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We find, in close analogy to Abelian dominance in the maximal Abelian gauge, the phenomenon of center
dominance in the maximal center gauge for(3Ulattice gauge theory. The maximal center gauge is a
gauge-fixing condition that preserves a resid@ialgauge symmetry; “center projection” is the projection of
SU(2) link variables ontdZ, center elements, and “center dominance” is the fact that the center-projected link
elements carry most of the information about the string tension of the full theory. We present numerical
evidence that the thid, vortices of the projected configurations are associated with “thigk¥ortices in the
unprojected configurations. The evidence also suggests that thezthicktices may play a significant role in
the confinement processS0556-282197)07104-X

PACS numbdps): 11.15.Ha, 12.38.Aw, 12.38.Gc

[. INTRODUCTION striction in the framework of the “Copenhagen vacuum.”
The vortex condensation theory, like dual superconductiv-
Perhaps the most popular theory of quark confinement ity, focuses on a certain subgroup of the full 8 gauge
the dual-superconductor picture as formulated in Abeliangroup, but it is theZy, center, rather than (@)N~2, which is
projection gauge$l]. In this theory the unbroken @)N~1  considered to be of special importance. This raises a natural
symmetry of the full SWUN) gauge group plays a special role question: Does there exist, in close analogy to Abelian domi-
in identifying both the relevant magnetic monopole configu-nance, some version of “center dominance?” If so, should
rations, and also the Abelian charge which is subject to th¢his evidence be interpreted essentially as a critique of Abe-
confining force. The phenomenon of Abelian dominafZe lian dominance, or should it be viewed as genuine support
in the maximal Abelian gaugg3] is often cited as strong for the vortex theory? Supposing that the vortex condensa-
evidence in favor of the dual-superconductor pictiafeRef.  tion theory is taken seriously, how can one idenffy vor-
[4] for a recent review tices in unprojected field configurations, and can one deter-
Of course, many alternative explanations of quark conmine if such vortices are of any physical importance? This
finement have been advanced over the years. The theosyticle is intended as a preliminary investigation of these
which will concern us in this article is the vortex condensa-questions.
tion (or “spaghetti vacuum? picture, in which the vacuum
is understood to be a condensate of vortices of some finite
thickness, carrying flux in the center of the gauge group. The
spaghetti picture was originally advanced by Nielsen and We begin with the phenomenon of “center dominance”
Olesen[5], and this idea was further elaborated by thein maximal center gauge. One starts by fixing to the maximal
Copenhagen group in the late 1970s. A closely related ideabelian gauge[3], which, for SU2) gauge theory, maxi-
due to 't Hooft[6] and Mack{ 7], emphasized the importance mizes the guantity
of the Zy center of the S(N) gauge group. In that picture
there is a certain correspondence between the magnetic flux

Il. CENTER DOMINANCE

of the relevant vortices and the elements of ZResubgroup, 4
and it is random fluctuations in the number of such vortices > X TosU,(x)osUl(x)]. (2)
linked to a Wilson loop which explain the area-law fallbff. X w=1

Referencg 10] presents an argument for thig, center re-

This gauge has the effect of making link variables as diago-
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FIG. 2. Creutz ratio¢(R,R) vs R at B=2.4, for full, center-
FIG. 1. Creutz ratios from center-projected lattice configura-Projected, and W)/Z,-projected lattice configurations.

