d ~r !1

v11

~m11!~m2v !
] jY~u!

d ~r !5B~m2v21,u! j
d ~r ! , ~B16!

and obtain
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B~2!1C~A!~2!5 f bmaAi
m~r ! (

m51
(
u50

(
v50

m21

(
r5m2v21

(
q5v

d r1q1m1u2N

gN11

~v11!! ~m2v21!!

3 f ~m2v21!
bW dg f g fg f ~v !

sW a f ] i
]2
„M~m2v21,r !

bW ~r ! M~v,q!
sW ~r ! B~m,u! j

d ~r ! Vj
g~r !…1 f bmd Ai

m~r !

3 (
m51

gN11

m!
f ~m!

aW dg (
r5m

d r1m2NS d i j2
m

m11

] i] j
]2 D „M~m,r !

aW ~r ! Vj
g~r !…

2 (
m51

(
u50

(
n51

(
v50

m21

(
r5m2v21

(
q5n1v

d r1q1m1n1u2Nf ~m2v21!
bW dh f ahg f ~n1v !

sW ca f bmc

3
gN11B~n!

n! ~v11!! ~m2v21!!
Ai

m~r !
] i
]2
„M~n1v,q!

sW ~r ! M~m2v21,r !
bW ~r !

3B~m2v21,u! j
d ~r ! Vj

g~r !…1 (
m51

(
u50

(
n50

(
t51

(
v50

m21

(
r5m2v21

(
q5n1v

d r1q1m1n1u1t2~N11!~21! t21

3
gN11B~n!

n! ~ t21!! ~ t11!~v11!! ~m2v21!!
f ~m2v21!

bW dh f ahg f ~n1v !
sW la f ~ t !

mW bl R~ t !
mW ~r !M~n1v,q!

sW ~r !

3M~m2v21,r !
bW ~r ! B~m2v21,u!i

d ~r ! Vi
g~r !1 (

m51
(
u50

(
n50

(
t51

(
v50

m21

(
r5m2v21

(
q5n1v

d r1q1m1n1u1t2N~21! t

3
gN11B~n!

n! ~ t11!! ~v11!! ~m2v21!!
f ~m2v21!

bW dh f ahg f ~n1v !
sW la f bmdf ~ t !

nWdlAi
m~r !

] i
]2
„R~ t !

nW ~r !

3M~n1v,q!
sW ~r ! M~m2v21,r !

bW ~r ! B~m2v21,u! j
d ~r !Vj

g~r !… . ~B17!

We change the integer-valued variables in the summations of the third, fourth, and fifth terms in Eq.~B17! to k5m1n and
l 5v1n, and carry out the summation overk, l , andn. We then observe that combiningB(2) andC(A)(2) and applying Eq.
~B16! has left us with an expression in which the onlyn dependence is in the Bernoulli numbers, and in fractional coefficients.

The indicesp and q in the operator-valued functionsM(p,q)
sW (r ), andB(p,q) i

d (r ) all are eitherk or l , and have no further
dependence on the integer-valued summation indexn. We therefore can make use of the identity

Ds
l ~ l !50 for s50 and l .0 , where Ds

k~ l !5(
n5s

k
B~n!

n! ~ l 2n11!!
, ~B18!

and observe that the only surviving contributions to Eq.~B17! from sums over Bernoulli numbers are
D1
l (l )52@1/(l 11)!# and D0

0(0)51. We represent B(2)1C(A)(2) as @B(2)1C(A)(2)# (a)1@B(2)

1C(A)(2)# (b)1@B(2)1C(A)(2)# (c) , where

@B~2!1C~A!~2! #~a!5 f bmdAi
m~r ! (

m51

gN11

m!
f ~m!

aW dg (
r5m

d r1m2NS d i j2
m

m11

] i] j
]2 D „M~m,r !

aW ~r ! Vj
g~r !… , ~B19!

@B~2!1C~A!~2!#~b!5 f bmaAi
m~r ! (

m51
(
u50

(
v50

m21

(
r5m2v21

(
q5v

d r1q1m1u2N

gN11

~v11!! ~m2v21!!

