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Gauss’s law and gauge-invariant operators and states in QCD
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In this work, we prove a previously published conjecture that a prescription we gave for constructing states
that implement Gauss’s law for “pure glue” QCD is correct. We also construct a unitary transformation that
extends this prescription so that it produces additional states that implement Gauss'’s law for QCD with quarks
as well as gluons. Furthermore, we use the mathematical apparatus developed in the course of this work to
construct gauge-invariant spin@quark and gaugegluon field operators. We adapt this 8) construction
for the SU2) Yang-Mills case, and we consider the dynamical implications of these developments.
[S0556-282(97)08504-4
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I. INTRODUCTION In the work presented here we will extend our previously
published results in the following ways: we will prove our
The need to implement Gauss’s law in QCD and Yang-earlier conjecture that the stale| ) implements the “pure
Mills theory, and the technical problems that complicate theglue” form of Gauss’s law; we will extend our work from
implementation of Gauss'’s law in non-Abelian theories havehe “pure glue” form of the theory to include quarks as well
been discussed by a number of autHdrs4]. Strategies for as gluons; we will construct gauge-invariant operator-valued
implementing Gauss'’s law have also been develdpgdin  spinor (quark and gaugggluon) fields; and we will adapt
earlier work [6], we constructed states that implementthe QCD formulation to apply to the SB) Yang-Mills
Gauss's law for Yang-Mills theory and QCD — in fact, for theory.
any “pure glue” gauge theory, in a temporal gauge formu-

lation that has a non-Abelian SNj gauge symmetry. In II. IMPLEMENTING THE “PURE GLUE” FORM
that work, a state vecto? |¢) was defined for which OF GAUSS'S LAW
{b%(k)+J8(k)}\P 14)=0 , (1.1) Our construction of in Ref. [6] was informed by the

realization that the operator? had to implement
a a _ a H
where bg(k) and J§(k) are the Fourier transforms of {b(k) +Jo(k)} ¥ [¢) = bo(k) [ ), or equivalently that
o;IT3(r) [I1%(r) is the momentum conjugate to the gauge [ba(k), W= —Ja(k)W¥ + B2 (k) 2.1)
field] and of the gluon color charge density R 0 Q '
whereBg(k) is an operator product that hadI?(r) on its

J3(r)=g faA(r) TIf(r) (1.2)  extreme right and therefore annihilates the same states as
b3(k), so thatBg(k) [¢)=0 as well asg(k) |#)=0.
respectively. Since the chromoelectric fieldE?(r) To facilitate the discussion of the structure'bf the fol-

=—II%(r), Eq. (1.1 expresses the momentum space reprefowing definitions are useful:

sentation of the non-Abelian “pure glue” Gauss'’s law, and N W

{b3 (k) +J3(k)} is referred to as the “Gauss’s law operator” a;'(r)=Ag;(r) (2.2
for the “pure glue” case]¢) is a perturbative state annihi-
lated by, IT3(r). In Ref.[6], we exhibited an explicit form
for the operatol: namely, X2(r) =A% (r) 2.3

denotes the transverse part of the gauge field, and

V=| expA) | (1.3 denotes the longitudinal part, so thatfa’(r)
+x"(r)]=A(r). We also will make use of the combina-
where bracketing between double bars denotes a normal ofipns
der in which all gauge fields and functionals of gauge fields

appear to the left of all momenta conjugate to gauge fields. R
A was exhibited as an operator-valued series in F&f.Its AN =1 2ANN) |, (2.4
form was conjectured to all orders, and verified for the first
six orders. and
B (ry=|af B
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We will furthermore refer to the composite operators  mal ordering is imposed, the result of commuting
lexp(4y)[| with b (k) is not the formation ofi§(k) to the

Plyi(D=(=D)7 HPEIRE ()QF i(r) , (2.6 left of Wepn, but the formation of only
. 387 fdr e kT AP(r) to theleft of it, and of I17(r) to the
in which R¢\(r) is given by extremeright of all the gauge fields in the series representa-

tion of the exponential. Unwanted terms will be generated as

o _ . (] I17(r) is commuted, term by term, from the extreme right of
Rip(r) _r!_zll ATR(r) 27 W .angto the extreme left to form the desirdg(k). To com-
pensate for these further terms, we modify,,q by adding
andfz;f)V is the chain of S(B) structure functions additional expressions td; to eliminate the unwanteq com-
mutators generated d8/(r) is commuted from the right to
f(o?f)v: fall]Bb[1] ¢b[1]a[2]b[2] £b[2]a[3]b[3], . the left-hand sides of operator-valued polynomials. The
question naturally arises whether the process of adding terms
X fbln=2laln=1lbln=1lgbly-1lalnly = (2.8 to remove the unwanted contributions from earlier ones,

o comes to closure — whether an operator-valued sefigs
where repeated indices are to be summed. ferl, the  that leads to aV for which Eq. (1.1 is satisfied, can be
chain reduces td?lﬁ)yzf”ﬁy; and for =0, f(“B)VE— S,y specified to all orders. In Ref6] we conjectured that this
Since the only properties of the structure functions that wefjuestion can be answered affirmatively, by formulating a re-
will use is their antisymmetry and the Jacobi identity, thecursive equation ford, which we verified to sixth order.
formalism we develop will be applicable to &) as well as In Ref. [6] we represented! as the seriesA=3__, A,;
to other models with an SW) gauge symmetry. we also showed that the requirement thlamust satisfy to

The composite operators introduced so far can help us timplement Eq(1.1) can be formulated as
understand qualitatively hoW can implement Eq1.1). We

observe, for example, the product ” .
ba(k), >, A, expA) || — ’ g faﬁ’/f dr e *TAB(r)
Pli(r)=FB72(r) Qfi(r) n=2
=feBrae(r) [af(r)+3xP(r)] , (2.9 X[ exp(A), Hr(r)]‘wo , (212

which as part of the expression
where= indicates a “soft” equality, that only holds when

the equation acts on a stdig) annihilated bybg(k). The
commutator{ exp(A4), I17(r)] in Eq. (2.12 reflects the fact
that when the gluonic “color” charge density is assembled
has the property that its commutator whf(k), to the left of the candidat&, the momentum conjugate to
the gauge field must be moved from the extreme right to the
%(k),igf dr (/,(yl)i(r)niy(r)} extreme left of| exp(A4) ||. SinceA is a complicated multi-
linear functional of the gauge fields, but has a simple linear
dependence ohl{(r), it is useful to represent it as

Ay=ig [ dr gy, omio) | (210

=-g faﬂyf dr e "TAB(NITY(r)

g | =i ar Zomyo | (213
_Efaﬂv f dr e_'k'rXB[ﬁiHiy(r) 1y
where
2.1
3 a . . . Iy S
generates— J3(k) when it acts on a state annihilated by Aiy(r):ngl g"Aly(r) (214

baQ(k). The expression exg(;) would therefore have been

an appropriate choice fob, were it not for the fact that the

commutator[bg(k), A;] fails to commute with4,. When and theA(Vn)i(r) are elements in a series whose initial term is

Eg. (1.1 is applied to a candidat& .,,=exp(4,), the A(’/l)i(r)=_¢(71)i(r). All the A(Vn)i(r) consist of gauge fie_lds

commutatof bg(k), A;] is often produced within a polyno- and functionals of gauge fields only; there are no conjugate

mial  consisting of A; factors—for example momentall?(r), in any of theA(Vn)i(r). We also showed in

A(lnfs)[bg(k), Al A [b%(k)' A;] does not commute Ref.[6] that Eq.(2.12 is equivalent to

with A, and cannot move freely to annihilate the state at the

right of ¥ .,,q, thereby excluding ex as a viable choice “ik-

rlght 0" cana, thereby 9 expla) [03K), AdJ=g 127 [ dr &7 () [4, 1, T
The normal ordering denoted by bracketing between (2.195

double bars eliminates this problem, but only at the expense

of introducing another problem in its place—one that is morefor A, with n>1, where the A, form the series

benign, but that nevertheless must be addressed. When no#==X,_;A,, and each4, can be represented as
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. “ " that vanishes unless=0. In Egs.(2.17) and (2.21),
An=ig J dr A%y (DI(r) . (2186 5 is a “multiplicity index” that defines the multilinearity of
o o _ M, (r) in YP(r). Equationg2.20—(2.22 demonstrate that
If An satisfies Eq(215), then theW defined in Eq(13) W|” an Ar that appears on the left-hand S|(19-|S) of Eq (22@
also necessarily satisfy Eql.1), and the statel' [¢) will  is given in terms of therth order inhomogeneous term

implement the non-Abelian “pure glue” Gauss’s law. Y (DTI7(r). andA? .. terms on the RHS of this equation
In Ref.[6] we gave the form of4 as a functional of the .l’/l(’)'(.) ',( ), (i ) ) quatl
in which r’<r. To emphasize this very crucial observation,

auxiliary operator-valued constituents we note that in addition to thg” that appears as an overall
. - n factor in Eq.(2.20), eachA_jB(r) in M{*ﬂ)(r) and% carries
M= H a_JZAja[m](r): IT y<t™(r) its own complement of coupling constants g- for each
m=1 orderr. Therth order term on the LHS of Eq2.20), there-
=y @(ry yP(r)...»0N(r)y , (217  fore, depends on RHS contributions from{,(r) and
Bf,])i (r) whose orders do not add up 1@ but only to

n

and r — . Since the summation in E¢2.20 begins withn=1,
- 7 Gid\—5 the highest possible order ol(yr,)j that can appear on the
Bl i(=af(r)+| &;— 7+l 7) AP(r) . (218 RHs of Eq.(2.20, when A, is on the LHS, isA]; _;), —and
that must stem from thsA/l?n)gr) with the multiplicity index
where

n=1. Contributions fronv\/l(“,])(r) with higher multiplicity
_ &— 9 indices are restricted t@l(yr,)j with even lower order’. This
ya(r):?““i (r) and Ws)(r):?“‘l(sn(r) ' feature of Eq(2.20 naturally leads us to consider an induc-
(2.19 tive proof — one in which we assume E@.20 for all A,

with r<N, and then use that assumption to prove it fgr
The defining equation for is the recursive with r=N+1.