tions. . . .
variables. Lattice sizes were 1@r 8<2.3, 12 at 3=2.4,

It can be shown that tha link variables transform like 1)  and 16 atp=252 What is rather striking about Fig. 1 is the
gauge fields under the remnantl) symmetry. Abelian fac’g that, from two lattice spacings onwards, the Creut_z ratios
dominance, found by Suzuki and co-work¢®j, is essen- at flxed,8>2.1' all fall on top of one another, and all lie on
tially the fact that the confining string tension can be ex-the same scaling line
tracted from the Abelian-projected-link variables alone.
Abelian dominance has been widely interpreted as support- 6 1021121 6
ing the dual-superconductor theory advanced in Réf. 03221(—W2B> exp{ _ _7724 (6)
. . 2
But while the dual-superconductor idea focuses on the A“\11 11
remnant Y1) subgroup of the gauge symmetry, it is the
center of the S(2) gauge group that seems most relevant in
the vortex condensation picture. This suggests making a fudith the value\o/A =67. Even the logarithm of the one-
ther gauge-fixing, which would bring the Abelian links as plaguette loopy(1,1) appears to parallel this line. This be-
close as possible to the center elementsof SU(2). There-  havior is in sharp contrast to Creutz ratios extracted from the
fore, writing full link variables, where only the envelope of Creutz ratios
fits the scaling line.
The equality of Creutz ratios, starting at two lattice spac-
3 ings, means that the center projection sweeps away the short-
distance, I/-type potential, and the remaining linear poten-
we use the remnant (W) symmetry to maximize tial is revealed already at short distances. This fact is quite
apparent in Fig. 2, which displays the data fgfR,R) at
B=2.4 for the full theory(crossegs the center projection
(diamonds$, and also for the 0)/Z,-projection (squarek
; > cos[0,(x)], (4)  The latter projection consists of the replacemgnt A/Z for
# the link variables. We note that the center-projected data is
virtually flat, from R=2 to R=5, which means that the po-

leaving a remnariZ, symmetry. This we call “maximal cen- tential is linear in this region, and appears to be the asymp-

ter gauge.” Then define, at each link, t_ote of t_he full theory. It should also be noteq that Abelian
link variables with the center factored out, i.&l—A/Z,
Z=sgnco¥)==*1 (5)  appear to carry no string tension at all.

Of course, one can also carry out finite temperature stud-
which transforms like &, gauge field under the remnant ies in the center projection. Thus far, we have only computed
symmetry “center projection”U—Z, analogous to “Abe- Polyakov lines vsB on a &x2 lattice, and obtained the
lian projection” U—A, is defined as the replacement of the
full link variablesU by the center elemeril, in the com-
putation of observables such as Wilson loops and Polyakov?Finite size effects, as indicated by the values of center-projected
lines. Polyakov lines, appear to be significantly larger for center-projected

Figure 1 is a plot of Creutz ratios vs couplipgg extracted configurations as compared to the full link variables, and this is why
from Wilson loops formed from the center-projeciégdlink  we use a 16lattice at3=2.5.
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T=2 LATTICE SPACINGS the corresponding center-projected configuraégiix). The
— T number of plaquettes computed with center-projected links,

whose value is- 1, corresponds to the number 8§ vortex
lines of the center-projected configuration which pierce the
a 1 minimal loop area. We will refer to thes&, vortex lines of
o ] the center-projected configurations as “projection-vortices,”
or just “P vortices,” to distinguish them from théhypo-
thetica) Z, vortices that might be present in the unprojected
. configurations. As a Monte Carlo simulation proceeds, the
o — number ofP vortices piercing any given loop area will fluc-
= g 1 tuate. The first question to ask is whether the presence or
: — T E— absence oP vortices in the projected configurations is cor-
B ' related in any way with the confining properties of the cor-
responding unprojected configurations.
FIG. 3. Polyakov lines v§3 in center projection, for a $<2 To answer this question, we compute Creutz ratios
lattice. xo(R,R) of Wilson loopsWy(C), that are evaluated in a
subensemble of Monte Carlo-generated configurations in
results shown in Fig. 3. The deconfinement transition, sigwhich noP vortex pierces the minimal area of lo@h We
naled by a sudden jump in the value of the Polyakov linestress that the full, unprojected link variables are used in
appears to occur at the value @fappropriate foilT=2 lat- computing the loop, and the center projection is employed
tice spacings in the time direction. only to select the data set. In practice, having generated a
It should be noted parenthetically that our definition of lattice configuration and fixed to maximal center gauge, one
maximal center gauge is not the only possible definition. Aexamines each rectangular loop of a given size; those with
similar but not identical gauge, leaving a remn@ptsym-  no P vortices piercing the loop are evaluated, and those with

Z5 POLYAKOV LINE

||y|||x|x|||>|||||||x|;
[m]

metry, would be the gauge which maximizes a nonzero number are skipped. Of course, by a trivial gener-
alization, we may compute Wilson loop¥,(C), evaluated
> > ITrU (%)) 7) in ensembles of configurations with any given numbesf
X n # P vortices piercing the loop.

