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The regular solutions for the Ginzburg-Landau~-Nielsen-Olesen! Abelian gauge model are studied numeri-
cally. We consider the static isolated cylindrically symmetric configurations. The well-known~Abrikosov!
vortices, which present a particular example of such solutions, play an important role in the theory of type-II
superconductors and in the models of structure formation in the early universe. We find new regular static
isolated cylindrically symmetric solutions which we call the type-B and the flux-tube solutions. In contrast with
the pure vortex configurations which have finite energy, the new regular solutions possess a finite Gibbs free
energy. The flux tubes appear to be energetically the most preferable configurations in the interval of external
magnetic fields between the thermodynamic critical valueHc and the upper critical fieldHc2

, while the pure
vortex dominate only between the lower critical fieldHc1

andHc . Our conclusion is thus that type-B and
flux-tube solutions are important new elements necessary for the correct understanding of a transition from the
vortex state to the completely normal state.@S0556-2821~97!02404-1#

PACS number~s!: 11.15.Kc, 03.50.De, 74.20.De, 74.60.Ge

I. INTRODUCTION

The Ginzburg-Landau theory of superconductivity@1# is
mathematically equivalent to the Abelian theory of coupled
gauge and Higgs fields@2#. The existence of vortex~string-
like! solutions in it was predicted by Abrikosov in 1952~and
published five years later@3#! in the context of the phenom-
enological model of superconductors and was discussed in
@2# in the framework of the dual string approach~see also a
recent generalization to the case of nontrivial helicity in@4#!.
The aim of this work is to clarify, with the help of careful
numerical analysis, the properties of such solutions and to
construct new solutions. We confine ourselves to the case of
cylindrical symmetry, thus considering an isolated vortex
and related field configurations. In the literature devoted to
this subject~see, e.g.,@2,3,5–10#! main attention was paid to
approximate solutions and qualitative methods, but there
were very few attempts to study exact solutions by numerical
methods. Moreover, as was recently shown in@11#, the old
qualitative results may contain mistakes and are incomplete.
Approximate results are normally confined to the domains of
very small (l!1) or extremely large (lnl@1) values of the
coupling constantl ~or the characteristic Ginzburg-Landau
parameterk5Al, see the Appendix!. As for numerical stud-
ies, one can mention the earlier reports@12–16# and more
recent~variational! analysis in@17#. In our paper we present
new numerical results for the isolated regular structures in
the Ginzburg-Landau~-Nielsen-Olesen! model. Although
here we confine ourselves to the case of Abelian gauge field,
we will consider elsewhere the non-Abelian generalizations
~cf. previous approaches in@18,19#!. Our results demonstrate

a rich structure of the space of exact solutions for the clas-
sical Ginzburg-Landau model. In addition to the well-known
vortex solutions, for which we compute a variety of param-
eters in an interval of values ofl close to the critical value
l5 1

2 (k5A1/2), we describe some new exact regular solu-
tions. In our opinion, of particular interest are the configura-
tions which we call theflux-tubeand theoscillatingsolutions
below. The former appear to comprise a new nontrivial struc-
ture in ideal type-II superconductors which is important for
understanding the transition between a pure vortex state and
a normal state.

As is well known, the vortex~or the mixed! state of a
type-II superconductor exists between the critical magnetic
fieldsHc1

andHc2
. Their values, as is usually claimed in the

literature@3,5–8,10#, can be determined from the analysis of
isolated vortex solutions. However, from our results we con-
clude that such a claim is correct only partly. Indeed,Hc1

is

determined, for each value ofl5k2, by a relevant isolated
vortex solution from a comparison of the Gibbs free energy
of the vortex configuration with that of the pure Meissner
configuration. But the upper critical magnetic fieldHc2

ap-
pears to be completely unrelated to the vortex configurations
~cf. @9#!. Instead, one can only determineHc2

from a similar
comparison of the Gibbs free energy for a normal state with
that of a different type of exact regular solutions of the
Ginzburg-Landau equations. We call these the type-B solu-
tions. Actually,approximatetype-B solutions are usually de-
scribed in the literature@3,5–10# in the framework of analy-
sis of the linearized Ginzburg-Landau equations. We
construct numerically exact self-consistent type-B solutions
for all possible values of external magnetic field. Although
interesting enough themselves as mathematical structures,
the type-B solutions have a limited physical value as com-
pared to the new flux-tube solutions. The latter configura-
tions correctly describe the transition from a pure vortex to a
normal state, as will be demonstrated below.

It seems worthwhile to notice that the Ginzburg-Landau
equations describe common extremals for two different~ac-
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tion type! functionals: for the usualenergyand for theGibbs
free energyintegrals. The principal difference of the vortex
and the new solutions is that the former are thefinite energy
configurations, while the latter are thefinite Gibbs free en-
ergy configurations. Previously, attention in the literature
was paid only to the finite energy regular solutions of the
Ginzburg-Landau equations. In the context of cylindrical
symmetry, these are the famous Abrikosov~-Nielsen-Olesen!
vortices. It is our aim to demonstrate the existence and the
physical relevance of two large families offinite Gibbs free
energyregular solutions which are described in our paper as
the flux-tube~or type-A! and the type-B solutions. In our
opinion, the correct understanding of the mixed state of
type-II superconductor can only be achieved after taking into
account these new solutions. In particular, it turns out that
the class of the flux-tube solutions is divided into an infinite
number of families labeled by a number of nodesn for the
scalar field configuration. Each family exists on a finite in-
terval of magnetic field~definition of limiting points see be-
low!. In this way, one finds a certainfine structure of the
mixed statefor an ideal type-II superconductor.

The plan of the paper is as follows. Section II contains a
general introduction to the model, we discuss the two energy
functionals and formulate general regularity conditions at the
origin. A brief account of numerical analysis of the pure
vortex solutions is given in Sec. III. Sections IV and V con-
tain the description of new solutions, the type-B and the
flux-tubes, respectively. In Sec. VI we perform the lineariza-
tion analysis of the Ginzburg-Landau equations, while Sec.
VII is devoted to the regular oscillating solutions. The latter
appear to be certain unstable ‘‘relatives’’ of the vortices.
Finally, Sec. VIII contains a short discussion and a summary
of the results obtained. In the Appendix we compare our
notations and conventions with the old ones used in the lit-
erature. A general remark is necessary for the tables and
figures: We find it convenient to put all the available numeri-
cal data into the separate addendum@20#, available in elec-
tronic form. In the present paper, the tables contain only
some selected reasonable minimum of data, while the figures
present additional information.

