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Real-time perturbation theory is formulated for complex scalar fields away from thermal equilibrium in such
a way that dissipative effects arising from the absorptive parts of loop diagrams are approximately resummed
into the unperturbed propagators. Low order calculations of physical quantities then involve quasiparticle
occupation numbers which evolve with the changing state of the field system, in contrast with standard
perturbation theory, where these occupation numbers are frozen at their initial values. The evolution equation
of the occupation numbers can be cast approximately in the form of a Boltzmann equation. Particular attention
is given to the effects of a nonzero chemical potential, and it is found that the thermal masses and decay widths
of quasiparticle modes are different for particles and antiparticles.@S0556-2821~97!01604-4#

PACS number~s!: 11.10.Wx; 05.30.Jp; 98.80.Cq

I. INTRODUCTION

Many problems in physics require an understanding of the
nonequilibrium properties of highly excited states of a quan-
tum field theory. The principal motivation underlying the
present work is to understand the nature of phase transitions
in the very early universe, in particular those that might give
rise to inflation@1–4#. Most discussions of inflation assume
that the nonequilibrium state of the relevant system of quan-
tum fields can adequately be characterized by expectation
values governed by a classical potential. However, calcula-
tions which attempt to go beyond this classical approxima-
tion indicate that it may be seriously inaccurate~see, e.g.,
@5–8#!. Nonequilibrium effects are also likely to be impor-
tant in the context of baryon-number violation at the elec-
troweak scale@9,10# and in the study of quark-gluon plasmas
formed in heavy-ion collisions@11#, as well as in many as-
pects of condensed matter physics.

Our own long-term program, set out in@12#, has as its
goal a complete description within perturbation theory of the
dynamics of symmetry-breaking phase transitions. An essen-
tial requirement is to formulate perturbation theory in such a
way that the evolving state of the nonequilibrium quantum
fields is taken adequately into account in the low orders of
the perturbative expansion which are likely to be tractable.
The standard closed-time-path formalism@13–18#, which
deals with real-time phenomena in thermal equilibrium, was
generalized by Semenoff and Weiss@19# to apply to a real
scalar field with a time-dependent action, such as might arise
in a Robertson-Walker spacetime. However, the propagators
entering their Feynman rules depend on the state of the field
essentially through single-particle occupation numbers which
are fixed at their initial values and, therefore, do not properly
reflect the evolution of the state.

In earlier work @20–22#, we have shown, for real scalar
fields, how this difficulty may be overcome. By adding a
suitable counterterm~which we call the ‘‘dissipative’’ coun-
terterm! to the quadratic part of the action, and subtracting it

from the interaction, we obtain a lowest-order theory in
which the absorptive parts of loop contributions to the two-
point functions are partly resummed into the unperturbed
propagators. As a result, these propagators contain quasipar-
ticle occupation numbers which evolve with time in the ex-
pected way. Interestingly, the form of the counterterm is
rather similar to the action encountered by Hu and various
collaborators~see, e.g.,@23–25# and references given in
these papers!. These authors use the Feynman-Vernon influ-
ence functional technique to obtain the effective action for a
quantum field in the presence of environmental variables
~which can be thought of as a heat bath! when the latter is
integrated out. Our procedure can be thought of as a self-
consistent treatment of a field which provides its own heat
bath, though none of the modes of this field are integrated
out. A similar structure also arises in nonequilibrium formu-
lations of thermo-field dynamics~see, e.g.,@26#! but this for-
malism turns out to be equivalent to a version of quantum-
statistical mechanics restricted to Gaussian initial density
matrices@27#.

In dealing with a realistic model~such as the standard
model or a grand unified theory!, one naturally meets com-
plex scalar, spinor, and gauge fields and it is essential to
extend the nonequilibrium formalism to encompass fields of
these kinds.~Real-time perturbation theory for scalar, spinor,
and gauge fields in equilibrium is discussed, for example, by
Kobes et al. @28#.! The purpose of the present work is to
extend the formalism to complex scalar fields, giving par-
ticular attention to the effects of a nonzero chemical poten-
tial, which turns out to be nontrivial. In Sec. II we obtain the
structure of the matrix of two-point functions in the closed-
time-path formalism, which is applied in Sec. III to find the
most general permissible form of the dissipative counter-
term. The corresponding unperturbed propagators are de-
rived in Sec. IV, where we find that, in the presence of a
nonzero chemical potential, not only occupation numbers but
also decay widths and thermal masses are different for the
quasiparticle modes corresponding to particles and antipar-
ticles. In Sec. V we evaluate the dissipative counterterm at
the lowest nontrivial order and find, with suitable approxi-
mations, that the time-dependent occupation numbers obey a