_ o _ Figure 4 displays Creutz ratiogy(R,R) extracted from
with center projection defined by Wy (C) loops, as compared to the standard Creutz ratios with
_ no such restriction, gé=2.3. From this figure it is clear that,
Z=sgn(Try). (8) while the zero-vortex restriction makes little difference to the

This version is more difficult to implement numerically, and Smallest loops, it makes a very big difference to the Creutz
has not yet been studied. ratios of the larger loops. It appears, in fact, that the aymp-

In any case, center dominance in maximal center gaugé?tic string tension of the zero-vortex loops vanishes
as displayed in the figures above, does not necessarily imp@Itogether?’. _ _
that confinement is due to vortex condensation. In fact our |f We presumelas most people ddhat confinement is an
initial view, expounded in Ref[11], was that since center effgct associated with some part|cu_lar type of flelc_i configu-
dominance would appear to support a theory, namely vorte}@tion — let us call them the “Confiners” — then it would
condensation, which is “obviously wrong(for reasons dis- S€€M from Fig. 4 that the presence or _absend‘e\ vbrtices
cussed in Sec. I\ its success only proves that neither centern the center-projected configurations is strongly correlated
dominance nor Abelian dominance are reliable indicators oVith the presence or absence of Confiners in the unprojected
the confinement mechanism. The truncation of degrees dionfigurations. The next question is whether we can exclude
freedom inherent in both the Abelian and the center projecthe Possibility that these Confiners are actu@jyvortices.
tions may easily do violence to the topology of the confining 10 address this question, assume for the moment that to
gauge fields. So the fact that the confining configurations ofach P vortex piercing a given loop, there corresponds a
U(1) gauge fields are monopoles, while confining configura-£2 vortex in the full, unprojected field configuration piercing
tions in Z, gauge theory are condensed vortices, does ndpgt loop. This assumption has the consequence that, in the
necessarily imply that either type of configuration is espelimit of large loops,
cially relevant to the full, unprojected $8) theory.

However, before stating with assurance thatZhevorti- Wi(C)
ces of the center-projected configurations hagthingto do W (C)
with confinement, there are certain checks that must be car-

ried out. It is here that we have encountered a surprise. ~ The argument for Eq(9) goes as follows: In S(2) (as op-
posed toZ,) lattice gauge theory, the field strength of a

vortex may be spread out in a cross section, or “core,” of

—=(=D" (€)

Ill. THE DETECTION OF Z, VORTICES

Consider a field configuratiod ,(x), and any planar loop
C. As explained above, it is a simple matter to transform to °Error bars are much smaller for the no-vortex data as compared
maximal center gauge, and then to examine each of the the full data; this is why we can report meaningful results at
plaquettes spanning the minimal area enclosed by @op largerR for the no-vortex data than for the full data.
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The Effect of P—Vortices at §=2.3
T T T
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some finite diameted greater than one lattice spacing. Out- ] -
side the core, the vector potential of each vortex can be rep- Wy (C)={Trexq i § dx* A,
resented by a discontinuous gauge transformation. If a sur-
face bounded by loog is pierced byn vortex lines, and if n .
. . ' =(— SN
the cores of the vortices do not inters&tthen the relevant (=D Trexpi @ dx*oA" ). (12
gauge transformation, at the point of discontinuity, has the
property

Of course, any vector potential in the neighborhood of loop
g[x(0)]=(—1)"g[x(1)], (10 C can be rewritten in the forril1), so given some criterion
for identifying the number ofZ, vortex lines piercing loop
wherex®(7), re[0,1] parametrizes the closed lo@ We C_(su_ch as counting vortices, the question is v_vhether_this
can then decompose the vector potenWeﬂ“)(x) in the crlter_|0n, and the corresponding deco_mp05|t|()1_12), is
neighborhood of loofC in terms of a discontinuous gauge physically meaningful. A reasonable test is to see if the prob-