The fact that Eq(2.19 is a “soft” equation, is an im-

A= i EJ' q y pediment to an inductive proof of the proposition thét,
= r {‘p(n)i(r) defined by Eq.2.20, satisfies it. In order to carry out the
) ) L needed inductive proof, we must infer correct “hard” gen-
+£4BY M (r) BE (DY) . (220 eralizations of both these equations, in whidhis replaced

byifdr AY(r) V](r), whereV](r) is anyfield that trans-

In Ref. [6], we presented this form as a conjecture that weforms appropriately, ané,V?(r) is not required to annihilate
had verified to sixth order only. In this work, we will prove any states. The generalization we seek is an exact equality
thatV |¢) satisfies the “pure glue” Gauss’s law by show- petween operator-valued quantities — one that is true in gen-
ing that theA given in Eq.(2.20 satisfies Eq(2.19). eral, and not only when both sides of the equation project on

The form of A suggests that the proposition that it satis-a specified subset of states. Such a generalization would, in
fies Eq.(2.19 is well suited to an inductive proof. We ob- particular, allow us to use many different spatial vectors in
serve that two kinds of terms appear on the right-hand side Ghe role ofVv?(r) in the course of the inductive proof.
Eqg. (2.20. One is the inhomogeneous terdy, (r); the We have made the necessary generalization, and have ar-
other is the product oB(B”)L(r) and M¢(r). Bf’n)i(r) isa rived at the defining equation for theth order term of
functional of A%(r), and M, (r) is a multilinear functional  1/dr A7(NV/(r), that generalizes Eq2.20:
of J#(r), which is given as a functional of’(r) in Eq.
(2.19. It is useful to examine theth order components of
M¢,(r) and B, (r). These are given, respectively, by 'gnf dr AZi(nVi(r)

M(a”’r)(r):(r_n)r[l]zr[ | 5r[1]+--~+r[77]—r |gn

'

, :WJ dr g7, (NVI(r)

< IT v o (2.20 -

+2 _lf(a‘f)’yz E 5r+u+7]*n
n=1 7 u=0r=n9g

and

7 90 der Mf;n,m(r)BZBn,u)i(r)Viy(r) . (223

AT P

)Afr)j(l') )

(2.22
o . _ The generalization of Eq(2.15 —we make use of the
where the subscript is an integer-valued index that labels configuration-space representation of the Gauss’s law opera-
the order in the expansion of?(r), andé, is the Kronecker tor in this case, instead of its Fourier transform —is

BY, i(n)=35, af(r)+
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if dr’[me‘(r)Aij(r')]vr<r'>+5nflfaf”Af‘(r)vm)—21 rZ St (n-1)——
n=1lr=ng

d; o

n=0t=1r=9

+FIAL() D D D Sritsp-non(— 1)

n=0t=1r=9

= —ifaWAﬁ(r)f dr'[TI7(r), Al —qy;(rHIVI(r')

where B(#7) denotes thepth Bernoulli number. Equation
(2.29 reIatesA(n)J(r) with n=1, on the LHS of the equa-
tion, toA(n 1’ ,(r') on the RHS,A(n)J(r) with n=0 is not
required for the representation @f(r) given in Eq.(2.14),
and therefore does not have to be considerg%j(r)
with n=1 is required, but[¢I13(r), Ali(r')] cannot
be described properly by Eq(2.24, unless Ajy;(r)
on the RHS of Eq.2.249 is given an appropriate defini-
tion. The only equation like EQq.(2.24, but with
Jfdr'[ g, Ha(r)A(l)](r’)]ij(r’) appearing on its LHS, is Eq.
(2.11 with I17(r) replaced by{(r). We have formulated
Eq. (2249 so that it includes the case of
Jdr/[gI13(r), Alyi(r)IV](r") on the LHS, by including
the RHS of Eq(2.11) for then=1 case. To include that case
correctly, we define the degenerat.a/lz’,?‘r)(r) with
n=r=0 as Mg (r)=1, and the degeneratés)(r)=0.
We will refer to Eq.(2.24 as the “fundamental theorem”
for this construction ofl.

The general plan for the inductive proof of Eg.24) is as
follows: We assumeEq. (2.24) for all values ofn<N. We
then observe that, in the=N+1 case to be proven, the
RHS of Eq. (2.29 becomes  RHS(y;1
=—if&AL(r) fdr'[TI{(r), A(N)J(r’)]W(r’) We use
Eq. (2.23 to substitute for thed/yy; V] in RHS(y. 1y, and
evaluate the resulting commutatov[sH"(r) lﬂ(N),(f )1,
[II7(r), M{,n(r)], and [II7(r), B(,IU)J(r’)]. Since
Plw;(r') is a known inhomogeneity in Eq.(2.23,
[II7(r), #{x);(r")] can be explicitly evaluated. In expanding
the ff“;f)y[Hi"(r), M, n(r')] that result from the substitu-
tion of Eq.(2.23 into RHS(y 1), Wwe make use of the iden-
tity

7,;?2 Brtyrun[ QUM (1]

~[Plas-1 seg fe 1))

x > >

p=n—-1r[n]=1

B ,
XMp—1p(")

Optrin]+ut an[Q(r)a y(ar[,?])(r,)]

(2.29

whereQ(r) is any arbitrary operator; at times, the commu-
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B(7)
! (t+1)!

55
(71) faMCfEJt’t?:)yAiu(r)
B(7) fﬂa%faw P a y
PRERE RN RE(NME, () gV (r)
fvd)\fa%)yalz[R(t (r)/\/l(,]r (NaVI(N)]
(2.29

tator [Q(r) ME,0(r')] will represent a partial derivative
i M(,,r)(r ). PE(, gln—1]) 'epresents a sum over permuta-
tions over the indices labeling thv“,[,/])(r ) factors that

con_sututeM(,,yr)(r ), as shown in Eq(2.17). Péa’ﬁ[n,l]) is
defined by

0 Sf ¢ Bf
[Plesty-1p)f® fB y1>]M<n 1)
7n—1

- 8 B g0
=2, T MEME, s

(2.26

Equations(2.25 and (2.26 apply not only to those specific
cases, but also to all other operators — sucmé,;,(r’) —
that similarly are products of factors, identical except for
their Lie group indices contracted over chains of structure
functions.

With the substitution of Eq(2.23 into RHS(y 1), and
extensive integration by parts, we have replaced the commu-
tator [I17(r), Afy);(r')] which appears ilRHSy ; 1, with

products of chains ofAB (r ) and one commutator
[I17(r), A(m(r )] with I<N 1. Although the
L1177 (r), A(N)](r’)] in RHS(\+ 1) is not covered by the in-
ductive axiom —it is the RHS of the equation for the
n=N+1 case—the[II7(r), Aj);(r')] with I<N-1,
which have been substituted ifRHSy . 1), are covered by
this axiom. We can therefore use the inductive axiom to
replace all these latter commutators by their corresponding
left-hand side equivalents from E@.24). After extensive
algebraic manipulations, we can demonstrate that
RHS(y+1) has been transformed into theft-hand sideof
Eq. (2.29) for the case in which alh have been replaced by
n=N+1. This, then, completes the inductive proof of Eq.
(2.24). The details of the argument are given in two appen-
dices. Appendix A proves some necessary lemmas; Appen-
dix B proves the fundamental theorem.

