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Chiral symmetry restoration at finite temperature and chemical potential
in the improved ladder approximation
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The chiral symmetry of QCD is studied at finite temperature and chemical potential using the Schwinger-
Dyson equation in the improved ladder approximation. We calculate three order parameters: the vacuum
expectation value of the quark bilinear operator, the pion decay constant, and the quark mass gap. We have a
second order phase transition at the temperafyre169 MeV along the zero chemical potential line, and a
first order phase transition at the chemical potentig=598 MeV along the zero temperature line. We also
calculate the critical exponents of the three order paramég®d856-282(97)03004-X]

PACS numbeis): 11.10.Wx, 11.15.Tk, 11.30.Rd, 12.38.Cy

I. INTRODUCTION (parametersto fit the physical observables, and we obtain a
definite answer.

Chiral symmetry in QCD is dynamically broken at zero In previous attempts further approximations were intro-
temperature. This feature is confirmed by the fact that théluced in addition to the ladder approximation. Some nonper
pion is the Nambu-Goldstone boson accompanied by thigirbative approximation can violate chiral symmetry, and re-
symmetry breaking. On the other hand, it is shown that Sponliable results cannot be obtained. We would like to obtain
taneously broken symmetries restore at sufficiently high temt€Sults keeping chiral symmetry within the framework of the
perature(and/or chemical potentialin some simple mod- Schwinger-Dyson equation only in the improved ladder ap-
els [1]. Then, the same restoration is also expected to hol@oXimation.

for dynamically broken chiral symmetry in QCD. This phe- We calculate the values of the three order parameters: the
nomenon is widely believed to be seen in heavy-ion coIIi-quark mass gap, the vacuum expectation value of the quark

sions, the early universe, and neutron stars, bilinear operatof ), and the pion decay constant. We have

There are various attempts to study the phase diagram ar?dsecond order phase transitionTat= 169 MeV along the
- . P y P 9 #=0 line and a first order phase transitionpat=598 MeV
critical behavior. In order to do them we need any nonper-

turbative treat i h N ) latii along theT=0 line. The critical exponents of the above
urbative freafment such as anor expansion, 1atlic€  yree order parameters are extractedTag) = (T,0), which

5|mulgt|on, the Schwmger-pyson equation, and so on. Baseghows that our formulation is different from mean field theo-
on universality arguments it is expected that the critical pheyjag

nomena of finite temperature QCD are described by a three- Tpis paper is organized as follows. In Sec. Il, we show
dimensional lineap- model with the same global symmetry, pasic ingredients to study chiral symmetry restoration using
in which thee expansion is USG@Z]. Lattice simulations are the Schwinger_Dyson equation in the improved ladder ap-
powerful tools to study QCD at finite temperatul@-6].  proximation. The expressions of the three order parameters
The Schwinger-Dyson equation in the improved ladder apare given in terms of the quark mass function. The Pagels-
proximation is solved with further approximations and givesstokar formula is used to calculate the pion decay constant.
dynamical symmetry restoratiofy—11. Nambu—Jona- |n Sec. Ill we give our numerical results. The Schwinger-
Lasinio models, as phenomenological models of QCD, propyson equation is numerically solved using a iteration
vide us with useful pictures about dynamical chiral symme-method. We determine the positions and the orders of phase

try breaking and its restoratiofl2—14. In these three transitions. We also extract the critical exponents. A sum-
approaches it is indicated that there is a second order phaggary and discussion are found in Sec. IV.

transition at T,u)=(T.0) and a first order one at
(T,u)=(0,uc) in the case of the two massless flavors. The
phase transition points are found to be of order-200
MeV, u.~400 MeV.

In this paper we use the Schwinger-Dyson equation in the The restoration of spontaneously broken symmetry occurs
improved ladder approximation. The advantages of this apat finite temperature and chemical potential. The phe-
proach are that it is a convenient tool to study the nature ohomenon is described in terms of the imaginary time formal-
chiral symmetry, and we easily introduce fermion couplingsism in gauge theorie$15,16.
to the gluon in the chiral limit at finite temperature and In this section we show the basic ingredients for solving
chemical potential. Further, we have no degrees of freedonthe Schwinger-Dyson equation at finite temperature and

chemical potential. Then, we study dynamical chiral symme-

try breaking and its restoration. In this paper all dimensionful
*Electronic address: tanigchi@gauge.scphys.kyoto-u.ac.jp quantities are rescaled by using thecp, unless otherwise
TElectronic address: yoshida@yukawa.kyoto-u.ac.jp stated.