II. ENERGY FUNCTIONALS AND REGULARITY
CONDITIONS

A. Nielsen-Olesen Lagrangian

The Lagrangian of the Abelian~‘‘Nielsen-Olesen’’ @2#!
gauge model describing interacting electromagneticF5dA
and complex scalar fieldF reads

LNO52
1

2
~F`*F1DF`*DF!2V~ uFu!h, ~2.1!

with the potential

V~ uFu!5
l

4 S uFu22
m2

l D 2, ~2.2!

where the overbar denotes complex conjugation and
D5d1 iA, and the asterisk is the Hodge dual operator,
h:5* 1 being the volume form.

Noticing thatm has a dimension of inverse length, we can
introduce for the cylindrical system (r,u,z) a new~dimen-
sionless! radial coordinater via r5(Al/m)r . We are look-
ing for static configurations, and use the cylindrically sym-
metric ansatz~cf. @2#!

A5 f ~r !du, F5
m

Al
w~r !, ~2.3!

where f ,w are tworeal functions.
The magnetic field one-form, defined as the~three-

dimensional! Hodge dual*F, has only one component inz
direction, *F5Hdz, where the latter is given by the expres-
sion

H5
m2

l

1

r

d f

dr
. ~2.4!

We will denote the dimensionlessmagnetic field by
h:5Hl/m25 f 8/r .

The magnetic field is conveniently characterized by the
flux it produces through a two-dimensional surface. In a cy-
lindrically symmetric case the total flux over a surface or-
thogonal to thez axis is

F5E rdrduH52pE
0

`

dr
d f

dr
52p@ f ~`!2 f ~0!#.

~2.5!

B. Energy „line density… functional and equations of motion

For the Lagrangian~2.1! one can immediately write the
energy per unit length in the form

E5
2pm2

l E
0

`

drr
1

2 F S 1r d fdr D
2

1S dw

dr D
2

1
1

r 2
f 2w21

l

2
~w221!2G . ~2.6!

Notice that it is not necessary to include a phase factoreinu

for the scalar field in the ansatz~2.3!, as it is done in a
number of different approaches. The fieldw is always de-
fined up to a gauge transformation and we find it more con-
venient to work in the gauge~2.3!.

Now, it is straightforward to see that the equations of
motion of the Nielsen-Olesen model@2# read

r 2f 92r f 85r 2w2f , ~2.7!

r 2w91rw85w@ f 21lr 2~w221!#. ~2.8!

The value of the constantl plays an important role. If it
equals to the critical valuel5 1

2, the Nielsen-Olesen equa-
tions are consequences of thefirst-order ~Bogomolny! sys-
tem

1

r
f 81

1

2
~w221!50, ~2.9!
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w81
1

r
fw50. ~2.10!

In the theory of superconductivityl5 1
2 separates two

phases: forl. 1
2 ~l, 1

2! one has a type-II~type-I! supercon-
ductor. The critical subcase was extensively studied in the
literature@21–23,17#. The general noncritical case forlÞ 1

2

is much less investigated.
Using Eq.~2.4!, we can write Eq.~2.7! in the form

h85
1

r
fw2, ~2.11!

and hence the system~2.7! and~2.8! can be transformed into

h91
1

r
h85hw212h8

w8

w
, ~2.12!

w91
1

r
w85wS 1w4 ~h8!21l~w221! D , ~2.13!

explicitly for the coupled magnetic fieldh and scalar field
w variables. This system is however not particularly useful
for numerical investigation because of explicit 1/w terms.

C. Gibbs free energy functional

The line energy density functional~2.6! is minimal
(Emin50) for the Meissner state, i.e., whenw51 ~supercon-
ducting order in all points of a sample! andh50 ~no mag-
netic field inside a superconductor!. This corresponds to a
trivial solution of Eqs.~2.7! and~2.8!, f50, w51. The nor-
mal state is described by another simple solution,f5C
1 1

2h0r
2, w50 (C andh0 are constants!, which always~with

or without magnetic fieldh0) has formally infinite energy
E. However, physically of interest is a difference of energies,
not an energy itself.

In particular, let us turn our attention to the Gibbs free
energy~per unit length! which is defined by

G5E2E d2x~HHext!. ~2.14!

We assume that both magnetic fields, the internal oneH and
an externalHext are directed along thez axis, and use the
dimensionless values of fields defined, in accordance with
Eq. ~2.4!, byH5(m2/l)h andHext5(m2/l)hext. The Gibbs
free energy of the normal state with a magnetic field
h05hext is given by the integral

Gnh5E@w50,h5h0#2
2pm2

l E
0

`

drrh0hext

5
2pm2

l E
0

`

drr
1

2 F2h0
21

l

2G . ~2.15!

For a sample without boundary, this is an infinite constant,
while for a cylinder of a radiusR this is a finite positive
~negative! constantpR2m2(1/22h0

2/l)/2 for a magnetic
field h0,hc (h0.hc), and zero forh05hc :5Al/2. This
observation underlies the physical interpretation ofhc as a

critical ~so-called thermodynamic! value of the magnetic
field which distinguishes normal and superconducting
phases.

Now, let us consider the difference

DG:5G2Gnh5
2pm2

l E
0

`

drr
1

2 F S 1r d fdr 2h0D 21S dw

dr D
2

1
1

r 2
f 2w21

l

2
~w422w2!G . ~2.16!

It is very important to notice that the Gibbs functional~2.16!
has thesame equations for extremalsas the energy func-
tional ~2.6!, namely, Eqs.~2.7! and ~2.8!. However, unlike
the strictly positive~2.6!, the functional~2.16! can have any
sign.

D. Regularity at the symmetry axis

Looking for solutions which are regular at the origin, we
substitute the series expansions

f5 (
k50

akr
k, w5 (

k50
bkr

k, ~2.17!

into Eqs.~2.7! and ~2.8!. We then find two types of condi-
tions.