Finally, in this section, we will make some general re-
marks about the stat# |¢). It is important to realize that
¥ | ¢) implements the non-Abelian Gauss'’s law, but that it
is not an eigenstate of the QCD Hamiltonian. Al%®,|¢)
does not have a bounded norm. This follows from the fact
that
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[{b3(K) +I3(K)}AP(r) 1=[ Sapki — ig FAPAT(r)] G(r) ¥ [¢)=0 . 3.3

xexp —ik-r] (2.27) Our approach to this problem will be based on the fact that

. G2(r) andG2(r) are unitarily equivalent, so that
and that, because E¢{.1) holds, the matrix element g'(n g (" unttartly equiv

M=(¢| W*[{b3(K)+IZ(K) LAY |¢) (228 G0 =Ue PO U™ (3.4
can be represented either asM=(¢p| V*(Spki  wheret/,=e%e’ and whereC, andC are given by
—igfaeAS(r) W | ¢) or, alternatively, as
M=[0-(¢p| ¥* ¥ |¢)]. The apparent incompatibility be- , » —, — .
tween t<hese two exgressions fdr has led some authors to CO:'j dr A%(r) jo(r) and C:'f dr Y*(r)jo(r)
argue that QCD in the temporal gauge is inconsisf&t (3.5
However, as was pointed out by Rossi and T4$th the
appropriate inference from these two identities is not thaWe can demonstrate this unitary equivalence by noting that
QCD in the temporal gauge is inconsistent, but that the=g. (3.4 can be rewritten as
gauge-invariant states that implement the non-Abelian _ _
Gauss’s law do not have bounded norms. The quantity e % GA(r) e‘o=e€ G3(r) e C . (3.6
[0-(¢p| ¥* ¥ |¢) ] only makes sense when the product of
0 and an infinite norm is carefully defined. This has beenin this form, the unitary equivalence can be shown to be a
done in Ref[8] in the context of a functional formulation in direct consequence of the fundamental theorem—i.e., Eq.
which a redundancy of gauge-invariant states is eliminated2.24). We observe that the LHS of E@3.6) can be ex-
with a constraint that controls the residual gauge invariancpanded, using the Baker-Hausdorff-Camph&HC) theo-
that remains after the temporal gauge has been selected. Tham, as
identical argument — that the norms of the states that imple-
ment Gauss’s law are unbounded, but that the criticism made =% G2(r) eCO=@a(r)+S?l)+ .. +5?n)+ o
in Ref.[7] is unjustified — was also made in the context of (3.7
an analogy with ordinary quantum mechani&. With
proper care, states with unbounded norms can be used WhereSa —[Co, G¥(r)] and S‘Z‘n)=—(1/n)[Co, S?nfl)]'
canonical formulations. Even the) states, whose structure \ye observe that
was given in Ref[6], have unbounded norms and were used
in connection with the Fermi formulation of the subsidiary

ﬂ.
condition for QED in covariant gauggs0]. Sy=- 5a,c+gfabCXb(r)+9fab°AF(f)3lz}iS(f) :
(3.8
IIl. THE INCLUSION OF QUARKS
In Eqg. (1.1, we have implemented the “pure glue” form and that
of Gauss'’s law. The complete Gauss’s law operator, when
the quarks are included as sources for the chromoelectric (—1)n+t o 1aay :
field, takes the form M= 1 19 0T Rin-1)(1)
G3(r)= I (r) + gAY NTIF(N) +3(r) ,  (3.]) +g" 02 RE (N]j3(r) +gMFabe 1297, AP(r)
where g .
X2 Rin-1(r) 601 (3.9
. A®
=g ¢'()=w(r) (3.2

Equation (3.9) shows that twog"fg;n"’;y an)(r) jg(r) terms
and where the\? represent the Gell-Mann matrices. To will appear in this series: one iff,,, , and one inS(, ;). The
implement the “complete” Gauss’s law—a form that incor- sum of these terms will have the coefficient
porates quark as well as gluon color—we must solve th¢1/n!—1/(n+1)!]=1/(n+1)(n—1)!. When the BHC se-
equation ries is summed, we find that

. . J 1
e~ G3(r) e%0=G(r)~j§(r — gAY 225N~ 2 (- 1" =g o Y Ry (1) J3(0)+gfANr)

nyn___— 1 aCy l
><n§=)l (=" ﬁz[R(n)(r) N7 . (3.10

To prepare for the evaluation ef?ga(r) e*?,the RHS of Eq(3.6), we multiply both sides of Eq2.24) for thenth order
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term, Al,)i(r), by g", and then sum over the integer-valued indiceendn (in that ordey. The result—a formulation of the
fundamental theorem that no longer applies to the individual ord%%(r) but to their sum,Ay(r)—|s

if dr'[o,113(r), Ijv(r')] ij(r’)+igfaﬁdAiﬁ(r)J dr'[T1%r), A_,-’(r')] VI(r’)
and g 97 B(M) o gecacy ap
= —gfaud AK(r) VS r)+2 Al petecy Al (r)—z[M(,,)(r) V1]

-2 2 (—DHgWLf““f“”R")(r) ME () GV(1)

2 & MDD ¢
) i
—gfaﬁdAfg(f)ZJO ;l (—D'g""” l(t(fl)' fﬁ?”@)y&z[Rt) (1) M{y(1) VD] (3.11

If we again use the BHC expansion, as in E8}.7), but this time to represent

ec_ga(r) efC_:ga(r)+§(l)+...+§1)+..., (3.12

we find that the first order ternﬁ_‘?l) can be obtained directly from E¢3.11) and is

S = auy pp gs+1 (s) apesacy aB( i \qa 7
()= —9f*7 A (r) B0+ 2 =g 1R AR LM (1) 3]
-2 2 <—1>‘*1g‘*5—8(5) FEMET RA (1) M (1) 13(1)
$=0 t=1 sl(t—1)!(t+1) ¢ ® (s)
B(s) a
—gfH AR 3 3 (- t”Ssl(tﬂ),fﬁ;“f(s”a;m (1) M) J30] ; (3.13
the kth order term is
= _9 audgady Gy e g""B(s) aBcsacy g i a .
S?k):k_|f R A( r)?[/\/l(k_l)(r)] 3(r) ]"'2 TSkl o PP oA (”?[M(wk—l)(r) j4(n]
_ B(s) . " : .
_szozl(_l)t e lslk'(t—l)l(t+1)ff‘t‘;’mfsﬁyk 1) Rip(r) Msii—1)(r) jo(r)
B(s) :
—gfH AN X 3 (—1)gt e 1—Slk|(t+1),fg;§“f(s”ﬁk l)az[Rm(r) Moy B3N] . (314

When we sum over the entire series, we can change variables in the integer-valued indiedstte— 1, and perform the
summation overy ands, with k= n—s+1. The summation oves then involves nothing but the Bernoulli numbers and
fractional coefficients, so that we obtain

- = d,
e GA(r) e “=G(r)—gf*7 AP(r)3]3(r) +E g7 IDg( ) farericy Aﬁ(r)az[M ) i3]
+3 3 (-1 e B8 iy i o) M2 () o)
2 &0 =D T Rio(r) M) jel

D3(7) .
—gf*d AK(r) ;Ot;(—wg“ (Hl”),fﬁ;“f“;n[nm(r) ME(D) 60T (3.19
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whereD{(#) is the sum over Bernoulli numbers defined in tions, in which the opera_tor-v_alued gauge and spinor fields in
Eq. (B18). D(7) has the value®J(7)=0 for »+#0, and a gauge theory—QCD in this case—are gauge-transformed

. T : ;
DY%0)=1. Sincef™?=— s find th tituti § by an arbltr_ary c-number f_leldo (r) consistent with the _
o) Sincef () .y, We find that substitution o gauge condition that underlies the canonical theory. In this,

these values into Eq3.19 reduces it identically to Eq. the temporal gauge, such gauge transformations are imple-
(3.10 and thereby proves Eg&.4) and(3.6), demonstrating mented%y gauge, gaug P

the unitary equivalence @?(r) and G(r).

The demonstration of unitary equivalence @f(r) and v N NP , ,
G3(r) enables us to assign two different rolesg¥(r). On O(N—0'(r)=expg - g GAr)w(r') dr’ JO(r)
the one hand@g?(r) can be viewed as the Gauss's law op- )
erator for “pure glue” QCD an(ﬂa(r) as the Gauss’s law Xexp{l—f Gy w¥(r") dr’) (4.0
operator for the theory that includes quarks as well as gluons. g

But G?(r) can also be viewed as the Gauss’s law operator for

CD with interacting quarks and gluons, in a representatiof!N€"e@?(r) is time-independent, and whetr) represents
Q 94 J P ny of the operator-valued fields of the gauge theory and

in which all operators and states have been transformed Wi[@)’(r) its gauge-transformed forffi.1]. Equation(4.1) ap

a similarity transformation that transforng(r) into G*(r) lies to QCD with quarks and gluons, and is expressed in the
and that similarly transform_s all other operators and States_ representation. It is obvious that any operator-valued field
well, but that leaves matrix elements unchanged. We wil PSS ) ,

that commutes witl?(r) is gauge-invariant.

designate the representation in whigh(r) represents the We can also formulate the same gauge transformations in

Gaus_s S 'aV_V opirator for QCD with ql‘J‘arks as we’!l as gluqnstheN representation, in which case they take the form
and in which G%(r) represents the “pure glue” Gauss's

law operator, as the “common” o€ representation. The i

unitarily transformed representation, in whi¢i(r) repre- OMr)—»Oj\,(r)=exr< - —J GA(r') o*(r") dr’)@,\,(r)

sents the Gauss’s law operator for QCD with interacting 9

guarks and gluons, will be designated therepresentation. i

We can use the relationship between these two representa- ><exp< 5[ GAr') w®(r’) df’) , (4.2

tions to construct states that implement the “complete”

Gauss'’s law—Eq(3.3—from where O,(r) now represents a spinor or gauge field in the

- N representation. Equatiof#.2) has the same form as the

Gi(r) ¥ [¢)=0, (3.16 equation that implements gauge-transformations for “pure

glue” QCD in theC representation, but it has a very different

meaning. In Eq(4.2), the operator-valued fiel®,(r), and

G2(r) which here represents tieatire Gauss's law — quarks

and gluons included — both are in té representation.

