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We find, in close analogy to Abelian dominance in the maximal Abelian gauge, the phenomenon of center
dominance in the maximal center gauge for SU~2! lattice gauge theory. The maximal center gauge is a
gauge-fixing condition that preserves a residualZ2 gauge symmetry; ‘‘center projection’’ is the projection of
SU~2! link variables ontoZ2 center elements, and ‘‘center dominance’’ is the fact that the center-projected link
elements carry most of the information about the string tension of the full theory. We present numerical
evidence that the thinZ2 vortices of the projected configurations are associated with ‘‘thick’’Z2 vortices in the
unprojected configurations. The evidence also suggests that the thickZ2 vortices may play a significant role in
the confinement process.@S0556-2821~97!07104-X#

PACS number~s!: 11.15.Ha, 12.38.Aw, 12.38.Gc

I. INTRODUCTION

Perhaps the most popular theory of quark confinement is
the dual-superconductor picture as formulated in Abelian-
projection gauges@1#. In this theory the unbroken U~1!N21

symmetry of the full SU~N! gauge group plays a special role
in identifying both the relevant magnetic monopole configu-
rations, and also the Abelian charge which is subject to the
confining force. The phenomenon of Abelian dominance@2#
in the maximal Abelian gauge@3# is often cited as strong
evidence in favor of the dual-superconductor picture~cf. Ref.
@4# for a recent review!.

Of course, many alternative explanations of quark con-
finement have been advanced over the years. The theory
which will concern us in this article is the vortex condensa-
tion ~or ‘‘spaghetti vacuum’’! picture, in which the vacuum
is understood to be a condensate of vortices of some finite
thickness, carrying flux in the center of the gauge group. The
spaghetti picture was originally advanced by Nielsen and
Olesen @5#, and this idea was further elaborated by the
Copenhagen group in the late 1970s. A closely related idea,
due to ’t Hooft@6# and Mack@7#, emphasized the importance
of the ZN center of the SU~N! gauge group. In that picture
there is a certain correspondence between the magnetic flux
of the relevant vortices and the elements of theZN subgroup,
and it is random fluctuations in the number of such vortices
linked to a Wilson loop which explain the area-law falloff.1

Reference@10# presents an argument for thisZN center re-

striction in the framework of the ‘‘Copenhagen vacuum.’’
The vortex condensation theory, like dual superconductiv-

ity, focuses on a certain subgroup of the full SU~N! gauge
group, but it is theZN center, rather than U~1!N21, which is
considered to be of special importance. This raises a natural
question: Does there exist, in close analogy to Abelian domi-
nance, some version of ‘‘center dominance?’’ If so, should
this evidence be interpreted essentially as a critique of Abe-
lian dominance, or should it be viewed as genuine support
for the vortex theory? Supposing that the vortex condensa-
tion theory is taken seriously, how can one identifyZ2 vor-
tices in unprojected field configurations, and can one deter-
mine if such vortices are of any physical importance? This
article is intended as a preliminary investigation of these
questions.

II. CENTER DOMINANCE

We begin with the phenomenon of ‘‘center dominance’’
in maximal center gauge. One starts by fixing to the maximal
Abelian gauge@3#, which, for SU~2! gauge theory, maxi-
mizes the quantity

(
x

(
m51

4

Tr@s3Um~x!s3Um
† ~x!#. ~1!

This gauge has the effect of making link variables as diago-
nal as possible, leaving a remnant U~1! gauge symmetry.
‘‘Abelian projection’’ means the replacement of the full link
variables U by the Abelian linksA, according to the rule

U5a0I1 iaW •sW→A5
a0I1 ia3s
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2
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It can be shown that theA link variables transform like U~1!
gauge fields under the remnant U~1! symmetry. Abelian
dominance, found by Suzuki and co-workers@2#, is essen-
tially the fact that the confining string tension can be ex-
tracted from the Abelian-projectedA-link variables alone.
Abelian dominance has been widely interpreted as support-
ing the dual-superconductor theory advanced in Ref.@1#.

