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Nonequilibrium perturbation theory for complex scalar fields
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Real-time perturbation theory is formulated for complex scalar fields away from thermal equilibrium in such

a way that dissipative effects arising from the absorptive parts of loop diagrams are approximately resummed
into the unperturbed propagators. Low order calculations of physical quantities then involve quasiparticle
occupation numbers which evolve with the changing state of the field system, in contrast with standard
perturbation theory, where these occupation humbers are frozen at their initial values. The evolution equation
of the occupation numbers can be cast approximately in the form of a Boltzmann equation. Particular attention
is given to the effects of a nonzero chemical potential, and it is found that the thermal masses and decay widths
of quasiparticle modes are different for particles and antipartif®3556-282197)01604-4

PACS numbds): 11.10.Wx; 05.30.Jp; 98.80.Cq

[. INTRODUCTION from the interaction, we obtain a lowest-order theory in
which the absorptive parts of loop contributions to the two-
Many problems in physics require an understanding of thepoint functions are partly resummed into the unperturbed
nonequilibrium properties of highly excited states of a quanfpropagators. As a result, these propagators contain quasipar-
tum field theory. The principal motivation underlying the ticle occupation numbers which evolve with time in the ex-
present work is to understand the nature of phase transitiorpected way. Interestingly, the form of the counterterm is
in the very early universe, in particular those that might giverather similar to the action encountered by Hu and various
rise to inflation[1—4]. Most discussions of inflation assume collaborators(see, e.g.[23-29 and references given in
that the nonequilibrium state of the relevant system of gquanthese pape)sThese authors use the Feynman-Vernon influ-
tum fields can adequately be characterized by expectatiognce functional technique to obtain the effective action for a
values governed by a classical potential. However, calculaquantum field in the presence of environmental variables
ttons_ Which attempt to go beyor_td this_classical approxima-(which can be thought of as a heat bathen the latter is
tion indicate that it may be seriously inaccurdsee, €.9., jntegrated out. Our procedure can be thought of as a self-
[5_8].)' Nonequilibrium effects are also .I|kel_y to be impor- consistent treatment of a field which provides its own heat
:?g\}véggii;ggtiat:g dbi?]ri/r?:'sr;ﬂ&nbgfr V|0Iz|a(t_|o|n at tr|1e elec'bath, though none of the modes of this field are integrated
! - o y of quark-gitlon plasmas , ;A similar structure also arises in nonequilibrium formu-
formed in heavy-ion collisiongl1], as well as in many as- lations of thermo-field dynamiosee, e.g.[26]) but this for-
pects of condensed matter physics. . . e .
malism turns out to be equivalent to a version of quantum-

Our own long-term program, set out [A2], has as its S ) : S :
goal a complete description within perturbation theory of thestatlsncal mechanics restricted to Gaussian initial density

dynamics of symmetry-breaking phase transitions. An esserfnatrices[27]. o
tial requirement is to formulate perturbation theory in such a !N dealing with a realistic modefsuch as the standard
way that the evolving state of the nonequilibrium quantummodel or a grand unified thedryone naturally meets com-
fields is taken adequately into account in the low orders oPlex scalar, spinor, and gauge fields and it is essential to
the perturbative expansion which are likely to be tractableextend the nonequilibrium formalism to encompass fields of
The standard closed-time-path formaligh3—18, which  these kinds(Real-time perturbation theory for scalar, spinor,
deals with real-time phenomena in thermal equilibrium, wasand gauge fields in equilibrium is discussed, for example, by
generalized by Semenoff and Weid®9] to apply to a real Kobeset al. [28].) The purpose of the present work is to
scalar field with a time-dependent action, such as might arisextend the formalism to complex scalar fields, giving par-
in a Robertson-Walker spacetime. However, the propagatoticular attention to the effects of a nonzero chemical poten-
entering their Feynman rules depend on the state of the fieltial, which turns out to be nontrivial. In Sec. Il we obtain the
essentially through single-particle occupation numbers whiclstructure of the matrix of two-point functions in the closed-
are fixed at their initial values and, therefore, do not properlytime-path formalism, which is applied in Sec. Il to find the
reflect the evolution of the state. most general permissible form of the dissipative counter-
In earlier work[20—22, we have shown, for real scalar term. The corresponding unperturbed propagators are de-
fields, how this difficulty may be overcome. By adding arived in Sec. IV, where we find that, in the presence of a
suitable counterternfwhich we call the “dissipative” coun- nonzero chemical potential, not only occupation numbers but
tertern) to the quadratic part of the action, and subtracting italso decay widths and thermal masses are different for the
quasiparticle modes corresponding to particles and antipar-
ticles. In Sec. V we evaluate the dissipative counterterm at
*Electronic address: i.d.lawrie@leeds.ac.uk the lowest nontrivial order and find, with suitable approxi-
Electronic address: phybm@phys-irc.novell.leeds.ac.uk mations, that the time-dependent occupation numbers obey a
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kinetic equation of the Boltzmann type. Finally, our results