~a! Potentialf is nonzero while the scalar fieldw vanishes
at the origin:

f5N1ar21
1

4N~N11!
b2r 2N121O~r 2N14!,

~2.18!

w5brNF11
N

2~N11! S a2
l

2ND r 21O~r 4!G , ~2.19!

whereN561,62, . . . is anonzero integer and parameters
a,b are arbitrary.

~b! Potential f vanishes while the scalar fieldw is non-
trivial at the origin:

f5ar2S 11
1

8
b2r 21O~r 4! D , ~2.20!

w5bS 11
l

4
~b221!r 21O~r 4! D , ~2.21!

with some parametersa,b.
In both cases, parametera determines the value of the

magnetic field at the origin,h(0)52a. When b50, both
cases reduce to the solution which describes a normal super-
conductorw50 filled by the constant homogeneous mag-
netic fieldh(r )5h(0)52a.

III. VORTEX SOLUTIONS

Vortex solutions of the Ginzburg-Landau equations~2.7!
and~2.8! are distinguished among others by the special con-
ditions at infinity which read

f ~r !ur→`→0, ~3.1!
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w~r !ur→`→1. ~3.2!

When combined with the type-A regularity conditions at the
origin ~2.18! and ~2.19!, these asymptotic conditions define
uniquely parametersa,b for any value ofl and N. The
meaning of the constantN is clear: this is the value of the
magnetic flux described by such solutions. Indeed, we sub-
stitute f (0)5N and f (`)50 into Eq. ~2.5! to obtain
F522pN. This is the well-known flux quantization result
for superconductors. Notice that the asymptotics~3.1! and
~3.2! cannot be realized for any solution with type-B regu-
larity conditions~2.20! and ~2.21!, see the discussion in the
next section.

The results of the numerical integration are given in Fig. 1
and Table I, where left and right columns describe solutions
for N51 andN52, respectively. For convenience of com-
parison with the old calculations@12–16# we write the cou-
pling constant asl5k2 @see Appendix for definitions, in
particular Eq.~A5!#.

Energy ~2.6! is always positive on all vortex configura-
tions. It decreases with growingk and increases when
k→0. A useful physical variable, which allows one to find
necessary conditions for the existence of vortices, is the
Gibbs free energy~line density! ~2.14!. This quantity is zero

for the Meissner state (h50,w51), while for a vortex state
it is always positive when an external magnetic fieldHext is
oriented oppositely to the magnetic fieldH inside a sample
~hence such vortices are ruled out!, and it can become nega-
tive for a certain value of external field with the same orien-
tation as in the sample. In the latter case, for a constant
external magnetic fieldHext5(0,0,Hext) one finds

G5E22pHextU E
0

`

drrhU5E22puNuHext. ~3.3!

Hence the lower critical value of an external magnetic field
Hext5Hc1

, determined by the conditionG50, is equal to

Hc1
5

E
2puNu

5
ke

4puNu
A2Hc , ~3.4!

where in the last equality we switched to the old conventions
summarized in the Appendix.

It seems worthwhile to make the following short remark:
The analysis of exact vortex configurations shows that the
actual ~computed for vortices! magnetic field penetration
length for different values ofk is always greater than the
domain of an essential change of the scalar field, even for
smallk. In fact, this observation was also confirmed in ear-
lier numerical studies@13,12#. This casts doubt on a possible
qualitative and quantitative understanding~cf. @5–7,10#! of
these solutions on the basis of so-called penetration lengths
d andj ~see the Appendix! for the magnetic and the scalar
fields, and stresses the need of exact numerical investigations
~see details in addendum@20# where the numerous vortex
solutions for a wide range ofk are described!.

IV. REGULAR SOLUTIONS FOR TYPE-B CONDITIONS

The type-B conditions~2.20! and ~2.21!, like the type-A
conditions~2.18! and~2.19!, guarantee a regular behavior of
solutions at the origin.~It seems worthwhile to notice that
type-B conditions arenot a particular case of type A for
N50.! It is straightforward to analyze a qualitative behavior
of such solutions for finite values ofr . For example, Eq.
~2.7! immediately yields thatf (r ) is a monotonous increas-
ing for a.0 ~decreasing fora,0) function. Indeed, if we
assume an extremum for a finiter5r 0, one finds from Eq.
~2.7! f 9(r 0)5w2f (r 0), which means that such an extremum
is a minimum for positivef (r 0) and a maximum for negative

FIG. 1. A typical vortex solution. At the center, the magnetic
field h is maximal. The limit of the scalar fieldw is 1, which means
physically a completely superconducting state. With our gauge
choice the potentialf is vanishing at infinity.

TABLE I. Vortex solutions.

N51 N52

k a b E @pm2# Hc1
/A2Hc a b E @pm2# Hc1

/A2Hc

2.00 20.46614 1.35218 0.38816 0.38816 20.52764 1.01524 0.88928 0.44464
1.75 20.43108 1.20961 0.47922 0.41932 20.48000 0.82862 1.07872 0.47194
1.50 20.39344 1.06659 0.61094 0.45821 20.42993 0.65857 1.34754 0.50532
1.25 20.35273 0.92273 0.81402 0.50876 20.37708 0.50680 1.75284 0.54776
1.00 20.30828 0.77735 1.15676 0.57838 20.32096 0.37219 2.41915 0.60478
0.75 20.25904 0.62916 1.82190 0.68321 20.26080 0.25461 3.67126 0.68836
1/A2 20.25000 0.60328 1.99999 0.70710 20.25000 0.23614 3.99999 0.70710
0.50 20.20314 0.47525 3.47164 0.86791 20.19527 0.15401 6.64856 0.83107
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f (r 0). For a function starting from a zero~2.20! both possi-
bilities are excluded and thusf (r ) is a monotonous function.
In particular, this means thatf (r )→` for r→`, and one
thus concludes thatno finite energysolutions for type-B
regularity conditions exist: the functional~2.6! is infinite.

Let us however look at Eqs.~2.7! and ~2.8! as the equa-
tions for extremals of the Gibbs free energy functional
~2.16!. It is immediately clear that there existfinite Gibbs
free energyregular type-B solutions, provided they satisfy at
infinity

h~r !5
1

r
f 8~r !U

r→`

→h0 , ~4.1!

w~r !ur→`→0. ~4.2!

Notice that unlike in a vortex configuration~3.2!, the scalar
field cannot approach at infinity any finite value except 0.