But while the dual-superconductor idea focuses on the
remnant U~1! subgroup of the gauge symmetry, it is theZ2
center of the SU~2! gauge group that seems most relevant in
the vortex condensation picture. This suggests making a fur-
ther gauge-fixing, which would bring the Abelian links as
close as possible to the center elements6I of SU~2!. There-
fore, writing

A5Feiu e2 iuG ~3!

we use the remnant U~1! symmetry to maximize

(
x

(
m

cos2@um~x!#, ~4!

leaving a remnantZ2 symmetry. This we call ‘‘maximal cen-
ter gauge.’’ Then define, at each link,

Z[sgn~cosu!561 ~5!

which transforms like aZ2 gauge field under the remnant
symmetry ‘‘center projection’’U→Z, analogous to ‘‘Abe-
lian projection’’U→A, is defined as the replacement of the
full link variablesU by the center elementZI, in the com-
putation of observables such as Wilson loops and Polyakov
lines.

Figure 1 is a plot of Creutz ratios vs couplingb, extracted
from Wilson loops formed from the center-projectedZ2 link

variables. Lattice sizes were 104 for b<2.3, 124 at b52.4,
and 164 atb52.5.2 What is rather striking about Fig. 1 is the
fact that, from two lattice spacings onwards, the Creutz ratios
at fixedb>2.1 all fall on top of one another, and all lie on
the same scaling line

sa25
s

L2 S 611p2b D 102/121expF2
6

11
p2bG ~6!

with the valueAs/L567. Even the logarithm of the one-
plaquette loopx(1,1) appears to parallel this line. This be-
havior is in sharp contrast to Creutz ratios extracted from the
full link variables, where only the envelope of Creutz ratios
fits the scaling line.

The equality of Creutz ratios, starting at two lattice spac-
ings, means that the center projection sweeps away the short-
distance, 1/r -type potential, and the remaining linear poten-
tial is revealed already at short distances. This fact is quite
apparent in Fig. 2, which displays the data forx(R,R) at
b52.4 for the full theory~crosses!, the center projection
~diamonds!, and also for the U~1!/Z2-projection ~squares!.
The latter projection consists of the replacementU→A/Z for
the link variables. We note that the center-projected data is
virtually flat, fromR52 to R55, which means that the po-
tential is linear in this region, and appears to be the asymp-
tote of the full theory. It should also be noted that Abelian
link variables with the center factored out, i.e.,U→A/Z,
appear to carry no string tension at all.

Of course, one can also carry out finite temperature stud-
ies in the center projection. Thus far, we have only computed
Polyakov lines vsb on a 6332 lattice, and obtained the

2Finite size effects, as indicated by the values of center-projected
Polyakov lines, appear to be significantly larger for center-projected
configurations as compared to the full link variables, and this is why
we use a 164 lattice atb52.5.

FIG. 1. Creutz ratios from center-projected lattice configura-
tions.

FIG. 2. Creutz ratiosx(R,R) vs R at b52.4, for full, center-
projected, and U~1!/Z2-projected lattice configurations.
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results shown in Fig. 3. The deconfinement transition, sig-
naled by a sudden jump in the value of the Polyakov line,
appears to occur at the value ofb appropriate forT52 lat-
tice spacings in the time direction.

It should be noted parenthetically that our definition of
maximal center gauge is not the only possible definition. A
similar but not identical gauge, leaving a remnantZ2 sym-
metry, would be the gauge which maximizes

(
x

(
m

$TrUm~x!%2 ~7!

with center projection defined by

Z5sgn~TrU !. ~8!

This version is more difficult to implement numerically, and
has not yet been studied.

In any case, center dominance in maximal center gauge,
as displayed in the figures above, does not necessarily imply
that confinement is due to vortex condensation. In fact our
initial view, expounded in Ref.@11#, was that since center
dominance would appear to support a theory, namely vortex
condensation, which is ‘‘obviously wrong’’~for reasons dis-
cussed in Sec. IV!, its success only proves that neither center
dominance nor Abelian dominance are reliable indicators of
the confinement mechanism. The truncation of degrees of
freedom inherent in both the Abelian and the center projec-
tions may easily do violence to the topology of the confining
gauge fields. So the fact that the confining configurations of
U~1! gauge fields are monopoles, while confining configura-
tions in Z2 gauge theory are condensed vortices, does not
necessarily imply that either type of configuration is espe-
cially relevant to the full, unprojected SU~2! theory.

However, before stating with assurance that theZ2 vorti-
ces of the center-projected configurations havenothingto do
with confinement, there are certain checks that must be car-
ried out. It is here that we have encountered a surprise.