are summarized in Sec. VI. ¢,
t / t
0 K
II. PROPAGATORS IN THE CLOSED-TIME-PATH ’_—.’
FORMALISM P
/
We consider the theory of a massive, complex, self- ¢ g
interacting scalar fieldb(x,t), described by the Lagrangian 2
density ¢
\ L3
L(p,¢*)=d* p—V*Vp—m*(t) p* ¢p— 2(¢" $)?% (1)
where ¢=d¢/at. The generating functional for the time- t, -1

ordered Green’s functions of the theory may be written as
FIG. 1. The closed-time path in the complex time plane.

Z[j]=Tr : )

pTexF{iJ d*x(j ¢* +j*¢))

Z[j1.j2,] :Nf d d d eiS(‘/’L(/’zw/’s)’ 6
where ¢(x,t) is the Heisenberg-picture field operator, RIREDEL [d¢:][dé,]ldebs] (6)
j(x,t) is a complex source, ant denotes time ordering. For

. where N is a normalizin nstant an
an initial state of thermal equilibrium at timg, character- ereV'is a normalizing constant and

ized by the temperature @/and chemical potentiglk, the t . _ _
density operator is S(¢1,¢>2,¢>3):jt dtJ X[L(P1) — L(¢2) +]167 +]T b1
0
g~ BlH(to)— uN] 5
P™ Ti[e ARG~ kNI @ +i283 +i3 b2+ fo drf d3[i Le(¢3)

whereH(t) is the time-dependent Hamiltonian ahdis the +i3dh+i% bl 7
particle number operator. It is convenient to generalize this
generating functional, using the Schioger-picture field op- Here, £¢ denotes the Euclidean version of Ed).

erator ¢4(x) to write In order to carry out perturbation theory, we wish to split
the action into an unperturbed pe8§, an interaction part
Zi1j]=Tr pT—exp<if d4X(HS+j2¢§+j’2‘¢S)) S/, and a source terr§; :
S(b1,P2,03)=So(P1,P2,3) +S|(P1, b2, 3)
xTexp{—ifd4x(Hs—jl¢§—iI¢s)H (4) +Si( 1, 2, h3). (8)