II. SCHWINGER-DYSON EQUATION AT FINITE
TEMPERATURE AND CHEMICAL POTENTIAL
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” d3k
b—SF(p)ﬂ:Tm:Zx f Wczgz(p,k)my(p—k)

X y*Se(k) v, (2.9

p whereC, is the second Casimir invariant areK ,, is the
gluon tree propagator in the Landau gauge:

[,
_ wv
FIG. 1. The Feynman diagram of the Schwinger-Dyson equa- KW(U— _|2(gw_ 12
tion. We have the same diagram for the equation at finite tempera-
ture and chemical potential.

(2.5

The quantityg?(p,k) is a one-loop running coupling depend-

) ) ing on the momentp andk. In order to describe a property
We consider QCD with masslessandd quarks, and then ot QcD we use the following form for the running cou-

there is an SU(2)X SU(2)g chiral symmetry. There are sev- ling [17]:

eral probes to investigate chiral symmetry such as the quarﬁ

mass gap, the vacuum expectation vaMEV) of the quark (1
bilinear operator, and the decay constant of the pion. Those T if te<t,
are evaluated in terms of the quark mass funcli¢p). The
mass function is determined by the Schwinger-Dyson equa- 1 1 (tg—to)?—(t—tc)? |
tion. We use the improved ladder approximation to solve this9“(P,K)=—2-X{ —+ 2t2(te—1 i te<t<te,
: : ; Bo F Fte—tc)
equation. We work with the three-flavg function for the
running coupling, since the quark also contributes to the £+ (tr—tc) if t<t
: L ot foff

running of the coupling in the concerned energy range. { te 2t¢

At zero temperature this approximation provides us with a (2.6

convincing result of dynamical chiral symmetry breaking
and good values of the lowest-lying meson masses. So wahere t=In(p?+k?), tc=—2.0, Bo=(1IN.— 2N;)/(487?)
expect that the approximation gives good results even in this the coefficient of one-loog function, andtr is a param-
case of finite temperature. eter needed to regularize the divergence of the running cou-
To take the effect of finite temperature into account, wepling at the QCD scalé ocp. We calltg the infrared regu-
work in the imaginary time formalisnj15,16. Let us start larization parameterN.=3 andN;{=3 are the number of
with writing down the Schwinger-Dyson equation as in Fig. colors and flavors, respectively. The running couplgtgis
1. The diagram is exactly the same as that in zero temperamoothly interpolated between the ordinary one-loop run-
ture QCD, since the difference between the ugmato tem-  ning coupling form at>t; and a constant value att.
perature field theory and finite temperature field theory As will be shown, the results do not depend on this particular
stems from the boundary effect of time only. The time com-infrared regularization. It is sufficient to check thedepen-
ponents of quark and gluon momenta become discrete. Sinaences only: A change df can be absorbed in that 6f,
quark fields have antiperiodic boundary conditions in theand so the infrared behavior of the running coupling is con-

imaginary time direction, we have trolled bytg . By virtue of the running effect of the coupling
the resultant mass function, which is determined by Eg.
p=2xiT(n+3), (2.4), reproduces the exact behavior in the high energy re-

gion [18]. Notice that this property is needed to preserve
chiral symmetry[19].

The quark propagator is expanded by three (3O
invariant amplitudes as

Ko=2mT(m+1), (2.2

wheren,me Z. When the chemical potential is introduced,

the time component op in the quark propagatdB:(p) is () 1 27
modified as p)= : -
3(p)+[p+B(p) 1Y~ A(p)p
Po—Po— 4. (2.2 At the vanishing temperature and chemical potential lim-

its (T, u—0) the choice of Landau gauge allows us to obtain
The momentum integration is modified to the summation
A(p)=1,

_d% T f—dsk 2.3 B(p)=0 (2.9
emh =) G @3 P)=5. '
Although we are studying in finite temperature and chemical
Then, modifying the Schwinger-Dyson equation at zero tempotential, we assume the relatig@.8) for simplicity. We
perature according to Eqgs2.1), (2.2, and (2.3, the expect that relatiori2.8) is not changed so much in the case
Schwinger-Dyson equation at finite temperature is given asof low temperature and chemical potential. As shown later,
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the phase transition line of chiral symmetry restoration lies in

that region; T¢,uc<Aqcp. Then, the result should not
change qualitatively.

Now, substituting Eq(2.7) into Eq.(2.4) under the con-
dition (2.8), we obtain

300=2 | yidyKum(xy)

« 2m(y)
[27T(Mm+ 3) +ipl2+y?+ 3 (y)?