III. THE DETECTION OF Z2 VORTICES

Consider a field configurationUm(x), and any planar loop
C. As explained above, it is a simple matter to transform to
maximal center gauge, and then to examine each of the
plaquettes spanning the minimal area enclosed by loopC, in

the corresponding center-projected configurationZm(x). The
number of plaquettes computed with center-projected links,
whose value is21, corresponds to the number ofZ2 vortex
lines of the center-projected configuration which pierce the
minimal loop area. We will refer to theseZ2 vortex lines of
the center-projected configurations as ‘‘projection-vortices,’’
or just ‘‘P vortices,’’ to distinguish them from the~hypo-
thetical! Z2 vortices that might be present in the unprojected
configurations. As a Monte Carlo simulation proceeds, the
number ofP vortices piercing any given loop area will fluc-
tuate. The first question to ask is whether the presence or
absence ofP vortices in the projected configurations is cor-
related in any way with the confining properties of the cor-
responding unprojected configurations.

To answer this question, we compute Creutz ratios
x0(R,R) of Wilson loopsW0(C), that are evaluated in a
subensemble of Monte Carlo-generated configurations in
which noP vortex pierces the minimal area of loopC. We
stress that the full, unprojected link variables are used in
computing the loop, and the center projection is employed
only to select the data set. In practice, having generated a
lattice configuration and fixed to maximal center gauge, one
examines each rectangular loop of a given size; those with
noP vortices piercing the loop are evaluated, and those with
a nonzero number are skipped. Of course, by a trivial gener-
alization, we may compute Wilson loopsWn(C), evaluated
in ensembles of configurations with any given numbern of
P vortices piercing the loop.

Figure 4 displays Creutz ratiosx0(R,R) extracted from
W0(C) loops, as compared to the standard Creutz ratios with
no such restriction, atb52.3. From this figure it is clear that,
while the zero-vortex restriction makes little difference to the
smallest loops, it makes a very big difference to the Creutz
ratios of the larger loops. It appears, in fact, that the aymp-
totic string tension of the zero-vortex loops vanishes
altogether.3

If we presume~as most people do! that confinement is an
effect associated with some particular type of field configu-
ration — let us call them the ‘‘Confiners’’ — then it would
seem from Fig. 4 that the presence or absence ofP vortices
in the center-projected configurations is strongly correlated
with the presence or absence of Confiners in the unprojected
configurations. The next question is whether we can exclude
the possibility that these Confiners are actuallyZ2 vortices.

To address this question, assume for the moment that to
eachP vortex piercing a given loop, there corresponds a
Z2 vortex in the full, unprojected field configuration piercing
that loop. This assumption has the consequence that, in the
limit of large loops,

Wn~C!

W0~C!
→~21!n. ~9!

The argument for Eq.~9! goes as follows: In SU~2! ~as op-
posed toZ2) lattice gauge theory, the field strength of a
vortex may be spread out in a cross section, or ‘‘core,’’ of

3Error bars are much smaller for the no-vortex data as compared
to the full data; this is why we can report meaningful results at
largerR for the no-vortex data than for the full data.

FIG. 3. Polyakov lines vsb in center projection, for a 6332
lattice.
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some finite diameterD greater than one lattice spacing. Out-
side the core, the vector potential of each vortex can be rep-
resented by a discontinuous gauge transformation. If a sur-
face bounded by loopC is pierced byn vortex lines, and if
the cores of the vortices do not intersectC, then the relevant
gauge transformation, at the point of discontinuity, has the
property

g@x~0!#5~21!ng@x~1!#, ~10!

wherexm(t), tP@0,1# parametrizes the closed loopC. We
can then decompose the vector potentialAm

(n)(x) in the
neighborhood of loopC in terms of a discontinuous gauge
transformationg(x), which represents the vortex background
nearC, and a fluctuationdAm

(n)(x) such that

Am
~n!~x!5g21dAm

~n!~x!g1 ig21]mg. ~11!

The corresponding Wilson loop, evaluated on the suben-
semble of configurations in whichn vortex lines pierce loop
C, would be

Wn~C!5 K Tr expS i R dxmAm
~n!D L

5~21!nK Tr expF i R dxmdAm
~n!G L . ~12!