It is easy to see that the spinor fielldr) is a gauge-
invariant spinor in the\ representation, becauggr) and
G3(r") trivially commute. To producefg(r), this gauge-
invariant spinor transposed into th@ representation, we
make use of

. YD) =Ue p(1) Ut and g (N =Ue (1) U .
identifying W |¢)=U, ¥ |¢$) as a state that implements 4.3
Gauss’s law for a theory with quarks and gluons, in ¢he
representation. In Sec. IV, we will discuss the relation be\We can easily carry out the unitary transformations in Eq.
tween gauge invariance and the implementation of Gauss'é-J to give
law. As was reiterated in Rdi4], the Gauss’s law operator is _
the generator of local gauge transformations—which are Y1) =Ve(r) $(r) and ‘/’gl(r):‘ﬂ(r) Ve n
time-independent in the temporal gauge—so that functional (4.4
integrals over gauge-invariant states are annihilated by thgnere
Gauss’s law operator. The apparatus we developed in this
and preceding sections for constructing states that implement . —  \¢ _ e
Gauss's law will therefore be instrumental in finding explicit Vc(r)=exp< —|gya(r)?) exp( —|g)(“(r)7) ;
operator-valued representations of gauge-invariant spinor (4.5)
and gauge fields.

which is the “pure glue” form of Gauss’s law in thé rep-
resentation. We can simply view E(R.16) as the statement
of the complete Gauss’s law—the version that includes in
teracting quarks and gluons—but in thérepresentation. In
order to transform Eq3.16—now representing Gauss’s law
with interacting quarks and gluons—from thié to the C
representation, we make use of the fact that

GA() W |y=Ue GA(r) U " U W |$)=0 , (3.17)

and
IV. GAUGE-INVARIANT SPINOR AND GAUGE FIELDS

a a

We can apply the unitary equivalence demonstrated in the Ve (r)—exp<|gék“(r)?> exp{|gy“(r)7) . (4.9
preceding section to the construction of gauge-invariant .
spinor and gauge field operators. We observe that GaussBecause we have given an explicit expression)6(r) in
Law has a central role in generating local gauge transformakggs. (2.19 and (2.20, Eq. (4.4) represents complete, non-



2354

perturbative expressions for gauge-invariant spinors in the

C representation. We can, if we choose, expand Egd) to
arbitrary order. We then find that ©(g®), we agree with
Refs. [12,13 in which a perturbative construction of a
gauge-invariant spinor is carried out@(g®). Furthermore,
in the C representationy(r) gauge-transforms as

a

A
¢(r)—>¢’(f)=exﬁl(iw”(f)7) %(r) . (4.7
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55

G| ) =GUew| $)y=0
include any state}¢>A_?i(r)) in which the transverse gauge
field A2 ,(r) acts on anothelig) state. This is an immediate
consequence of the fact thgf \if=\ifb§(k)+Bg(k), and
that A-t} i(r) trivially commutes withg,I1{(r"). We use the
commutator algebra for the operator-valued fields to maneu-
ver the transverse gauge field, along with all further gauge

field functionals generated in this process, to the left of
U in L{C\PA$ i(r) |¢). We then obtain the result that

4.9

Sinceyg (r) has been shown to be gauge-invariant, it imme-

diately follows thatV(r) gauge-transforms as

o

Vc(r)—>VC(r)exr<—iw“(r)7 and

)\a

Vcl(r)—>exp<iw“(r)7)vcl(r) : (4.8)

VAT (D]6) =A% (NT]4), (4.10
whereAE’;I i(r) is a gauge-invariant gauge field created in the
process of commuting\?i(r) past theW¥ to its left. The
gauge-invariance oA%,;(r) follows from the fact that the
Gauss'’s law operatd#® annihilates both sides of E¢.10).
Equations (4.9 and (4.10 require that the commutator
[G?, A2,.(r) ]1=0, and it then follows directly from Eq.

The procedure we have used to construct gauge-invariang. 1) that A%, ;(r) is gauge-invariant. It only remains for us

spinors is not applicable to the construction of gaugetg find an explicit expression foh, ;(r). We first observe
invariant gauge fields, because we do not have ready acceggm, Egs.(3.4) and (3.5 that the gauge field and all func-

to a form of the gauge field that is trivially gauge invariant in jona|s of gauge fields commute with . We further see that
either theC or the A representation. We will, however, dis-

cuss two methods_for constructing gaugeiinvariant gauge Ag”(r)\lfz[\lf, A2 (1) ]+AR (N, (4.19)
fields. One method is based on the observation that the states
| ) for which When we expandV as
¥ =|[expA)||= exp(if dr AY(r) Hz<r>)=1+if dry AY(ry) TI(ry)
(i)® ey e TIr T2 ()" e A%
+T drl dr2 Akl(rl) ‘Akz(rZ) Hkl(rl) sz(r2)+"'+ﬁ drl dr2 drn 'Akl(rl) Akz(rZ)
X ALN(r) TLE(ry) TLE(rp) -+ L)+ - (4.12
it becomes evident that
b 1 %%\ —% %% —B, .\ e y
[V, At i(r)]= 5ij_? Aj(r) + 5ij_? Aj(r) i [ odry AZ(rq) TI(ry) + - - -
3,0i\ — (ihn?t — —
+ &rﬁ)A}’(r) (n_—l)lf dry dry - drog AZHr) AZ(ra) o A )
X I r)IA(rp) - T X+
919i\—p
= 5”_7 AJ(r) v , (413
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o

and therefore that the gauge-invariant gauge field is

im+ ;| 9;—ig A“(r)

+ 70(90} y(r)=0, (4.19
Agli(r):A'lI)'i(r)_l_

%% |—5
5” - 72_} Aj (I’)
b — _ where we have used the same noncovariant notation for the
=a(r)+ AX(r)—ad°(r) . (4.14  gauge fields as in Ref3] [i.e., A%(r) designates contravari-
Corgfirmation of this regult af:an be obtained from the_ faCtar.]t: Ez?lﬁjAﬁr?(\)/sgﬁn:hg uggggg]sfi:[:ji g:]eergggratlgr-?/gﬁued,
that A, (r) commutes withG™ —and therefore also with ey commute with all other operators in Ee.18—with
G*. We observe that the exception of the derivativels —so that, when only time-
independent gauge-transformations are consideve(r),
GA(r), (AibT(r') acting as an operator that gauge-transformsbehaves as
though Z* were ac number. The gauge-transformed gauge
) field, that corresponds to the gauge-transformed spinor
AP(r )”

[GR(r), A% i(r")]=

Yai(r)=V(r) ¥(r), therefore also is gauge-invariant; it is
given by

+| 8

ij— (92

b

= f dy {[G*(r), A}(Y)] \b \
A%.i(m;}:vc(r)[AP(r)?

Ve i(r)

+[GA(r), AP(y) IV, (y—r")=0, |
(4.15 +|§Vc(r) AV 4.19
where

;9 Sincefurther gauge transformations must be carried out si-
Vij(y_r'):<5ij - ?) a(y—r’) . (416 multaneously onj(r) andV(r), and must leaveyg,(r) un-
transformed,Ag”(r) must also therefore remain untrans-
Equation (4.15 follows directly from Eg. (3.1; formed by further gauge transformationggli(r) thus is
Jay [G3(r), Z}5()’)] Vj;(y—r") can be identified as the first identified as a gauge-invariant gauge field.

line of that equation, when the integration owerin Eq. To find an explicit form for[ A%, (r)(A®/2)] from the
(4.15 is identified with the integration over in Eqg. (3.11), RHS of Eq. (419, we use Eg.(2.23, with V{(r)
and when the tensor elemevif (y—r’), with r" andi fixed, = §;;(\”/2), to obtain

is substituted for the vector compone‘mf in Eqg. (3.11.
Similarly, [dy[G3(r), A (V)] Vij(y—r’) can be identified
as the second line of EQB 11). The remaining three lines of
Eq. (3.11) vanish becausg;V;;(y—r')=0 is an identity. In
this way, Eq.(3.11) accounts for the gauge-invariance of
A&i(r).

Another method for constructing a gauge-invariant gauge
field is based on the observation th&{(r) can be written as
an exponentlal function. We can make use of the BHC theo-
rem thate’e'=e", wherew is a series whose initial term is It is straightforward but tedious to show that
u+v, and Whose higher order terms are multiples of succes-
sive commutators afi andv with earlier terms in that series. g7
Since the commutator algebra of the Gell-Mann matrlce{ ar(r)+ E l/’(,m(r)}
N® is closed, V,(r) must be of the form

exd —igZ%(\%/2)], where
. A . —\¢ . A . A\ y N7
exp —ig 2" —-| =exp —ig)'>-|exp —igA" - =exp —ig AN || AN+

and Z* is a functional of gauge fieldéut not of their ca-

g77 &ﬁ )\7
al(r)+A)(r)- 21 = vamBm,(r)

= a’(r)+§) %y - (4.20
|G = Plpi(r) 5 .