transformatiorg(x), which represents the vortex background ability distribution of fluctuationsSA"(x) is independent of
. (n) the number of vortex lines piercing the loop. This test is
nearC, and a fluctuatio’A,”(x) such that

based on the fact that, in any local region of a large loop
(Vror — —1 sa(n) - C, the effect of the vortices is simply a gauge transformation.
A (X)=g oA, (X)g+ig "d,9. (1) Thus, providing the fluctuation$A™(x) have only short-
range correlations, their distribution in the neighborhood of
The corresponding Wilson loop, evaluated on the subentoop C should be unaffected by the presence or absence of
semble of configurations in whiah vortex lines pierce loop vortex lines in the middle of the loop. Therefore, if we have
C, would be correctly isolated the vortex contribution,

Ratio of 1—Vortex (W,) To O—Vortex (W,) Wilson Loops
14* Lattice at §=2.3

1.0[ . . ’
0.5 A
i i FIG. 5. Ratio of the one vortex to the zero
= L 4 vortex Wilson loops,W;(C)/Wy(C), vs loop
> Oor i area at3=2.3.
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Ratio of 2—Vortex (W,) To O—Vortex (W,) Wilson Loops
14* Lattice at B=2.3
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I ] FIG. 6. Ratio of the two-vortex to the zero-
. 0o ] vortex Wilson loops, W,(C)/Wy(C), vs loop
§ r . area atB=2.3.
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) (n) _ © selves may overlap. Once again, the data seems to agree
Trexpi fﬁdX’WAM ~| Trexpi fﬁdX’@Aﬂ nicely with Eq.(9) for n=2, i.e., W,(C)/Wy(C)— +1.
(13 Of course, the configurations that contain exactly Zero

exactly one, or twpP vortices piercing a given loop become

for sufficiently large loops. This immediately leads to Eq. 20 €ver smaller fraction of the total number of configura-
(9); all that is needed is test this equation. tions, as the loop area increases. However, for increasingly

Figure 5 shows the ratidV,(C)/W,(C) vs loop area, for Iarge Io_ops, one would expect that_the frgctiqn of configura-
rectangular[RXR and (R+1)xR] loops atB=2.3. The toOns with an even number d? vortices piercing the loop,
simulations were performed on a“#ttice with 1000 ther- and the fraction with an odd number piercing the loop, ap-
malizing sweeps, followed by 8000 sweeps, with data take@roach. one another. This is indeed the case, as can be seen
every tenth sweep. In order to give the lowp,(C) the  from Fig. 7.
greatest chance to lie outside the vortex c@ssuming it Let us definaN,,,(C) to be the Wilson loops evaluated in
existg, W, (C) was evaluated in the subensemble of configu-configurations with an evefincluding zerg number of P
rations in which the singl® vortex is located in the center vortices piercing the loop, an@/,y(C) the corresponding
of the loop. The data seems perfectly consistent with(8g.  quantity for odd number$.According to Eq.(9), We,(C)

i.e., W;(C)/Wy(C)— —1 as the loop area increases. andW,4(C) should be of opposite sign, for large loop area.

Figure 6 shows the corresponding raii(C)/Wy(C) vs  Moreover, according to the vortex condensation picture, the
loop area. In this case we have evaluaiég(C) in the sub- area law for the full loopV(C) is due to fluctuations in the
ensemble of configurations in which the tfovortices lie
inside a 2x2 square in the middle of the loop. As in the
one-vortex case, the idea is to keep the I@ms far as a  “In evaluatingW,,, andW,44, we make no special restriction on
possible from the vortex cores, although the cores themihe location of theP vortices within the loop.

Fraction of Even vs. Odd P—Vortices in Wilson Loops
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The Effect of P~Vortices at £=2.3
All vs. Even Numbers of P—Vortices
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0.50 E— =
o.4o§— = FIG. 8. Creutz ratiog.(R,R) extracted from
. g E Wilson loopsW,,,(C), taken from configurations
= 0305 3 with even numbers of vortices piercing the
= £ E loop. The standard Creutz ratiggR,R) at this
0205 3 coupling (8=2.3) are also shown.
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0.10F- 3
OAOOE ) ) T~ ~ 1 Even Vortices E
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+1 factor, coming from fluctations in even/odd numbers ofbetween much larger positive and negative components, as-
vortices piercing the loop. If this is the case, then neithersociated with even and odd numbersPfvortices respec-
W,,(C) alone, nolW, 4 C) alone, would have an area law, tively. NeitherW,,(C) norW,4(C), by itself, would appear

but only the weighted sum to have an area law.

