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The chiral symmetry of QCD is studied at finite temperature and chemical potential using the Schwinger-
Dyson equation in the improved ladder approximation. We calculate three order parameters: the vacuum
expectation value of the quark bilinear operator, the pion decay constant, and the quark mass gap. We have a
second order phase transition at the temperatureTc5169 MeV along the zero chemical potential line, and a
first order phase transition at the chemical potentialmc5598 MeV along the zero temperature line. We also
calculate the critical exponents of the three order parameters.@S0556-2821~97!03004-X#

PACS number~s!: 11.10.Wx, 11.15.Tk, 11.30.Rd, 12.38.Cy

I. INTRODUCTION

Chiral symmetry in QCD is dynamically broken at zero
temperature. This feature is confirmed by the fact that the
pion is the Nambu-Goldstone boson accompanied by this
symmetry breaking. On the other hand, it is shown that spon-
taneously broken symmetries restore at sufficiently high tem-
perature~and/or chemical potential! in some simple mod-
els @1#. Then, the same restoration is also expected to hold
for dynamically broken chiral symmetry in QCD. This phe-
nomenon is widely believed to be seen in heavy-ion colli-
sions, the early universe, and neutron stars.

There are various attempts to study the phase diagram and
critical behavior. In order to do them we need any nonper-
turbative treatment such as an« or 1/N expansion, lattice
simulation, the Schwinger-Dyson equation, and so on. Based
on universality arguments it is expected that the critical phe-
nomena of finite temperature QCD are described by a three-
dimensional linears model with the same global symmetry,
in which the« expansion is used@2#. Lattice simulations are
powerful tools to study QCD at finite temperature@3–6#.
The Schwinger-Dyson equation in the improved ladder ap-
proximation is solved with further approximations and gives
dynamical symmetry restoration@7–11#. Nambu–Jona-
Lasinio models, as phenomenological models of QCD, pro-
vide us with useful pictures about dynamical chiral symme-
try breaking and its restoration@12–14#. In these three
approaches it is indicated that there is a second order phase
transition at (T,m)5(Tc,0) and a first order one at
(T,m)5(0,mc) in the case of the two massless flavors. The
phase transition points are found to be of orderTc;200
MeV, mc;400 MeV.

In this paper we use the Schwinger-Dyson equation in the
improved ladder approximation. The advantages of this ap-
proach are that it is a convenient tool to study the nature of
chiral symmetry, and we easily introduce fermion couplings
to the gluon in the chiral limit at finite temperature and
chemical potential. Further, we have no degrees of freedom

~parameters! to fit the physical observables, and we obtain a
definite answer.

In previous attempts further approximations were intro-
duced in addition to the ladder approximation. Some nonper-
turbative approximation can violate chiral symmetry, and re-
liable results cannot be obtained. We would like to obtain
results keeping chiral symmetry within the framework of the
Schwinger-Dyson equation only in the improved ladder ap-
proximation.

We calculate the values of the three order parameters: the
quark mass gap, the vacuum expectation value of the quark
bilinear operator̂c̄c&, and the pion decay constant. We have
a second order phase transition atTc5169 MeV along the
m50 line and a first order phase transition atmc5598 MeV
along theT50 line. The critical exponents of the above
three order parameters are extracted at (T,m)5(Tc,0), which
shows that our formulation is different from mean field theo-
ries.

This paper is organized as follows. In Sec. II, we show
basic ingredients to study chiral symmetry restoration using
the Schwinger-Dyson equation in the improved ladder ap-
proximation. The expressions of the three order parameters
are given in terms of the quark mass function. The Pagels-
Stokar formula is used to calculate the pion decay constant.
In Sec. III we give our numerical results. The Schwinger-
Dyson equation is numerically solved using a iteration
method. We determine the positions and the orders of phase
transitions. We also extract the critical exponents. A sum-
mary and discussion are found in Sec. IV.

II. SCHWINGER-DYSON EQUATION AT FINITE
TEMPERATURE AND CHEMICAL POTENTIAL

The restoration of spontaneously broken symmetry occurs
at finite temperature and chemical potential@1#. The phe-
nomenon is described in terms of the imaginary time formal-
ism in gauge theories@15,16#.