. A
exp(|g X“(r)7) ,

4.2)

©

nonical momenta V(r) therefore can be viewed as a par- ) a’ . ,37 P \Y

ticular case of the operator €ip®(r)(A“/2)] that gauge- al(r)— 21 i M(,])(r) ar(n | =

transforms the spinor field(r); »“ in this case isZ* and 7

therefore a functional of gauge fields that commutes with all _ )\ N7 _ )\
other functionals of gauge and spinor fields. Moreover, we —exp(lg Y(r) ) al(n— EXP( —ig y“(f)y) .

can refer to the Euler-Lagrange equatign the Ay=0
gauge for the spinor fieldi(r): (4.22
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g7 - R I its role in the “fundamental theorem”—for the case of
{ay’(r)— E f(“f)’ M) 3;VP(r) > Yang-Mills theory. For that purpose, we substitué—
the structure constants of $2}—for the fP¢ required for
_\° SU(), in the equations that pertain t@ia(r) e”ﬁy, the
exg( —ig ya(r)7) SU(2) equivalent of thef"ﬁy that are important in the defi-
nition of Aa(r) is given by

R AN I b
~ex] 19 y“(r);) Ty

(4.23
and .
. €Y= (= 1) "2 6,41} ag2) Bugaata)
AT+ V(r) - E g—f(“,ﬁy M (1) X Bafp-3jaly-2) €17 €2l (5.0)
n=
1 N7
Aﬂ<r)+—ayﬂ(r>” and
— A\ [— N7 €BY=(—1) VRS 1) o Barayata
=exp<ig y“(f)y)[«‘li’(r)gﬂj&i (/=01 [1]a{2] Oa[3] af4]
X Bt y-21aly-11 €17 52
@
Xexp —i N—| . 4.2
p( g Vir) 2 ) (.29 for even and oddy, respectively. We can use Ed$.1) and
) (5.2 to write the SUW2) version of Eq.(2.20 for A}(r),
Equations(4.20~(4.24) lead to which appearsimplicitly ) as the coefficient of thél(r) on
AP the LHS of that equation. In doing so, we separai¥r)
Ve(N)|AX(r) — > Ve Y+ VC(r) AN into two parts
b A 919i|—5 \° 17 A7, A
=ATi(r)7+ 5ij—?¢4j(r)7 , (4.25 Al(r)=A7(N) 1+ A/ (N3 (5.3

so that the identical gauge-invariant gauge field is given in — —
Egs.(4.14) and(4.19. In the gauge-invariant gauge field, as where A7 (r) , represents the part of7(r) that depends only

in the earlier case of the gauge-invariant spinor, we find tha@n “known” quantities that stem from the(r,i(r) and are
when we expand Eq4.14—this time toO(g?)—we agree functionals of gauge f|eldsAV(r)y represents the part that

with Refs.[12,13 in which a perturbative construction of a implicitly contains theA7(r) itself. In Sec. Il, we showed
gauge-invariant gauge field is carried out to that order. how the perturbative expansion ny(r) proceeds with the
construction of thenth order term, A(n),(r), from the
zp(n),(r) of the same order, and fromA(n )I(r) of lower

Because of the simplicity of the §P) structure constants, orders—in the S(2) case, the latter originating from
it is instructive to examlneAa(r)—lts defining equation and A’/(r)y The explicit forms ofA’/(r)X and A’ (r)y are

V. THE CASE OF YANG-MILLS THEORY

(0 =gemam(n) A g earan(r)g, 208N o ot g ) a1y ) S8
N N N
+gze“'gbeb‘”é\?“(r)X“(r)(?iXB(r)[A% - S';([—j;/)} (5.4
and
_ _ g9\ — \ sin\ . 1-codN -
AY(r)3=ge*P” Y(r) A?i(r>+(a —8—2' AP(r) SIr‘(M+ge“ﬁ7 y“(r)aiyﬁ(r)LjU\/)+gze“‘*bebw YH(r) Y(r)
N
5.0\ — | 1—cogN |1 sinw
X Aﬁi(r)+(5”——2’ AL(r) ﬂ+gzeaﬁbeb”7y“(r) V(r)a;VB(r) _——SITM] , (5.5
J NZ NZ N3

where
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Mr)=N=[g?X(r)x%r)]*? , (5.6)
and
NI=N=[g% Y°(r) Y°(r)]*2 . (5.7)

There is a striking resemblance in the structure of E§<) and (5.5 on the one hand, and\(); , the gauge-transformed
gauge fieldA}, where the gauge transformation is by a finite gauge funetidn(A?)/ is given by

sin(lo]) 1 1—COS<|w|))

1
(A =| A+ =d0” | — P! 0 AP + -0 P ————
g ol g | o]

— €*Bbebu| 1y Aiﬁ

(5.9

1—COS(|w|)+w'“w“¢9iw'B( 1 S|n(|w|))>
|w]? 9 [0 Tol*

The SU2) version of Eq.(3.11)—our so-called “fundamental theorem”—can similarly be given. In that case, the summations
over order and multiplicity indices can be absorbed into trigonometric functions, and we obtain the much simpler equation

ifdr’[ainf(r), I}(r’)]vr(r%igeaﬁdAf(r)fdr’[Hf‘(r), A_j’(r’)]vjy(r’)

2
=—ge™d A(r) Vd(f)—g?'s‘""j‘C ey Aﬁ(r) (J’a(f) VI(r)

apc aCy B @ 1 '/T/ 1 y
—g%e €2 A (r) 7 M(r) ZJT/CO Py /\/’2 V()

oy sin(N) 1—cogN) ) 2 pay i cogN) sin(\N) ,
+ge” X (r) N N2 HVY(r)+9° €2)” Riz(r) N NE aVi(r)
g2 aN _alky e Sln(N) 1_C03N) Y
+?e” eNYXH(r) Y(r) G - V2 aV{(r)
93 ay _aky ,u, S CO&M SIn(N) Y, 3 _uan NY v x SIn(M 1_COSM
+E€(2) € R(z)(r) YH(r) ——W Vi (r)+g°e 6(2) X (r)/\/l(z)(r) N - N2
1 N 1 ) 4 pan - cogN) sin(N) N 1 ,
x i/_COt Sl T= GVI(r)+g” €3 6(2) R(z)(r) M)(r) N NE 2./\/ of 5 _X? aVvi(r)
] 1—cogN) J; sin(N)—N
_gzeaﬁde,udyAB(r) = XH(r )/\[— Vy(r) 3 aﬁdeudyAB(r) R(z)(r)N——aij/(r)
g° 9 — 1-cogN)
— —EaBdEMd)\éa)\yAiﬁ(r)g XM(I') y“(r)T(?jij(r)
9 gl - — siM-N
— — el eMAL ()= | R (1) ya(r)TajV,-’(r)
i - 1-co 1 /T/’ 1
—g'e aﬁde“d"e“”AB(r) XH(r) Moy (H——5— S(M[—_con( —) = |9V
2N\ 2] N2
S Y !
_ aﬁd 2d\ _an B RS N S RV
g°e els) (Z)YA (N— (sz)(r) M(Z)(r) I LNCO\( 2) JT/Z a,vjy(r)) . (5.9
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To account for the general structure of E@5.4) and _ 1—cogN)
(5.5), we observe from Eq$4.17) and(4.18 that the unitary A1) P9 = —ge*P” x%(r) ;X%(r) N
transformation that transforms the spinor field to its gauge-
invariant formis itself a gauge transformatiory(r) there- +g2e*PP Py (1) (1) 9, XP(1)
fore is an operator that gauge-transforms the spif(oj to a i
form that is then invariant to any further gauge transforma- x[i— sin(\) 6.2)
tions And Ag, i(r), which is the corresponding gauge trans- N? N3 '
form of the gauge field\ib(r), is similarly invariant to any
further gauge transformations. Equatidd.14 identifies and
ZF(r) as an essential Constituent,@f;, i(r), and Eqs(5.4)
and (5.5 specializeZF(r) to its SU?2) structure. It is there- — 0 _ —  1-co3gN)
fore not surprising to find that the relation betwedf(r) Aiy(r)fg =ge*f? y“(f)ﬁiyﬂ(f)——z
ar;d AP(r) anticirz’ates the relation betweeh, i(Ig) and N
A’(r)—i.e., thatAg, :(r) is the gauge-transform &(r) b 2 wBb DY i v 8
tne( f?nite gauge fﬁnlétiz)lzb(r),gdef?ned in Eq(4.175.( 'o QPP YH(r) Y1) GYA(r)
{ 1 sin(./\/)]
VI. DISCUSSION e (6.2
NZ N3

