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Regular solutions in the Abelian gauge model
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The regular solutions for the Ginzburg-Landdielsen-OlesenAbelian gauge model are studied numeri-
cally. We consider the static isolated cylindrically symmetric configurations. The well-kri@rikosov)
vortices, which present a particular example of such solutions, play an important role in the theory of type-Ii
superconductors and in the models of structure formation in the early universe. We find new regular static
isolated cylindrically symmetric solutions which we call the type-B and the flux-tube solutions. In contrast with
the pure vortex configurations which have finite energy, the new regular solutions possess a finite Gibbs free
energy. The flux tubes appear to be energetically the most preferable configurations in the interval of external
magnetic fields between the thermodynamic critical vafigeand the upper critical fieIdEHCZ, while the pure
vortex dominate only between the lower critical fieHﬂ1 andH.. Our conclusion is thus that type-B and
flux-tube solutions are important new elements necessary for the correct understanding of a transition from the
vortex state to the completely normal stdi80556-282(97)02404-1

PACS numbds): 11.15.Kc, 03.50.De, 74.20.De, 74.60.Ge

[. INTRODUCTION a rich structure of the space of exact solutions for the clas-
sical Ginzburg-Landau model. In addition to the well-known
The Ginzburg-Landau theory of superconductiity is  vortex solutions, for which we compute a variety of param-
mathematically equivalent to the Abelian theory of coupledeters in an interval of values of close to the critical value
gauge and Higgs field®]. The existence of vortefstring- A =1 (x=/1/2), we describe some new exact regular solu-
like) solutions in it was predicted by Abrikosov in 198nhd  tions. In our opinion, of particular interest are the configura-
published five years lat¢B]) in the context of the phenom- tions which we call thdlux-tubeand theoscillating solutions
enological model of superconductors and was discussed ipelow. The former appear to comprise a new nontrivial struc-
[2] in the framework of the dual string approatdee also a ture in ideal type-Il superconductors which is important for
recent generalization to the case of nontrivial helicity4f). ~ understanding the transition between a pure vortex state and
The aim of this work is to clarify, with the help of careful & normal state. _
numerical analysis, the properties of such solutions and to AS iS well known, the vortexor the mixed state of a
construct new solutions. We confine ourselves to the case §YPe-Il superconductor exists between the critical magnetic
cylindrical symmetry, thus considering an isolated vortex/€ldSHc, andHc,. Their values, as is usually claimed in the
and related field configurations. In the literature devoted tditerature[3,5-8,10, can be determined from the analysis of
this subjeci(see, e.g.[2,3,5—10) main attention was paid to isolated vortex solut|c_>ns_. However, from our results we con-
approximate solutions and qualitative methods, but ther&lude that such a claim is correct only partly. Inded, is
were very few attempts to study exact solutions by numericagletermined, for each value af= «?, by a relevant isolated
methods. Moreover, as was recently showr ], the old ~ Vvortex solution from a comparison of the Gibbs free energy
qualitative results may contain mistakes and are incomplet&®f the vortex configuration with that of the pure Meissner
Approximate results are normally confined to the domains ofonfiguration. But the upper critical magnetic fiett},, ap-
very small . <1) or extremely large (l>1) values of the pears to be completely unrelated to the vortex configurations
coupling constank (or the characteristic Ginzburg-Landau (cf. [9]). Instead, one can only determikk, from a similar
parametek = \/\, see the Append)xAs for numerical stud- comparison of the Gibbs free energy for a normal state with
ies, one can mention the earlier repdri2-16 and more that of a different type of exact regular solutions of the
recent(variationa) analysis in[17]. In our paper we present Ginzburg-Landau equations. We call these the type-B solu-
new numerical results for the isolated regular structures inions. Actually,approximatetype-B solutions are usually de-
the Ginzburg-Landau-Nielsen-Olesen model. Although scribed in the literaturg3,5—1Q in the framework of analy-
here we confine ourselves to the case of Abelian gauge fielgis of the linearized Ginzburg-Landau equations. We
we will consider elsewhere the non-Abelian generalizationgonstruct numerically exact self-consistent type-B solutions
(cf. previous approaches [i8,19)). Our results demonstrate for all possible values of external magnetic field. Although
interesting enough themselves as mathematical structures,
the type-B solutions have a limited physical value as com-
*On leave from Department of Theoretical Physics, Physics Facpared to the new flux-tube solutions. The latter configura-
ulty, Moscow State University, 117234 Moscow, Russia. tions correctly describe the transition from a pure vortex to a
"Present address: Astronomy Centre, School of Chemistry, Physiormal state, as will be demonstrated below.
ics and Environmental Sciences, University of Sussex, Falmer, It seems worthwhile to notice that the Ginzburg-Landau
Brighton BN1 9QJ, UK. equations describe common extremals for two diffefact
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tion type functionals: for the usuanergyand for theGibbs Noticing thatu has a dimension of inverse length, we can
free energyintegrals. The principal difference of the vortex introduce for the cylindrical systenp(#,z) a new(dimen-
and the new solutions is that the former are finéte energy  sionless radial coordinate via p=(/\/)r. We are look-
configurations, while the latter are tfi@ite Gibbs free en- ing for static configurations, and use the cylindrically sym-
ergy configurations. Previously, attention in the literature metric ansatZcf. [2])
was paid only to the finite energy regular solutions of the
Ginzburg-Landau equations. In the context of cylindrical P
symmetry, these are the famous AbrikogeNielsen-Olesen A=f(r)ydg, d=—0o(r), (2.3
vortices. It is our aim to demonstrate the existence and the W
physical relevance of two large families fifiite Gibbs free
energyregular solutions which are described in our paper agvheref,¢ are tworeal functions.
the flux-tube(or type-A and the type-B solutions. In our ~ The magnetic field one-form, defined as tlhree-
opinion, the correct understanding of the mixed state oflimensional Hodge dual*F, has only one component in
type-1l superconductor can only be achieved after taking intdlirection, * F=Hdz, where the latter is given by the expres-
account these new solutions. In particular, it turns out thaglon
the class of the flux-tube solutions is divided into an infinite
number of families labeled by a number of nodefor the H— M_Z } ﬁ 2.4
scalar field configuration. Each family exists on a finite in- TN rdr’ :
terval of magnetic fielddefinition of limiting points see be-
low). In this way, one finds a certaifine structure of the \we will denote the dimensionlessmagnetic field by
mixed statefor an ideal type-1l superconductor. h:=H\ u?=f'Ir.