The results of numerical integration are presented in
Tables II and III and Fig. 2. A principal difference of these
solutions~which we will call ‘‘type-B’’ solutions for brevity!
from the vortex solutions lies in the fact that the magnetic
field is asymptotically constant, and hence the flux integral
defined by Eq.~2.5! is formally infinite. However a reason-
able replacement is provided by the quantity

M :5DF5E rdrdu~H2H0!52pE
0

`

drr ~h2h0!.

~4.3!

Defined formally as a difference of fluxes, this variable is
usually interpreted as amagnetizationper unit volume
@7,14#. Unlike the quantized flux for the vortices,M can have
an arbitrary value.

From Tables II and III we see, for the type-B solutions
without node, that whena→l/2 the external magnetic field
is approachinghext5hc25l, while M /(2p)5DG50. For

l.1/2, we find a higher external magnetic field for larger
values of magnetic field at the centerh(0)52a. When
l51/2, for all solutionshext51/2 ~see @20#!. Finally, for
l,1/2 @20# the external magnetic field is decreasing when
h(0)52a grows ~the reverse order as compared to the
l.1/2 case!.

Besides the simple type-B solutions without nodes, there
exist more nontrivial solutions with nodes. Both are dis-
played in Fig. 2, while the configurations with one node are
represented by the right columns in Tables II and III.

For l.1/2, all type-B solutions without node have a
negative Gibbs free energyDG, for l51/2 alwaysDG50,
and for l,1/2 the Gibbs free energy is positive. One can
find also negativeDG for type-B solutions with one node
when hc,l/3 ~i.e., k.3/A2), see the case ofk52.25

TABLE II. Type-B solutions fork51.0.

Without node With one node

b a M/(2p) DG @pm2# hext a M/(2p) DG @pm2# hext

1210216 2.623 10213 2319.831 23.336 0.712 1.883 10214 2399.137 22.180 0.672
1210212 2.803 1029 2150.422 22.301 0.714 2.623 10210 2201.853 14.548 0.659
121028 1.793 1026 269.240 21.582 0.718 2.203 1027 2102.176 9.272 0.641
121024 1.113 1023 218.774 20.846 0.728 2.113 1024 234.388 4.108 0.597
0.9 0.1466 21.412 20.169 0.800 0.0439 25.299 0.610 0.477
0.7 0.3030 20.430 20.042 0.878 0.0957 22.376 0.188 0.420
0.5 0.4033 20.160 20.009 0.937 0.1307 21.126 0.051 0.380
0.3 0.4659 20.048 20.001 0.977 0.1536 20.401 0.007 0.351
0.1 0.4962 20.005 21.253 1025 0.997 0.1652 20.044 9.303 1025 0.335
0.0 0.5000 0.000 0.000 1.000 0.1666 0.000 0.000 0.333

TABLE III. Type-B solutions fork52.25.

Without node With one node

b a M/(2p) DG @pm2# hext a M/(2p) DG @pm2# hext

121028 3.963 1024 266.111 22.249 1.670 3.963 1024 270.821 0.526 1.534
121024 0.0396 214.189 21.107 1.765 0.0337 217.351 24.343 1022 1.495
121022 0.3836 22.443 20.428 2.069 0.2154 25.055 20.101 1.486
0.9 1.1088 20.402 29.993 1022 2.892 0.4756 21.673 23.783 1022 1.544
0.7 1.7810 29.673 1022 21.833 1022 3.865 0.6640 20.621 28.383 1023 1.613
0.5 2.1691 23.333 1022 23.523 1023 4.475 0.7597 20.259 21.723 1023 1.652
0.3 2.4044 29.813 1023 23.903 1024 4.855 0.8147 28.413 1022 21.973 1024 1.675
0.1 2.5173 29.983 1024 24.483 1026 5.039 0.8405 28.933 1023 22.303 1026 1.686
0.0 2.53125 0.000 0.000 5.0625 0.84375 0.000 0.000 1.6875
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~Table III!. This will be clarified later in Sec. VI.
The magnetization curves for the type-B solutions are

given in Fig. 4. For anyl5k2, M diverges athc .
In the present paper, we display the results for

k51.0,2.25, the detailed tables and figures fork ranging
from 0.5 to 5.0 are collected in the addendum@20#.

V. FLUX-TUBE SOLUTIONS

Let us look for the other solutions which yield finite val-
ues for the Gibbs functional~2.16!. At the origin r50 we
take the type-A regularity conditions~2.18! and~2.19!, while
at infinity we consider the asymptotics~4.1! and~4.2!. Such
a combination of two type conditions at zero and at infinity
suggests a possible physical interpretation of such solutions
which appear as a result of a certain ‘‘gluing’’ of a vortex
configuration at the origin with a type-B solution at large
radial values.

The results of numerical integration are given in Figs. 3–6
and Tables IV and V. As in the previous section, we present
results only for the values ofk51.0,2.25, see@20# for more
solutions.

Figure 3 explains why we call these solutions theflux
tubes: There is a core where matter is in a state close to the
normal one filled by the magnetic field~this is in fact a

vortex!, surrounded by a superconducting tube~almost com-
pletely free of a magnetic field!. Outside such a tube the
sample quickly reduces to a normal state with the external
field penetrated in it. For the solutions with one node we
have a ‘‘sandwichlike’’ structure: a tube of normal state be-
tween two superconducting tubes.

Each family of flux-tube solutions has two branches. For
example, fork51, one of these branches is characterized by
the positive Gibbs free energy, and another has negative
Gibbs free energy. However, for sufficiently largek both
branches describe the negative Gibbs free energy configura-
tions. We find it convenient to depict these branches in the
form of magnetization curves, Fig. 4. Forl< 1

2, two branches
with positive Gibbs free energy exist. As in the case of
type-B solutions,M diverges athc .

It is interesting to notice that among the flux-tube con-
figurations there are solutions with quite unusual behavior of
the magnetic field, which in the center is oppositely oriented

FIG. 3. Flux-tube solutions without node fork50.5,1.0,1.5
with the same magnetizationM /(2p)526.0 and positive Gibbs
free energy~above!, and the magnetizationM /(2p)524.0 and
negative Gibbs free energy~below!. The scalar field of a flux tube
reaches a maximum before going to zero at infinity~and not to 1, as
in the case of vortices!. The magnetic potentialf ~not shown! starts
at 1, is followed by a minimum and then grows with an asymptotic
r 2 behavior, so that the magnetic fieldh is asymptotically constant.
Note that fork50.5 all solutions have positive Gibbs free energy,
cf. Fig. 4.