This paper has addressed four main topics: The first has
been a proof of a previously published conjecture that states, — —
constructed in an earlier worf6] and given in Egs(1.1),  The “pure gauge” parts of47(r) v and.A7(r)y correspond
(1.3, and (2.20, implement the “pure glue” form of to the pure gauge part ofA(){, with —gA”(r) and
Gauss's law for QCD. Another has been the construction 0f)”(r) corresponding to the gauge functia(r), and N
a unitary transformation that extends these states so that theyd A corresponding tdw|, respectively. This correspon-
implement Gauss's law for QCD with quarks as well as glu-dence suggests that, in addition to the iterative solution of
ons. The third topic is the construction of gauge-invarianteq. (2.20, which we have discussed extensively in this
spinor and gauge field operators. And the last topic is thevork, there may be nonperturbative solutions that cannot be
application of the formalism to the §P) Yang-Mills case.  represented as an iterated series and that are related to the
Implementation of Gauss’s law is always required in anontrivial topological sectors of non-Abelian gauge fields
gauge theory, but in earlier work it was shown that in QED[16].
and other Abelian gauge theories, the failure to implement
Gauss's law does not affect the theory’s physical conse-
qguenceg14,15. And, in fact, it is known that the renormal-
ized S matrix in perturbative QED is correct, in spite of the  This research was supported by the Department of Energy
fact that incident and scattered charged particles are detachg@der Grant No. DE-FG02-92ER40716.00.
from all fields, including the ones required to implement
Gauss’s law. In contrast, the validity of perturbative QCD is
more limited. It is not applicable to low energy phenomena. APPENDIX A: SOME NECESSARY LEMMAS

And, it is likely that all perturbative results in QCD are ob- | this appendix we will prove a number of lemmas re-
scured, in some measure, by long-range effects, so that thgjired for the inductive proof of Eq2.24 — the fundamen-
implications of QCD for even high-energy phenomenologytg| identity that enables us to construct states that implement
are still not fully known. In par_ticular, color confinement IS the non-Abelian Gauss’s law. The first group of lemmas per-
not well understood. One possible avenue for exploring QCQgins to the sums over permutations of structure constants

dynamics beyond the pertudrbative re?ime Iis the usedo{hat arise whenll?(r) and #,II3(r) are commuted with
gauge-invariant operators and states in formulating QCD dy=, ., ) . L
jy(r ). The first of these identities is

namics. Although dynamical equations for gauge—invarianIA
operator-valued fields have not yet been developed, we be-

ACKNOWLEDGMENTS

lieve that the mathematical apparatus we have constructed in [Pﬁg?g[m, 1])fe‘”ffnfl 1)]Ufm,1)
this paper can serve as a basis for reaching such an objective. o1
We also note a feature of this work that is most clearly S m! £B59
evident in the S(R) example. The recursive equation for &y (m—s—1)!(s+1)! (m=s=1)
AP(r) —Eq. (2.20 in the SU3) case, with an arbitrary . .
V?(r) replacing thd1?(r), and Eqs(5.3—(5.5) in the SU2) POt Ul o U (A1)

Yang-Mills theory — have many of the features that we as-
sociate with finite gauge transformations applied to a gaugg{&

field. This is particularly conspicuous for the parts Oftionsu“[m](r) that differ only in the indexe[m] that refers

A7(r) x and A7(r)y that correspond to the “pure gauge” 4 the adjoint representation of the Lie group to which the
components of A7) displayed in Eq.(5.8). These “pure  gauge fields belong, and for whiga/(r), /(r')]=0. To
gauge” parts are4i7(r)(ng) andAiy(r)(—ypg), respectively, and prove Eg.(Al) we generalize Eq(2.26) by defining the
are given by more general permutation operator

=M7_,u*™(r) is a product of operator-valued func-
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[P, feﬁff,éfz_7 ]Z/{é o this permutation, the structure constant that conteiisal-
(@pm=j=1h°  Hm=j=Im=j-1) ready on the extreme right of all other structure constants, so
. . .. that the Jacobi identity can no longer be applied to its prod-
f{fg“fuevf;’rgzs_,-_b u(ﬁs) Un-s—j-1) - uct with the structure constant on its right. For that reason,
the sum over permutations on the RHS of E&6) contains
(A2)  one fewer elements than the sum over permutations on the

. N ) LHS of that equation.
We can designate the individual permutations that appear aApplying Eq. (A6) sequentially to

in Eq. (A2) as

M (s+j)!

& 8!

; ; 5,7 [P ptm—s—1) feouefer U o . (AD)
Pe.prm-j—11(8) = T8 T T Y oy U Ui —s-1)
(A3)  for s=j,j+1,j+2,... m—2, thus decreasing the number
of terms in the sum over permutations by one with each

for s=0,1,2,...,m—j—1, so that Eq.(A2) can be ex- gneration until the last permutation has vanished, leads to

pressed as
i R R pu o gedugBuy B
[Péle),ﬁ[m—j—1])fe§fffgnfqzj—1)]U'(Bm—j—1) [ (e,flm—j—1]) (m—j 1)] (m—j-1)

1
m!

m—
m—j—1 . B ;
s+j)! = fon o p FUVEEY,
_ E ( _J) peﬁ[m—j—l](s) ' (Ad) SE=J (m—s—1)!I(s+1)! (m—s—1) (s—})
s=0 S!]! '
B -
We can transformpe gm—j—1j(S) by using the Jacobi XUim-s-1) Us-j) (A8)

identity one of the important lemmas established in this appendix.

foeb1]¢b[1]Bb[2] — cbl2]b[1] Bebl1] | fcAb[1]feb[2]b[1] For j=0, Eq.(A8) becomes Eq(Al). Equation(A8) with
(A5) different values folj can be combined to obtain other useful
identities. By combining th¢g=0 andj=1 versions of Eg.
As we use the Jacobi identity to transform each permutatiofA8), we obtain
in Eq. (A4), turn by turn, each such transformation augments . .
the coefficient of the immediately following permutation by [Pg gm_15) T8 ffm? 1 U0 4,
the accumulated sum of all preceding permutatipres, ap-

. S . ; -2
plying the Jacobi identity t@®@e gm-j-1;(S) contributes an Sued > T mi(m—t—1)
additional Pe,grm—j-1)(S+1) term|. Since =mf° uffnlezl) Z”(lgm—b_ tzz() (m—t)!t!
So_o(n+)Untjl=(s+j+1)l/sl(j+1)!, we find, after ) ) o

the Jacobi identity has been applied to the last possible set of X f(ﬁtfvaumfmegtil)ug) Ui 1) (A9)

permutations on the RHS of E¢A4), that we obtain
. . and
i esfeBly B
[P ptm—i-1f " F 7 -2)] Ulinjoa) (PO esugfur 1
_pplitD ¢toughy peoty o (e.8[m—1]) (m-1)14(m-1)
[Pt pim-j—2pf P Him’ -2 1T Uim-j -2

Zi- m—2

; ; (m—1)!
! - - =feuffY UG+
+(m—j—r1n).l(j+1)lfignfijfl)fewufmfjfl) : e 520 (st Dim=s=2)!
(A6) X E s f S Ul 1) U (A10)

The last term on the RHS of EGA6) is the last permu- Our next objective is to evaluate the contribution to Eq.
tation in Eq.(A4), whose coefficient has now been increased2.24 from (i/n!) fdr’ () (r")V](r’), the inhomogeneous
to (s+j+1)/s!(j+1)! with s=m—j—1 by the applica- term in the recursive equation fofdr’ A7(r")V/(r"). From
tion of the Jacobi identity to all the earlier permutations. InEq. (2.6) we observe that

i i - -
—n!fdr’[H?(r), Pl (T ()= — (—1)”*1ffnfj7f dr’ R (r') [IL(r), Qf;(r)IVI(r)
+ Loty [ e rmdee, RE (19108, (r VAT A1l
n!( ) (n) PG, Ry (r')1Q6G) (rVvy(r’) . (A11)
We use integration by parts and the identity

O [Q, Uy 1= =[P g1y T2 027 )10 Q, U(r)T U, (A12)
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whereQ represents an arbitrary operator for whied, ¢/%(r)] commutes withii/*(r'), to obtain

1 T & -
A [IL), @y, (FIVI(r )= (= )" G Ry (1) V() + o (— D72 (Riy (1) V(1)

(n+1)!