The plan of the paper is as follows. Section Il contains a The magnetic field is conveniently characterized by the
general introduction to the model, we discuss the two energyyx it produces through a two-dimensional surface. In a cy-

functionals and formulate general regularity conditions at thgindrically symmetric case the total flux over a surface or-
origin. A brief account of numerical analysis of the pure thogonal to thez axis is

vortex solutions is given in Sec. lll. Sections IV and V con-

tain the description of new solutions, the type-B and the «  df

flux-tubes, respectively. In Sec. VI we perform the lineariza- F=f pdpd6H :27rf dr—=2x[f(»)—f(0)].

. . ? . . 0 dr

tion analysis of the Ginzburg-Landau equations, while Sec.

VIl is devoted to the regular oscillating solutions. The latter (2.9
appear to be certain unstable “relatives” of the vortices.

Finally, Sec. VIII contains a short discussion and a summary B. Energy (line density) functional and equations of motion

of the results obtained. In the Appendix we compare our : ; : :
notations and conventions with the old ones used in the lit- For the Lagrangian2.1) one can immediately write the

. ener er unit length in the form
erature. A general remark is necessary for the tables and 'Y P 9

figures: We find it convenient to put all the available numeri- 2ap? (= 1[(1df\? [de)\?
cal data into the separate addend|2q], available in elec- E= X f rrz (F a) +(E)
tronic form. In the present paper, the tables contain only 0
some selected reasonable minimum of data, while the figures 1 A
present additional information. + r—2f2¢2+ E((pz— 1)2]. (2.6
[l. ENERGY FUNCTIONALS AND REGULARITY Notice that it is not necessary to include a phase faefér
CONDITIONS for the scalar field in the ansai2.3), as it is done in a

number of different approaches. The fieldis always de-

_ ) ) fined up to a gauge transformation and we find it more con-
The Lagrangian of the Abelia‘Nielsen-Olesen” [2])  venient to work in the gauge.3).

A. Nielsen-Olesen Lagrangian

gauge model describing interacting electromagnBtied A Now, it is straightforward to see that the equations of
and complex scalar field reads motion of the Nielsen-Olesen modd] read
1 —_— n li
Lno=~ 5 (FA*F+D®A*D®) - U(|®])n, (21 P26 —rf’ =r2g%f, 27
r2e"+re' =@[f2+rr3(?—1)]. (2.8

with the potential

The value of the constart plays an important role. If it
equals to the critical valua =3, the Nielsen-Olesen equa-
tions are consequences of tfiest-order (Bogomolny sys-
tem

\ qu 2
= — 2——
= o= A 22
where the overbar denotes complex conjugation and
D=d+iA, and the asterisk is the Hodge dual operator, Ef,+1( 2_1)=0 2.9
7n:=*1 being the volume form. r 2 ¢ ' '
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1 critical (so-called thermodynamicvalue of the magnetic
¢'+fe=0. (210  field which distinguishes normal and superconducting
phases.
In the theory of superconductivith =3 separates two Now, let us consider the difference

phases: foh>1 (\<1) one has a type-litype-l) supercon-

2 row 2 2
ductor. The critical subcase was extensively studied in the Ag. =g— gnhzzﬂf 1 (E?—ho> +(?j_¢>
rdr r

rr—
literature[21—-23,17. The general noncritical case far~ 3 N Jo 2
is much less investigated. 1 N
Using Eq.(2.4), we can write Eq(2.7) in the form 2 20 "0 Ao 2
+ 2ttt S (97207 (2.19
1
h' =Ff¢2, (2.1)  1tis very important to notice that the Gibbs functioral16)

has thesame equations for extremass the energy func-

and hence the systef@.7) and(2.8) can be transformed into  tional (2.6), namely, Eqs(2.7) and (2.8). However, unlike
the strictly positive(2.6), the functional(2.16) can have any

1 @’ sign.
h"+ Fh’:h<p2+2h’?, (2.12
D. Regularity at the symmetry axis
Looking for solutions which are regular at the origin, we
my o _ 2 2_ X . . '
¢t rei=el a7 NMe™ =) ], (213 g ptitute the series expansions

explicitly for the coupled magnetic field and scalar field f— rk _ rk 21
¢ variables. This system is however not particularly useful g‘o 5@ g‘o br™ (219

for numerical investigation because of explicitplierms.
into Egs.(2.7) and(2.8). We then find two types of condi-
tions.

) ) ) ] o (a) Potentialf is nonzero while the scalar field vanishes
The line energy density functional2.6) is minimal 4 the origin:

(Emin=0) for the Meissner state, i.e., when=1 (supercon-

ducting order in all points of a samplandh=0 (no mag-

netic field inside a superconductoiThis corresponds to a f=N-+ar?+ mbzfzszr O(raN*4),

trivial solution of Eqs.(2.7) and(2.8), f=0, ¢=1. The nor- (2.18
mal state is described by another simple solutibs,C

C. Gibbs free energy functional

+3hor?, =0 (C andh, are constanjswhich always(with " A A
or without magnetic fielchy) has formally infinite energy e=br|1+ 2NFD | 27 2N)" +0(rY) |, (2.19
£. However, physically of interest is a difference of energies,
not an energy itself. whereN==*1,+2, ... is anonzero integer and parameters
In particular, let us turn our attention to the Gibbs freeg b are arbitrary.
energy(per unit length which is defined by (b) Potentialf vanishes while the scalar field is non-
trivial at the origin:
g=5—f d2X(HH o) - (2.14 1
f=ar? 1+§b2r2+0(r4)), (2.20
We assume that both magnetic fields, the internaltéremnd
an externalH., are directed along the axis, and use the N
dimensionless values of fields defined, in accordance with e=b| 1+ —(b%—1)r2+ O(r4)), (2.21
Eq. (2.4), by H=(#2/\)h andH e= (1%/\) hey. The Gibbs 4

free energy of the normal state with a magnetic field

ho= hey iS given by the integral with some parameter, .

