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Renormalization group flow and fixed point of the lattice topological charge
in the 2D O(3) o model
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We study the renormalization group evolution up to the fixed point of the lattice topological susceptibility in
the 2D Q3) nonlinearoc model. We start with a discretization of the continuum topological charge by a local
charge density polynomial in the lattice fields. Among the different choices we propose also a Symanzik-
improved lattice topological charge. We check step by step in the renormalization group iteration the progres-
sive dumping of quantum fluctuations, which are responsible for the additive and multiplicative renormaliza-
tions of the lattice topological susceptibility with respect to the continuum definition. We find that already after
three iterations these renormalizations are negligible and an excellent approximation of the fixed point is
achieved. We also check by an explicit calculation that the assumption of slowly varying fields in iterating the
renormalization group does not lead to a good approximation of the fixed point charge operator.
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|. INTRODUCTION zation of the FP actiomdgp suitable for numerical simula-
tions has been found. In R¢B] a numerical implementation
In the field theoretical approach the lattice is an ultravioletof RG has led to the definition of a FP topological charge
regulator for continuum quantum field theories, with the lat-operator in the geometrical approddt for the same model.
tice spacing acting as cutoff; physical observables are con- In this paper we build a FP topological charge operator
structed on the lattice in terms of local operators having thdor the Q3) o model in the framework of the field theoreti-
correct classical continuum limit. Two classes of effectscal method 1]; this operator is used to extract the topologi-
hamper the extraction of physics from the lattice in this ap-cal susceptibility of the model through numerical simula-
proach. First, discretized quantities are connected with th&ons. We adopt the FP parametrized action proposed in Ref.
continuum ones through nontrivial renormalizatiof];  [5)- ) ] )
these renormalizations should be accurately evaluated. Sec- 1he paper is organized as follows. In Sec. Il we review
ond, a slight cutoff dependence of lattice quantities, not subtN€ techniques used in the construction of FP actions and

tracted by the renormalization procedure and vanishing ifPP€rators and make some comments about the locality of
the a—0 limit, induces systematic erroghe well-known renormalized and FP density operators. In Sec. Ill we outline

; L : .. the analytical determination of the FP topological charge at
cutoff effects in the determlnatllon of cor}tlnuum quantltles. lowest 0¥der in a slowly varying field appr%xin?ation. In gec.
Bo'tAh \c/la:ssef of i:fecrfz a;r%iart:factls tci) f:":’crfrt]'zat'onr' blem IV we describe the numerical procedure which implements

efy clegant a i t"." cal so uGoth 0 zs.e IFI)IOt €M%he RG transformations; by iterating this procedure we con-
comes from renormalization grouRG) theory [2]: all lat- 0t the RG flow of topological charge operators starting
tice actions and operators corresponding to the renormalizeglyy, 5 field theoretical definition and eventually converging
trajectory(i.e., the asymptotic flow line in the space of cou- 1 the Fp operator; in Section V we outline the prescriptions
plings under repeated RG transformatipage perfect, inthe  of the field theoretical method in the computation of the
sense that they are free from lattice artifacts. Using perfegiopological susceptibility; we determine numerically its mul-
actions and perfect operators in numerical simulations, infortiplicative renormalization and perturbative tail, when the
mation about the continuum can be directly extracted fronfirst three renormalized charge operators of the RG flow are
the lattice, since renormalizations and cutoff effects are abgsed. In Sec. VI, we study the scaling of the topological
sent. The first step in this ambitious program consists in consysceptibility by implementing the RG formalism in the

structing, for asymptotically free theories, fixed pol)  ysual Monte CarldMC) techniques. In Sec. VII, we draw
actions and operators, which are perfect in the classical limigome conclusions.

g—0 (beingg the asymptotically free couplingA formal
argument of perturbative RG implies that FP actions are one- Il. THE FP TOPOLOGICAL CHARGE OPERATOR
loop (quantum perfect[3,4].