W(C)=Peuf C)Wer{ ©) + Poad C)Waad ©),  (14) V. AGAINST VORTICES

where Pg,, and Py are the fractions of configurations,  The data presented in the previous section suggests that

shown in Fig. 7, with even/odd numbers @fvortices pierc-  z vortices play a crucial role in the confinement process,

ing the loop. For large 100p® oy~ Py~ 0.5. and that condensation of such vortides proposed in Refs.
Figure 8 shows the Creutz ratios extracted from[5-7]) may be the long-sought confinement mechanism. On

We(C), compared to the standard Creutz ratiog3at2.3.  the other hand, there are some serious objections which can

The figure is qualitatively quite similar to Fig. 4, but here it be raised against this mechanism. We have raised these ob-

should be emphasized that the data set used to evalugisctions repeatedly, in connection with the Abelian-

We,r(C) is not a small minority of configuratiorigs it is for  projection theory{11-13, and they apply with even more

W, (C) for large loop$, but constitutes at least half the con- force to the vortex-condensation theory.

figurations. The asympotic string tension, extracted from The difficulties are all associated with Wilson loops in

these configurations, appears to vanish. higher group representations. First of all, there is a problem
Figure 9 shows the values W, (C),Wy3(C),W(C) vs  concerning the largdt limit [14]. A Wilson loop for quarks
loop area, for the larger loops. As expected from E3j, in the adjoint representation of an 81 gauge group is

Weyn @and Wy4q have opposite signs. The full Wilson loop unaffected by the discontinuous gauge transformations asso-
W(C) has a positive sign, but is substantially smaller, at loopciated with Zy, vortices; it follows that fluctuations in the
area= 20, than either of its two components. If this behaviornumber of such vortices cannot produce an area law for ad-
persists at still greater areas, then the area law falloff of goint loops. On the other hand, it is a consequence of factor-
Wilson loop W(C) is due to a very delicate cancellation ization in the largeN limit that, atN=co, the string tension

Even, Odd, and Full Wilson Loops
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of the adjoint loopo,g; is simply related to the string tension Way, and it is worth considering how that could happen. Let
of the o,nq Of the fundamental loops: us rewrite Eq(14) in the form

T adi™ 20und- (15 W(C)=AP(C)We,{C)+Pog C)AW(C), (19

In addition, the existence of an adjoint string tension doegvhere
not appear to be just a peculiarity of the lafgdimit. It has

been found in numerous Monte Carlo investigations, for both

the SU2) and SU3) gauge groups in both three and four
dimensions, that there is an intermediate distance regime,

ifrr]c;mv\tlngrgnset of confinement to the onset of color SCreeny. v center PIOJECtionWy,= 1 andWqe=— 1 so that

AP(C)=Pe(C) = Poud C),

AW(C)=Wey(C) +Woad C). (20)

Wee(C)=AP(C). (21
o C, (16)
Otund  Chund’

If Z, vortices are the confiners, then, as in the center projec-
tion, the area law is due to random fluctuations in the number
whereC, is the quadratic Casimir of representatiofil5—  of vortices piercing the loop. It would then be the term pro-
17]. Again, it is hard to see how vortex condensation wouldportional to AP(C) in Eq. (19) which accounts for the
account for this “Casimir scaling” of string tensions in the asymptotic string tension in the full theory. Asymptotically,

intermediate distance regime. Pevr Podd~ 3, SO that
From these considerations, it is clear that the “Confin-
ers,” whatever they may be, must produce rather different W(C)—AP(C)Wey+ L AW(C). (22)

effects in different distance regimes. In @Jgauge theory,

in the intermediate distance regime, the Confiners shouldo really establish thaZ, vortices are the origin of the as-

supply string tensions compatible with ymptotic string tension, we nee@mong other thingsto
establish that