FIG. 2. Type-B solutions without node~above! and with one
node~below! for k51.0. In both cases the scalar fieldw has initial
valuesw(0)50.9,0.6,0.3 and magnetic potentialf (0)50.0.
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with respect to the direction of external magnetic field. See
the data with negativea in the Tables IV and V~notice that
for k52.25 there exist negative Gibbs free energy solutions
with such property!.

Like for the type-B configurations, we also find the flux-
tube solutions with one node, relevant data is displayed in
the right half of Tables IV and V. Notice that fork51 all the

FIG. 4. Magnetization curves for type-B and -A solutions for
different k. Above, the type-B solutions without node~right curve
for eachk), and with one node~left curve!. Fork52.25, we notice
a change of the sign of the Gibbs free energy within a solution
family, while for k50.5,1.0,1.5 we find only positive values of
G. Below, for the flux tubes without node for each value
k50.5,1.0,1.5, the corresponding limit valuesh1, h2, hc , andhc2
are drawn. Solid~broken! lines denote negative~positive! Gibbs
free energy. In all cases the magnetization diverges athc . For
k50.5 the pointhc does not lie within the two limitsh1 andhc2 so
that one can find also solutions up tohc .

FIG. 5. DG against the external magnetic field fork51.0 and
k52.25 for the flux-tube and the type-B solutions. In each case the
flux tubes have lower values ofDG than the type-B solutions.
Hence, flux tubes are energetically more preferable.

TABLE IV. Flux-tube solutions fork51.00.

Without node With one node

a b M/(2p) DG @pm2# hext a b M/(2p) DG @pm2# hext

0.16666 0.00192 20.0001 1.013 1029 0.3333 0.09500 0.05752 20.1982 0.0012 0.2061
0.09149 0.24083 20.9999 0.1087 0.4408 0.05000 0.19570 21.6964 0.0968 0.2559
0.00770 0.38158 21.9000 0.3749 0.5333 0.00000 0.29595 23.0598 0.3264 0.3041
20.00172 0.39592 22.0000 0.4109 0.5426 20.10000 0.46591 25.5963 1.0575 0.3892
20.29562 0.76607 212.0000 1.8288 0.7304 20.28500 0.74590 215.4375 3.8649 0.5416
20.30818 0.77728 240.0000 1.3970 0.7216 20.30825 0.77732 256.9794 8.4137 0.6195
20.30828 0.77735 2154.2204 0.2883 0.7145 0.30840 0.77735239.2231 4.6106 0.6053
0.30828 0.77735 2151.5651 23.0233 0.7130 0.30000 0.74194 210.8059 1.5583 0.5326
0.39637 0.72724 21.5999 20.2007 0.8270 0.18000 0.23311 20.7157 0.0176 0.3582
0.49998 0.00999 20.0001 22.493 1029 0.9999 0.16670 0.01173 20.0018 1.203 1027 0.3333
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flux-tube solutions with one node have positive Gibbs free
energy. However, with increasingk this changes. The im-
portant thing is the position of the thermodynamic critical
value hc relative to the ‘‘limiting points’’ for hext of the
flux-tube families, at which the magnetization and the Gibbs
free energy vanishes. We have determined numerically the
values of such limiting points which depend on the value of
k and are located, on thehext axis, atl,

1
3l,

1
5l,

1
7l, . . . . In

the next section we explain the values of these limiting
points with the help of linearization analysis.

The reader should compare the magnetization curve and
the (DG/hext) energy/field plots fork51.0,2.25, Figs. 4 and
5, which demonstrate that the ‘‘motion’’ of the limiting
points to the right ofhc is accompanied by creation of flux
tubes with one node which have negative Gibbs free energy.

Both the type-B solutions and the flux-tube solutions have
a well-defined Gibbs free energy for an infinite sample. It is
natural to compare them. Of course, this must be done in a
correct way: one should compare energies of configurations
with the same values of external magnetic fieldhext. Using
our data, we can display the Gibbs free energyDG as a
function ofhext. These functions for the type-B and the flux
tubes are given in the Fig. 5, showing that the flux-tube
configurations are energetically more preferable.

VI. LINEARIZED SYSTEM AND CRITICAL
MAGNETIC FIELDS

The best way to understand the structure of type-B and
flux-tube solutions in the limit of vanishing magnetization
M→0 and the Gibbs free energyDG→0 is to study the
linearized Ginzburg-Landau equations.

Let us consider, in the spirit of@3,5–10#, the system~2.7!
and ~2.8! in the situation when the square of the scalar field
w2 is negligibly small. Mathematically this means that, in the
lowest order, one drops out the terms containingw2 in Eqs.
~2.7! and ~2.8!. We then immediately notice that such a lin-
earized system

r 2f 92r f 850, ~6.1!

r 2w91rw85w~ f 22lr 2!, ~6.2!

is a consequence of any of thefirst-order systems

1

r
f 82sl50, ~6.3!

w81s
1

r
fw50, ~6.4!

wheres561 is the sign factor.
This system is straightforwardly integrated and yields

f ~r !5N1s
l

2
r 2, ~6.5!

w~r !5w0r
2sNexpS 2

l

4
r 2D , ~6.6!

whereN andw0 are integration constants. In the linear ap-
proximation, the constantN is arbitrary, but as we can see
from the analysis of the completeself-consistentsystem at
the origin ~2.18!–~2.21!, this constant should be either 0 or
61,62, . . . . Inorder to have a regular behavior of Eq.~6.6!
at r50, one should choose the sign ofN in such a way that
sN,0. Notice that the potential~6.5! describes an homoge-
neous constant magnetic fieldh5sl, and thus the value of
s shows its direction~up or down along thez axis!.

It is easy to check that all the solutions~6.5! and~6.6!, for
arbitrary values of integration constants, have the same
~zero! energy integral computed for the linearized system
~6.1! and ~6.2!. ForN50 the field~6.6! evidently describes
the linearized type-B solution, while forN51 this is a lin-
earized flux-tube solution. As we see, the linearized solutions
are energetically equivalent. However, the numerical results
~see Fig. 5! definitely show that self-consistent flux tubes are
energetically more preferable than the type-B configurations.