A method for the determination of FP actions for asymp- In order to clarify the further exposition and fix the nota-
totically free theories has been proposed in a recent papeion, we briefly review the RG techniques used in construct-
[5]. The procedure has been applied to the two-dimensionahg FP actions and operators for asymptotically free theories.
(2D) O(3) nonlinearc model on the lattice and a parametri-  Let us consider an asymptotically free lattice spin theory.

0556-2821/97/5&1)/22749)/$10.00 55 2274 © 1997 The American Physical Society



55 RENORMALIZATION GROUP FLOW AND FIXED POINT ... 2275

We write its partition function AW[P]= min  {AQ[¢M ]+ Tk D, 0]

2~ [ 1dg1ep49), W b T, 60, @)

_ o _ _ _ where ¢ is the field at thekth fine level; starting on the
where is a spin field living on a lattice with spacirg and  ginegt |attice with any regularizationl® of the lattice ac-

BA[ ] is some lattice regularization of the continuum ac-jjon 4 good approximation of the FP action can be obtained

tion. In the case of the @) nonlineare model[d¢] would even for small values df [5].

be the @3)-invariant measure In the case of the @) o model the parametrization used
in Ref.[5] for Agpis

[de]=11 d*¢no(e7-1) )] 1
AF.{¢]=B{—§§ p(1) (1= b

and BA[ ¢] a regularization of the continuum action

+ 2 c(NgNa.Ng,ng) (1 én bn)
nq,Np,N3,Ny

BAcontzgf dzxaﬂ¢(x)aﬂ¢(x)' ¢2(X): 1. (©)
X(1_¢n3¢n4)+"']r 8

A RG transformation with scale factar for the spin system

can be defined in the following way: wherep represents the perfect discretization of the Laplac-

ian; the coefficientg(n,,n,,n3,n,) andp(r) can be deter-
efﬁ’A’[‘D]:f [dple AALSI+TI®. 6] (4)  mined analytically by expanding the FP equation for slowly
varying fields[5]. In the following we will always refer to
) o ) ) . the 24 couplings parametrization given in Table IV of Ref.
Here® is the blocked spin living on the lattice with Spacing [5], where the couplings above the quartic order in the fields
a’=)\a, related to a local average of the original spin vari-haye been determined numerically by a fit procedure on the
ables,7[®, ¢] is the blocking kernel, normalized in order to fynctional A*[ ¢], implementing Eq(7) for an ensemble of
keep the partition function invariant under the transforma-configurations{®!.
tion. The transformation used in R¢g] for the 2D Q3) o The RG transformation for an operatdf ¢] is defined as
model is obtained by dividing the original square lattice into
2X 2 blocks and assigning to each of them a new block spin o ~
@, . This spin is constructed by averaging the four original ~ O'[®]e pa [(p]:f [dg]O[ ple™ AALIHTI®. 2D, (q)
spins of the block. In thg8— limit, Eq. (4) can be solved
in the saddle point approximatibn in the B—<c limit it is straightforward to derive

A T®]=min{A[ ]+ T[D,]}. (5) O'[®]=O[ pmin P11, (10)

{}
where{ o P]} is the solution of the saddle point E®).

In this limit the blocking kernell[ &, ¢] turns out to bg5]  Equation(10) says that the renormalized opera@f calcu-
lated on the blocked configuratigd} has the same value as
the original operato©O calculated on the minimizing con-

, (6) figuration{ ¢, ®1}. The iteration of Eq(10) yields a suc-

cession of operator®® starting from some lattice regular-

ization O(%), satisfying the recursive equation

> ¢

neng

(DnB E ¢n_

neng

7[q>,¢]=—xn2

where{n:neng} are the sitesx of the original lattice be-
longing to the block labeled withg; « is a free parameter. OM[D]=0% V[ . [D]]. (12)

The fixed pointA* of Eq. (5) is the starting point, on the

pB=c° critical surface, of the renormalized trajectory, which The solution of Eq(11) is

defines lattice actions free of cutoff effects. As a conse-

guence, the FP actiodp= BA*[ ¢] is perfect in the clas- OW[ D=0 W[ D]], (12

sical limit B—oo; i.e., it is the classical perfect action.