4
o 3ia+D (17 AP(C)~exf — ocpA(C)] 23

while, from the onset of color-screening and beyond, the))’Vith
should produce asymptotic values:
0 cpP~ Ofund (24)

7uz, |} = halt-integer, (18) whereocp is the string tension of the fundamental represen-

0, j = integer. tation in center projection. Proper scalingadp with respect
to B is a necessary but not sufficient condition for this equal-

Both the vortex-condensation and Abelian-projection theoity and this is one way that the previous data might be mis-
ries are compatible with the latter condition on asymptoticieading. If it should turn out that

string tensions, but do not explain Casimir scaling at inter-
mediate distances. 0P Oiund (25

It is entirely possible thaZy vortices(or, for that matter,
magnetic monopole configurationbave something to do then the first term on the right-hand side of E82) would
with the confinement mechanism at distance scales beyorttecome negligible, asymptotically, compared§C), and
the onset of color screening. But it is also possible that théhe asymptotic string tension would have to be due to
data of the previous section could be misleading in soméW(C).

Full vs. Z2 Creutz Ratios at §=2.2 in QED3
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0.107 J
0.08 - -
0.06 |- -
= - . FIG. 10. Test ofZ, dominance in compact
i}; L -G -_ L LO;pS QED;: Z, Projected vs full Creutz ratios at
0.04 - B=2.2 on a 38 lattice.
: All Loops :
0.02 ]
0.00 [ L . I 1 ) )

o
N>
~
[e2]
o o]
o



55 CENTER DOMINANCE AND Z, VORTICES IN SU2) ... 2305

From Fig. 2, and the scaling apparent in Fig. 1, it wouldone, or twoP vortices inside the loop, in the corresponding
appear thatr,,q and ocp are not very different. In this con- center projection, behave as though they contained zero, one,
nection, it is instructive to compare Fig. 2 with an analogousor two Z, vortices in the full, unprojected configuration. That
calculation in compact three-dimensional QED (QfEDn  is, W;/Wy——1, andW,/Wy— +1, as the loop area in-
QED; it is also possible to define a “maximal, gauge,”  creases.
via Eq.(4), and a ‘Z, projection” (the term “center projec- If the Yang-Mills vacuum is dominated k&, vortices, as
tion” would be a misnomer hejeaccording to Eq(5). A  this data would seem to suggest, it raises many puzzling
sample result for lattice QEDis shown below in Fig. 10. questions. Foremost among these is how to account for the
This simulation was run on a 3Qattice at 3=2.2, with  existence and Casimir scaling of the adjoint string tension.
5000 thermalizations followed by 10 000 sweeps, with datdBecause of the existence of the adjoint tension, we think it
taken every tenth sweep. In this case, Creutz ratiosinlikely that fluctuations in the number and locationZf
xce(R,R) for the projected data appear to be approximatelyortices can give a complete account of the confinement
40% larger than the Creutz ratiog(R,R) for the un- ~mechanism in the intermediate distance regime. Such vortex
projected data, and the two quantities don't appear to béuctuationscould be decisive asymptotically; further work
converging for larger loops. will be needed to find out.

The agreement between projected and unprojected Creutz Perhaps the most urgent need is to repeat all of the calcu-
ratios appears to be substantially better in Ehe4 SU2) lations reported here for the case of an($pauge group. If
theory than in compact QE[Ddespite the fact that S®) is  there is center dominanceith o~ ocp), and if the presence
a larger group than (1). On the other hand, the data pre- of P vortices is correlated with the magnitude of the string
sented in Sec. Il for the non-Abelian theory was obtained oriension, and especially if
workstations, not supercomputers. A state-of-the art string
tension calculation aimed at a better quantitative comparison

: W, (C) ,
of o andocp, and perhaps also a study of alternate versions 23 (26)
of the maximal center gaudsuch as Eq(7)], is certainly Wo(C)
called for.