*Electronic address: i.d.lawrie@leeds.ac.uk
†Electronic address: phybm@phys-irc.novell.leeds.ac.uk

PHYSICAL REVIEW D 15 FEBRUARY 1997VOLUME 55, NUMBER 4

550556-2821/97/55~4!/2290~8!/$10.00 2290 © 1997 The American Physical Society



kinetic equation of the Boltzmann type. Finally, our results
are summarized in Sec. VI.

II. PROPAGATORS IN THE CLOSED-TIME-PATH
FORMALISM

We consider the theory of a massive, complex, self-
interacting scalar fieldf(x,t), described by the Lagrangian
density

L~f,f* !5ḟ* ḟ2¹f*¹f2m2~ t !f*f2
l

4
~f*f!2, ~1!

where ḟ5]f/]t. The generating functional for the time-
ordered Green’s functions of the theory may be written as

Z@ j #5TrFrTexpS i E d4x~ jf*1 j *f! D G , ~2!

where f(x,t) is the Heisenberg-picture field operator,
j (x,t) is a complex source, andT denotes time ordering. For
an initial state of thermal equilibrium at timet0, character-
ized by the temperature 1/b and chemical potentialm, the
density operator is

r5
e2b[H~ t0!2mN]

Tr@e2b[H~ t0!2mN] #
, ~3!

whereH(t) is the time-dependent Hamiltonian andN is the
particle number operator. It is convenient to generalize this
generating functional, using the Schro¨dinger-picture field op-
eratorfs(x) to write

Z@ j 1 , j 2#5TrFrT̄expS i E d4x~Hs1 j 2fs*1 j 2*fs! D
3TexpF2 i E d4x~Hs2 j 1fs*2 j 1*fs!G G ~4!

whereT̄ denotes antitime ordering andHs(t) is the Hamil-
tonian expressed in terms offs . This Hamiltonian depends
explicitly on time through the time-dependent massm(t).
The original generating functional~2! is given by
Z@ j #5Z@ j ,0#.

Each of the three factors inside the trace in~4! has a
path-integral representation with its own integration variable,
say f1(x,t) for the time-ordered factor,f2(x,t) for the
antitime-ordered factor, andf3(x,t) for the density opera-
tor, where the real timet runs from the initial timet0 to some
large final timet f , while the imaginary timet runs from 0 to
b. As usual@19,20#, these three fields can be envisaged as
living on the three segments of a contour in the complex time
plane illustrated in Fig. 1. The effect of a nonzero chemical
potential can formally be taken into account by using
H(t0) as the generator of evolution in imaginary time and
imposing the boundary conditions

f3~x,b!5e2bmf1~x,t0!, f3* ~x,b!5ebmf1* ~x,t0!.
~5!

On introducing a third source forf3, the generating func-
tional ~4! is then given by the path integral

Z@ j 1 , j 2 , j 3#5NE @df1#@df2#@df3#e
iS~f1 ,f2 ,f3!, ~6!

whereN is a normalizing constant and

S~f1 ,f2 ,f3!5E
t0

t f
dtE d3x@L~f1!2L~f2!1 j 1f1*1 j 1*f1

1 j 2f2*1 j 2*f2#1E
0

b

dtE d3x@ iLE~f3!

1 j 3f3*1 j 3*f3#. ~7!

Here,LE denotes the Euclidean version of Eq.~1!.
In order to carry out perturbation theory, we wish to split

the action into an unperturbed partS0, an interaction part
SI , and a source termSj :

S~f1 ,f2 ,f3!5S0~f1 ,f2 ,f3!1SI~f1 ,f2 ,f3!

1Sj~f1 ,f2 ,f3!. ~8!

In the standard way, the generating functional~6! can then be
rewritten as

Z@ j 1 , j 2 , j 3#5exp@ iSI~2 id/d j 1 ,2 id/d j 2 ,

2 id/d j 3!#Z0@ j 1 , j 2 , j 3#, ~9!

Z0@ j 1 , j 2 , j 3#5expF2E d4xd4y ja* ~x!gab~x,y! j b~y!G .
~10!