In this section we show the basic ingredients for solving
the Schwinger-Dyson equation at finite temperature and
chemical potential. Then, we study dynamical chiral symme-
try breaking and its restoration. In this paper all dimensionful
quantities are rescaled by using theLQCD, unless otherwise
stated.
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We consider QCD with masslessu andd quarks, and then
there is an SU(2)L3SU(2)R chiral symmetry. There are sev-
eral probes to investigate chiral symmetry such as the quark
mass gap, the vacuum expectation value~VEV! of the quark
bilinear operator, and the decay constant of the pion. Those
are evaluated in terms of the quark mass functionS(p). The
mass function is determined by the Schwinger-Dyson equa-
tion. We use the improved ladder approximation to solve this
equation. We work with the three-flavorb function for the
running coupling, since thes quark also contributes to the
running of the coupling in the concerned energy range.

At zero temperature this approximation provides us with a
convincing result of dynamical chiral symmetry breaking
and good values of the lowest-lying meson masses. So we
expect that the approximation gives good results even in the
case of finite temperature.

To take the effect of finite temperature into account, we
work in the imaginary time formalism@15,16#. Let us start
with writing down the Schwinger-Dyson equation as in Fig.
1. The diagram is exactly the same as that in zero tempera-
ture QCD, since the difference between the usual~zero tem-
perature! field theory and finite temperature field theory
stems from the boundary effect of time only. The time com-
ponents of quark and gluon momenta become discrete. Since
quark fields have antiperiodic boundary conditions in the
imaginary time direction, we have

p052p iT~n1 1
2 !,

k052p iT~m1 1
2 !, ~2.1!

wheren,mPZ. When the chemical potentialm is introduced,
the time component ofp in the quark propagatorSF(p) is
modified as

p0→p02m. ~2.2!

The momentum integration is modified to the summation

E d4k

~2p!4i
→ T (

m52`

` E d3k

~2p!3
. ~2.3!

Then, modifying the Schwinger-Dyson equation at zero tem-
perature according to Eqs.~2.1!, ~2.2!, and ~2.3!, the
Schwinger-Dyson equation at finite temperature is given as

p”2SF~p!215T (
m52`

` E d3k

~2p!3
C2g

2~p,k!Kmn~p2k!

3gmSF~k!gn, ~2.4!

whereC2 is the second Casimir invariant and2Kmn is the
gluon tree propagator in the Landau gauge:

Kmn~ l !5
1

2 l 2 S gmn2
lml n
l 2 D . ~2.5!

The quantityg2(p,k) is a one-loop running coupling depend-
ing on the momentap andk. In order to describe a property
of QCD we use the following form for the running cou-
pling @17#:

g2~p,k!5
1

b0
35

1

t
if tF,t ,

1

tF
1

~ tF2tC!22~ t2tC!2

2tF
2~ tF2tC!

if tC,t,tF

1

tF
1

~ tF2tC!

2tF
2 if t,tC ,

,

~2.6!

where t5 ln(p21k2), tC[22.0, b05(11Nc22Nf)/(48p
2)

is the coefficient of one-loopb function, andtF is a param-
eter needed to regularize the divergence of the running cou-
pling at the QCD scaleLQCD. We call tF the infrared regu-
larization parameter.Nc53 andNf53 are the number of
colors and flavors, respectively. The running couplingg2 is
smoothly interpolated between the ordinary one-loop run-
ning coupling form att.tF and a constant value att5tC .
As will be shown, the results do not depend on this particular
infrared regularization. It is sufficient to check thetF depen-
dences only: A change oftC can be absorbed in that oftF ,
and so the infrared behavior of the running coupling is con-
trolled by tF . By virtue of the running effect of the coupling
the resultant mass function, which is determined by Eq.
~2.4!, reproduces the exact behavior in the high energy re-
gion @18#. Notice that this property is needed to preserve
chiral symmetry@19#.

The quark propagator is expanded by three SO~3!-
invariant amplitudes as

SF~p!5
1

S~p!1@m1B~p!#g02A~p!p”
. ~2.7!

At the vanishing temperature and chemical potential lim-
its (T,m→0) the choice of Landau gauge allows us to obtain

A~p!51,

B~p!50. ~2.8!

Although we are studying in finite temperature and chemical
potential, we assume the relation~2.8! for simplicity. We
expect that relation~2.8! is not changed so much in the case
of low temperature and chemical potential. As shown later,

FIG. 1. The Feynman diagram of the Schwinger-Dyson equa-
tion. We have the same diagram for the equation at finite tempera-
ture and chemical potential.
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the phase transition line of chiral symmetry restoration lies in
that region; Tc ,mc&LQCD. Then, the result should not
change qualitatively.