for corresponding® fluxons with one unite?™/® of center

V. CONCLUSIONS flux, then we believe that the combined e_vidence in favor of
some version of th&y vortex condensation theory would
None of the evidence gathered so far is conclusive, albecome rather compelling.
though it does seem to point in a certain direction. We have
found the following.
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“center dominance” in maximal center gauge. In this gauge
it is the sign alone, of the real part of the Abelian-projected J.G. is grateful for the hospitality of the Niels Bohr Insti-
link, which appears to carry most of the information abouttute, where some of this work was carried out. He would also
the asymptotic string tension. like to thank J. Ambjon and T. H. Hansson for discussions.
(2) Vortices in the center-projected configuratiofysP ~ This research was supported in part by the EC HMC under
vortices™) appear to be strongly correlated with the presenceContract No. ERBCHBGCT93047@L.D.D.), the Hoch-
or absence of confining field configurations in the full, un- schuljubilaimsstiftung der Stadt Wien H-00114/9M.F.),
projected field configurations. When Wilson loops are evaluthe U.S. Department of Energy, under Grant No. DE-FGO03-
ated in an ensemble of configurations which do not contai®2ER40711(J.G), and the Slovak Grant Agency for Sci-
P vortices within the loop, the asymptotic string tension dis-ence, Grant No. 2/1157/98.0.). Support was also provided
appears. by the Director, Office of Energy Research, Office of Basic
(3) Wilson loopsWy(C), W,(C), W,(C), evaluated in Energy Services, of the U.S. Department of Energy under
ensembles of configurations containing respectively zeroContract No. DE-AC03-76SF00098.

[1] G. 't Hooft, Nucl. Phys.B190[FS3], 455(1981). [7] G. Mack, inRecent Developments in Gauge Theqriedited
[2] T. Suzuki and I. Yotsuyanagi, Phys. Rev.4Q, 4257 (1990); by G. 't Hooft et al. (Plenum, New York, 1980
S. Hioki et al, Phys. Lett. B272, 326 (1991. [8] T. Yoneya, Nucl. PhysB144, 195(1978.
[3] A. Kronfeld, M. Laursen, G. Schierholz, and U.-J. Wiese, [9] T. Kovacs and E. Tomboulis, iattice *96 [4], Report No.
Phys. Lett. B198 516 (1987). hep-lat/9607068unpublishedl

[4] M. Polikarpov, inLattice '96, Proceedings of the International [10] J. Ambjan and P. Olesen, Nucl. Phy8170 [FS1], 265
Symposium, St. Louis, Missouri, edited by T. Golterman (1980. .
[Nucl. Phys. B(Proc. Supp). (in pres$], Report No. hep-lat/  [11] L. Del Debbio, M. Faber, J. Greensite, and@ejnk, in Lat-
9609020(unpublishedl tice '96 [4], Report No. hep-lat/960705@npublished

[5] H. B. Nielsen and P. Olesen, Nucl. Phyl60, 380(1979. [12] L. Del Debbio, M. Faber, and J. Greensite, Nucl. PiB414,

[6] G. 't Hooft, Nucl. PhysB153 141(1979. 594 (1994).



2306 DEL DEBBIO, FABER, GREENSITE, AND OLEJN( 55

[13] L. Del Debbio, M. Faber, J. Greensite, aﬁd@ejn'lk, Phys. ited by M. Fukugitaet al. [Nucl. Phys. B(Proc. Supp). 26,
Rev. D53, 5891(1996. 417 (1992]; Nucl. Phys.B259, 58 (1985.

[14] J. Greensite and M. B. Halpern, Phys. Re\2D) 2545(1983. [17] N. Cambell, I. Jorysz, and C. Michael, Phys. Let67B, 91

[15] J. Ambjarn, P. Olesen, and C. Peterson, Nucl. Phgg240 (1986; M. Faber and H. Markum, irField Theory on the
[FS12, 189(1984); B240, 533(1984). Lattice, Proceedings of the International Symposium, Seillac,

[16] G. Poulis and H. Trottier, Report No. hep- France, 1987, edited by A. Billoiret al. [Nucl. Phys. B, Proc.
1at/9504015(unpublishegt C. Michael, in Lattice '91, Pro- Suppl.4, 204 (1988]; M. Mliller, W. Beirl, M. Faber, and H.

ceedings of the International Symposium, Tsukuba, Japan, ed- Markum, inLattice '91[16], p. 423.