In the standard way, the generating functiof@lcan then be

whereT denotes antitime ordering ard(t) is the Hamil- ;
rewritten as

tonian expressed in terms @f;. This Hamiltonian depends
explicitly on time through the time-depen.dent.maa(st). Z[i1,i0,isl=exdiS (=i d/8j,,—i8l5j,,
The original generating functional(2) is given by
Z[j]1=2[j.0]. —10616j3)1ZolJ1,]2:]3], 9
Each of the three factors inside the trace(# has a
path-integral representation with its own integration variable, L . .
say ¢,(x,t) for the time-ordered factorg,(x,t) for the 20[11’12’13]29)“{_] d*xd®y 3 (0 gan(x.Y)in(y) |
antitime-ordered factor, angs(x,7) for the density opera- (10
tor, where the real timeruns from the initial timet to some -
large final timet; , while the imaginary time- runs from 0to  1he unperturbed propagatg(x,y) satisfies
B. As usual[19,20, these three fields can be envisaged as -~ , <
living on the three segments of a contour in the complex time ~ Pk(X:3)9(x,y)=—18(x=y)=9(x,y)D(y, = dy), (11)
plane !Ilustrated in Fig. 1. The effec_t of a nonzero Chem!Calwhere D(x,d) is the differential operator corresponding to
potential can formally be taken into account by using_ . A %
H(t,) as the generator of evolution in imaginary time and S0 1€+ So=J d"x 5 (X) Day(X, 9) ().
imposing the boundary conditions The perturbation th_eory which results fro_m choosﬁ@g_o
be simply the quadratic pa8? of S was derived some time
B3, B) =€ Prdi(Xty), bE(X,B)=ePHp¥ (x,to). ago by Semenoff and Wei§$9] for a theory with somewhat
(5) more general time dependence than @g. It has the disad-
vantage that coefficients irg(x,y), which correspond
On introducing a third source fops, the generating func- roughly to particle occupation numbers, are fixed at their
tional (4) is then given by the path integral initial values, and do not change so as to reflect the evolving
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state of the system. As shown by one of us for the case of a
real scalar field20,21], this situation can be improved by G(x,x")=
choosing instead

H(X,X")  H*(x,x")
HX,X')  HA(x,x")

HEH(x',x)  H*H(X,X)
+[7—[*(x’,x) H* (X ,%)

O(t-t")

O(t'—t),

So( b1, b2, ¢3)=S? (1,02, h3) + f d*Xpx Map(X,9) by,

(16)
12
where the suffixu has been suppressed. This structure

. ) ) . should be maintained if the scalar field is embedded in a
whereM is a differential operator, to be chosen in such amore generaC- or CP-invariant theory.

way that the unperturbed propagatgfx,y) mimics as
nearly as possible the dissipative behavior of the full propa-
gatorG(x,y). To make perturbation theory tractable, we re-

quire the term involving\/l to be local, so it can involve onIy We now want to construct a differential Operafbrand

the real-time fieldsp, and ¢,. Since(as is worth emphasiz- the corresponding counterterm mathk in such a way that
ing) we do not wish to change the overall theory, the inter-gq. (11) admits a solution fog(x,y) of the form(16). Since
action termS; now includes a counterterm ¢z M., In - we are dealing with a spatially homogeneous theory, we can
addition to the original interaction—(N/4)[($} #1)?> take a spatial Fourier transform, obtaining a propagator
— (5 #,)?] and M will be chosen so that this counterterm gy(t,t"), and operatoD,(t,d;) which obey Eq.(11) in the
subtracts some part of the loop contributions to the fullform

propagator. In this way, we partially resum the absorptive _

parts of these loop contributions, and optimgex,y) as an  Dy(t,d)gu(t,t' )= —i8(t—t') =gy (t,t ) Du(t',— ). (17)
approximation toG(x,y). In particular, we will find that

g(x,y) now involves quasiparticle occupation numbersin the following, we will usually suppress the suflix As in
which evolve with time in the expected way. [20], we first construct the operat@¥(J,) with constant co-

In order to determine the permissible formMf, we first  efficients appropriate to a temporally homogeneous system,
investigate the structure of the full propagator, whose realand then allow these coefficients to depend on time. In the
time componentsg,b=1,2) are given by temporally homogeneous cagit,t’) can be expressed in

the form of Eq.(16) in terms of a functiorh(t—t’) (which
also depends ok and u) for which we write

Ill. THE DISSIPATIVE COUNTERTERM

Gan(X,x")
h(t—t')=u(t—t")+iv(t—t"), (19
L WA
i E(x) djp(x) 1203 =0 h*#(t—t")=w(t—t')+iz(t—t"), (19
_[{Tle(x) ™ (X, 1) ], (¢ (X, 1)d(x1), where u, v, w, and z are real functions.[Note that
(d(X,D)d* (X' ,t")), (TLP(X, 1) * (X' ,1)]), ' f*#(u)=f(— ) for any functionf(u).] For the temporal