3 f ~m2v21!
bW dg f g fg f ~v !

sW a f ] i
]2
„M~m2v21,r !

bW ~r ! M~v,q!
sW ~r ! B~m,u! j

d ~r ! Vj
g~r !…

1 (
k52

(
l 51

k21

(
u50

(
r5k2l 21

(
q5l

d r1q1k1u2Nf ~k2l 21!
bW dh f ahg f ~ l !

sW na f bmnAi
m~r !

gN11

~ l 11!! ~k2l 21!!

3
] i
]2
„M~ l ,q!

sW ~r !M~k2l 21,r !
bW ~r ! B~k2l 21,u! j

d ~r ! Vj
g~r !… , ~B20!

and
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@B~2!1C~A!~2!#~c!5 (
k51

(
u50

(
r5k21

(
t51

d r1k1u1t2~N11!~21! t21
gN11

~ t21!! ~ t11!~k21!!

3 f ~k21!
bW dh f hlg f ~ t !

mW blR~ t !
mW ~r !M~k21,r !

bW ~r ! B~k21,u!i
d ~r ! Vi

g~r !

1 (
k51

(
u50

(
r5k21

(
t51

d r1k1u1t2N~21! t
gN11

~ t11!! ~k21!!
f ~k21!

bW dh f hlg f bmdf ~ t !
nWdl Ai

m~r !

3
] i
]2
„R~ t !

nW ~r ! M~k21,r !
bW ~r ! B~k21,u! j

d ~r ! Vj
g~r !… . ~B21!

We then note that the second term on the RHS of Eq.~B20! is an expression that has the form(k52( l 51
k21w(k,l ), and that

this sum can be expressed as(k52( l 51
k21w(k,l )5(k51( l 50

k21w(k,l )2(k52w(k,0)2w(1,0); we further observe that a num-
ber of the summations in the parts of Eq.~B20! that we have included in(k52w(k,0) andw(1,0) can be eliminated because
they become degenerate, enabling us to make use of Eq.~2.23! to transform them. We use Eq.~B16! to combine the
(k51( l 50

k21w(k,l ) part of this second term on the RHS of Eq.~B20! with the first term in that equation, so that the two
B(h,u) j

d (r ) terms are combined into a multiple of] jY(u)
d (r ). Finally, we use Eq.~2.25! with @Q, #5] j , to obtain

@B~2!1C~A!~2!#~b!52 (
m51

(
r5m

d r1m2N

gN11

~m11!!
f ~m!

aW dg f bmd Ai
m~r !

] i
]2
„] jM~m,r !

aW ~r ! Vj
g~r !…

2
gN11

~N21!!
f dhg f bmd Ai

m~r !
] i
]2
„c~N21! j

h ~r ! Vj
g~r !… . ~B22!

We also note that the RHS of Eq.~B21! contains an expression of the form(k51q(k), which can be expressed as
(k51q(k)5(k52q(k)1q(1). As in thecase ofw(0) above, a number of the summations inq(1) can be eliminated; we
make use of Eq.~2.23! to transform(k52q(k), and then obtain

@B~2!1C~A!~2!#~c!5~21!N21
gN11

~N21!! ~N11!
f ldg f ~N!

mW bl R~N!
mW ~r ! ai

d~r ! Vi
g~r !

1 (
t51

N21

~21! t21
gN11

~ t21!! ~ t11!~N2t !!
f ldg f ~ t !

mW bl R~ t !
mW ~r ! c~N2t !i

d ~r ! Vi
g~r !

1~21!N21
gN11

N!
f ldg f bmdf ~N21!

nWdl Ai
m~r !

] i
]2
„R~N21!

nW ~r ! aj
d~r ! Vj

g~r !…

1 (
t51

N22

~21! t
gN11

~ t11!! ~N2t21!!
f ldg f bmdf ~ t !

nWdl Ai
m~r !

] i
]2
„R~ t !

nW ~r ! c~N2t21! j
d ~r ! Vj

g~r !… . ~B23!

Making use of Eq.~A19!, we observe that@B(2)1C(A)(2)# (c) in Eq. ~B23! has the same form asA(2) ; and since Eq.~B19!
has the same structure asC(a) in Eq. ~B10!, it is natural to combine these terms to obtain

A~2!1B~2!1C~a!1C~A!~2!5 (
m51

(
r5m

d r1m2N

gN11

~m11!!
f bmcf ~m!

sW cg Ai
m~r !