In both cases, parameter determines the value of the
u? (= magnetic field at the originh(0)=2a. When b=0, both
Gnh=E& e=0h=hg]— N J drrhghey cases reduce to the solution which describes a normal super-

0 conductore=0 filled by the constant homogeneous mag-
2ap? (= 1 A
& f drr=| —h3+ -
N Jo 2 2
I1l. VORTEX SOLUTIONS

netic fieldh(r)=h(0)=2a.
For a sample without boundary, this is an infinite constant, \/ortex solutions of the Ginzburg-Landau equatid@s?)
while for a cylinder of a radiu 2th|s is a finite positive  and(2.8) are distinguished among others by the special con-
(negativé constant 7R?u?(1/2—hg/\)/2 for a magnetic ditions at infinity which read
field hg<h. (hy>h.), and zero forhg=h.:= /2. This
observation underlies the physical interpretatiorhgfas a f(r)],»—0, (3.0

. (2.19
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1. 0 T for the Meissner stateh(=0,p=1), while for a vortex state
- o 8 it is always positive when an external magnetic fielg, is
-8 S T f ] oriented oppositely to the magnetic figitlinside a sample
6'_ o ﬁ _ (hence such vortices are ruled puand it can become nega-
B i tive for a certain value of external field with the same orien-
A T tation as in the sample. In the latter case, for a constant
! 2‘_" ] external magnetic fieltH .= (0,0,H,,) one finds
S ] o
A S eEET T T T g=5—2wHex~U drrh|=&-27|N[Heyq. (3.3
—. 2+ s | 0
= / -
_ 4L / =1 | Hence the lower critical value of an external magnetic field
- / g Hex=He,, determined by the conditio=0, is equal to
- TR AN T N N AN TR N TN AN T N 5
0o 1 2 3 4 5 6 7 K€

FIG. 1. A typical vortex solution. At the center, the magnetic where in the last equality we switched to the old conventions
field h is maximal. The limit of the scalar field is 1, which means summarized in the Appendix.
physically a completely superconducting state. With our gauge It seems worthwhile to make the following short remark:

choice the potential is vanishing at infinity. The analysis of exact vortex configurations shows that the
actual (computed for vortices magnetic field penetration
o(N|_0—1. (3.2 length for different values ok is always greater than the

domain of an essential change of the scalar field, even for
When combined with the type-A regularity conditions at thesmall «. In fact, this observation was also confirmed in ear-
origin (2.18 and (2.19, these asymptotic conditions define lier numerical studie§13,12. This casts doubt on a possible
uniquely parameters,b for any value ofA and N. The  qualitative and quantitative understanditaj. [5—7,10) of
meaning of the consta is clear: this is the value of the these solutions on the basis of so-called penetration lengths
magnetic flux described by such solutions. Indeed, we subs and ¢ (see the Appendixfor the magnetic and the scalar
stitute f(0)=N and f()=0 into Eq. (2.5 to obtain fields, and stresses the need of exact numerical investigations
F=—2#N. This is the well-known flux quantization result (see details in addenduf20] where the numerous vortex

for superconductors. Notice that the asymptoti8sl) and  solutions for a wide range of are described
(3.2 cannot be realized for any solution with type-B regu-

larity conditions(2.20 and(2.21), see the discussion in the
next section.

The results of the numerical integration are given in Fig. 1  The type-B condition42.20) and (2.21), like the type-A
and Table I, where left and right columns describe solutionsonditions(2.18 and(2.19, guarantee a regular behavior of
for N=1 andN=2, respectively. For convenience of com- solutions at the origin(lt seems worthwhile to notice that
parison with the old calculatiofd2-16 we write the cou- type-B conditions arenot a particular case of type A for
pling constant as\=«? [see Appendix for definitions, in N=0.) It is straightforward to analyze a qualitative behavior
particular Eq.(A5)]. of such solutions for finite values af. For example, Eq.

Energy (2.6) is always positive on all vortex configura- (2.7) immediately yields thaf(r) is a monotonous increas-
tions. It decreases with growing and increases when ing for a>0 (decreasing fom<<0) function. Indeed, if we
x—0. A useful physical variable, which allows one to find assume an extremum for a finite=ry, one finds from Eq.
necessary conditions for the existence of vortices, is thé2.7) f"(r,)= @?f(r,), which means that such an extremum
Gibbs free energyline density (2.14). This quantity is zero is a minimum for positive (r ) and a maximum for negative

IV. REGULAR SOLUTIONS FOR TYPE-B CONDITIONS

TABLE I. Vortex solutions.

N=1 N=2
K a b Elmp®]  He INV2H, a b Elmu®]  He /V2H,

2.00 | —0.46614 1.35218 0.38816 0.38816 —0.52764 1.01524 0.88928 0.44464
1.75 | —0.43108 1.20961 0.47922 0.41932 —0.48000 0.82862 1.07872 0.47194
150 | —0.39344 1.06659 0.61094 0.45821 —0.42993 0.65857 1.34754 0.50532
1.25 | —0.35273 0.92273 0.81402 0.5087 —0.37708 0.50680 1.75284 0.54776
1.00 | —0.30828 0.77735 1.15676 0.5783§ —0.32096 0.37219 2.41915 0.60478
0.75 | —0.25904 0.62916 1.82190 0.68321 —0.26080 0.25461 3.67126 0.68836
1/{2 | —0.25000 0.60328  1.99999 0.7071Q —0.25000 0.23614  3.99999 0.70710
0.50 | —0.20314 0.47525 3.47164 0.86791 —0.19527 0.15401 6.64856 0.83107
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TABLE II. Type-B solutions fork«=1.0.

Without node With one node
b a M/ (27) AG [7u?] Next a M/ (2) AG [mu?] Next
1-10716 2.62x 10718 —319.831 —3.336 0.712 1.88< 1071 —399.137 22.180 0.672
1-10% 2.80x 10°° —150.422 —2.301 0.714 2.6 10710 —201.853 14.548 0.659
1-10°8 1.79x 106 —69.240 —1.582 0.718 2.20< 1077 —102.176 9.272 0.641
1-10* 1.11%x 1073 —18.774 —0.846 0.728 2.1x 1074 —34.388 4.108 0.597
0.9 0.1466 —1.412 —0.169 0.800 0.0439 —5.299 0.610 0.477
0.7 0.3030 —0.430 —0.042 0.878 0.0957 —2.376 0.188 0.420
0.5 0.4033 —0.160 —0.009 0.937 0.1307 -1.126 0.051 0.380
0.3 0.4659 —0.048 —-0.001 0.977 0.1536 —-0.401 0.007 0.351
0.1 0.4962 —0.005 —1.25% 107° 0.997 0.1652 —0.044 9.30x 10°° 0.335
0.0 0.5000 0.000 0.000 1.000 0.1666 0.000 0.000 0.333

f(rg). For a function starting from a zer@.20 both possi-
bilities are excluded and thudgr) is a monotonous function.
In particular, this means thdt(r)—« for r—«, and one
thus concludes thano finite energysolutions for type-B
regularity conditions exist: the functioné.6) is infinite.