For a given configuratiofd} the value of the renormal- being{¢®[®]} the minimizing configuration on the finest
ized actionA’[®] can be determined by finding the configu- lattice in Eq.(7). The fixed point operatoDgp is thek— o
ration{ ¢}, defined on the finer lattice, which minimizes the limit of O™. A numerical determination of this limit can be
right-hand side of Eq(5). Furthermore, if the RG transfor- practically viable if the FP operator is approximated by the
mation is iteratek times, the equation corresponding to Eq. renormalized operator after few iterations. Using the same
(5) is RG argument of the FP action, one concludes that the FP
operator is the classical perfect operator and its classical
properties are the same of the corresponding continuum op-
18" = B—const owing to asymptotic freedom. erator.
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In the following we will be concerned with the topologi- niques to determine the behavior of the renormalizations of
cal charge operator of the(8) nonlinearc model; however, the lattice operator® (see the following What, however,
the discussion is quite general and can be extended to eveiy not under control is the number of powers of the fields
operator which can be expressed in terms of a local densitycontained in the density operators. Indeed, due to the nonlin-
Let us suppose to be on the fixed paifit of the RG trans- ear terms in the field parametrizatigh3), the iteration of
formation (5). The minimizing configuratiod ¢,if®]} on  Eq.(11) is likely to give rise to an uncontrolled growth of the
the fine lattice can be parametrizgg] in the following way:  powers of the fields involved in the parametrization of
Q®W(n) ask grows. ThatQgp in particular cannot be well
approximated by a polynomial expression in the fields, can
(¢min=2 a(ng)Pp,+ 2 A(Nilg,mg,ng) bgpconcluded ugingﬁhgfollowing t?/vo arguments.
(i) The FP charge operator has, as in the continuum, a
><(1_CI)mB'‘DnB)‘I’IBJr T (13 discrete spectrum. This is clear considering Ek®) in the
caseO=Q: in the limit k—o the minimizing configuration
Since we sit on the fixed point, the form of the parametrizayn the finest latticep™[®] approaches a classical con-
tion is independent of the RG step. We defti,ms) &S tinyum solutior(6], on which every starting regularization of
the distance in coarse lattice units between thersgeand  he charga)(® gives an integer valughe same for ajl This
the siteng to whichn belongs. We define thepreadof the  property is consistent with the RG argument which ensures
parametrization(13) as the maximum distancd(n,Ms),  thatQepis a perfect classical charge operator: the FP charge
over all themg's in the coarse lattice involved in the param- eflects, up to a minimum size, the discrete classical spec-

etrization of (¢myin),. A good parametrization ofmin), &N trum of the continuum operator
be possible even with a little spreéid Ref.[5] it was found

a parametrization with sprea@®). We also define the spread )

of a discretized local density operatdf ¢](n) as the maxi- sz d“xQ(x),

mum distancel(n,n’) over the sites’ involved in the defi-

nition of O[ ¢](n). By definition of local operator, this 1

;p;ggghn;gst keep finite in lattice units as the continuum limit Q(x)= —77f,wfijkf/’i(X)&M(ﬁj(X)ﬁV(ﬁk(X)- (17
Let us now consider Eq11) for the topological charge - ) ) )

and suppose tha®®~1) is expressed in terms of a local (i) On the lattice, differently from the continuum, each

density operator configuration can be continuously deformed into any ofher.