Of course, any vector potential in the neighborhood of loop
C can be rewritten in the form~11!, so given some criterion
for identifying the number ofZ2 vortex lines piercing loop
C ~such as countingP vortices!, the question is whether this
criterion, and the corresponding decomposition~12!, is
physically meaningful. A reasonable test is to see if the prob-
ability distribution of fluctuationsdAn(x) is independent of
the number of vortex lines piercing the loop. This test is
based on the fact that, in any local region of a large loop
C, the effect of the vortices is simply a gauge transformation.
Thus, providing the fluctuationsdAn(x) have only short-
range correlations, their distribution in the neighborhood of
loop C should be unaffected by the presence or absence of
vortex lines in the middle of the loop. Therefore, if we have
correctly isolated the vortex contribution,

FIG. 5. Ratio of the one vortex to the zero
vortex Wilson loops,W1(C)/W0(C), vs loop
area atb52.3.

FIG. 4. Creutz ratiosx0(R,R) extracted from
loops with no P vortices, as compared to the
usual Creutz ratiosx(R,R), at b52.3.
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K Tr expF i R dxmdAm
~n!G L ' K Tr expF i R dxmdAm

~0!L
~13!

for sufficiently large loops. This immediately leads to Eq.
~9!; all that is needed is test this equation.

Figure 5 shows the ratioW1(C)/W0(C) vs loop area, for
rectangular@R3R and (R11)3R# loops atb52.3. The
simulations were performed on a 144 lattice with 1000 ther-
malizing sweeps, followed by 8000 sweeps, with data taken
every tenth sweep. In order to give the loopW1(C) the
greatest chance to lie outside the vortex core~assuming it
exists!,W1(C) was evaluated in the subensemble of configu-
rations in which the singleP vortex is located in the center
of the loop. The data seems perfectly consistent with Eq.~9!,
i.e.,W1(C)/W0(C)→21 as the loop area increases.

Figure 6 shows the corresponding ratioW2(C)/W0(C) vs
loop area. In this case we have evaluatedW2(C) in the sub-
ensemble of configurations in which the twoP vortices lie
inside a 232 square in the middle of the loop. As in the
one-vortex case, the idea is to keep the loopC as far as a
possible from the vortex cores, although the cores them-

selves may overlap. Once again, the data seems to agree
nicely with Eq.~9! for n52, i.e.,W2(C)/W0(C)→11.

Of course, the configurations that contain exactly zero~or
exactly one, or two! P vortices piercing a given loop become
an ever smaller fraction of the total number of configura-
tions, as the loop area increases. However, for increasingly
large loops, one would expect that the fraction of configura-
tions with an even number ofP vortices piercing the loop,
and the fraction with an odd number piercing the loop, ap-
proach one another. This is indeed the case, as can be seen
from Fig. 7.

Let us defineWevn(C) to be the Wilson loops evaluated in
configurations with an even~including zero! number ofP
vortices piercing the loop, andWodd(C) the corresponding
quantity for odd numbers.4 According to Eq.~9!, Wevn(C)
andWodd(C) should be of opposite sign, for large loop area.
Moreover, according to the vortex condensation picture, the
area law for the full loopW(C) is due to fluctuations in the

4In evaluatingWevn andWodd, we make no special restriction on
the location of theP vortices within the loop.

FIG. 6. Ratio of the two-vortex to the zero-
vortex Wilson loops,W2(C)/W0(C), vs loop
area atb52.3.

FIG. 7. Fraction of link configurations con-
taining even/odd numbers ofP vortices, at
b52.3, piercing loops of various areas.
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61 factor, coming from fluctations in even/odd numbers of
vortices piercing the loop. If this is the case, then neither
Wevn(C) alone, norWodd(C) alone, would have an area law,
but only the weighted sum

W~C!5Pevn~C!Wevn~C!1Podd~C!Wodd~C!, ~14!

where Pevn and Podd are the fractions of configurations,
shown in Fig. 7, with even/odd numbers ofP vortices pierc-
ing the loop. For large loops,Pevn'Podd'0.5.

Figure 8 shows the Creutz ratios extracted from
Wevn(C), compared to the standard Creutz ratios atb52.3.
The figure is qualitatively quite similar to Fig. 4, but here it
should be emphasized that the data set used to evaluate
Wevn(C) is not a small minority of configurations@as it is for
W0(C) for large loops#, but constitutes at least half the con-
figurations. The asympotic string tension, extracted from
these configurations, appears to vanish.