The unperturbed propagatorg(x,y) satisfies

Dk~x,]xW !g~x,y!52 id~x2y!5g~x,y!D~y,2]Q y!, ~11!

whereD(x,]) is the differential operator corresponding to
S0, i.e.,S05*d4xfa* (x)Dab(x,])fb(x).

The perturbation theory which results from choosingS0 to
be simply the quadratic partS(2) of Swas derived some time
ago by Semenoff and Weiss@19# for a theory with somewhat
more general time dependence than Eq.~1!. It has the disad-
vantage that coefficients ing(x,y), which correspond
roughly to particle occupation numbers, are fixed at their
initial values, and do not change so as to reflect the evolving

FIG. 1. The closed-time path in the complex time plane.
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state of the system. As shown by one of us for the case of a
real scalar field@20,21#, this situation can be improved by
choosing instead

S0~f1 ,f2 ,f3!5S~2!~f1 ,f2 ,f3!1E d4xfa*Mab~x,]!fb ,

~12!

whereM is a differential operator, to be chosen in such a
way that the unperturbed propagatorg(x,y) mimics as
nearly as possible the dissipative behavior of the full propa-
gatorG(x,y). To make perturbation theory tractable, we re-
quire the term involvingM to be local, so it can involve only
the real-time fieldsf1 andf2. Since~as is worth emphasiz-
ing! we do not wish to change the overall theory, the inter-
action termSI now includes a counterterm2fa*Mabfb in
addition to the original interaction2(l/4)@(f1*f1)

2

2(f2*f2)
2] andM will be chosen so that this counterterm

subtracts some part of the loop contributions to the full
propagator. In this way, we partially resum the absorptive
parts of these loop contributions, and optimizeg(x,y) as an
approximation toG(x,y). In particular, we will find that
g(x,y) now involves quasiparticle occupation numbers
which evolve with time in the expected way.

In order to determine the permissible form ofM , we first
investigate the structure of the full propagator, whose real-
time components (a,b51,2) are given by

Gab~x,x8!

52
]

] j a* ~x!

]

] j b~x8!
Z@ j 1 , j 2 , j 3#U

j50

5F ^T@f~x,t !f* ~x8,t8!#&m ^f* ~x8,t8!f~x,t !&m

^f~x,t !f* ~x8,t8!&m ^T̄@f~x,t !f* ~x8,t8!#&m
G ,

~13!

where ^•••&m indicates a thermal average in the ensemble
with chemical potentialm. Writing

^f~x!f* ~x8!&m5Hm~x,x8!Q~ t2t8!1Km~x,x8!Q~ t82t !,
~14!

it is simple to show from the Hermiticity ofr that
Km(x,x8)5Hm* (x8,x) and from the charge conjugation (C)
symmetry of Eq.~1! that

^f* ~x8!f~x!&m5H2m* ~x,x8!Q~ t2t8!

1H2m~x8,x!Q~ t82t !. ~15!

For any complex function ofm, we define the]-conjugate
f ](m)5 f * (2m), which is related to charge conjugation.
With this notation, the full propagator can be expressed as

G~x,x8!5FH~x,x8! H]~x,x8!

H~x,x8! H]~x,x8!
GQ~ t2t8!

1FH* ]~x8,x! H* ]~x8,x!

H* ~x8,x! H* ~x8,x!
GQ~ t82t !,

~16!

where the suffixm has been suppressed. This structure
should be maintained if the scalar field is embedded in a
more generalC- or CP-invariant theory.

III. THE DISSIPATIVE COUNTERTERM

We now want to construct a differential operatorD and
the corresponding counterterm matrixM in such a way that
Eq. ~11! admits a solution forg(x,y) of the form~16!. Since
we are dealing with a spatially homogeneous theory, we can
take a spatial Fourier transform, obtaining a propagator
gk(t,t8), and operatorDk(t,] t) which obey Eq.~11! in the
form

Dk~ t,] tW !gk~ t,t8!52 id~ t2t8!5gk~ t,t8!Dk~ t8,2]Q t8!. ~17!