Joining argument§) and(ii) one concludes th@gp cannot
® B (k—1) have an analytical functional dependence in the lattice field:
QY[e]= ; Q [ Prminl PTI(N). (14 onecan produce for instance a discontinuous jum@&gfby
continuously deforming aQgp=0 configuration into a
We can rewrite the last equation performing a blocking onQrr=1 One.
the last summation,

] Ig.mg.ng

Ill. Qrp FOR SLOWLY VARYING FIELDS

QW[@1=> | X Q¥ V[ ®I1(N) A possible way to construct FP actions and operators, is
fls \Nn<na to solve Eq.(11) making an expansion for slowly varying
® fields. The parameter of this expansion is the mean angle
=2 QW[d](ng). (159 between the spins in the configuratipg!. In this section we
"8 present the analytical determination@gd ¢] at lowest or-

The last equation defines implicitly the densi@*(ng). der. A necessary step in the calculation is finding the mini-

Suppose that the field parametrization has spreid units ~ Mizing configuration{¢mi[P]} at lowest order in the ex-

of the coarse lattice spacingnd thatQ®~(n) has spread pansion, i.e., the term linear ih in the pgrametrizati9m3).
S, (in terms of the finer lattice spacingThen, it is quite | MiS @mounts to solving the saddle point equaiidnin the

clear thatQ®(ng) has spreads~r + 1s, ;. From this fol- free field theory casgB,5]. We expressx(n,ng) of Eq. (13
lows that, starting from a lattice regularization IN FoUrier transform

Q(°)= >,0©(n) with spreads, every element of the succes- &K

sion Q(") can be parametrized in terms of a discretized local a(n,nB):f L F(k)e ek, (19)
density having spread B (2m)

r

r
Sy~r+—=-+---+ =+
k 2 2R1

where the subscript B means that the integration domain is

(16 the first Brillouin zone[—w/a,w/a]X[—w/a,w/a] and

'\%_Im

Since ¢, @] can be parametrized in a local wf§], the

operatorsQ®, k=1,2,..., andultimately the FP charge  20n the continuum this is impossible for starting and final con-
Qe itself, will still be expressed in terms of local densities figurations having different topological charge.

QM(n) with finite spread, the limiting value being 3In this respectQgp resembles the geometrical definition of the
Sgp~ 2r. This feature allows the application of heating tech-lattice topological chargg7].
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bothn andng are expressed in the coordinates of the coarse

lattice. The result can be written as 2 Z_M(ql“Lmle 2+ mym)

) 2 d a1 dZQZ

my.,my
X €jk di(— 01— My — gy — M)
AQu

F(k)= _O‘(k)“’(Zk) 1H 2cos,- S5 (19 X (qy+mym) Qo+ mym),
wherem,,m, are two component vectors whose components

here, a(k) is the inverse of the Laplaciap(k), and the take the values 0 and 1; the second equation follows from
prime means after one RG transformation. expressing the summation over the sitesss a summation

We used the following (®)-invariant odd-parity param- 0ver the blocked sitesg and over the four sites of the block
etrization of the topological charge operator at lowest ordeflefining the fixedng, B’ means the “halved” Brillouin
in the fields: zone[ — m/(2a),w/(2a) ] X[ — w/(2a),w/(2a)]. If we now

write Q after one RG transformation as

d?qg, d?
871-Q:n nEH (N7 N2, N1~ N3) € hi(N2) 4 (N2) BiNs) 87Q,:f ql 22:“'((11,(12)6”@( d1—0z)
1.M2,N3 B T
20
d2q, d2q 20 XDi(dq1)Py(92) (21
1 2
_f 2m)? (2 W)z'u(ql’qZ)E”k(bi and, according to Eq14), plug the lowest order approxima-

tion of ¢l @1 (in Fourier transformin the last integral in
X (=01~ 0d2) $;(d1) $x(d2) Eq. (20), we find

p'(201+20,)p'(2d1)p' (202)
p(dy+mym+dy+mym)p(qy+mym)p(da+my)

Mgyt m +m +m
x 1 ZCO{ql 1W2q2 277) 11 2co{%le 11 2Cos<quzﬂ-) . (22)
M

14 o

1
' (201,20;,) = 222243 E #(g1+mym,gp+my)