Figure 9 shows the values ofWevn(C),Wodd(C),W(C) vs
loop area, for the larger loops. As expected from Eq.~9!,
Wevn andWodd have opposite signs. The full Wilson loop
W(C) has a positive sign, but is substantially smaller, at loop
area> 20, than either of its two components. If this behavior
persists at still greater areas, then the area law falloff of a
Wilson loopW(C) is due to a very delicate cancellation

between much larger positive and negative components, as-
sociated with even and odd numbers ofP vortices respec-
tively. NeitherWevn(C) norWodd(C), by itself, would appear
to have an area law.

IV. AGAINST VORTICES

The data presented in the previous section suggests that
ZN vortices play a crucial role in the confinement process,
and that condensation of such vortices~as proposed in Refs.
@5–7#! may be the long-sought confinement mechanism. On
the other hand, there are some serious objections which can
be raised against this mechanism. We have raised these ob-
jections repeatedly, in connection with the Abelian-
projection theory@11–13#, and they apply with even more
force to the vortex-condensation theory.

The difficulties are all associated with Wilson loops in
higher group representations. First of all, there is a problem
concerning the large-N limit @14#. A Wilson loop for quarks
in the adjoint representation of an SU~N! gauge group is
unaffected by the discontinuous gauge transformations asso-
ciated withZN vortices; it follows that fluctuations in the
number of such vortices cannot produce an area law for ad-
joint loops. On the other hand, it is a consequence of factor-
ization in the large-N limit that, atN5`, the string tension

FIG. 8. Creutz ratiosxev(R,R) extracted from
Wilson loopsWevn(C), taken from configurations
with even numbers ofP vortices piercing the
loop. The standard Creutz ratiosx(R,R) at this
coupling (b52.3) are also shown.

FIG. 9. Wilson loopsWevn(C),Wodd(C) and
W(C) at larger loop areas, taken from configura-
tions with even numbers ofP vortices, odd num-
bers ofP vortices, and any number ofP vortices,
respectively piercing the loop. Againb52.3.
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of the adjoint loopsadj is simply related to the string tension
of thes fund of the fundamental loops:

sadj52s fund. ~15!

In addition, the existence of an adjoint string tension does
not appear to be just a peculiarity of the large-N limit. It has
been found in numerous Monte Carlo investigations, for both
the SU~2! and SU~3! gauge groups in both three and four
dimensions, that there is an intermediate distance regime,
from the onset of confinement to the onset of color screen-
ing, where

s r

s fund
'

Cr

Cfund
, ~16!

whereCr is the quadratic Casimir of representationr @15–
17#. Again, it is hard to see how vortex condensation would
account for this ‘‘Casimir scaling’’ of string tensions in the
intermediate distance regime.

From these considerations, it is clear that the ‘‘Confin-
ers,’’ whatever they may be, must produce rather different
effects in different distance regimes. In SU~2! gauge theory,
in the intermediate distance regime, the Confiners should
supply string tensions compatible with

s j

s1/2
'
4

3
j ~ j11! ~17!

while, from the onset of color-screening and beyond, they
should produce asymptotic values:

s j5H s1/2, j5 half-integer,

0, j5 integer.
~18!

Both the vortex-condensation and Abelian-projection theo-
ries are compatible with the latter condition on asymptotic
string tensions, but do not explain Casimir scaling at inter-
mediate distances.

It is entirely possible thatZN vortices~or, for that matter,
magnetic monopole configurations! have something to do
with the confinement mechanism at distance scales beyond
the onset of color screening. But it is also possible that the
data of the previous section could be misleading in some

way, and it is worth considering how that could happen. Let
us rewrite Eq.~14! in the form

W~C!5DP~C!Wevn~C!1Podd~C!DW~C!, ~19!

where

DP~C![Pevn~C!2Podd~C!,

DW~C![Wevn~C!1Wodd~C!. ~20!

In the center projection,Wevn51 andWodd521 so that

WCP~C!5DP~C!. ~21!

If Z2 vortices are the confiners, then, as in the center projec-
tion, the area law is due to random fluctuations in the number
of vortices piercing the loop. It would then be the term pro-
portional to DP(C) in Eq. ~19! which accounts for the
asymptotic string tension in the full theory. Asymptotically,
Pevn'Podd'

1
2, so that

W~C!→DP~C!Wevn1
1
2 DW~C!. ~22!