Now, substituting Eq.~2.7! into Eq. ~2.4! under the con-
dition ~2.8!, we obtain

Sn~x!5 (
m52`

` E y2dyKnm~x,y!

3
Sm~y!

@2pT~m1 1
2 !1 im#21y21Sm~y!2

, ~2.9!

wherex5upu andy5uku and

Knm~x,y!5
3TC2g

2~p,k!

8p2xy
lnS 4p2T2~n2m!21~x1y!2

4p2T2~n2m!21~x2y!2D .
~2.10!

Notice that we have the SO~3! rotational invariance but not
SO~3,1!. The mass functionS(p) is a function ofp0 and
p2, and is rewritten asSn(x). In the presence of the chemical
potential we easily find from Eq.~2.9! that the mass function
takes a complex value satisfying the relation

S2n~x!*5Sn21~x! for n51,2, . . . . ~2.11!

We solve the Schwinger-Dyson equation~2.9! numeri-
cally by an iteration~relaxation! method. The momentum
valuablesx, y are discretized to be

x → xn5expS L IR1~LUV2L IR!
n21

NSD21D , ~2.12!

wheren51,2, . . . ,NSD and similarly for y. We divide lnx
and lny into NSD points. The quantityL[exp(LUV) defines
the ultraviolet cutoff for the space component of momenta.
Therefore an SO~3! symmetric cutoffL is introduced, which
is needed for numerical calculations. The momentum region
of the time component is properly truncated so that the sup-
port of the mass function is covered well, as well as that of
the space component. We have integrable singularities at
(n,x)5(m,y) stemming from the tree level gluon pole, but
these should be regularized in the numerical calculation. In
order to avoid this singularity we apply a two-point splitting
prescription

Knm~x,y! → 1
2 @Knm~x,y1!1Knm~x,y2!#, ~2.13!

with y65yexp@6(LUV2L IR)/(4NSD)#. The validity of this
prescription is checked by using the conventional~zero tem-
perature! Schwinger-Dyson equation.

After obtaining the mass function, we immediately evalu-
ate the pion decay constant by using the Pagels-Stokar for-
mula at finite temperature:

f p~T,m!25
2NcT

p2 (
n
E
0

`

x2dx

3

Sn~x!S Sn~x!2
x

3

dSn~x!

dx D
$@2pT~n1 1

2 !1 im#21x21Sn~x!2%2
.

~2.14!

We also calculate the VEV:

^ūu&L5^d̄d&L5
2NcT

p2 (
n
E
0

L

x2dx

3
Sn~x!

@2pT~n1 1
2 !1 im#21x21Sn~x!2

.

~2.15!

The VEV is renormalized at 1 GeV via

^c̄c&1 GeV5S ln~1 GeV!

lnL D ~11Nc22Nf !/9C2

^c̄c&L ,

~2.16!

wherec5u,d.

III. NUMERICAL RESULTS

In this section we solve the Schwinger-Dyson equation
numerically by an iteration method. We start with an initial
form of the mass function and input it in the right-hand side
~RHS! of Eq. ~2.9!. Performing the integration ofy and the
summation ofm, we have an updated form of the mass func-
tion, which is taken as a more suitable trial form. After suf-
ficient iterations the functional form converges, giving the
true solution with enough accuracy. The convergence of the
solution is very rapid off the phase transition regions. A typi-
cal form of the mass function is shown in Fig. 2 at
(T,m)5(90,0) MeV. Let us see the region lnx;LIR and
n5210, . . . ,9. Themass function dumps so fast in the
p4[2 ip0 direction, indicated byn in the figure, that the

FIG. 2. A typical form of the mass function. We put
(T,m)5(90,0) MeV. The integern specifies the time component of
the momentum as in Eq.~2.1! andx is given in Eq.~2.12!.
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values of the mass function atunu*4 are much smaller than
that atn50 @Sn54(x);10223S0(x)#. The mass function
Sn begins damping at theLQCD scale for increasingunu,
which corresponds to 2pT(n11/2);6LQCD. At T590
MeV this corresponds ton11/2;61.0. This implies a di-
mensional reduction at sufficiently high temperature; i.e.,
four-dimensional theory at finite temperature belongs to the
same universality class as that of a three-dimensional theory
with the same symmetry.

We use the renormalized VEV and the pion decay con-
stant as order parameters of chiral symmetry. The dynamical
mass of the quark itself is also an order parameter.