Fourier transform
(13

» . ()= [ drevigo), @0
where(- - -), indicates a thermal average in the ensemble —o

with chemical potential. Writing )
we obtain

(D(X)d* (X)), =H, (X, X" )O(t—t")+ L, (x,x")O (' —(tl)i) 011(@) = g3 w)=[A(w)—b(w)+C(w)+d(w)]
+i[a(w)+B(w)—c(w)+D(w)], (21)

it is simple to show from the Hermiticity ofp that
ICM(x,x’)=HZ(x’,x) and from the charge conjugatiolC)
symmetry of Eq.(1) that

91/ @) =2[C(w)+d(w)],
921(0)=2[A(w)—b(w)],

(d* (X )p(X)),=HE (X, x")O(t—t") where
+H_, (X' X)0(t —t). (15 A(w)+ia(w)=fxdtu(t)[cosmtﬂsinwt],
0

For any complex function oft, we define theg-conjugate

f#(u)=1f*(—pu), which is related to charge conjugation. B(w)+ib(w):fwdtv(t)[cosl)tﬂsinwt],
With this notation, the full propagator can be expressed as 0
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C(w)+ic(w)=f:dtw(t)[cowHisinwt],

D(w)+id(w)=f:dtz(t)[co&)tﬂsinmt].

Note that the change of variables (u) — (— w,— u) leads
to the interchange [A(w),a(w),B(w),b(w)]
—[C(w),—c(w),D(w),—d(w)], and consequently,

Jan(®) =05 (—w), (22

which also follows directly from Eq(16). Upon Fourier

—0’—i(y—iyw+p—ia
i(y+y)o+i(a—a)

D(—iw)=

2293

transformation, Eq.(17) becomes an algebraic equation
whose solution fofD(—iw) is

—iA éfz(w) —A\Ehz(w)]. 23
defg|| —ga(w) Qi)

This solution shows how? can be constructed from thian-
known) functionsA(w)- - - D(w) which are real, even func-
tions of w anda(w)- - -d(w) which are real and odd. We
will choose these eight functions in such a way tfahas
certain essential properties. First, we requi?€;) to be a
second-order differential operator. T#¢t—t’) in Eq. (17)
arises from the derivatives @ (t—t’) and®(t' —t) and, in
order that these appear only in the diagonal elements, second
derivatives may appear only in the diagonal elements of
D(4;). To maintain the normalization af as in Eq.(1), we

fix the coefficients ofs? or of — w?, to be = 1. Expanding

Eqg. (23) in powers ofw, we find that the most general form

of D satisfying these requirements can be expressed in terms
of six real coefficientsy, 8, y, a, v, v as

D(—iw)=

—i(y—Ww-l—i(a-i—a_)

e (24)

wz—i(ﬁ-i';/)w—

SinceD(—iw) is equal to—ig~!(w), it has the same sym- six properties of a gas of quasiparticles, namely, the thermal

metry[Eq. (22)] asg(w), and we may deduce that 3, and
v are even functions of,, while «, v, andy are odd. Since
these quantities are also real, we have

ﬁﬂzﬁv’y#:’y’ Eﬁ:_a,

¥

aﬁza,

i

==y, v (25

_')’

In particular, whenu vanishes, we have=y="y=0 and
D reduces to the form found if20] for a real scalar field.

masses, occupation numbers, and relaxation rates of particles
and antiparticles.