Let us however look at Eq$2.7) and (2.8) as the equa- Defined formally as a difference of fluxes, this variable is
tions for extremals of the Gibbs free energy functionalusually interpreted as anagnetizationper unit volume
(2.16. It is immediately clear that there exifinite Gibbs  [7,14]. Unlike the quantized flux for the vorticel8| can have

free energyregular type-B solutions, provided they satisfy atan arbitrary value.
infinity From Tables Il and Ill we see, for the type-B solutions

without node, that whea— \/2 the external magnetic field
is approachinghq,= hcz=)\, while M/(27)=AG=0. For

M:=AF=f pdpdﬁ(H—H0)=27-rfwdrr(h—h0).
0
4.3

h(r)= Ef’(r) —ho, 4.1 N>1/2, we find a higher external magnetic field for larger
r oo values of magnetic field at the centé(0)=2a. When
N=1/2, for all solutionshg,=1/2 (see[20]). Finally, for
N <1/2 [20] the external magnetic field is decreasing when
o(D)ly—0. 42 L20] g g

h(0)=2a grows (the reverse order as compared to the
A>1/2 case
Notice that unlike in a vortex configuratiai3.2), the scalar Besides the simple type-B solutions without nodes, there
field cannot approach at infinity any finite value except 0. exist more nontrivial solutions with nodes. Both are dis-
The results of numerical integration are presented irplayed in Fig. 2, while the configurations with one node are
Tables Il and 11l and Fig. 2. A principal difference of these represented by the right columns in Tables Il and III.
solutions(which we will call “type-B” solutions for brevity For A\>1/2, all type-B solutions without node have a
from the vortex solutions lies in the fact that the magneticnegative Gibbs free energyg, for A=1/2 alwaysAG=0,
field is asymptotically constant, and hence the flux integrabnd for A<1/2 the Gibbs free energy is positive. One can
defined by Eq(2.5) is formally infinite. However a reason- find also negativeAG for type-B solutions with one node
able replacement is provided by the quantity when h,<\/3 (i.e., k>3/\2), see the case ok=2.25

TABLE lll. Type-B solutions forxk=2.25.

Without node With one node

b a M/(27) AG [7u?] Next a M/(2) AG [7u?] Next
1-10°8 | 3.96x 10°* -66.111 —2.249 1.670 | 3.96< 10°* —70.821 0.526 1.534
1-1074 0.0396 —14.189 -1.107 1.765 0.0337 —17.351 —4.34%x 102  1.495
1-10°2 0.3836 —2.443 —0.428 2.069 0.2154 —5.055 —-0.101 1.486
0.9 1.1088 —0.402 —9.99x 102 2.892 0.4756 —-1.673 —3.78x 102 1.544
0.7 1.7810 —-967x 1002 -1.83x 102 3.865 0.6640 —-0.621 -8.38x 10°°® 1.613
0.5 2.1691 —-3.33%x 102 -352x 10% 4475 0.7597 —0.259 -172x 10% 1.652
0.3 2.4044 -9.81x 10°° —3.90x 100* 4.855 0.8147 —-841x 102 —-1.97x 100% 1.675
0.1 2.5173 —-098x 104 —4.48x 10% 5.039 0.8405 —-893x 10° -230x 10® 1.686
0.0 2.53125 0.000 0.000 5.0625 0.84375 0.000 0.000 1.6875
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.5
S-
< ]
7 k=05
-.5 f"" ------ k=1.0 ]
co k=15 ]
_ A N TR N TR N S (RN NN A S R ]
1'00 2 4 6 8 10 12 14
r
1. ]
> :
< iy ]
] SN, .
-1.0F  h M/(R2m)=—-4.0 A
- F 1 | L | I | 1 | 1 ] 1 | 1 1 I ]
1'50 2 4 6 8 10 12 14 18
r r
FIG. 2. Type-B solutions without nod@bove and with one FIG. 3. Flux-tube solutions without node fo¢=0.5,1.0,1.5
node(below) for k=1.0. In both cases the scalar figkdhas initial ~ with the same magnetizatioM/(27)=—6.0 and positive Gibbs
values¢(0)=0.9,0.6,0.3 and magnetic potentigl0)=0.0. free energy(above, and the magnetizatioM/(27)=—4.0 and
negative Gibbs free enerdpelow). The scalar field of a flux tube
(Table 1I). This will be clarified later in Sec. VI. reaches a maximum before going to zero at infifétyd not to 1, as
The magnetization curves for the type-B solutions ardn the case of vorticgsThe magnetic potentidl (not shown starts
given in Fig. 4. For any\ = 2, M diverges ah,. at 1, is followed by a minimum and then grows with an asymptotic

In the present paper, we display the results forrz behavior, so that the magnetic fidids asymptotically constant.
xk=1.0,2.25, the detailed tables and figures foranging Note that fork=0.5 all solutions have positive Gibbs free energy,
from 0.5 to 5.0 are collected in the addend[20)]. cf. Fig. 4.

V. FLUX-TUBE SOLUTIONS vortex), surrounded by a §up¢rconduqting tulbmost com-
pletely free of a magnetic field Outside such a tube the

Let us look for the other solutions which yield finite val- sample quickly reduces to a normal state with the external
ues for the Gibbs functiondR.16). At the originr=0 we field penetrated in it. For the solutions with one node we
take the type-A regularity condition®.18 and(2.19, while  have a “sandwichlike” structure: a tube of normal state be-
at infinity we consider the asymptoti¢4.1) and(4.2). Such  tween two superconducting tubes.
a combination of two type conditions at zero and at infinity ~Each family of flux-tube solutions has two branches. For
suggests a possible physical interpretation of such solutionrexample, for«=1, one of these branches is characterized by
which appear as a result of a certain “gluing” of a vortex the positive Gibbs free energy, and another has negative
configuration at the origin with a type-B solution at large Gibbs free energy. However, for sufficiently largeboth
radial values. branches describe the negative Gibbs free energy configura-

The results of numerical integration are given in Figs. 3—@tions. We find it convenient to depict these branches in the
and Tables IV and V. As in the previous section, we presenform of magnetization curves, Fig. 4. FoE 3, two branches
results only for the values 0f=1.0,2.25, se¢20] for more  with positive Gibbs free energy exist. As in the case of
solutions. type-B solutionsM diverges ah,.