We determine the value ofLQCD from the experimental
result f p593 MeV at T5m50, and we haveLQCD5592
MeV using Eq. ~2.14! at tF50.5. This is our result of
LQCD obtained by using the one-loopb function. In this
paper we put the infrared regularization parametertF50.5
and show later that the physical observables as well as the
phase transition line do not depend ontF .

A. Zero chemical potential case

First, we study the phase transition along them50 line.
The phase transition point is defined so that three order pa-
rameters of the mass gap,Sn50(x50), the renormalized
VEV ^c̄c&1 GeV, and the pion decay constantf p , vanish.
We show the temperature dependences of these order param-
eters in Fig. 3 with two massless flavors. The
SU(2)L3SU(2)R chiral symmetry restores atT5Tc5169
MeV. We have a second order phase transition. We have the
same result as that of lattice simulations@5,6# with two fla-
vors in which the phase transition is second order at
Tc;200 MeV.

The ladder approximation, used here, gives no flavor de-
pendence, since the dependence essentially comes through
only the running effect of the coupling, whereas the flavor
dependence is suggested by universality arguments@2# and
it is confirmed by lattice simulations@3,5,6#, where we have
a second order phase transition atNf52 and first order ones
at Nf>3. Nambu–Jona-Lasinio~NJL! models @12–14# im-
ply that the inclusion of the effect of the U(1)A anomaly, the
so-called the instanton effect, allows us to obtain the same
flavor dependence as that in the lattice simulations.

The important point in studying chiral symmetry is that
the approximation used should preserve symmetry. Fortu-

nately, the ladder approximation itself is consistent with the
chiral symmetry@19#. However, many investigations violate
chiral symmetry, where further approximations are used in
addition to the ladder@7,9,10#. In order to preserve symme-
try the high energy behavior of the quark mass function must
be consistent with the result of the operator product expan-
sion ~OPE! @19#:

Sn~p
2!;

g2~x!

x
~ lnx!9C2 /~11Nc22Nf ! as x[p4

21p2;`.

~3.1!

Here we should notice that even in the finite temperature
case the high energy behavior of the mass function is the
same as that of the zero temperature case, since the tempera-
ture effect is suppressed in the high energy region. In Refs.
@7,9,10# their further approximation (S5const) does not sat-
isfy Eq. ~3.1!; on the other hand, in Ref.@11# they adopt an
ansatz consistent with Eq.~3.1! up to the logarithmic correc-
tion, while our formalism exactly reproduces the OPE result
~3.1!.

We check the dependence of the order parameters on the
infrared regularization parametertF . The physical observ-
ables^c̄c&1 GeV and f p(T) should not depend on the param-
etertF . We confirm this requirement. The dependence of the
renormalized VEV^c̄c&1 GeV and the pion decay constant
fp(T) is shown in Figs. 4 and 5. The values of the renormal-
ized VEV and thef p change, at worst, by 5% and 8%
against tF50.2–0.6, respectively. These values of
tF50.2–0.6 correspond to those of the running coupling

FIG. 3. The functional forms of the order parameters~the mass
function, the renormalized VEV, and the pion decay constant! for
T along them50 line. The unit is MeV.

FIG. 4. ThetF dependence of the VEV renormalized at 1 GeV.
It changes by 5% at worst againsttF . The unit is MeV.

FIG. 5. The tF dependence of the pion decay constant. It
changes by 8% at worst againsttF . The unit is MeV.
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g2(p5k50)5570–92.6. Moreover, the phase transition
point is fairly stable againsttF . We conclude that there is no
tF dependence of the physical observables and the position
of the phase transition point.

We also show the dependence of the mass function in Fig.
6. We have a strongtF dependence. Since the mass function
is not a physical observable, it may depend on the regular-
ization parametertF . However, the phase transition point
determined using the mass function is fixed.

Let us examine the critical behavior of the system. Since
we have a second order phase transition at (T,m)5(Tc,0),
the three order parameters behave near the phase transition
point as

^c̄c&1 GeV;S 12
T

Tc
D b

,

S0~0!;S 12
T

Tc
D n

,

f p~T!;S 12
T

Tc
D b8

, ~3.2!

whereT,Tc . The critical exponentsb, n and b8 are nu-
merically extracted by using ax2 fitting. The order param-
etersO @5^c̄c&1 GeV,S0(0),f p(T)# are fitted by the linear
functional form lnO(T)5A1g ln(12T/Tc), and the fitting

parameters areA andg (5b,n,b8) with Tc5169 MeV. We
have good fittings, which is shown in Fig. 7. The result is

b50.171, n50.497, b850.507. ~3.3!