The first correction to the magnetic field is easily com-
puted. One must now take the complete system, and consider
the first equation~2.7! in the form ~2.11! where the right-
hand side is constructed from the lowest order configurations
~6.5! and~6.6!. Since these satisfy Eq.~6.4!, we find from it
(1/r ) fw252 1

2s(w
2)8, and hence Eq.~2.11! is immediately

integrated, yielding for the magnetic field

TABLE V. Flux-tube solutions fork52.25.

Without node With one node

a b M/(2p) DG @pm2# hext a b M/(2p) DG @pm2# hext

0.84325 0.03080 20.0010 0.263 1027 1.6876 0.50620 0.01167 20.0003 0.223 1028 1.0125
0.43741 0.87389 21.0000 0.0146 1.7754 0.50000 0.13056 20.0415 0.0000 1.0168
0.00000 1.23234 23.0166 0.0421 1.8179 0.00000 1.15113 23.7504 0.1824 1.2955
20.01143 1.23977 23.1000 0.0424 1.8181 20.10000 1.24623 24.8332 0.2573 1.3399
20.33764 1.42257 28.0000 20.0170 1.7936 20.45000 1.47366 217.7012 0.7550 1.4838
20.49780 1.49403 255.1538 21.0370 1.6803 20.48750 1.48977 230.9911 0.9853 1.5089
0.50045 1.49512 249.9903 22.3225 1.6823 0.50000 1.49494 259.2582 0.1456 1.5301
0.70035 1.56827 25.0000 20.8568 1.9461 0.55000 1.51459 214.7491 20.2253 1.5043
1.13578 1.65419 21.2000 20.3092 2.5200 0.70000 1.52843 24.5843 20.0988 1.5491
2.53100 0.03330 20.0000 24.273 1029 5.0620 0.84373 0.03177 20.0005 0.0000 1.6874
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h5sS l2
1

2
w2D . ~6.7!

As we see, an important role is played here by the normal-
ization of the linearized solution, i.e., by the constantw0.

Further insight can be obtained also directly from the
analysis of the second-order linearized system~6.1! and
~6.2!. Indeed, integration of Eq.~6.1! is straightforward, giv-
ing

f5N1
h

2
r 2, ~6.8!

whereN andh are integration constants with the latter rep-
resenting the value of an homogeneous constant magnetic
field. After substituting Eq.~6.8! into Eq. ~6.2! we find a
Schrödinger type of equation forw with the potential of a
circular oscillator. Regular solutions exist only when

h5
sl

112n1sN1uNu
, ~6.9!

wheren50,1,2,. . . . Corresponding eigenfunctionswn,N are
given in terms of the Laguerre polynomials, withn equal to
the number of zeros~nodes!. Let us introduce the notation

hk :5
l

2k11
, k50,1,2,. . . . ~6.10!

It is easy to see that the maximal eigenvalue~6.9!,
h5sl5sh0, is achieved forn50 andsN52uNu, and the
scalar field is then described exactly by Eq.~6.6!. This maxi-
mal eigenvalue is precisely the second critical field
hc25l5k2. The rest of the eigenvalues also have clear
physical meaning: these define the values of the external
magnetic field at which the exact type-B and flux-tube solu-
tions become ‘‘linearizable’’ and thus disappear. Looking at
Tables IV, V, II, and III, we find the complete agreement
with the above linearization analysis. Indeed, the flux-tube
~without nodes! and the type-B~without nodes! configura-

FIG. 6. (a,b)-diagrams fork51.0,2.25,5.0. The big dot de-
scribes in each case the corresponding vortex solution. The drawn,
broken, and dotted lines represent the flux tubes without node, the
flux tubes with one node, and the oscillating solutions, respectively.
The type-B solutions cannot be compared in these diagrams be-
cause they have different initial values.

FIG. 7. The oscillating solutions for type-A~above! and type-B
~below! initial conditions. For an initial value~here,b50.777) very
near to the one of the vortex, the scalar field closely approaches 1
before the oscillation starts. Near the origin, the vortex can be rec-
ognized. No type-A oscillating solution with an initial value above
that of the vortex can be found. For a type-B oscillating solution,
the magnetic field vanishes, while the square of the scalar field, the
density of superconducting electrons, oscillates without any exter-
nal magnetic field, and every finite sample has a negative Gibbs free
energy.
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tions have the limit magnetic field valuesh15l/3 and
h05hc2, while the flux tubes and type-B solutions with one-

node ‘‘live’’ betweenh25l/5 andh15l/3. In general, the
family of solutions withk nodes have the limiting points
hk11 andhk . If hc belongs to the interval@hk11 ,hk#, then
hk11,hext,hk for all solutions in this family. However
whenhc does not belong to this interval, then@hk11 ,hk# is
extended up tohc .

This linearization analysis clearly supports the existence
of the flux-tube-type solutions.

VII. OSCILLATING SOLUTIONS

Let us now consider weaker conditions at infinity: the
potential still satisfies Eq.~3.1!, however instead of Eq.~3.2!
we require regularity and finiteness of the scalar field. From
the physical interpretation ofw as the ‘‘density of supercon-
ducting electrons’’ one concludes thatuwu,1 for all values
of the radial coordinater .

Qualitatively, one can understand the behavior of a scalar
field for larger as follows. When in Eq.~2.8! the potential
f 2 and the scalar fieldw2 nonlinear terms become small
enough, one is left with the linearized equation

w91
1

r
w81lw50, ~7.1!

which has the Bessel function as a solutionw5J0(Alr )
5J0(kr ). Such an asymptotic behavior is confirmed by di-
rect numerical integration, see Fig. 7 and Table VI.

To the best of our knowledge, this type of solution was
never reported in the literature. It is interesting to find out
what physics corresponds to it. One interpretation is that
these new oscillating solutions are unstable configurations
preceding to the completely formed Abrikosov vortex state,
they appear when the external magnetic field is switched on
and reachesHc1

. We may draw attention to the following
remarks in an experimental research paper: ‘‘Consistent val-
ues of the magnetization were obtained for fields just above
Hc1 only after the sample had been moved between the coils
a number of times. The change in the magnetization of a
sample upon a slight increase~or decrease! of the field is
very dependent on the fact that the sample has been jarred as

it is pulled between the measuring coils, and a final, steady-
state value of the magnetization is sometimes obtained only
after 10 or 20 sample translations. It is as if vibration assists
the flux movement into or out of the sample. Hence, all of
the data reported below refer to the final steady state of the
magnetization; that is, further sample motion would produce
no further change’’@24#.