(2.9

wherex=|p| andy=1k| and

3TC,0%(p,k) 47T’ (n—m)?+ (x+y)?
82Xy N 27272 (n—m)Z+ (x—y)2/"

(2.10

Knm(X,Y) =

FIG. 2. A typical form of the mass function. We put
(T,u)=(90,0) MeV. The integen specifies the time component of

the momentum as in E¢2.1) andx is given in Eq.(2.12.

2N.T ”
. . . . fﬂ'(Tuu“)ZZ 2 2 f dex
Notice that we have the 30) rotational invariance but not T n Jo
SO3,1). The mass functior® (p) is a function ofp® and s
p?, and is rewritten a& ,(x). In the presence of the chemical En(x)(in(x)—i ”(X))
potential we easily find from Eq2.9) that the mass function 3 dx
takes a complex value satisfying the relation {[27T(n+ %)+i,u]2+x2+2n(x)2}2'
(2.19
S_,(0)*=3,_4x) for n=1,2,... . (211
We also calculate the VEV:
We solve the Schwinger-Dyson equati¢®.9) numeri- o _ IN.T A
cally by an iteration(relaxation method. The momentum (uuy,=(dd), = ; > f x%dx
valuablesx, y are discretized to be ™ n Jo
» 2p(X)
n— N ,,7124 %2 2°
X — Xn:eX[{AIR'F(AUV_AIR)m y (212 [27TT(n+ 2)+I'LL] +X +2n(x)

sb (2.19
wheren=1,2, ... Ngp and similarly fory. We divide Ix ~ The VEV is renormalized at 1 GeV via
and Iry into Ngp points. The quantity\ =exp(Ay) defines (1 G (1IN, 2N;)/9C,
the ultraviolet cutoff for the space component of momenta. <@>1Gevz( n( eV)) <@>A'
Therefore an S@) symmetric cutoffA is introduced, which InA
is needed for numerical calculations. The momentum region (2.16

of the time component is properly truncated so that the sup-
port of the mass function is covered well, as well as that ofV
the space component. We have integrable singularities at
(n,x)=(m,y) stemming from the tree level gluon pole, but Ill. NUMERICAL RESULTS
these should be regularized in the numerical calculation. In

order to avoid this singularity we apply a two-point splitting nu

herey=u,d.

In this section we solve the Schwinger-Dyson equation

prescription

Knm(X%Y) — 3[Knm(X,Y1) +Kom(X,y-)], (2.13

with y. =yexgd £(Ayv— Ar)/(4Ngp)]. The validity of this
prescription is checked by using the conventiofzairo tem-
perature Schwinger-Dyson equation.

merically by an iteration method. We start with an initial
form of the mass function and input it in the right-hand side
(RHY) of Eq. (2.9). Performing the integration of and the
summation ofm, we have an updated form of the mass func-
tion, which is taken as a more suitable trial form. After suf-
ficient iterations the functional form converges, giving the
true solution with enough accuracy. The convergence of the
solution is very rapid off the phase transition regions. A typi-
cal form of the mass function is shown in Fig. 2 at

After obtaining the mass function, we immediately evalu-(T,u«)=(90,0) MeV. Let us see the regionxnAgr and
ate the pion decay constant by using the Pagels-Stokar fon=—10, ...,9. Themass function dumps so fast in the

mula at finite temperature:

p,=—ipg direction, indicated byn in the figure, that the
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FIG. 3. The functional forms of the order paramet@i® mass FIG. 4. Thet; dependence of the VEV renormalized at 1 GeV.

function, the renormalized VEV, and the pion decay congtiomt |t changes by 5% at worst agairtgt. The unit is MeV.

T along theu=0 line. The unit is MeV.

nately, the ladder approximation itself is consistent with the
chiral symmetry[19]. However, many investigations violate
chiral symmetry, where further approximations are used in
. addition to the laddef7,9,10. In order to preserve symme-
which corresponds to 2T(n+1/2)~*Aqcp. At T=90 try the high energy behavior of the quark I?nass func%on must

MeV Fhis correqunds to+ 1./27 » 1'0'. This implies a di'. be consistent with the result of the operator product expan-
mensional reduction at sufficiently high temperature; €. gion (OPB [19]:

four-dimensional theory at finite temperature belongs to the

values of the mass function ft|=4 are much smaller than
that atn=0 [3,_4(X)~10 ?X3,(x)]. The mass function
3, begins damping at thé\ocp scale for increasingn|,

same universality class as that of a three-dimensional theory g2(x) ) )
with the same symmetry. 3n(p?)~ ” (Inx)9C2/(1Ne=2ND a5 x=pg+p?~oo.
We use the renormalized VEV and the pion decay con- 3.1)
stant as order parameters of chiral symmetry. The dynamical '
mass of the quark itself is also an order parameter. Here we should notice that even in the finite temperature