In the following, we will usually suppress the suffixk. As in
@20#, we first construct the operatorD(] t) with constant co-
efficients appropriate to a temporally homogeneous system,
and then allow these coefficients to depend on time. In the
temporally homogeneous case,g(t,t8) can be expressed in
the form of Eq.~16! in terms of a functionh(t2t8) ~which
also depends onk andm) for which we write

h~ t2t8!5u~ t2t8!1 iv~ t2t8!, ~18!

h* ]~ t2t8!5w~ t2t8!1 iz~ t2t8!, ~19!

where u, v, w, and z are real functions.@Note that
f * ](m)5 f (2m) for any function f (m).] For the temporal
Fourier transform

ĝ~v!5E
2`

`

dteivtg~ t !, ~20!

we obtain

ĝ11~v!5ĝ22* ~v!5@A~v!2b~v!1C~v!1d~v!#

1 i @a~v!1B~v!2c~v!1D~v!#, ~21!

ĝ12~v!52@C~v!1d~v!#,

ĝ21~v!52@A~v!2b~v!#,

where

A~v!1 ia~v!5E
0

`

dtu~ t !@cosvt1 isinvt#,

B~v!1 ib~v!5E
0

`

dtv~ t !@cosvt1 isinvt#,
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C~v!1 ic~v!5E
0

`

dtw~ t !@cosvt1 isinvt#,

D~v!1 id~v!5E
0

`

dtz~ t !@cosvt1 isinvt#.

Note that the change of variables (v,m)→(2v,2m) leads
to the interchange @A(v),a(v),B(v),b(v)#
↔@C(v),2c(v),D(v),2d(v)#, and consequently,

ĝab~v!5ĝba*
]~2v!, ~22!

which also follows directly from Eq.~16!. Upon Fourier

transformation, Eq.~17! becomes an algebraic equation
whose solution forD(2 iv) is

D~2 iv!5
2 i

detuĝu
F ĝ22~v! 2ĝ12~v!

2ĝ21~v! ĝ11~v!
G . ~23!

This solution shows howD can be constructed from the~un-
known! functionsA(v)•••D(v) which are real, even func-
tions of v and a(v)•••d(v) which are real and odd. We
will choose these eight functions in such a way thatD has
certain essential properties. First, we requireD(] t) to be a
second-order differential operator. Thed(t2t8) in Eq. ~17!
arises from the derivatives ofQ(t2t8) andQ(t82t) and, in
order that these appear only in the diagonal elements, second
derivatives may appear only in the diagonal elements of
D(] t). To maintain the normalization off as in Eq.~1!, we
fix the coefficients of] t

2 or of 2v2, to be61. Expanding
Eq. ~23! in powers ofv, we find that the most general form
of D satisfying these requirements can be expressed in terms
of six real coefficientsa, b, g, ā, ḡ, g̃ as

D~2 iv!5F2v22 i ~ ḡ2 i g̃ !v1b2 ia 2 i ~g2ḡ !v1 i ~a1ā !

i ~g1ḡ !v1 i ~a2ā ! v22 i ~ ḡ1 i g̃ !v2b2 iaG . ~24!

SinceD(2 iv) is equal to2 ig21(v), it has the same sym-
metry @Eq. ~22!# asg(v), and we may deduce thata, b, and
g are even functions ofm, while ā, ḡ, andg̃ are odd. Since
these quantities are also real, we have

a]5a, b]5b,g]5g, ā]52ā,

ḡ]52ḡ, g̃]52g̃. ~25!

In particular, whenm vanishes, we haveā5ḡ5g̃50 and
D reduces to the form found in@20# for a real scalar field.

For the nonequilibrium theory, with time-dependent bare
mass,D(t,] t) is given by

D115] t
21~ ḡ2 i g̃ !] t1b2 ia1~ ġ̄2 i ġ̃ !/2,

D125~g2ḡ !] t1 i ~a1ā !1~ ġ2 ġ̄ !/2,

D2152~g1ḡ !] t1 i ~a2ā !2~ ġ1 ġ̄ !/2,

D2252] t
21~ ḡ1 i g̃ !] t2b2 ia1~ ġ̄1 i ġ̃ !/2, ~26!

where the coefficients are now time dependent, and the de-
rivatives ġ, etc. ensure thatD(t,] t) is a symmetrical opera-
tor, as required in Eq.~11!. That is,g] t1ġ/25g1/2] tg

1/2,
etc. We emphasize again that the six coefficients in Eq.~26!,
while undetermined at this stage, do not represent arbitrary
modifications of the theory, but rather an optimal choice of
the lowest-order theory which is to serve as the basis for
perturbation theory. As indicated above, these coefficients
will be found self-consistently from a suitable renormaliza-
tion prescription, and we shall find that they correspond to

six properties of a gas of quasiparticles, namely, the thermal
masses, occupation numbers, and relaxation rates of particles
and antiparticles.