For thetype-A conditions at the origin, the~selected! re-
sults of numerical integration are given in Table VI. In gen-
eral, oscillating solutions exist only for initial values (a,b)
below the ones (a* ,b* ) of the vortex solution~first line of
Table VI!. The flux for the displayed solutions is always
F/(2p)521. The values here are given fork51.0. From
Fig. 7, one recognizes that forb close tob* the scalar field
reaches almost the value 1, i.e., a complete superconducting
state.

Due to a not so quick decay of the scalar field at infinity,
approximatelyw;cos(kr)/Ar , the energy of an oscillating
solution is infinite for an infinite sample, but for a real finite
cylindrical sample it is finite, although larger than the energy
of a vortex configuration. Notice, that an oscillating charac-
ter of such solutions may resemble an ‘‘intermediate’’ super-
conducting state with coexisting normal and superconducting
regions @6#. However a considerable difference is that the
magnetic field penetrates only at the center, exactly like in a
vortex case. Moreover, the magnetic flux is quantized in pre-
cisely the same manner as for vortices, which is immediately
seen after using Eq.~2.18! and f (`)50 in Eq.~2.5!, the flux
is F/(2p)52N. Notice also that the magnetic energy of
oscillating solutions is always finite even for an infinite
sample.

Oscillating solutions exist also for the type-B conditions.
However, the numerical analysis revealed that in this case
the parametera must vanish and hence the magnetic field is
completely absent. Nevertheless, the scalar field configura-
tion is nontrivial. In fact, one is left then with the nonlinear
scalar field equation

w91
1

r
w81l~w2w3!50, ~7.2!

which in the limit ofr→`, whenw approaches 0, reduces to
the linearized equation~7.1!.

TABLE VI. Oscillating solutions fork51.0 (R gives the positions of extrema!.

Type A a b R ~first max! Emag @pm2#

20.30828 0.77735 ` 0.24523
20.30700 0.77500 3.36848 0.24328

F/(2p)521 20.11438 0.40000 1.85499 0.04429
20.03500 0.20000 1.83312 0.00579
20.00246 0.05000 1.84246 0.00005

Type B R ~min! G @pm2# R ~max! G @pm2#

$a50.0, 3.84 22.4843 1025 7.02 22.9783 1025

b50.1% 98.2 25.0093 1025 208.1 25.5833 1025

$a50.0, 5.13 20.54496 8.48 20.62000
b50.9% 295.5 21.08209 198.0 21.03113
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It is evident that it is enough to find explicitly only a
solutionw1(r ) for the casel5k51. For an arbitrary value
of the coupling constant the solution is then given by
w5w1(Alr ). In particular, this defines positions of extrema
and zeros ofw(r ) for all values ofl from that ofw1(r ). The
latter evidently depends only on the value of the parameter
b in Eq. ~2.21!. Numerical results are displayed in Fig. 7.

As we already mentioned, for an infinite sample both en-
ergy and the Gibbs free energy are divergent for oscillating
solutions. However, for a finite cylinder we discover conver-
gent results. As it is well known, the boundary conditions in
the Ginzburg-Landau theory require vanishing of derivative
w8ur5R50 on a cylinder’s surfacer5R. Using Eq. ~7.2!,
one then finds from Eq.~2.16! that for such zero magnetic
field oscillating solutions the Gibbs free energy is always
negative,

DG52
pm2

2 E
0

R

drrw4~r !. ~7.3!

A curious conclusion is thus that for a finite sample in ab-
sence of an external magnetic field an oscillating state is
energetically more preferable than a purely normal state.

We have calculated the Gibbs free energy for the oscillat-
ing solutions in finite samples. A boundary can be placed at
any of the positions of extrema of the solutions, and the
numerical results are displayed in the lower part of Table VI.
We present explicitly only the casel51, while for an arbi-
trary l, the relevant data are easily obtained from Table VI
by replacing (R,DG) with (R/Al,DG/l) @cf. Eq. ~7.3!#.

Oscillating scalar field solutions appear also if one takes
instead of an electromagnetic theory a general relativistic
gravitational theory@25#. The solutions for this Einstein-
scalar-field theory describe a dark matter halo of galaxies or
galaxy clusters, respectively. The oscillating behavior of the
scalar field can be removed simply by adding a mass term for
the scalar field potential. In this case one speaks about boson
star solutions@26# which have some characteristics similar to
the neutron stars but also decisive differences@27#. These
boson stars could be formed in the very early universe from
Higgs or axion particles. That stable configurations of these
boson stars can exist was investigated with the help of the
catastrophe theory@28#.

VIII. DISCUSSION AND CONCLUSION

In each class of solutions the decisive role is played by
the values of the parameters (a,b) which appear in the regu-
larity conditions at the origin~2.18! and ~2.19! and ~2.20!
and ~2.21!. All the solutions are obtained after a ‘‘fine-
tuning’’ of these parameters. It is worthwhile to draw a kind
of a ‘‘phase diagram’’ on the (a,b) plane which shows ex-
plicitly the domains of existence for different solutions.
Since the vortices, flux tubes and the oscillating solutions all
belong to the type-A regularity conditions~2.18! and~2.19!,
we can display them on the same (a,b) plane, see Fig. 6 for
different values ofk. The encircled dots denote the ‘‘posi-
tion’’ of a vortex solution while each curve represents a com-
plete family of a flux tube or oscillating solutions for a fixed
k. Notice that all curves end on thea axis (b50) at the
points which correspond to the half of the relevant limit

magnetic field values, i.e.,a5 1
2hk ,k50,1, . . . . Curves

which represent flux tubes with increasing number of nodes
are concentrating in the close neighborhood of the ‘‘oscillat-
ing’’ curve which seem to indicate that the oscillating solu-
tions are unstable and a small perturbation may cause their
decay into a nearby flux tube with a finite number of nodes.
When moving along any flux-tube curve away from thea
axis, one inevitably hits the vortex dot, where magnetization
diverges.