] i
]2
„M~m,r !

sW ~r ! ] jVj
g~r !… . ~B24!

We combine all the terms with subscript~1!, use Eq.~A12! to eliminate permutations of structure constants, and note that
] iP i

b(r ) commutes withaj
a(r 8). We then observe that

A~1!1B~1!1C~A!~1!5
igN11

~N11!! E dr 8@] iP i
b~r !, c~N11! j

g ~r 8!#Vj
g~r 8!

1 (
m51

igN11

m!
f ~m!

aW dg (
u50

(
r5m

d r1m1u2~N11!E dr 8@] iP i
b~r !, M~m,r !

aW ~r 8!# B~m,u! j
d ~r 8! Vj

g~r 8!

1 (
m51

igN11

m!
f ~m!

aW dg (
u50

(
r5m

d r1m1u2~N11!E dr 8@] iP i
b~r !, B~m,u! j

d ~r 8!# M~m,r !
aW ~r 8! Vj

g~r 8! .

~B25!

If we then use Eq.~2.23! to transformA(N11) j
g , Eq. ~B25! can be written as
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A~1!1B~1!1C ~A!~1!5 i E dr 8@] iP i
b~r !, A~N11! j

a ~r 8!# Vj
a~r 8! . ~B26!

We change the integer-valued variables in the summation in Eq.~B15! to l 5m1n, and carry out the summation over
l and n; we then obtain an expression in which the onlyn dependence is in the Bernoulli numbers and in fractional
coefficients. We make use of Eq.~B18! and observe that the only surviving contributions to Eq.~B15! from sums over
Bernoulli numbers areD0

l 21(l )52@B(l )/l ! # andD1
l 21(l )52@B(l )/l ! #2@1/(l 11)!#; we then obtain

C~A!~3!52 (
l 52

(
p5l

dp1l 2N gN11SB~ l !

l !
1

1

~ l 11!! D f bmcf ~ l !
sW cg Ai

m~r !
] i
]2
„M~ l ,p!

sW ~r ! ] jVj
g~r !…

1 (
l 51

(
t51

(
p5l

dp1l 1t2~N11!~21! t21
gN11B~ l !

l ! ~ t21!! ~ t11!
f ~ t !

mW bl f ~ l !
sW lg R~ t !

mW ~r ! M~ l ,p!
sW ~r ! ] iVi

g~r !

1 (
l 51

(
t51

(
p5l

dp1l 1t2N~21! t
gN11B~ l !

l ! ~ t11!!
f bmdf ~ t !

nWdl f ~ l !
sW lg Ai

m~r !
] i
]2
„R~ t !

nW ~r ! M~ l ,p!
sW ~r ! ] jVj

g~r !… . ~B27!

Finally, we combine Eqs.~A19!, ~B24!, ~B26!, and~B27! to obtain

A1B1C5 i E dr 8@] iP i
b~r !, A~N11! j

a ~r 8!#Vj
a~r 8!1dNf

bmg Ai
m~r ! Vi

g~r !

2 (
m51

(
r5m

d r1m2N

B~m!

m!
f bmcf ~m!

aW cg Ai
m~r !

] i
]2
„M~m,r !

aW ~r ! ] jVj
g~r !…

1 (
m50

(
t51

(
r5m

d r1m1t2~N11!~21! t21
B~m!

m! ~ t21!! ~ t11!
f ~ t !

mW bl f ~m!
aW lg R~ t !

mW ~r ! M~m,r !
aW ~r ! ] iVi

g~r !

1 f bmdAi
m~r ! (

m50
(
t51

(
r5m

d r1m1t2N~21! t
B~m!

m! ~ t11!!
f ~ t !

nWdl f ~m!
aW lg ] i

]2
„R~ t !

nW ~r ! M~m,r !
aW ~r ! ] jVj

g~r !… , ~B28!

where we have added adN term that vanishes except for theN50 case; the need for this term in theN50 case has been
discussed in Sec. II. The RHS of Eq.~B28! is identical to the LHS of Eq.~2.24! for the valuen5N11, and therefore
completes the proof of the ‘‘fundamental theorem’’ for the construction ofC.
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