(n+1)|( DML opn- uf“def”e’l)]az(x (1) R 1(1) V(1))

- (9 -
= D)" PRt 1 P01 (RE-1(1) QD V(D) . (A1)

Equation(Al) enables us to rewrite EGA13) as

i Jd ’ Hd y ’ Ve !\ — 1 _ n—lff;d‘}’ a Y 1 _ fad'y I
arl 9r LILE(r), ol (r') ] Vi (r )—m( 1) )’ Rim(r) Vi(er( 1™ az(R(n)(r) V()

1
T.Be odu _ +1
2 (n+1)(S+1)'(n S— 1)|f(s) feu7f e 1)( 1)n

n—-1

1 -
X_Z(R(S)(r) R(n s— 1)(r) XB(r) Vy(l’))-l-z mf&dus l)feu'YfZ'ge(_l)n+l

0: - -
X3 (R o-1)(1) Rig(r) Qfyy(n) V](1) (A14)
and the identity

1 _ 1
sl(n— s)'Q(S (1= sl(n—s—1)!|(n—s9)

Q(an)j(r)_ Xq(r) , (A15)

(n+1)(s+1)"!

finally leads to

(- 1>“f“‘”az(7e<m<r> V(1))

iJ'd’Hd b% VY r_l _1nflfc;dy @ V& 1
ar] ar LITE(r), oy (r) IV (r )—H( ) M Rin(r) i(r)+(n+1)|

1 4 -
T 1 (= 1) S (RE, ) (1) af(r) V()

n-1 1 adu euy nisai : . »
+2 sl(n—s)! f(“ s= 1)f (-1 ?(R(n—s—l)(r) l//(s)j(l‘) Vj(r)) . (A16)

S=

Similarly, the same algebraic identities used to obtain (B46) can be used to transform

i 1 - -
Hf dr [ II2(r), iy (F)IV](r) = m(—l)“*lffn‘?f dr' Ry (r)LATIE(r), @6y (1)1 VY(r

+—( 1" 1f“ﬁ7J dr'[&I12(r), R (106 (V) (A17)

to
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1
—f dr’ [(91_[ (r) lﬂ(n)](r )]Vy(r ) m( 1)n 1faby R(n)(l’) (}‘ 7(r)

L LoBefoey  AB(r) RY,_y (1) V(T

+ S m el bd R °(r) V7
= (-1) LRI 4(r) a%(r) V()

n—-2

+2

n—s—1

EICESA DM ) R s 1y (1) e (1) V()

(A18)
We can combine EqgA16) and (A18) to obtain

988 A0 gy | AR e (V)
— i ’ b b% ' YVip! 1 n—1 uzb'y a y
= o | drLaLn), oy) (r)1 Vi )—m( DML Riny(r) V()

n-2

- n—-s—1
( 1)n lfed’}/f’rbdl) Rz-nfl)(r) a?(r) VJy(r)_SZl S!(n—S)!

n— -
(_ 1)nfsflfedyf(7'rk])357l)

- 1
XRiy o (1) By(1) VYD)~ PRAR) (1020, B RE (1) 3V ()

- a -
— fordak(r) f;’ndl“z)feh«—1)”*10—'2(73;;,2)(0 a%(r) V() —foHaa%(r)

1
(n—=1)!
n-2

e ey gy 10 Re ) e, (1) V) (A19)
& s!(n—s—l)! (n—s—2) g2 (n=s=2) (s)j J :

APPENDIX B: PROOF OF FUNDAMENTAL THEOREM

In this section we will prove Eq2.24) by an inductive argument that assumes that(Ec@4) holds for alln<N, and then
demonstrates that it must also hold for=(N+1). The theorem is trivial fon=2 andn=1, in the latter case with the
previously established convention thAfO)J(r) 0. The structure of Eq(2.23, which defmesA(n)J(r)VjV(r) recursively in
terms of the inhomogeneous terig{/n!) fdr ¢ (r)V](r) as well as othe” (r)VJV(r) with n’ <n, is ideally suited to
an inductive argument.

We will transform—igf*“A%(r)  fdr'[TI{(r), AGy;(r')IVi(r')—the RHS of Eq(2.24) for n=N+1—into the corre-
sponding LHS of that equation, using Eg.24 as an inductive axiom only for thosef“n)j(r’) that haven<N. We set

(n")j’

—igfPHaAL(r) fdr’[nf’(r), Ad(r1 Va(r')=A+B+C (B1)
where
gN
—gfod AK(r) fdr [IP(), wdh (P V) (B2)
—gfd Af(r) E —_ o 2 2 Srumn Jdr'[nf‘m, M (F)] By () V() (BY)
and
C=—gf**@ Af(r) X —f?nffEO 2 5r+m+u_Nfdr'Mﬁm,r>(r'>[H?(r>, Blnui(rIVI(r) . (B4

We will representA, B, andC by dividing each of them into parts as shown by
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A:A(1)+A(2)+A(3) y (BS)

so that the subscrigll) designates those terms that contain commutators&m}ﬁ(r), the subscrip{3) designates terms that
contain ¢;V{(r), and the subscripf2) labels residues, most of which cancel as the proof proceeds to its conclusion. The

representation oA as a sum of its properly subscripted constituents is easily obtained frofiAEg). We use Eq(A12) to
represenB as

—gfP A mzzl [7’(a pim-1p) T ) ]2 2 | 2 Sormrusmo

=0 p=m—-1r[m]=1
' d a ' (9] é ’ S ' V(!
X dr LL(r), A (7 )]?(M(m—]_’p)(r ) Bimuk(r’) V(") (B6)

and invoke the inductive axiom to represegf®“IA%(r) ifdr’[l'[id(r), Aﬁ[m])j(r’)] Vi(r') in terms of the LHS

of Eq. (224 for all values of r[m]<N. When we equate the operator-valued vector quantity
(gN/m')[Pga Bim— 1])fa59f{’meyl)](a /(92)(M(m 1) (") Bfm'u)k(r’) Vi(r')) in Eq. (B6) to the arbitrary vector field/(r’) in

Eq. (2.24), we obtain

N+

Buy= 2 [P(aﬁ [m—1] faéefﬁeyl)]z E

2 5p+r[m]+m+u N
m=1 =0 p=m-1r[m

’ b a ' (91 5 ’ S5 ’ V(!
der [ﬁiHi(r)i A(r[m]+1)j(r )]?(M(m—lip)(r ) B(m,u)k(r )Vk(r )) ) (87)

and, after summing ovel m] and representing the sums over permutations by using the lemma given (AHg.

N+1

—fbMA#(r)zzz S 3 Sarmu g

=0 v=0 r=m-v—1 q=v v+ (m—v—1)!
m—-1

2<M<m (MG OB (VI -2 3 3 > Y

m=1 u=0 n=1 v=0 r=m-v-—1

59 f f
fﬁ 9, 4f9 vfgf;g

E 5r+q+m+n+u—N
a=

Boh  cahyeoca ouc 9 B(N) w9 F s y
Xy F G P8 (ot Dl (m—p—1)! Al (")?(M(nm,q)(r) M= p—15)(1) Bl (1) V](r))

gN+1B(n)
—DIt+1)(v+1)! (m—v—1)!

m—1
+2 2 2 Z Z 2 1q§+u 5r+q+n+t+u+m7(N+l)(_1)t_1n!(t

m=1 u=0 n=0t=1 v=0 r=m-v—
Bsh o\ b)\
Xf(ﬁmfufl)fahyfzrnfv zui) (I‘) M (n+v,q) (r)M(m v—1r) (r) B(m u)l(r) Vy(r)

N+1B(n)

+z 2 2 Z 2 2 1q§+v 5r+q+n+t+m+u N( 1)t n|(t+1)|(v+1)|(m U_l)l

m=1 u=0 n=0t=1 v=0 r=m-v—

f{*nfhv l)fathgn”fvfb#df(g” A“(r) (R(t)(r)M(n”q(r) My 10(1) Bl (D) V(1) (B8)

We will representC as
=C(a)+C(A) , (B9)

whereC(a) includes the commutator dfi{*(r) with the a; o(r') part of B(m wj(r") and C(A) includes the commutator of
I1¥(r) with theA(u)](r ) part ofB(m wi(r’ ) C(a) is glven by

N . 39; -
Cla)=—gf Af(r) X > 5r+mN%ff;ff( aij—gg)wz'm,r)(r) V(1)) (B10)

m=1r=m

andC(.A) is given by
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m  Jd;d
C(A) =~ g A(r) 2 ff’n‘?fEl 2 5r+m+quj dr[TI{(r), Afu>j<r'>]( Sk g 7 )(Mm, (') V(r")).
(B11
We again invoke the inductive axiom to transfo@).A) by representingg f°#4 A#(r) f dr’[H?(r), Afu)j(r’)] V-‘S(r’) in

terms of the LHS of Eq. (2249 for values of u<N, and identify g’\‘/ml)f(“n‘?)’[élk m/(m+1)

X (9 ak/az)](/\/l(m n(r")VE(r’)) as the vector field/'(r') in Eq. (2.24); after summing over the common integer-valued
vanable in the two Kronecke# functions in the resultmg expression, we obtain

C(A):C(A)(1)+C(A)(2)+C(A)(g) y (812)
with
_ igN+l &5}/ ) .
CA) =2 i 2 2 Sremeun | A LA, Al (1] = g 7 ) M) Vi)
(B13)
N+1 . m
C(A) 2>—fb“5A*‘<r>Z o fm 2 mmN(ai,- 1 ﬁz)wm,)(r)v’(r»
N+1 ady B( ) buc 0'65 I y
_21r2m(m+1 f<m>2 2 Fsenvremon T T A<)az(MnS><r>aMm,><r)V<r))
g""t as t—1 B(n) Wb\ £ NS5
+mE: 2 m+1 yE 2 2 5r+m+s+n+t (N+1) ( 1) mfﬁ) fETn)Rt)(r)
gN+l
xM(n (1) &, M(m (1) VI(r) + Zl rEm mf(“rﬁ’fb”d AX(r)
B(N)  aneo
X2 2 2 Sremesenston(— 1) (Hl),f‘“f e (R“)(r) MG (1) MG (D V() |, (B14)
and

N+l ( )

B(n
C(A)(3)_ 2 2 (m+l)| f(antj;yE 2 5r+m+s+n N

fbfwfms AX(r )—Z(M ns)(r) M(mr)(r) V(1))

N+l B(n)

+mz: Z m+1),ff‘rgfyz 2 2 5r+m+s+n+t (N+1)( 1)t !