Figure 3 explains why we call these solutions tiex It is interesting to notice that among the flux-tube con-
tubes There is a core where matter is in a state close to théigurations there are solutions with quite unusual behavior of
normal one filled by the magnetic fielthis is in fact a the magnetic field, which in the center is oppositely oriented
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h
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FIG. 4. Magnetization curves for type-B and -A solutions for £=2.25 for the flux-tube and the type-B solutions. In each case the
different x. Above, the type-B solutions without nodeght curve ~ flux tubes have lower values aig than the type-B solutions.
for eachx), and with one nodéeft curve). For x=2.25, we notice ~ Hence, flux tubes are energetically more preferable.

a change of the sign of the Gibbs free energy within a solution . ) o
family, while for k=0.5,1.0,1.5 we find only positive values of with respect to the direction of external magnetic field. See

G. Below, for the flux tubes without node for each value the data with negativa in the Tables IV and Mnotice that
x=0.5,1.0,1.5, the corresponding limit values h,, h,, andh, for k=2.25 there exist negative Gibbs free energy solutions

are drawn. Solidbroken lines denote negativépositive Gibbs ~ With such property

free energy. In all cases the magnetization diverge$ at For Like for the type-B configurations, we also find the flux-
x=0.5 the point, does not lie within the two limit; andh,, so tube solutions with one node, relevant data is displayed in
that one can find also solutions uphg. the rlght half of Tables IV and V. Notice that far=1 all the

TABLE IV. Flux-tube solutions forx=1.00.

Without node With one node

a b M/ (27r) AG [mu?] Next a b M/ (277) AG [mu?] Next
0.16666 0.00192 —0.0001 1.01x 10°° 0.3333 0.09500 0.05752 —0.1982 0.0012 0.2061
0.09149 0.24083 —0.9999 0.1087 0.4408 0.05000 0.19570 —1.6964 0.0968 0.2559
0.00770 0.38158 —1.9000 0.3749 0.5333 0.00000 0.29595 —3.0598 0.3264 0.3041
—0.00172 0.39592 —2.0000 0.4109 0.542 —0.10000 0.46591 —5.5963 1.0575 0.3892
—0.29562 0.76607 —12.0000 1.8288 0.7304 —0.28500 0.74590 —15.4375 3.8649 0.5416
—0.30818 0.77728 —40.0000 1.3970 0.721§ —0.30825 0.77732 —56.9794 8.4137 0.6195
—0.30828 0.77735 —154.2204 0.2883 0.7145 0.30840 0.77735—39.2231 4.6106 0.6053
0.30828 0.77735 —151.5651 —3.0233 0.7130 0.30000 0.74194 —10.8059 1.5583 0.5326
0.39637 0.72724  —1.5999 —0.2007 0.8270 0.18000 0.23311 —-0.7157 0.0176 0.3582
0.49998 0.00999 —-0.0001 —2.49x 10°°  0.9999 0.16670 0.01173 -—0.0018 1.20x 1077 0.3333
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TABLE V. Flux-tube solutions fox=2.25.

Without node With one node

a b M/ (27r) AG [mu?] Next a b M/ (27) AG [mu?] Next
0.84325 0.03080 —0.0010 0.26x 1077 1.6876 0.50620 0.01167 —0.0003 0.22x 1078 1.0125
0.43741 0.87389 —1.0000 0.0146 1.7754 0.50000 0.13056 —0.0415 0.0000 1.0168
0.00000 1.23234 —3.0166 0.0421 1.8179 0.00000 1.15113 —3.7504 0.1824 1.2955
—0.01143 1.23977 —3.1000 0.0424 1.8181f —0.10000 1.24623 —4.8332 0.2573 1.3399
—0.33764 1.42257 —8.0000 —0.0170 1.7936( —0.45000 1.47366 —17.7012 0.7550 1.4838
—0.49780 1.49403 —55.1538 —1.0370 1.6803| —0.48750 1.48977 —30.9911 0.9853 1.5089
0.50045 1.49512 —49.9903 —2.3225 1.6823 0.50000 1.49494 —59.2582 0.1456 1.5301
0.70035 1.56827 —5.0000 —0.8568 1.9461 0.55000 1.51459 —14.7491 —0.2253 1.5043
1.13578 1.65419 —1.2000 —0.3092 2.5200 0.70000 1.52843 —4.5843 —0.0988 1.5491
2.53100 0.03330 —0.0000 —427x 10°° 5.0620 0.84373 0.03177 —0.0005 0.0000 1.6874

flux-tube solutions with one node have positive Gibbs free

energy. However, with increasing this changes. The im- T —sn=0, (6.3
portant thing is the position of the thermodynamic critical

value h; relative to the “limiting points” for hg,, of the

flux-tube families, at which the magnetization and the Gibbs

free energy vanishes. We have determined numerically the ‘P'+5Ff‘P:01 (6.4
values of such limiting points which depend on the value of

x and are located, on thig,, axis, at\,i\,z\,3\, .... In _ _

the next section we explain the values of these limitingWheres= =1 is the sign factor. _
points with the help of linearization analysis. This system is straightforwardly integrated and yields

The reader should compare the magnetization curve and
the (AG/hg,y) energyl/field plots forx=1.0,2.25, Figs. 4 and )Y
5, which demonstrate that the “motion” of the limiting f(r)=N+S§f2, (6.5
points to the right oh. is accompanied by creation of flux
tubes with one node which have negative Gibbs free energy.