IV. THE DISSIPATIVE PROPAGATOR

The basic equation~17! for the unperturbed propagator
matrix g(t,t8) is satisfied if the functionh(t,t8) obeys the
conditions

] t@h~ t,t8!2h* ]~ t8,t !#u t85t52 i , ~27!

] t@h~ t,t8!2h* ~ t8,t !#u t85t50, ~28!

@D11~ t,] t!1D12~ t,] t!#h~ t,t8!50, ~29!

D11~ t,] t!h*
]~ t8,t !1D12~ t,] t!h* ~ t8,t !50, ~30!

together with their]-conjugates and the continuity condi-
tions

h~ t,t !5h* ~ t,t !5h]~ t,t !. ~31!

We find that the solution of these equations can be written in
the form
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h~ t,t8!5

expS 2
1

2Et8
t

@g~ t̄ !2 i g̃~ t̄ !#dt̄D
4AV~ t !V~ t8!

F @11N~ t8!#

3expS 2 i E
t8

t

V~ t̄ !dt̄D 1@211N]~ t8!#

3expS i E
t8

t

V~ t̄ !dt̄D G , ~32!

in terms of the auxiliary functionsV(t) andN(t) which are
solutions of

1

2

V̈

V
2
3

4

V̇2

V2 1V25b2
1

4
~g2 i g̃ !21 i ā, ~33!

F ] t12iV2
V̇

V
1gG @~] t1g!N2ḡ #

52ia12i āN1 i g̃~gN2ḡ !, ~34!

with the subsidiary conditions

SN1N]

V D *5SN1N]

V D , ~35!

d

dt
SN1N]

V
D 52

1

2
S V̇

V
1

V̇*

V*
12g D SN1N]

V
D

2 i @~N2N]!2~N2N]!* #. ~36!

It is straightforward, though tedious, to show that these con-
ditions are preserved by Eq.~34! if they hold at the initial
time.

With a nonzero chemical potential,g̃ and ā are, in gen-
eral, nonzero, so the frequencyV(t) which satisfies Eq.~33!
is complex, though it has the propertyV]5V.

To obtain the initial conditions that apply to Eqs.~33! and
~34!, we require the full 333 matrix of propagators which
satisfies an equation of the form~17! with

D33~]t!5 i ~]t
22v2!, ~37!

and D135D235D315D3250, wherev25k21m2(t0). The
boundary conditions which apply to these nine propagators
are set out in Appendix, where results for those involving
imaginary times are also given.

For the case of a time-independent massm2, we expect a
steady state solution, withV̇5Ṅ50. In this case, we find
that the boundary conditions can be satisfied only if three
relations hold betweena, b, . . . . The first of these is

g̃254~b2v2!. ~38!

It seems natural to require that the renormalized masses~or,
more generally, thek-dependent frequencies! in D11 and
D33 should be equal, although this is not obligatory. This
means thatb5v25m21k2, and hence thatg̃50. We will
indeed assume thatg̃50, since this introduces considerable

simplifications, but the consequences of this assumption will
need some discussion at a later stage. In this case, the two
other relations are

1
2 @a1ā2~g2ḡ !v#2~gv2ā !n250, ~39!

1
2 @a2ā2~g1ḡ !v#2~gv1ā !n150, ~40!

where

n65
1

eb~v6m!21
~41!

are the usual occupation numbers for particles and antipar-
ticles in a free Bose-Einstein gas. The coefficientN in the
real-time propagators is then given by

N5S V1 ig/2

v D ~11n11n2!1~n22n1!, ~42!

and the frequencyV by

V25v22g2/41 i ā. ~43!

Note that when the dissipative counterterm is neglected, we
haveV5v andg50, so thatN5112n2. We then find, as
expected, that the coefficient of the positive frequency term
in the propagator~32! is (11N)52(11n2) while that of
the negative frequency term is (211N])52n1. Thus, with
the dissipative terms present, the real-time propagators de-
scribe a gas of quasiparticles, in which quasiparticle modes
contain a small admixture of bare antiparticles and quasi-
antiparticle modes contain a small admixture of bare par-
ticles.