These values are different from those in mean field theories.
If we consider mean field theories, we would have the rela-
tion b5n sinceS;^c̄c&.

B. Zero temperature case

Next, we study the phase transition along theT50 line.
As is seen from Eq.~2.9!, the mass function has an imagi-
nary part formÞ0. The functional forms form are shown of
the renormalized VEV̂ c̄c&1 GeV, the pion decay constant
f p(m), and the real and imaginary parts of the mass gap in
Figs. 8 and 9. The SU(2)L3SU(2)R chiral symmetry re-
stores atm5mc5598 MeV. We have a strong first order
phase transition. Here, we check that the infrared regulariza-
tion parametertF does not affect the physical observables
and the nature of the phase transition.

Let us compare our result with those of other approaches.
There is no lattice simulation at so large a chemical potential
that we can directly see the phase transition. A phase transi-
tion is suggested by extrapolating the result of lattice simu-
lations around smallm @4#. On the other hand, there are
many attempts using Schwinger-Dyson equations@7,9,11#
and NJL models@13,14#. Previous attempts@9,11# in the
ladder approximation give a first order phase transition.
NJL @13,14# models with the instanton effect also give the
same atNf52,3. Therefore, our result confirms theirs. Our

FIG. 7. Thex2 fittings for extracting the critical exponents of
the renormalized VEV, the mass gap, and the pion decay constant.
We draw the best fitted lines of the formA1g ln(12T/Tc).

FIG. 8. The functional forms of the renormalized VEV and the
pion decay constant form alongT50 line. The unit is MeV.

FIG. 6. The tF dependence of the mass function. We have a
strong dependence. The unit is MeV.

FIG. 9. The functional forms of the real and the imaginary parts
of the mass function form alongT50 line. The unit is MeV.
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advantage is that we have no parameter which modifies the
physical result.

C. Phase diagram

Finally, we study the phase diagram of chiral symmetry
restoration. Near them50 line we have second order phase
transitions and near theT50 line we have first order ones. In
both cases the convergences of updating the mass function
are rapid, good for solving the Schwinger-Dyson equation.
Unfortunately, near the phase transition line in the middle
region, the convergences are too bad to obtain solutions with
a suitable accuracy. However, a natural guess will be that the
order of phase transitions continuously changes from first
order to second order, through weak first order, in the middle
region shown as in Fig. 10. This type of diagram is also
obtained in Refs.@11,13#, which is the same as that of the
two-dimensional Gross-Neveu model in Refs.@20,21#.

IV. SUMMARY AND DISCUSSION

In this paper have we studied the chiral symmetry resto-
ration at finite temperature and chemical potential in QCD.
We use the improved ladder approximation and the imagi-
nary time formalism. The improved ladder approximation
does not violate chiral symmetry, since the high energy be-

havior of the quark mass function is consistent with the re-
sult of the operator product expansion@19# even at finite
temperature and chemical potential. The phase transition
point ~or line! is determined by using three order parameters,
i.e., the VEV ^c̄c&1 GeV renormalized at 1 GeV, the quark
mass gapS0(0), and thepion decay constantf p . In the
improved ladder approximation the infrared regularization
parametertF must be introduced as in Eq.~2.6! in order to
regularize the running coupling. We, however, observe that
physical quantities do not depend on the parametertF . Then,
our results are obtained without any degrees of freedom
other thanLQCD which is determined by puttingf p593
MeV at (T,m)5(0,0).

In the case of the vanishing chemical potentialm50 we
have a second order phase transition atTc5169 MeV. The
critical exponents are extracted in Eq.~3.3!. This shows that
QCD in the improved ladder approximation is different from
mean field theories. In the case of the vanishing temperature
T50 we have a strong first order phase transition at
m5598 MeV.

In the (T,m)5(0,0) limit the functional formsA(p)51
and B(p)50 as in Eq. ~2.8! give a solution of the
Schwinger-Dyson equation in the Landau gauge. In this pa-
per we put these forms for any (T,m) for simplicity. We
should check the validity of this prescription. In the middle
region (0,T,Tc and 0,m,mc) near the phase transition
line the calculation of the mass function is too difficult for
the error to vanish in the iteration method. It is necessary to
obtain a more efficient method for solving the Schwinger-
Dyson equation in this region. After these problems are
settled, the framework of the improved ladder approximation
becomes a more convenient tool to figure out the nature of
chiral symmetry, since it is easy to introduce fermions in the
chiral limit.
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