To really establish thatZ2 vortices are the origin of the as-
ymptotic string tension, we need~among other things! to
establish that

DP~C!;exp@2sCPA~C!# ~23!

with

sCP5s fund ~24!

wheresCP is the string tension of the fundamental represen-
tation in center projection. Proper scaling ofsCPwith respect
to b is a necessary but not sufficient condition for this equal-
ity, and this is one way that the previous data might be mis-
leading. If it should turn out that

sCP.s fund ~25!

then the first term on the right-hand side of Eq.~22! would
become negligible, asymptotically, compared toW(C), and
the asymptotic string tension would have to be due to
DW(C).

FIG. 10. Test ofZ2 dominance in compact
QED3: Z2 Projected vs full Creutz ratios at
b52.2 on a 303 lattice.
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From Fig. 2, and the scaling apparent in Fig. 1, it would
appear thats fund andsCP are not very different. In this con-
nection, it is instructive to compare Fig. 2 with an analogous
calculation in compact three-dimensional QED (QED3). In
QED3 it is also possible to define a ‘‘maximalZ2 gauge,’’
via Eq.~4!, and a ‘‘Z2 projection’’ ~the term ‘‘center projec-
tion’’ would be a misnomer here! according to Eq.~5!. A
sample result for lattice QED3 is shown below in Fig. 10.
This simulation was run on a 303 lattice at b52.2, with
5000 thermalizations followed by 10 000 sweeps, with data
taken every tenth sweep. In this case, Creutz ratios
xCP(R,R) for the projected data appear to be approximately
40% larger than the Creutz ratiosx(R,R) for the un-
projected data, and the two quantities don’t appear to be
converging for larger loops.

The agreement between projected and unprojected Creutz
ratios appears to be substantially better in theD54 SU~2!
theory than in compact QED3, despite the fact that SU~2! is
a larger group than U~1!. On the other hand, the data pre-
sented in Sec. III for the non-Abelian theory was obtained on
workstations, not supercomputers. A state-of-the art string
tension calculation aimed at a better quantitative comparison
of s andsCP, and perhaps also a study of alternate versions
of the maximal center gauge@such as Eq.~7!#, is certainly
called for.

V. CONCLUSIONS

None of the evidence gathered so far is conclusive, al-
though it does seem to point in a certain direction. We have
found the following.

~1! Center-projected link variables have the property of
‘‘center dominance’’ in maximal center gauge. In this gauge
it is the sign alone, of the real part of the Abelian-projected
link, which appears to carry most of the information about
the asymptotic string tension.

~2! Vortices in the center-projected configurations~‘‘ P
vortices’’! appear to be strongly correlated with the presence
or absence of confining field configurations in the full, un-
projected field configurations. When Wilson loops are evalu-
ated in an ensemble of configurations which do not contain
P vortices within the loop, the asymptotic string tension dis-
appears.

~3! Wilson loopsW0(C), W1(C), W2(C), evaluated in
ensembles of configurations containing respectively zero,

one, or twoP vortices inside the loop, in the corresponding
center projection, behave as though they contained zero, one,
or twoZ2 vortices in the full, unprojected configuration. That
is, W1 /W0→21, andW2 /W0→11, as the loop area in-
creases.

If the Yang-Mills vacuum is dominated byZ2 vortices, as
this data would seem to suggest, it raises many puzzling
questions. Foremost among these is how to account for the
existence and Casimir scaling of the adjoint string tension.
Because of the existence of the adjoint tension, we think it
unlikely that fluctuations in the number and location ofZ2
vortices can give a complete account of the confinement
mechanism in the intermediate distance regime. Such vortex
fluctuationscould be decisive asymptotically; further work
will be needed to find out.

Perhaps the most urgent need is to repeat all of the calcu-
lations reported here for the case of an SU~3! gauge group. If
there is center dominance~with s'sCP), and if the presence
of P vortices is correlated with the magnitude of the string
tension, and especially if

W1~C!

W0~C!
→e2p i /3 ~26!

for correspondingP fluxons with one unite2p i /3 of center
flux, then we believe that the combined evidence in favor of
some version of theZN vortex condensation theory would
become rather compelling.
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