For this gas of quasiparticles, the positive- and negative-
frequency mode functions are exp@2iV1(t2t8)# and
exp@iV2(t2t8)#, respectively, where

V65@ReV7g̃/2#7 i @g/27ImV#. ~44!

We see that the decay rates for particle and antiparticle
modes will be different if ImVÞ0, which will, in general, be
true if either g̃ or ā is nonzero. On the other hand, the
thermal masses of quasiparticles and quasi-antiparticles will
be different if and only if g̃ is nonzero. Which of these
conditions actually applies will be discussed in the next sec-
tion.

For the nonequilibrium theory, any solution of Eq.~33!
may, in principle, be used forV(t). Clearly, however, it is
desirable that our lowest-order theory should approximately
retain the characteristics of the steady-state solution in the
case wherem2(t) is slowly varying neart0. We will, there-
fore, choose a renormalization prescription for which
b(t0)5v2, and the solution of Eq.~33! which has
V̇(t0)50 andV(t0) given by Eq.~43!. Retaining the as-
sumption thatg̃(t0)50, Eq. ~33! shows thatV̈(t0)50 also.
We would now like to interpretN(t) in terms of time-
dependent occupation numbersn6(t). To this end, we define

n6~ t !5
1

4V~ t !
$@Ab~ t !6 ig~ t !/2#@N~ t !1N]~ t !#

7V~ t !@N~ t !2N]~ t !#22V~ t !%, ~45!
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so that

N~ t !5S V~ t !1 ig~ t !/2

Ab~ t !
D @11n1~ t !1n2~ t !#

1@n2~ t !2n1~ t !#. ~46!

It is easy to see thatn1(t) and n2(t) are real and that
n1](t)5n2(t) as required for the occupation numbers. If
n6(t0) are taken to be the equilibrium values~41!, then the
desired initial conditionṄ(t0)50 ensures that Eq.~36! is
satisfied.

As in @20#, we can now show that with reasonable ap-
proximations, the evolution equation~34! and its
]-conjugate reduce to a pair of Boltzmann-like kinetic equa-
tions forn6(t). We first rewrite Eq.~34! with g̃50 as

V@] t12i ~V2 ig/2!#P52i ~a1āN!, ~47!

P5V21@~] t1g!N2ḡ #, ~48!

and assume that] tP!(2V2 ig)P, which will be valid if the
characteristic relaxation time 1/g is much greater than 1/V.
It will turn out, as in @20#, that g is smaller thanV by a
factor of l2. Indeed,g, ḡ, a, and ā are all of orderl2.
Consequently, to orderl2, we can replaceN by its lowest-
order valueN'(112n2) and neglectig/2 in comparison
with V. With these approximations, Eq.~47! and its
]-conjugate become

dn2

dt
5

1

2V
@a1ā2~g2ḡ !V#2

1

V
~gV2ā !n2, ~49!

dn1

dt
5

1

2V
@a2ā2~g1ḡ !V#2

1

V
~gV1ā !n1. ~50!

Evidently, the relations~39! and ~40! which apply to the
steady-state solution are just the conditions for the occupa-
tion numbers to be constant. In the next section, we evaluate
a, ā, g, andḡ explicitly, and find that the right-hand sides of
Eqs.~49! and ~50! have approximately the form of the scat-
tering integrals which appear in the Boltzmann equation.

V. EVALUATION OF THE DISSIPATIVE COUNTERTERM

As explained above, our strategy is to choose the counter-
term M so as to optimize the unperturbed propagator
g(x,y) as an approximation to the full propagatorG(x,y).
The relation between these may be expressed by the Dyson-
Schwinger equation

Gab~x,y!5gab~x,y!1 i E E d4zd4z8gac~x,z!

3Scd~z,z8!Gdb~z8,y! ~51!

in terms of the self-energyS(x,y). As explained in detail in
@20#, we expressS in terms of the averaget̄ and difference
Dt of its time arguments, and take the Fourier transform with
respect to (x2y) andDt. The result can be written as

S~ t̄,v!5M ~ t̄,2 iv!1S̃~1!~ t̄,v2!v1S̃~2!~ t̄,v2!, ~52!

whereS̃ denotes the contribution from loop diagrams, which
has been split into parts even and odd in the transform vari-
ablev. In the counterterm contribution, thet̄ dependence is
that ofa( t̄)••• while 2 iv replaces] t . WhileM ( t̄,2 iv) is
a second-order polynomial inv, the same is not true of
S̃( t̄,v). As in standard renormalization theory, therefore, we
choose the counterterm to cancelS̃ at some reference fre-
quency, which can conveniently be chosen asV̄5V( t̄). This
gives

@g~ t !2ḡ~ t !#5 iS12
~1!~ t,V̄2!, ~53!