IV. THE DISSIPATIVE PROPAGATOR

The basic equatioril7) for the unperturbed propagator
matrix g(t,t") is satisfied if the functiorh(t,t’) obeys the
conditions

For the nonequilibrium theory, with time-dependent bare

mass,D(t,d,) is given by alh(t,t)—h** (", t)]]p =i, (27)
Di1= r?t-l-(y iy o+ B—ia+(y —Iy)/2
&t[h(tvt’)_h*(t’at)]|t’=t:01 (28)
D= (y—y)d+i(ata)+(y=7)I2,
DZl: _(,y+ ’y)(?t (a, a) (,y+ ')’)/2 [Dll(ti(gt)+D12(t1(9t)]h(t1t,):Oa (29)
'D22=—é’tz-i-(?l—i;)o'?t—ﬁ—ia—l—(‘ﬁ-i’;)/Z, (26) Dll(tﬂt)h*ﬁ(t/,t)+D12('[,r9t)h*(t',t)=O, (30)

where the coefficients are now time dependent, and the de-
rivatives y, etc. ensure thab(t,d,) is a symmetrical opera-
tor, as required in Eq(1l). That is, yd,+ y/2= y"20,y*2,
etc. We emphasize again that the six coefficients in(Z6),
while undetermined at this stage, do not represent arbitrary
modifications of the theory, but rather an optimal choice of
the lowest-order theory which is to serve as the basis for
perturbation theory. As indicated above, these coefficients
will be found self-consistently from a suitable renormaliza- We find that the solution of these equations can be written in
tion prescription, and we shall find that they correspond tahe form

together with theirg-conjugates and the continuity condi-
tions

h(t,t)=h*(t,t)=h*(t,t). (31
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1t — simplifications, but the consequences of this assumption will
P(— —f [Y(t)—ly(t)]dA) need some discussion at a later stage. In this case, the two
h(t,t')= ’ [1+N(t')] other relations are
4Q(t)Q(t") L _ _ —
t zlata—(y=y)o]-(yo—a)n” =0, (39
Xexp( - ﬁfﬂ(t)dﬁ”_”m“'” Ha-a (y+7el-(yo+@n =0, (40
t where
xexp{if Q(t)dT) : (32
t’ 1
e (41

n
Blotu)
in terms of the auxiliary function§)(t) andN(t) which are € 1

solutions of are the usual occupation numbers for particles and antipar-
5 ticles in a free Bose-Einstein gas. The coefficidhin the
10 30 real-time propagators is then given by

>0 407 +02= B——(y—ly)z-l-la (33

Q+iyl2 -
= (1+nt+n)+(n"—n"), (42)

Q _
o+ 21— =+ y|[(di+ y)N—v]

Q and the frequency) by
=2ia+2iaN+iy(yN—y), (34) 0= w2~ latia. 43)

with the subsidiary conditions Note that when the dissipative counterterm is neglected, we

have(Q)=w and y=0, so thaN=1+2n". We then find, as
N+N#|* _ [N+ N# expected, that the coefficient of the positive frequency term

Q -\ 39 in the propagatof32) is (1+N)=2(1+n") while that of

the negative frequency term is-(L+N#)=2n". Thus, with
d [ N+ N 1l OF N+ N the_ dissipative terms present, 'Fhe re_al-tlme propagators de-
== | =+ +2y scribe a gas of quasiparticles, in which quasiparticle modes
d Q 2\ Q Q contain a small admixture of bare antiparticles and quasi-
—i[(N=N#)— (N=N#)*]. (36) antiparticle modes contain a small admixture of bare par-

ticles.
For this gas of quasiparticles, the positive- and negative-
frequency mode functions are ¢éxpQ, (t—t')] and
exdiQ_(t—t")], respectively, where

It is straightforward, though tedious, to show that these con-
ditions are preserved by E@34) if they hold at the initial

time.
With a nonzero chemical potentiaj, and « are, in gen- 0. =[ReQTS/21EiT /25 ImQ a4
eral, nonzero, so the frequenf)(t) which satisfies Eq(33) == Tyl2lTilyles I (44
is complex, though it has the propeil* =0Q. We see that the decay rates for particle and antiparticle