14 o

The FPu function ugp can be found iterating the previous relation; it comes out that

pr(d1+d2) pre(d1) PrA(D2)
(A1 +2My 7+ gy + 2mym) (g, + 2my ) %(gy+ 2my )

per01,02) = 2 Heond U1+ 2My, 0y + 2Mym)

my,myeZ
I sin((g;+02)/2),, sin(q,/2), sin(0/2),, 23
o [(dita)l2+mym+mem], = (q2+mym), 5 (q/2+mym),’
|
where peon{P,d) = €,,p,0, and, usingpgp, we have as-
sumed that the action is also at the FP. We give for com- TABLE |. Largest nonequivalent values gf{m,n).
pleteness the expression @y [8,5]
» E H Sinz(pM/Z) 1 m n m(m,n) m n wm(m,n)
Prp = (p+ 2|77)2 (puf2+1,)* (24) (1,) (1,0 5.00100c10°2 (3,0 (2,) -4.35376¢10°°

_ . 20 (1) -6.2731&10° (3,) (2,0 4.15550x10 °
As in [5] we usex=2. In Table | we show the coefficients . .
w(m,n) up toO(10™°) (coefficients which can be related to @) (.3 -4.90036<10 323 (22 3901310
these by symmetry transformations are omittékhe prop- (2,) (2,0 1.5222x10°°® (3,2 (2,) -2.5369%10°
erty of locality of u(m,n) is consistent with the general (21) (1,2 -9.39105%10° % (3,) (2,2 2.20664<10°5
g;)sec:Jas;zlgn of the previous section about the spread of F(2 ) (-1 35514210 (22 (21 1.51901K10°

We have tested the leadim@gp operator in the slowly (22 (20 1.16270<10* (3) (3,0 1.3789%10°°
varying field expansion, observing that it fails to reproduce3,1) (2,1 -8.39146<10°° (3,2 (3,) -1.2811%10°°
the integer-valued spectrum of the continuum even on
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TABLE II. Z(B) for the differentB’s at the various RG levels, 10
k. The starting operator iQ{),.
09
B coarse 1st level 2nd level 3rd level 08 f
1.00 0.8929) 0.9805) 0.995@27) L0
1.05 0.9108) 0.9903) 0.999911) osb
1.10 0.9216) 0.992923) 0.99928) s sl =
1.15 0.4506)  0.9296)  0.993121)  0.999G6) c- TP - o e 1.3
1.20 0.9365) 0.993915) 0.99913) 04 : i
03}
quite smooth configurations. We conclude that even on these  °?
configurations the neglected higher order operators dominate o1 |
the expansion. This agrees with the theoretical conclusion at 00 , ‘ , , ‘ ‘ , , ,
the end of the previous section. o 2 4 & 8 heaﬁ;g step12 "o 1820
IV. NUMERICAL DETERMINATION OF = Qgp FIG. 1. Topological charge at the coarse level during the heating

of an extended instantoigwith fixed boundary conditionsat
B=1.15. The line represent the fivith error9 of the data on the
lateau.

An alternative way to face the problem of the determina-
tion of the FP charge of a given lattice configuration, is to
solve the FP equation for the charge operator numerically.

This approach has been described and applied recently to the

0(3_) o model i.n Ref[6] for the ggometrical defin@tion of.the V, bi(x)= E[¢i(x+,u)— i(x—w)]. (29)
lattice topological charge. Starting from a certain configura- ” 2

tion {®} defined on the “coarse latticel(?), the minimiz-

ing configuration{ [ ®]} of Eq. (12) is singled out by (2) The Symanzik tree-level improvedp to O(a®)] op-
constructing the succession of configurations defined on fineftratorQé?,,)n:

and finer lattices

1
(D} (M), ... LoW)={pW[D]); (25) Qi) = g Eurik#i(X)D . (X)D,di(x),  (29)

given the configuratior{ ¢~} on the laticeL"" ™, the  \yhereD  is the improved lattice derivative
configuration{ ™} on the latticeL ¥ is determined by nu- K
merically minimizing the quantity 1225 245 49 5

— 1) _ (3) ¢ (5)_ (7
m 1024V“ 1024V“ 1024V" 1024V“’