@a~ t !1ā~ t !#5 iS12
~2!~ t,V̄2!, ~54!

@ ḡ~ t !2 i g̃~ t !#5 iS11
~1!~ t,V̄2!, ~55!

from which a, ā, g, ḡ, and g̃ can be deduced by isolating
parts which are even and odd under]-conjugation. The cor-
responding equation forb, namely,

k21m2~ t !2b~ t !5ReS11
~2!~ t,V̄2!, ~56!

can be adjusted to meet the requirementb(t0)5k21mR
2

wheremR is an appropriate renormalized mass, as discussed
in the last section, but the details are not important for our
present purposes.

The lowest-order contribution toS12 is from the graph
shown in Fig. 2. An approximate method for evaluating it is
described in@20#. Since the whole diagram is proportional to
l2, we take the lowest-order approximation to its internal
propagators, using

h~ t,t8!'
1

2V~ t̄ !
$@11n2~ t̄ !#e2 iV~ t̄ !Dt1n1~ t̄ !eiV~ t̄ !Dt%,

~57!

where n6( t̄) and V( t̄) are assumed to vary sufficiently
slowly that they can be treated as effectively constant. After
calculatingak(t), āk(t), gk(t), and ḡk(t) from Eqs.~53!–
~55! and substituting the results in Eqs.~49! and ~50!, we
obtain the Boltzmann equation

FIG. 2. Lowest-order Feynman diagram contributing to the dis-
sipative counterterm.
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d

dt
nk

2

'
l2

32~2p!5
E d3k1d

3k2d
3k3d~k11k22k32k!

3d~V11V22V32Vk!@V1V2V3Vk#
21@n1

1n2
2~11n3

1!

3~11nk
2!2~11n1

1!~11n2
2!n3

1nk
21n1

2n2
1~11n3

1!

3~11nk
2!2~11n1

2!~11n2
1!n3

1nk
21n1

2n2
2~11n3

2!

3~11nk
2!2~11n1

2!~11n2
2!n3

2nk
2#, ~58!

whereV1 denotesVk1
(t), etc. At the order of approximation

we are using,Vk(t) is real. The scattering integral on the
right correctly describes the rate of production minus the rate
of absorption of particles of momentumk due to all two-
body processes allowed by charge conservation. It vanishes
when the occupation numbers have the Bose-Einstein form

n65
1

eb~V6m̄ !21
, ~59!

where the chemical potentialm̄ need not be the same as the
original m. Of course, the rate of change ofn1 is given by
the]-conjugate of Eq.~58!.

The value ofg̃ obtained from Eq.~55! is not zero al-
though, unlikea, ā, g, andḡ, it involves off-shell processes.
As discussed in the last section, this implies that the thermal
masses of particles and antiparticles are different when the
chemical potential is nonzero, the difference being compa-
rable in magnitude to the decay widths (g/26ImV) of the
quasiparticle modes. We are nevertheless entitled to set
g̃50. This simply means that the difference in thermal
masses is treated purely perturbatively, rather than being re-
summed into the unperturbed propagator. As it happens, the
contributions involvingg̃ to both Eqs.~33! and ~34! are of
orderl4. Thus, in low order calculations, it would be con-
sistent to retain a nonzero value ofg̃ in Eq. ~32!, while
setting it to zero in the subsidiary calculations needed to
determineV(t) andN(t). The approximations needed to ob-
tain the Boltzmann equation in any case entail setting
g̃50.