=0 = ni(t=1!(t+1)

N+1

b\ (r)\(? 5vebud
XSO RE M (1) Mgy (0 AVF () + 2, rEm (a1 L TOARn)

B(n) i o
x2 2 2 6r+m+s+n+tm—n‘ﬁﬂd”f‘“ (Riy (N M (1) M (NFVI(T) . (B19

When we transform?i/\/lf»“m',)(r) and aj/\/lf;m',)(r) in C(A)2) by using Eq.(A12) and transform the resulting expression by
applying Eq.(A1), we obtain an equation that so resembles (B§) in structure, that it becomes very natural to &jg) and
C(A)(2- In carrying out this addition, we note that

(r+

mu)J

v 5 5
(m+ D) (m=y) SV ()= Bin—y-1i (1) (B16)

and obtain
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N+1
Bt ClA) o =1 AfD S, 3 S s S 5 2

=1U=0 v=0 r=m-v-1g= r+q+m+u—N(v+1)!(m_v_l)!

KB O T M 1) MY, ) Bl (1) V()4 %57 AF()

N+1

- m
X El m! (m)z 5r+m N( Ij

m+1 02 )(M(m, () Vi)

m—-1
5 B PRI Lol FAS S
= UEO Z 20 r:lehl q:;ﬂ; r+q+m+n+u—N'(m-v—-1) (n+v)

gN+lB(n) 'é
S FDim—p=nr (" (;2 s My (1) MEy,1(1)

XBln-u-1ay(D VIO)+ 2 3 3 3, E P

2 5r+q+m+n+u+t—(N+1)(_1)t71
=0 n=01t=1 v=0 r=m-v—1q=
N+1
9 B(n) ahygoha HON " e
Xn!(t—l)!(t+1)(v+1)!(m—v—1)'f(m o0 f i fi™ Riy (0 Minso0(1)

m—-1
><-A/l(m v—1r) (r) B(m v— 1u)|(r) V I’)+ 21 UE 2 Zl 1)20 r:mZv—l q:;-%—v 5r+q+m+n+u+t—N(_1)t

gN+lB(n)

N & -
Bsh ah oA budsvd\ | v
Al DI (o + Dim—p—D)1 | m-o-2f i) P AN 72 (Riy (1)

><-A/l((rn+v,q)(r) M'(Bm—v—l,r)(r) B(ﬁm—v—l,u)j(r)vjy(r)) ' (817)
We change the integer-valued variables in the summations of the third, fourth, and fifth terms(BilBqgto k=m+n and
/'=v+n, and carry out the summation ovier/’, andn. We then observe that combiniiy,, andC(.4) ., and applying Eq.
(B16) has left us with an expression in which the onlglependence is in the Bernoulli numbers, and in fractional coefficients

The indicesp andq in the operator-valued functioan’p,q)(r), and pr,q)i(r) all are eitherk or /, and have no further
dependence on the integer-valued summation indewe therefore can make use of the identity

B(n
D{(/)=0 for s=0 and />0, where DX(/)= 2 ()

snl(/—n+1)! "’ (B18)

and observe that the only surviving contributions to E@17) from sums over
D{(/)=—[1U(/+1)!]

and D(0)=1. We represent  B,)+C(A) () as

Bernoulli numbers are
+C(A) 2yl vy T [B2)+ C(A) 2)](c) » Where

[B2)+ C(A) 2yl (ay T [Be2)

gN+1 P m g
[Biz)+ C(A) ) Jiay= AT 2 =) 2 O N( Ty az)(mmr)(r) Vi) . (B19)
m-1 gN+1
[B(2)+C(A)(2)](b):fb““AfL(r)mZ:l Z;O Zo =Z Z

r+q+m+qu(U+1)!(m_v_1)!

o’af 3 P
xfpo | getroe o s (ME o 10)(1) MG, (1) Bl (1) V(D))

+E E z E E 5r+q+k+u Nf(k /= 1)fahyfm}a

g
buvap
=2 /=10=0r= () A (r)(/+1)!(k—/—1)!

N+1

X2 MU (DM 1 (0) Bl s 1000 V(1) (B20)
and
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gN-%—l
_ t—1
[B2y+ C(A)2)](0)= Z 2 ;l;5r+k+u+tf(N+l)( 1) =Dt 1) (k—1)!
X RN EMVEEONRE (M1 (1) B 1) VI(1)
gN+1 h -
ol v
+21 UEOr;— 2 S krurt—n(— 1)tmf<ﬁk o fMEPRAEEN Ak(r)
AP i 5 y

We then note that the second term on the RHS of(BQO) is an expression that has the foly_ 22/ l<p(k /), and that
this sum can be expressedBg_,5X_ 1 o(k,/) =3 _ S ok, ) — = —»0(k,0)— ¢(1,0); we further observe that a num-
ber of the summations in the parts of E§20) that we have included i&,_,¢(k,0) and¢(1,0) can be eliminated because
they become degenerate, enabling us to make use of E2f) to transform them. We use E@B16) to combine the
Ek 12/ Oqo(k,/) part of this second term on the RHS of E&20) with the first term in that equation, so that the two
B(n’u)](r) terms are combined into a multiple a;‘yfu)(r). Finally, we use Eq(2.295 with [Q, ]=4;, to obtain

N+1

9 o Ji o
(Bt CA I == 2 2 Sem Ny fom 1 AT G2 (@M (D) V](1)

gh+t 5
_ Wfshyfbué AL(r) gz(lﬂPN—l)j(r) Vi) . (B22)

We also note that the RHS of E@B21) contains an expression of the forBy_;3(k), which can be expressed as
Sr=1HK)=Z—,9(k)+I3(1). As in thecase ofp(0) above, a number of the summations1) can be eliminated; we
make use of Eq(2.23 to transformZ,_,3(k), and then obtain

N+1
g

[B<2)+C(A>(2>]<c)=<—1)“‘1mf”yf&’? REW(1) al(r) V(1)
N—-1

t2 (_”H(t—l)!(?ﬂ)(N—t)lfMS FAON R (1) iy (1) V()

N+1

F(—DN 19 f“yfbﬂdf”d” ) AK(T) Z(Rm (D) aln) V()
N-2 gh+?

- ai ;
) V' TN D) PROVERAEER AR 3 (R{y(1) -1 1i(1) V(1) . (B23)

Making use of Eq(A19), we observe thdtB,)+ C(A)(2)](¢) in Eg. (B23) has the same form a5, ; and since EqB19)
has the same structure @¢a) in Eq. (B10), it is natural to combine these terms to obtain

_ gN+1 buc &Cy m ai z;' b%

We combine all the terms with subscrifi), use Eq.(A12) to eliminate permutations of structure constants, and note that
&I1°(r) commutes withaj(r'). We then observe that

N+1

Ayt Byt ClA) )= (N+1).de [OTIR(r), ) (FOIVI(r)

N+1

Ig a ! C—; ! ! !
+ 2 o (r:?;E 2 Orimiu- (Nﬂfdr [ATIP(r), My (1)] Bl (') VI(r")

m!

LN+
g
+ (m) s
m=1

r+m+u7(N+l)J dl"[(?iHib(l’), B((sm,u)j(r’)] M(am,r)(r’) ij(r’) :

(B25)
If we then use Eq(2.23 to transformA(NH)J , Eq. (B25) can be written as
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We change the integer-valued variables in the summation in(EELp) to ~/=m+n, and carry out the summation over
/ and n; we then obtain an expression in which the omlydependence is in the Bernoulli numbers and in fractional
coefficients. We make use of E¢B18) and observe that the only surviving contributions to H815) from sums over
Bernoulli numbers ar®; (/)= —[B(/)//'] andD; (/)= —[B(/)//']—[1/(/+1)!]; we then obtain

B(/)

1
C(A)@== 2, 2 Fperon gN“( 2t D fbﬂ°f”°VA“<r>7<M</p<r>aw(r))

t—1 gN+lB(/) b)\ (r)\y /; - y
P22 2 S Ty T OV R0 MO (D) VI

N+1
9" B puagiange G ;
t 202 2 Sprrnen(— D) ey MY AL (R (1) MY, (D) V) . (B27)
Finally, we combine Eq9A19), (B24), (B26), and(B27) to obtain

A+B+c:if dr/[GIIP(r), Ay, (F)IVE(r' )+ Suf#Y Af(r) V(1)
(m) o G
- E 2 5r+m N fb#cf(rg)y A{L(r) (9_|2(M(muf)(r) &J'Vly(r))

=1lr=m

B(m
+2 > 2 Semet-nany(— )tl%fm ?r%)y (f) M(mr(f) aVI(r)

=0 t=1r=m m! (t
A OD DI 1y frvfany %R a VY B28
+ (r)m o & e Oremet= n(—1) m ® 072( (1) M n(r) V() , (B28)

where we have added &, term that vanishes except for tiN=0 case; the need for this term in the=0 case has been
discussed in Sec. Il. The RHS of E29) is identical to the LHS of Eq(2.24) for the valuen=N+1, and therefore
completes the proof of the “fundamental theorem” for the constructio¥ of
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