Both the type-B solutions and the flux-tube solutions have A
a well-defined Gibbs free energy for an infinite sample. It is @(r)= QDof_SNeXF{ - Zfz), (6.6)
natural to compare them. Of course, this must be done in a
correct way: one should compare energies of configurations
with the same values of external magnetic filg,. Using ~ WhereN and ¢, are integration constants. In the linear ap-
our data, we can display the Gibbs free enefyy as a  Proximation, the constari¥l is arbitrary, but as we can see
function of he,,. These functions for the type-B and the flux from the analysis of the completelf-consistensystem at
tubes are given in the Fig. 5, showing that the flux-tubethe origin(2.18—(2.21), this constant should be either O or
configurations are energetically more preferable. £1,%£2,....Inorder to have a regular behavior of £6.6)

atr=0, one should choose the signMfin such a way that
VI. LINEARIZED SYSTEM AND CRITICAL sN<0. Notice that the p_otgntia(B.S) describes an homoge-
MAGNETIC FIELDS neous constant magnetic fighd=s\, and thus the value of

s shows its directio{up or down along the axis).

The best way to understand the structure of type-B and It is easy to check that all the solutiof&5) and(6.6), for
flux-tube solutions in the limit of vanishing magnetization arbitrary values of integration constants, have the same
M—0 and the Gibbs free energ¢G—0 is to study the (zero energy integral computed for the linearized system
linearized Ginzburg-Landau equations. (6.1 and(6.2). For N=0 the field(6.6) evidently describes

Let us consider, in the spirit §8,5-10, the system2.7)  the linearized type-B solution, while fad=1 this is a lin-
and(2.9) in the situation when the square of the scalar fieldearized flux-tube solution. As we see, the linearized solutions
#? is negligibly small. Mathematically this means that, in theare energetically equivalent. However, the numerical results
lowest order, one drops out the terms containifgin Egs.  (see Fig. 5 definitely show that self-consistent flux tubes are
(2.7) and (2.8). We then immediately notice that such a lin- energetically more preferable than the type-B configurations.

earized system The first correction to the magnetic field is easily com-
puted. One must now take the complete system, and consider
r2f"—rf’ =0, (6.2 the first equation2.7) in the form (2.11) where the right-
hand side is constructed from the lowest order configurations
r2e"+ro’=@(f2—Ar?), (6.2) (6.5 and(6.6). Since these satisfy E¢6.4), we find from it

(1) fe?=—13s(¢?)’, and hence Eq2.11) is immediately
is a consequence of any of tfiest-order systems integrated, yielding for the magnetic field
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FIG. 6. (a,b)-diagrams forxk=1.0,2.25,5.0. The big dot de- FIG. 7. The oscillating solutions for type-fabove and type-B
scribes in each case the corresponding vortex solution. The drawgbelow) initial conditions. For an initial valuénhere,b=0.777) very
broken, and dotted lines represent the flux tubes without node, thgear to the one of the vortex, the scalar field closely approaches 1
flux tubes with one node, and the oscillating solutions, respectivelybefore the oscillation starts. Near the origin, the vortex can be rec-
The type-B solutions cannot be compared in these diagrams begnized. No type-A oscillating solution with an initial value above

cause they have different initial values. that of the vortex can be found. For a type-B oscillating solution,
the magnetic field vanishes, while the square of the scalar field, the
1 density of superconducting electrons, oscillates without any exter-
h= S( A= 2 <P2> (6.7) nal magnetic field, and every finite sample has a negative Gibbs free
energy.

As we see, an important role is played here by the normal-
ization of the linearized solution, i.e., by the constagt
Further insight can be obtained also directly from the
analysis of the second-order linearized systéfrl) and
(6.2. Indeed, integration of Ed6.1) is straightforward, giv-

wheren=0,1,2,. ... Corresponding eigenfunctions, \ are
given in terms of the Laguerre polynomials, withequal to
the number of zerofhodes. Let us introduce the notation

. A
ing he:= k1’ k=0,1,2,.... (6.10
f:N_{_ErZ’ (6.9 It is easy to see that the maximal eigenval(.9),
2 h=s\=shy, is achieved fom=0 andsN=—|N|, and the

_ . _ scalar field is then described exactly by E§.6). This maxi-
whereN andh are integration constants with the latter rep- mal eigenvalue is precisely the second critical field

resenting the value of an homogeneous constant magneuﬁ;5 A=«k?. The rest of the eigenvalues also have clear
field. After substituting Eq(6.8) into Eq. (6.2 we find a phy5|cal meaning: these define the values of the external
Schralinger type of equation fop with the potential of a magnetic field at which the exact type-B and flux-tube solu-
circular oscillator. Regular solutions exist only when tions become “linearizable” and thus disappear. Looking at
Tables 1V, V, Il, and Ill, we find the complete agreement
h= Sh 6.9 with the above linearization analysis. Indeed, the flux-tube
1+2n+sN+|N|’ ' (without node$ and the type-B(without node} configura-
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TABLE VI. Oscillating solutions fork=1.0 (R gives the positions of extrea

Type A a b R (first maX Emag [T
—0.30828 0.77735 o 0.24523
—0.30700 0.77500 3.36848 0.24328
Fl(2m)=-1 —0.11438 0.40000 1.85499 0.04429
—0.03500 0.20000 1.83312 0.00579
—0.00246 0.05000 1.84246 0.00005
Type B R (min) G [mu?] R (max G [mu?]
{a=0.0, 3.84 —2.484x 10°° 7.02 —2.978x 10°°
b=0.1 98.2 —5.009%x 10°° 208.1 —5.583%x 10°°
{a=0.0, 5.13 —0.54496 8.48 —0.62000
b=0.9 295.5 —1.08209 198.0 —1.03113