To obtain the initial conditions that apply to Eq83) and  modes will be different if I} + 0, which will, in general, be
(34), we require the full X3 matrix of propagators which trye if eithery or a is nonzero. On the other hand, the

satisfies an equation of the for(@7) with thermal masses of quasiparticles and quasi-antiparticles will
P be different if and only ify is nonzero. Which of these
D3y d,)=1(d7— %), (37 conditions actually applies will be discussed in the next sec-
tion.
and D;3=Dy3=D3;= D3,=0, where w?=k?+m?(to). The For the nonequilibrium theory, any solution of E@3)

boundary conditions which apply to these nine propagatorsnay, in principle, be used fa(t). Clearly, however, it is
are set out in Appendix, where results for those involvingdesirable that our lowest-order theory should approximately
imaginary times are also given. retain the characteristics of the steady-state solution in the
For the case of a time-independent mags we expect a case wheren?(t) is slowly varying neat,. We will, there-
steady state solution, with =N=0. In this case, we find fore, choose a renormalization prescription for which
that the boundary conditions can be satisfied only if three8(to) = »?, and the solution of Eq.(33) which has

relations hold betweer, 8, ... . The first of these is Q(te)=0 andQ(ty) given by Eq.(43). Retaining the as-
~ ) sumption thaty(ty) =0, Eq.(33) shows that()(t,)=0 also.
Y =4(B~ o). (38 we would now like to interpretN(t) in terms of time-

) . dependent occupation numbers(t). To this end, we define
It seems natural to require that the renormalized ma&ses

more generally, the&k-dependent frequenciesn D;; and .

Da3 should be equal, although this is not obligatory. This n=(t)= 4Q(t){[\/ﬁ(t +iy(D/2]IN(t) +NF(1)]
means thap3=w?=m?+k?, and hence thay=0. We will

indeed assume that=0, since this introduces considerable IQ(t)[N(t)—N”(t)]—ZQ(t)}, (45)
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so that

Q) +ip(t)/2
VB(1)

+[n"(H)—n"(D)]. (46)

N(t)= [1+nT(t)+n(1)]

It is easy to see than*(t) and n~(t) are real and that

n*#(t)=n"(t) as required for the occupation numbers. If

n=(t,) are taken to be the equilibrium valuésl), then the

desired initial conditionN(t,)=0 ensures that Eq36) is

satisfied. FIG. 2. Lowest-order Feynman diagram contributing to the dis-
As in [20], we can now show that with reasonable ap-sipative counterterm.

proximations, the evolution equation(34) and its

#-conjugate reduce to a pair of Boltzmann-like kinetic equayyhereS denotes the contribution from loop diagrams, which
tions forn=(t). We first rewrite Eq(34) with y=0 as has been split into parts even and odd in the transform vari-
47 able w. In the counterterm contribution, thedependence is
that of «(t) - - - while —iw replaces’,. While M (t,—iw) is
P=0"(a+y)N=7], (48) gfcond-qrder polynomial in),.the. same is not true of
2(t,w). As in standard renormalization theory, therefore, we
and assume thatP<(2Q —ivy)P, which will be valid if the  choose the counterterm to cancglat some reference fre-
characteristic relaxation time 4t/is much greater than @. quency, which can conveniently be Choserﬁagg(t_)_ This
It will turn out, as in[20], that y is smaller thanQ) by a  gives
factor of A%, Indeed,y, v, a, and a are all of order\?.
Consequently, to ordex?, we can replacé\ by its lowest-

Q[o+2i(Q—iy/2)]P=2i(a+aN),

order valueN~(1+2n~) and negleci y/2 in comparison [y()— () ]=i2F (1,02, (53
with . With these approximations, Eq47) and its
#-conjugate become [a(t)+a_(t)]=i2(122)(t,()2), (54)
B e (-0 = (ya-an", (49
- = — — _ — n , o - —
dt 20 TR YR [yt —i7(0)]=iSP(t,02), (55)
dn* 1

_ _ 1 _ .
e m[a—a—(w v)Q]— ﬁ(yQJra)n*. (500  from which «, «, v, v, andy can be deduced by isolating
parts which are even and odd undeconjugation. The cor-

Evidently, the relationg39) and (40) which apply to the ~eSPonding equation fo8, namely,

steady-state solution are just the conditions for the occupa- o

tion numbers to be constant. In the next section, we evaluate k?+m?(t)— B(t)= Re2<121>(t,92), (56)
a, a, v, andy explicitly, and find that the right-hand sides of

Egs.(49) and (50) have approximately the form of the scat-

-\ ; ) . - : k2a 2
tering integrals which appear in the Boltzmann equation. €an be adjusted to meet the requiremgiito) =k*+mg
wheremg is an appropriate renormalized mass, as discussed

in the last section, but the details are not important for our
present purposes.