Technically, it is impossible~because of the limitations on
numerical precision! to make integration for the parameters
(a,b) in the close vicinity of a vortex. Thus, from the data
which we obtained, it is not clear what is the limiting value
of an external magnetic field to which all the flux-tube con-
figurations approach when (a,b) are coming closer and
closer to the vortex parameters (a* ,b* ). We can see how-
ever ~cf. Tables IV and V!, that such a limit is close to the
thermodynamic critical fieldhc for eachk. The following
simple argument demonstrates that in fact such a limit is
equal tohc . Let us formally compare the values of the Gibbs
free energy for a vortex and for a flux-tube solution. We find
that these are equal when

EV2EFT52pHextS 12E
0

`

drrhFTD , ~8.1!

where the subscripts V and FT denote the vortex and flux-
tube variables, respectively. The right- and the left-hand
sides are both formally divergent, but comparing the leading
terms, one can use Eqs.~8.1! and~2.6! to find ~noticing that
after a certain finite value ofr one hashFT5hext and
wFT50) hext5(hext

2 1l/2)/(2hext), from which

hext5Al

2
5hc . ~8.2!

Below ~above! this value, the pure vortices~the flux tubes!
are energetically more preferable.

Summarizing, in this paper we present the numerical so-
lutions of the cylindrically symmetric Ginzburg-Landau
equations. In addition to the well-known vortex configura-
tions with finite energy we find new solutions~we call them
type-B and the flux-tube solutions! which have finite Gibbs
free energy. Direct numerical integration reveals many inter-
esting properties of these solutions. One of the most impor-
tant points is perhaps the clarification of the meaning and
value of the upper critical fieldhc2. Contrary to what is usu-

ally claimed in the literature~with an exception of@9#!, hc2
by no means denotes the magnetic field below which the
vortex becomes more energetically preferable than the nor-
mal state. Instead, as we demonstrated,hc25l is the value of
an external magnetic field at which the type-B solutions and
the flux tubes have zero Gibbs free energy. Below it, for
hext,hc2, DG is negative for both flux tubes and type-B con-
figurations. The analysis of linearized Ginzburg-Landau
equations nearhc2 which usually ~and incorrectly! is de-
scribed in the literature~see, e.g.,@3,5–8,10#! as relevant to
vortices, in fact is the linearization of flux tubes and type-B
solutions. Our results show that the flux-tube solutions with-
out node remain the most energetically preferable fromhc2
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down to the thermodynamic critical fieldhc , after which the
vortices become energetically more preferable and such a
vortex state ends at the lower critical fieldhc1. We find it

convenient to depict this observation in Fig. 8.
It is worthwhile to stress that our results do not contradict

the previous knowledge about the mixed state in the type-II
superconductors. On the contrary, they again support the sig-
nificance of such a fundamental structure as a vortex: notice
that, after all, one can interpret a flux-tube solution as a vor-
tex ‘‘surrounded’’ by a type-B configuration. However, in
our opinion, the flux tubes provide us with a new understand-
ing that the mixed state reveals a rich structure in which a
‘‘pure vortex’’ is only part of the whole picture valid near
hc1. We are convinced that a correct transition from such a

pure vortex state to the normal state~starting athc up to
hc2) can only be correctly described with the help of the
flux-tube and type-B solutions. As is well known, the
Ginzburg-Landau theory is only an approximation~valid
near the critical temperature of superconducting phase tran-
sition! to the underlying microscopic Gorkov theory within
the BCS scheme. The isolated vortices and the vortex lattice
structures are discussed in the broader aspects in the recent
review @29#. It is worthwhile to mention the success in theo-
retical construction of a vortex lattice solution for the
Gorkov equations@30#. The work is now in progress aiming
at generalizing our isolated flux-tube solutions to the lattice-
type structures. Physically, it would be interesting to study
the possibility of relating the new solutions to the problem of
the origin of the so-called irreversible line on the phase dia-
gram for the high-temperature superconductors~currently

discussed explanation of which is the phenomenon of the
vortex lattice ‘‘melting’’ @31#!.
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APPENDIX: CORRESPONDENCE WITH THE
GINZBURG-LANDAU NOTATION

In the Ginzburg-Landau theory of superconductivity@1#,
the scalar fieldw is interpreted as the ‘‘order parameter’’
with the square describing the ‘‘density of superconducting
electrons,’’ns5uwu2. The potential is usually written in the
form

VGL5auwu21
b

2
uwu4, ~A1!

with constant parametersa,0,b.0. Their physical meaning
is clarified by the following quantities they define: the ther-
modynamic critical magnetic field for a bulk superconductor
Hc
2 :5a2/b; the equilibrium density of superconducting

electrons uw`u:5uau/b; the order parameter coherence
length j:51/A2uau; the magnetic field penetration length
d:5Ab/uau. ~We are using the units in which the mass and
the charge of the electron is equal one.! Of particular impor-
tance is the ratio of two lengths:

k:5
d

j
. ~A2!

Comparing Eqs.~2.2! and~A1!, we find the relation between
our and the Ginzburg-Landau notation:

a52
m2

2
, b5

l

2
, ~A3!

hence, in our notation, we have

j5
1

m
, d5

Al

m
, ~A4!

k5Al, 2Hc
25

m4

l
. ~A5!

Technically, there are also other notational differences: in the
literature on type-II superconductors instead off one often
usesQ:52 f /Al, while the dimensionless line energy den-
sity is defined@1,3,13,12,5–8,10# by

e:5
E

d2Hc
2 5

2p

l H @rw8w#0
`1E

0

`

drr Fh21 l

2
~12w4!G J ,

~A6!

where we used the field equation~2.8!.

FIG. 8. The general diagram for different solutions. The vortex
state is energetically most preferable betweenHc1

andHc , while
aboveHc , the flux-tube configurations replace them. Hence,Hc

gains the following physical meaning for a type-II superconductor:
Above Hc , isolated vortices come into contact with the external
magnetic field and the flux-tube solutions are constructed. Energeti-
cally, the most preferable solution is a flux tube without node. But
also the flux tubes with nodes do exist there, ifk is large enough.
NearHc2

, only the flux tube without node exists. Of course, the flux
tubes can ‘‘live’’ also in the vortex and the Meissner state but they
are energetically less preferable. In this way, one finds a rich fine
structure of a superconductor’s mixed state.
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