tions have the limit magnetic field valugs,=\/3 and it is pulled between the measuring coils, and a final, steady-
ho=he,, while the flux tubes and type-B solutions with one- state value of the magnetization is sometimes obtained only
node “live” betweenh,=\/5 andh,=\/3. In general, the after 10 or 20 sample translations. It is as if vibration assists
family of solutions withk nodes have the limiting points the flux movement into or out of the sample. Hence, all of
hei; andh,. If h, belongs to the intervdlh,,;,h,], then  the data reported below refer to the final steady state of the
hes1<heq<hy for all solutions in this family. However Magnetization; that is, further sample motion would produce
whenh, does not belong to this interval, thgh,,,h ] is "0 further change’[24]. .
extended up tdn, . For thetype_A C(_)ndltlon_s at the origin, théselected re-
This linearization analysis clearly supports the existenc&UItS of numerical integration are given in Table VI. In gen-
of the flux-tube-type solutions. eral, oscillating solutions exist only for |n|_t|al yalu_ea,())
below the onesd*,b*) of the vortex solutior(first line of
Table VI). The flux for the displayed solutions is always
F/(27)=—1. The values here are given far=1.0. From
Let us now consider weaker conditions at infinity: the Fig. 7, one recognizes that forclose tob* the scalar field
potential still satisfies Eq3.1), however instead of Ed3.2) reaches almost the value 1, i.e., a complete superconducting
we require regularity and finiteness of the scalar field. Fronstate.
the physical interpretation af as the “density of supercon- Due to a not so quick decay of the scalar field at infinity,
ducting electrons” one concludes that|<1 for all values approximatelyo~ cos(r)/\/r, the energy of an oscillating
of the radial coordinate. solution is infinite for an infinite sample, but for a real finite
Quialitatively, one can understand the behavior of a scalagylindrical sample it is finite, although larger than the energy
field for larger as follows. When in Eq(2.8) the potential ~ of a vortex configuration. Notice, that an oscillating charac-
f2 and the scalar fieldp? nonlinear terms become small ter of such solutions may resemble an “intermediate” super-
enough, one is left with the linearized equation conducting state with coexisting normal and superconducting
regions[6]. However a considerable difference is that the
magnetic field penetrates only at the center, exactly like in a
vortex case. Moreover, the magnetic flux is quantized in pre-
cisely the same manner as for vortices, which is immediately
which has the Bessel function as a solutiprsJo(y/Ar)  seen after using E¢2.18 andf(«)=0 in Eq.(2.5), the flux
=Jo(kr). Such an asymptotic behavior is confirmed by di-is F/(27)=—N. Notice also that the magnetic energy of
rect numerical integration, see Fig. 7 and Table VI. oscillating solutions is always finite even for an infinite
To the best of our knowledge, this type of solution wassample.
never reported in the literature. It is interesting to find out Oscillating solutions exist also for the type-B conditions.
what physics corresponds to it. One interpretation is thatiowever, the numerical analysis revealed that in this case
these new oscillating solutions are unstable configuration$e parametea must vanish and hence the magnetic field is
preceding to the completely formed Abrikosov vortex state completely absent. Nevertheless, the scalar field configura-
they appear when the external magnetic field is switched ofion is nontrivial. In fact, one is left then with the nonlinear
and reaches$i. . We may draw attention to the following scalar field equation

remarks in an experimental research paper: “Consistent val-
ues of the magnetization were obtained for fields just above
H.; only after the sample had been moved between the coils
a number of times. The change in the magnetization of a
sample upon a slight increager decreaseof the field is  which in the limit ofr — o, when¢ approaches 0, reduces to
very dependent on the fact that the sample has been jarred tie linearized equatiofv.1).

VII. OSCILLATING SOLUTIONS

1
o'+ F(p’-f—)\(p:O, (7.2

1
¢"+ - 0"+ (9= ) =0, (7.2
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It is evident that it is enough to find explicitly only a magnetic field values, i.e.a=3h,,k=0,1,.... Curves
solution ¢4(r) for the case\=«=1. For an arbitrary value which represent flux tubes with increasing number of nodes
of the coupling constant the solution is then given byare concentrating in the close neighborhood of the “oscillat-
o= cpl(\/Xr). In particular, this defines positions of extrema ing” curve which seem to indicate that the oscillating solu-
and zeros ofp(r) for all values of\ from that ofp,(r). The tions are unstable and a small perturbation may cause their
latter evidently depends only on the value of the parametedlecay into a nearby flux tube with a finite number of nodes.
b in Eg. (2.21). Numerical results are displayed in Fig. 7.  When moving along any flux-tube curve away from the

As we already mentioned, for an infinite sample both en-axis, one inevitably hits the vortex dot, where magnetization
ergy and the Gibbs free energy are divergent for oscillatingliverges.
solutions. However, for a finite cylinder we discover conver-  Technically, it is impossiblébecause of the limitations on
gent results. As it is well known, the boundary conditions innumerical precisionto make integration for the parameters
the Ginzburg-Landau theory require vanishing of derivative(a,b) in the close vicinity of a vortex. Thus, from the data
¢'|,—r=0 on a cylinders surface=R. Using Eq.(7.2,  which we obtained, it is not clear what is the limiting value
one then finds from Eq(2.16 that for such zero magnetic of an external magnetic field to which all the flux-tube con-
field oscillating solutions the Gibbs free energy is alwaysfigurations approach whena(b) are coming closer and
negative, closer to the vortex parametera*(,b*). We can see how-

ever (cf. Tables IV and V, that such a limit is close to the
mu? (R 4 thermodynamic critical fielch, for each k. The following
Ag:_TL drre®(r). (73 simple argument demonstrates that in fact such a limit is
equal toh, . Let us formally compare the values of the Gibbs
A curious conclusion is thus that for a finite sample in ab-free energy for a vortex and for a flux-tube solution. We find
sence of an external magnetic field an oscillating state ighat these are equal when
energetically more preferable than a purely normal state. "
~ We have calculated the Gibbs free energy for the oscillat- 5v—5FT:27THext( 1— f drthT), (8.
ing solutions in finite samples. A boundary can be placed at 0
any of the positions of extrema of the solutions, and the ]
numerical results are displayed in the lower part of Table Vi Where the subscripts V and FT denote the vortex and flux-
We present explicitly only the case=1, while for an arbi- tube variables, respectively. The right- and the left-hand
trary \, the relevant data are easily obtained from Table ViSides are both formally divergent, but comparing the leading
by replacing R,AG) with (R/\/X,Ag/)\) [cf. Eq. (7.3)]. terms, one can use Eq8.1) and(2.6) to find (noticing that

Oscillating scalar field solutions appear also if one take&fter a certain 2f|n|te value of one hashgr=he, and
instead of an electromagnetic theory a general relativisti¢?Fr=0) Next= (NexitM2)/(2Ney), from which
gravitational theory[25]. The solutions for this Einstein-
scalar-field theory describe a dark matter halo of galaxies or _ \ﬁ_