As explained above, our strategy is to choose the counter- The lowest-order contribution t&, is from the graph
term M so as to optimize the unperturbed propagatorshown in Fig. 2. An approximate method for evaluating it is
g(x,y) as an approximation to the full propagat(x,y). described irf20]. Since the whole diagram is proportional to
The relation between these may be expressed by the Dysoi?, we take the lowest-order approximation to its internal
Schwinger equation propagators, using

V. EVALUATION OF THE DISSIPATIVE COUNTERTERM

Gab(X,Y) =Gap(X,y) +i d*zd*z' gao(X, I I
b(X,Y) = Jan(X,y) |fj z2d"z'ga(X,2) h(t.t')~ (;L(F{[l_f_n—(t)]e—|ﬂ(t)At+n+(t)elﬂ(t)At}'

X2cd(2,2")Ggp(Z',y) (51 (57)

in terms of the self-energ¥ (x,y). As explained in detail in o o
[20], we expres$ in terms of the averageand difference  where n*(t) and Q(t) are assumed to vary sufficiently
At of its time arguments, and take the Fourier transform withslowly that they can be treated as effectively constant. After
respect to X—y) andAt. The result can be written as calculatinga,(t), ay(t), y(t), and y,(t) from Egs. (53—
L . . . (55 and substituting the results in Eq&l9) and (50), we
S(t,w)=M(t,—iw)+3P(t,0d)w+3?(t,w?), (52) obtain the Boltzmann equation
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d particle modes is generally ambiguous. We, on the other
mnk hand, have set about calculating unambiguously defined
Green'’s functions in an optimal manner. For us the quasipar-
3 3 3 ticle ques and their chupation numbersf 'simply.provid'e a
“Wf d°k;d°kpd k3 8(ky + ko —kg—k) convenient way of thinking about quantities which arise
naturally in the course of these calculations, and the Boltz-
X A Q1+ Q= Q3= 0 )[Q1Q,0:0,] Ny ny (1+n3) mann equation is a low order approximation to a rather more
B N ey N complicated second-order evolution equation.
X(1+n )= (1+ng)(1+ny)ngn +nyny (1+ng) The novel aspects of the work reported here concern the
effects of a nonzero chemical potential. To the extent that the
quasiparticle picture is valid, we find that not only the occu-
X(1+n)—(1+n)(1+n)ngng ], (58)  Pation numbers but also the decay widths and thermal
masses of the quasiparticles are different for particle and
where(), denoted), (t), etc. At the order of approximation antiparticle modes. In particular, the difference in thermal
1 . . % N2 .
we are using,(t) is real. The scattering integral on the Masses is a two-loop effefin the \(¢* ¢)° theory], which
right correctly describes the rate of production minus the ratéS Not readily apparent in the usual perturbative treatment
of absorption of particles of momentukidue to all two-  (S€€, €.9.[31]), although it should be derivable from a two-
body processes allowed by charge conservation. It vanishd@0P calculation of the self-energy, even in equilibrium.
when the occupation numbers have the Bose-Einstein form