We determine the value okqcp from the experimental  cage the high energy behavior of the mass function is the
resultf,=93 MeV atT=u=0, and we havelqocp=592  same as that of the zero temperature case, since the tempera-
MeV using Eq.(2.14 at te=0.5. This is our result of e effect is suppressed in the high energy region. In Refs.
Aqcp obtained by using the one-loog function. In this 7 9 1q their further approximationy = const) does not sat-
paper we put the infrared regularization parameéfer 0.5  sfy Eq. (3.1); on the other hand, in Ref11] they adopt an
and show later that the physical observables as well as thgnsatz consistent with E¢B.1) up to the logarithmic correc-

phase transition line do not depend &gn tion, while our formalism exactly reproduces the OPE result
. . (3.D).
A. Zero chemical potential case We check the dependence of the order parameters on the

First, we study the phase transition along fhe 0 line.  infrared regularization parametég. The physical observ-
The phase transition point is defined so that three order paables( ), cev andf .(T) should not depend on the param-
rameters of the mass gap,,—o(x=0), the renormalized etertz. We confirm this requirement. The dependence of the
VEV ()1 cev, and the pion decay constafit, vanish. renormalized VEV(y ), gey @and the pion decay constant
We show the temperature dependences of these order paraf{T) is shown in Figs. 4 and 5. The values of the renormal-
eters in Fig. 3 with two massless flavors. Theized VEV and thef, change, at worst, by 5% and 8%
SU(2), X SU(2) chiral symmetry restores &=T,=169 against tr=0.2—-0.6, respectively. These values of
MeV. We have a second order phase transition. We have thig=0.2-0.6 correspond to those of the running coupling
same result as that of lattice simulatioft 6] with two fla-
vors in which the phase transition is second order at

T.~200 MeV. 120
The ladder approximation, used here, gives no flavor de- 1000 ‘;;;3%5@,
pendence, since the dependence essentially comes through %0 Trersent f
only the running effect of the coupling, whereas the flavor WY
dependence is suggested by universality argumg2iteind 60 02:0 '
it is confirmed by lattice simulation§3,5,6], where we have sl to= 814—’;;; .
a second order phase transitior\gt=2 and first order ones 0.5:% .
at Ny=3. Nambu—Jona-LasinitNJL) models[12—14 im- 20 0.6-4
ply that the inclusion of the effect of the U(4 rnomaly, the 0
so-called the instanton effect, allows us to obtain the same 0 50 100 150 200 250 T

flavor dependence as that in the lattice simulations.
The important point in studying chiral symmetry is that FIG. 5. Thet. dependence of the pion decay constant. It
the approximation used should preserve symmetry. Fortuchanges by 8% at worst agairtgt. The unit is MeV.
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FIG. 6. Thetr dependence of the mass function. We have a

strong dependence. The unit is MeV. FIG. 8. The functional forms of the renormalized VEV and the

gz(p= k=0)=570-92.6. Moreover, the phase transition pion decay constant for alongT=0 line. The unit is MeV.

point is fairly stable againgt . We conclude that there is no
te dependence of the physical observables and the positi
of the phase transition point.

We also show the dependence of the mass function in Fig. B=0.171, »=0.497, B'=0.507. (3.3
6. We have a strontt: dependence. Since the mass function
is not a physical observable, it may depend on the regularfhese values are different from those in mean field theories.
ization parametet:. However, the phase transition point If we consider mean field theories, we would have the rela-

c1Lﬁgrameters arA andy (=8,v,B") with T,=169 MeV. We
ve good fittings, which is shown in Fig. 7. The result is

determined using the mass function is fixed. tion B=wv sinceX ~ ().
Let us examine the critical behavior of the system. Since
we have a second order phase transitionTaju)=(T.,0), B. Zero temperature case
the three order parameters behave near the phase transition - )
point as Next, we study the phase transition along #e 0 line.

As is seen from Eq(2.9), the mass function has an imagi-

_ T\8 nary part foru+ 0. The functional forms fop. are shown of
()1 GeW(l_ T_c) , the renormalized VEM 1/}, ey, the pion decay constant
f.(n), and the real and imaginary parts of the mass gap in
T\» Figs. 8 and 9. The SU(2X SU(2)g chiral symmetry re-
20(0)~(1—T—C) , stores atu=u.=598 MeV. We have a strong first order

phase transition. Here, we check that the infrared regulariza-
tion parametetty does not affect the physical observables
and the nature of the phase transition.