. — ; hex= =h,. (8.2
galaxy clusters, respectively. The oscillating behavior of the 2
scalar field can be removed simply by adding a mass term for
the scalar field potential. In this case one speaks about bosdflow (above this value, the pure vorticeghe flux tubes
star solution§26] which have some characteristics similar to are energetically more preferable.
the neutron stars but also decisive differenf2g. These Summarizing, in this paper we present the numerical so-
boson stars could be formed in the very early universe fronutions of the cylindrically symmetric Ginzburg-Landau
Higgs or axion particles. That stable configurations of thes€quations. In addition to the well-known vortex configura-

boson stars can exist was investigated with the help of th&ions with finite energy we find new solutioitee call them
catastrophe theor}28]. type-B and the flux-tube solutiohsvhich have finite Gibbs

free energy. Direct numerical integration reveals many inter-
esting properties of these solutions. One of the most impor-
tant points is perhaps the clarification of the meaning and

In each class of solutions the decisive role is played byalue of the upper critical fieltl.,. Contrary to what is usu-
the values of the parameters, b) which appear in the regu- ally claimed in the literaturéwith an exception of9]), he,
larity conditions at the origin2.1§ and (2.19 and (2.20  y o means denotes the magnetic field below which the
and (2.2D. All the solutions are obtained after a “fine- \ortex hecomes more energetically preferable than the nor-
tuning” of these parameters. It is worthwhile to draw a kind 5 state. Instead, as we demonstrateds=\ is the value of

2

of a “phase diagram” on thed,b) plane which shows ex- L . .
pIicitIyp the domgains of existi(angep for different solutions. 2" external magnetic field at which the type-B solutions and
" the flux tubes have zero Gibbs free energy. Below it, for

Since the vortices, flux tubes and the oscillating solutions al . ]
belong to the type-A regularity conditiori2.18 and(2.19), ex<Nc,, AG is negative for both flux tubes and type-B con-

we can display them on the same I) plane, see Fig. 6 for figuraf[ions. The ana!ysis of Iinearizgd Ginzbur_g-Landau
different values of«. The encircled dots denote the “posi- €quations neahg, which usually (and incorrectly is de-
tion” of a vortex solution while each curve represents a com-scribed in the literaturésee, e.g.[3,5-8,1Q) as relevant to
plete family of a flux tube or oscillating solutions for a fixed vortices, in fact is the linearization of flux tubes and type-B
«. Notice that all curves end on thee axis (b=0) at the solutions. Our results show that the flux-tube solutions with-
points which correspond to the half of the relevant limit out node remain the most energetically preferable foJ’ZT'I

VIIl. DISCUSSION AND CONCLUSION
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discussed explanation of which is the phenomenon of the

normal vortex lattice “melting” [31]).
Hc2
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) APPENDIX: CORRESPONDENCE WITH THE
Meissner GINZBURG-LANDAU NOTATION
0 In the Ginzburg-Landau theory of superconductivity,

the scalar fieldy is interpreted as the “order parameter”

state is energetically most preferable betwétn andH., while with the Sﬂuare dg’sc”b'”g the. dgnSIty of SUp?rcon.dUCtmg
1 electrons,”ns=|¢|°. The potential is usually written in the

aboveH,, the flux-tube configurations replace them. Henide,

) ) . . form
gains the following physical meaning for a type-1l superconductor:
Above H,, isolated vortices come into contact with the external B
magnetic field and the flux-tube solutions are constructed. Energeti- VoL = a| <p|2+ §|<p|4, (A1)
cally, the most preferable solution is a flux tube without node. But

also the flux tubes with nodgs do exist the_re:f ifs large enough. with constant parameters<0, 8>0. Their physical meaning
NearH_ , only the flux tube without node exists. Of course, the flux . - . " .
2 is clarified by the following quantities they define: the ther-

tubes can “live” also in the vortex and the Meissner state but they . e L
. : , -~ - ~modynamic critical magnetic field for a bulk superconductor
are energetically less preferable. In this way, one finds a rich fin

2.2 2/ i ; ;
structure of a superconductor's mixed state. ?—|C.—a /B; the equilibrium density of superconducting
electrons |¢.|:=|a|/B; the order parameter coherence
o ] ) length &:=1/{2|a|; the magnetic field penetration length
down to the thermodynamic critical fietd., after which the 5:=Bl[al. (We are using the units in which the mass and

vortices become energetically more preferable and such @e charge of the electron is equal ref particular impor-
vortex state ends at the lower critical fiehd . We find it tance is the ratio of two lengths:

convenient to depict this observation in Fig. 8.
It is worthwhile to stress that our results do not contradict 0
: . ) Ki=—. (A2)
the previous knowledge about the mixed state in the type-Ii &

superconductors. On the contrary, they again support the sig- . i ,

nificance of such a fundamental structure as a vortex: notic%ompanng Egs(2.2) and(Al), we find the relation between
that, after all, one can interpret a flux-tube solution as a vor®Yr and the Ginzburg-Landau notation:
tex “surrounded” by a type-B configuration. However, in

our opinion, the flux tubes provide us with a new understand- a=—
ing that the mixed state reveals a rich structure in which a

“pure vortex” is only part of the whole picture valid near hence, in our notation, we have
hc,. We are convinced that a correct transition from such a

pure vortex state to the normal stegarting ath. up to 1 NN
)72

FIG. 8. The general diagram for different solutions. The vortex

2
7 _)\
?v B_E! (A3)

hcz) can only be correctly described with the help of the &= ; o= ’ (A4)
flux-tube and type-B solutions. As is well known, the

Ginzburg-Landau theory is only an approximatiévalid _ 2_,u4

near the critical temperature of superconducting phase tran- K=V, 2HC_T- (AS)

sition) to the underlying microscopic Gorkov theory within
the BCS scheme. The isolated vortices and the vortex latticEechnically, there are also other notational differences: in the
structures are discussed in the broader aspects in the recéditérature on type-Il superconductors insteadfabne often
review[29]. It is worthwhile to mention the success in theo- usesQ: = — f/\/x, while the dimensionless line energy den-
retical construction of a vortex lattice solution for the sity is defined1,3,13,12,5-8,10by

Gorkov equation$30]. The work is now in progress aiming

at generalizing our isolated flux-tube solutions to the lattice- = & 27 ;e [ , A 4
type structures. Physically, it would be interesting to study €~ PHZT N [re ‘P]0+f drrih®+ 5 (1=¢% |1,
the possibility of relating the new solutions to the problem of

the origin of the so-called irreversible line on the phase dia- (AB)
gram for the high-temperature superconduct@msrrently  where we used the field equati¢?.g).

0
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