2

X(1+n)—(1+n)(1+n)ngng +nyny (1+n3)
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original w. Of course, the rate of change of is given by

the #-conjugate of Eq(58). . Boundary conditions on the nine propagatagrs, arise
The value ofy obtained from Eq(55) is not zero al-  from two sources. First, boundary conditions on the fi¢&ls

though, unlikex, a, y, andy, it involves off-shell processes. together with ¢,(x,t;) = da(x.t;), Ba(X,to) = Bs(x,0), and
As discussed in the last section, this implies that the thermahe complex conjugates of these lead to

masses of particles and antiparticles are different when the

chemical potential is nonzero, the difference being compa- Ora(ti 1) =00a(te 1), Gar(t,t)) =gan(t,ts),
rable in magnitude to the decay widthg/2=1ImQ) of the
guasiparticle modes. We are nevertheless entitled to set O2a(to:t’ ) =03a(01"),  Qan(t,te)=0as(t,0),

y=0. This simply means that the difference in thermal
masses is treated purely perturbatively, rather than being re- ¢ (. t")=efrg,.(0t'), gai(t,te) =€ P*gas(t,0),
summed into the unpeiturbed propagator. As it happens, the (A1)
contributions involvingy to both Eqs.(33) and (34) are of
order\*. Thus, in low order calculations, it would be con- for (a=1,2,3). Second, the evaluation of the Gaussian path
sistent to retain a nonzero value 9f in Eq. (32), while integral leading to Eq(10) is performed, as usual, by com-
setting it to zero in the subsidiary calculations needed tqleting the square and this involves integrations by parts.
determine()(t) andN(t). The approximations needed to ob- The requirement that boundary terms arising from these in-
tain the Boltzmann equation in any case entail settingegrations by parts cancel leads to
v=0.

f7t91a(t't')|t:tf:’9t92a(tat')|t:tfv (A2)

VI. SUMMARY

We have extended to the case of complex scalar fields gtha(tvt,)|t:t0+ %(%Lnga(tO'tr)_ %(?rﬁ)gzﬁl(to,t’)
formulation of nonequilibrium perturbation theory which

partially resums the dissipative effects of loop diagrams into P

the unperturbed propagator. As a result of this resummation, =ig g,.(7,t")|._o+ = 093.(0t") (A3)
low order calculations using our modified Feynman rules 2

reflect the evolving state of the nonequilibrium system L L

through terms in the propagator which can roughly be inter- , — , — .~ ,
preted in terms of quasiparticle occupation numbers. As if Gra(tt e, 2 (7= VG2t 1)+ 5 (7= 17)G1a(to, 1)
earlier work, we find that the evolution equation for these
occupation numbers can be cast approximately in the form of _ s,
a Boltzmann equation. Kinetic equations of a similar form

can, of course, be derived by other methgdse, for ex-
ample[29,30) if one sets about finding the rate of change offor (a=1,2,3), together with thé-conjugates of these. The
occupation numbers defined in some appropriate manner. leoefficient § corresponds to an additional counterterm
an interacting theory, however, the definition of single-which, as explained in detail if21], enables us to impose

o
i&Tg3a(Tlt,) 7=B+ §g3a(ﬂatl) ) (A4)
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N(to) =0 as befits an initial equilibrium state. Asfia1], we  With
find = — vy. Here,y, y, andy are all evaluated &t,. . ~ L
The real-time propagators satisfying these boundary con- A1=(1+n7)[N(to) —1—2n"J/(1+n"+n"), (A7)
ditions are described in the text. Of those involving imagi-
nary times, three are found to be A;=n"[N(tg) +1+2n"]/(1+n"+n"),  (A8)

933(7T,):i{[n_+®(7_7,)]e_w(r_,) As=(1+n")[N¥(ty)+1+2n"]/(1+nT+n"), (A9)
' 2w

, A,=n"[N¥(ty)—1-2n"])/(1+n*+n7). (A10)
+[nt+0(r —1)]e”" T} (A5)
The others are given by

1 Gar( 7.1) = ga .1) = g3 (t,7). (A11)
exp( - Ef [y(t)—iy(t)]dﬁ _
Gt 7) = Gos(t, 7) = to Indeed, the whole propagator matrix has the property
13\ % 23\ Y 4 Q(to)ﬂ(t)

X[(Are™ @™+ A,e°)e Wi, 20d (A e=wr

and

gid () =gpa(t’ 1), (A12)

wheret andt’ denote real or imaginary times, depending on

+Aev) el i, 20dY (A6)  the indicesa andb.
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