Let us compare our result with those of other approaches.
There is no lattice simulation at so large a chemical potential
whereT<T.. The critical exponent®, v and 8’ are nu- that we can directly see the phase transition. A phase transi-
merically extracted by using g fitting. The order param- tion is suggested by extrapolating the result of lattice simu-
etersO [=(¢h)1 gev>20(0).f-(T)] are fitted by the linear lations around small [4]. On the other hand, there are
functional form IrO(T)=A+yIn(1-T/T,), and the fitting Many attempts using Schwinger-Dyson equationg,11]
and NJL modeld13,14]. Previous attempt$9,11] in the
ladder approximation give a first order phase transition.

Bl
fﬂ(T)~( 1- Tl) , (3.2

c

7 I ' ' ' - NJL [13,14 models with the instanton effect also give the
6+ 100y 16y / same atN;=2,3. Therefore, our result confirms theirs. Our
o :InX(0) P
5' a :lnf7:C ’»_i,:‘::ﬂM il
e . 250

4‘ - ‘.—""/‘ 1 w"w
3 / — 20| ReZ(0) .o
2t . 150
o 1 100]
0 In(1-7/T,)

. , . , , , ol
9 8 7 6 -5 -4 3 2 I ImEq(0)

00100 200 300 400 500 600 700 800"

FIG. 7. They? fittings for extracting the critical exponents of
the renormalized VEV, the mass gap, and the pion decay constant. FIG. 9. The functional forms of the real and the imaginary parts
We draw the best fitted lines of the for&w- yIn(1-T/T,). of the mass function fop alongT=0 line. The unit is MeV.
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havior of the quark mass function is consistent with the re-

H o . sult of the operator product expansi¢h9] even at finite
1\549%-~"i”fi' restoration phase temperature and chemical potential. The phase transition
e ~

point (or line) is determined by using three order parameters,
i.e., the VEV (), gev renormalized at 1 GeV, the quark
mass gap>,(0), and thepion decay constant,. In the
improved ladder approximation the infrared regularization
T parametert; must be introduced as in E€R.6) in order to
169 MeV regularize the running coupling. We, however, observe that
o _ physical quantities do not depend on the parantetefhen,
FIG. 10. The schematic view of the phase diagram from ourg,r results are obtained without any degrees of freedom
result. other thanAcp which is determined by putting =93
MeV at (T,u)=(0,0).
adva.ntage is that we have no parameter which modifies thﬁa\llr; tgigssﬁdogfggrV&”;Z":%ﬁg;g#;g%?&ﬁi? 1\.,:]%
physical result. critical exponents are extracted in Eg.3). This shows that
. QCD in the improved ladder approximation is different from
C. Phase diagram mean field theories. In the case of the vanishing temperature
Finally, we study the phase diagram of chiral symmetryT=0 we have a strong first order phase transition at
restoration. Near thg=0 line we have second order phase # =598 MeV.
transitions and near the=0 line we have first order ones. In  In the (T,«)=(0,0) limit the functional formsA(p)=1
both cases the convergences of updating the mass functiémd B(p)=0 as in Eq. (2.8) give a solution of the
are rapid, good for solving the Schwinger-Dyson equationSchwinger-Dyson equation in the Landau gauge. In this pa-
Unfortunately, near the phase transition line in the middleper we put these forms for anyT (u) for simplicity. We
region, the convergences are too bad to obtain solutions witehould check the validity of this prescription. In the middle
a suitable accuracy. However, a natural guess will be that theegion (0<T<T; and 0<u<u.) near the phase transition
order of phase transitions continuously changes from firstine the calculation of the mass function is too difficult for
order to second order, through weak first order, in the middléhe error to vanish in the iteration method. It is necessary to
region shown as in Fig. 10. This type of diagram is alsoobtain a more efficient method for solving the Schwinger-
obtained in Refs[11,13, which is the same as that of the Dyson equation in this region. After these problems are
two-dimensional Gross-Neveu model in R€f20,21]. settled, the framework of the improved ladder approximation
becomes a more convenient tool to figure out the nature of
chiral symmetry, since it is easy to introduce fermions in the

IV. SUMMARY AND DISCUSSION chiral limit.

second order

broken phase

In this paper have we studied the chiral symmetry resto-
ration at f|n|t¢ temperature and chemlcallpotennal in _QCD. ACKNOWLEDGMENTS
We use the improved ladder approximation and the imagi-
nary time formalism. The improved ladder approximation We would like to thank T. Hatsuda and Y. Kikukawa for
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