VI. SUMMARY

We have extended to the case of complex scalar fields a
formulation of nonequilibrium perturbation theory which
partially resums the dissipative effects of loop diagrams into
the unperturbed propagator. As a result of this resummation,
low order calculations using our modified Feynman rules
reflect the evolving state of the nonequilibrium system
through terms in the propagator which can roughly be inter-
preted in terms of quasiparticle occupation numbers. As in
earlier work, we find that the evolution equation for these
occupation numbers can be cast approximately in the form of
a Boltzmann equation. Kinetic equations of a similar form
can, of course, be derived by other methods~see, for ex-
ample@29,30#! if one sets about finding the rate of change of
occupation numbers defined in some appropriate manner. In
an interacting theory, however, the definition of single-

particle modes is generally ambiguous. We, on the other
hand, have set about calculating unambiguously defined
Green’s functions in an optimal manner. For us the quasipar-
ticle modes and their occupation numbers simply provide a
convenient way of thinking about quantities which arise
naturally in the course of these calculations, and the Boltz-
mann equation is a low order approximation to a rather more
complicated second-order evolution equation.

The novel aspects of the work reported here concern the
effects of a nonzero chemical potential. To the extent that the
quasiparticle picture is valid, we find that not only the occu-
pation numbers but also the decay widths and thermal
masses of the quasiparticles are different for particle and
antiparticle modes. In particular, the difference in thermal
masses is a two-loop effect@in thel(f*f)2 theory#, which
is not readily apparent in the usual perturbative treatment
~see, e.g.,@31#!, although it should be derivable from a two-
loop calculation of the self-energy, even in equilibrium.
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APPENDIX

Boundary conditions on the nine propagatorsgab arise
from two sources. First, boundary conditions on the fields~5!
together withf1(x,t f)5f2(x,t f), f2(x,t0)5f3(x,0), and
the complex conjugates of these lead to

g1a~ t f ,t8!5g2a~ t f ,t8!, ga1~ t,t f !5ga2~ t,t f !,

g2a~ t0 ,t8!5g3a~0,t8!, ga2~ t,t0!5ga3~ t,0!,

g1a~ t0 ,t8!5ebmg3a~0,t8!, ga1~ t,t0!5e2bmga3~ t,0!,
~A1!

for (a51,2,3). Second, the evaluation of the Gaussian path
integral leading to Eq.~10! is performed, as usual, by com-
pleting the square and this involves integrations by parts.
The requirement that boundary terms arising from these in-
tegrations by parts cancel leads to

] tg1a~ t,t8!u t5t f
5] tg2a~ t,t8!u t5t f

, ~A2!

] tg2a~ t,t8!u t5t0
1
1

2
~g1ḡ !g1a~ t0 ,t8!2

1

2
~ ḡ1 i g̃ !g2a~ t0 ,t8!

5 i ]tg3a~t,t8!ut501
d

2
g3a~0,t8! ~A3!

] tg1a~ t,t8!u t5t0
1
1

2
~g2ḡ !g2a~ t0 ,t8!1

1

2
~ ḡ2 i g̃ !g1a~ t0 ,t8!

5ebmF i ]tg3a~t,t8!Ut5b1
d

2
g3a~b,t8!G , ~A4!

for (a51,2,3), together with the]-conjugates of these. The
coefficient d corresponds to an additional counterterm
which, as explained in detail in@21#, enables us to impose
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Ṅ(t0)50 as befits an initial equilibrium state. As in@21#, we
find d52g. Here,g, ḡ, andg̃ are all evaluated att0.

The real-time propagators satisfying these boundary con-
ditions are described in the text. Of those involving imagi-
nary times, three are found to be

g33~t,t8!5
1

2v
$@n21Q~t2t8!#e2v~t2t8!

1@n11Q~t82t!#ev~t2t8!% ~A5!

and

g13~ t,t!5g23~ t,t!5

expS 2
1

2Et0
t

@g~ t̄ !2 i g̃~ t̄ !#dt̄D
4AV~ t0!V~ t !

3@~A1e
2vt1A2e

vt!e2 i* t0
t V~ t̄ !dt̄1~A3e

2vt

1A4e
vt!ei* t0

t V~ t̄ !dt̄#, ~A6!

with

A15~11n1!@N~ t0!2122n2#/~11n11n2!, ~A7!

A25n2@N~ t0!1112n1#/~11n11n2!, ~A8!

A35~11n1!@N]~ t0!1112n2#/~11n11n2!, ~A9!

A45n2@N]~ t0!2122n1#/~11n11n2!. ~A10!

The others are given by

g31~t,t !5g32~t,t !5g13*
]~ t,t!. ~A11!

Indeed, the whole propagator matrix has the property

gab*
]~ t,t8!5gba~ t8,t !, ~A12!

wheret andt8 denote real or imaginary times, depending on
the indicesa andb.
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