AP 1+ T, 8] (26)

over all the configurationg¢’} living on the latticeL®,
After few steps of this iteration, the irrelevant content in
QWD ]1=QO[pM[D]] (Q is the starting lattice opera-
tor) is negligible, and this quantity is a good approximation
of Qed ®]. We have performed this program using three
different starting lattice regularizatio@(®) of the charge. 10 |
(1) The nave regularizatiorQ{®:

1
Vi i) =5 ($i(x+nu) = di(x—np)). (30

1.10

1.00 x

1 <
0 * L
QY (X = g€k i)V ui (V). (27) sl "%y po1 11 It o1
. . o © ol R A s
whereV , is the symmetrized lattice derivative 0.0 %
TABLE Ill. P(B)x 10" for the differentg’s at the various RG 0.85 -
levels, k. The starting operator Q).
0.80
B coarse 1st level 2nd level 3rd level
075 ' ‘ ' ; : : : ‘ :
1.00 0571220  0.1777) 0.046624) R T i, O
1.05 0.17910) 0.027622) 0.00375)
1.10 0.1287)  0.024119 0.00223) FIG. 2. Topological charge at the first fine level during the heat-
1.15 0.80413) 0.0945) 0.011410) 0.0006412) ing of an extended instantofwith fixed boundary conditionsat
1.20 0.0663) 0.00889) 0.0006111) B=1.15. The line represent the fivith errorg of the data on the

plateau.
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TABLE V. Z(B) at B=1.15 for the three different starting

regularizations of the topological charge. 002
coarse 1st level 2nd level 3rd level %
0.20
QY 0.4114)  0.8555)  0.962525  0.990310) #
QW 0.4506)  0.9296)  0.993121)  0.999@6) ﬁ
QO 0.3843)  0.8185)  0.947827)  0.986(G11) w0 ‘H 11 *,
=
0.16 - %
(3) The FP operator at lowest order in the slowly varying ‘H
field approximationQ{)x derived in the previous sectién. el
We performed the minimization of the quantity in Eq. ol * 42nd o lovel
(26) by a local Metropolis algorithm accepting only lowering
changes. The algorithm started from the minimizing configu- o2 = 5 - % =
ration at lowest(linear) order in the slowly varying fields c
expansion:
FIG. 3. ng (ép,=¢a) for five correlation lengthg at the vari-
(k) y — (k—1) ous RG steps. The starting topological charge regularization is the
= n,n . 31 _ .
(bstardn nEB o B)d)”B (3D Symanzik charge. Data at the coarse, 2nd, and 3rd fine level have

been slightly shifted for the sake of readability.
The number of minimization sweeps needed to reach the
minimum decreases very rapidly wikhand at the third step x(B)=a2Z(B)*xcontt P(B){1)+0O(a%), (33
no further minimization beyond the linear approximation is
required at all; indeed, the configurati¢p(®)} is generally  \yhereP(g) is the perturbative expectation value of the lat-
very smooth and the lowest order approximati8) allows  tice topological susceptibilitythe so called perturbative
to determine{¢(*)} with sufficient accuracy. The starting tajl) 5 Both z(8) and P(8) are artifacts of discretization
topological charges give clearly different results at the stegnquced by the lattice quantum fluctuations. Equatiag)
zero, since large cutoff effects are present which are unyjgws us to extracyqon, the topological susceptibility of

equally handled by the various definitions; but, under iterayne continuum theory, from MC determinations of the lattice
tion of the RG transformation, these UV effects are graduallyeqgylarized susceptibilityy. An intermediate step is the

erased and the three different field theoretical definitions of51uation of the renormalizatior&( 8) and P(8). In stan-
the lattice charge operator converge to the same operat@qq perturbation theory they are calculated as power series

Qrp- in 1/8 [13]; an alternative approach is the Monte Carlo
“heating” technique[19,13,1§ (see the following
V. THE FIELD THEORETICAL METHOD Let us now come to the central issue of this paper, i.e., the

application of the field theoretical method in combination
with the FP lattice regularization of the topological charge.
We move towards the FP operator through the operators
Q® (k=1,2,3) and construct the lattice susceptibilities
xO=1L%[=,QM(x)]2). The operatorsQ® still satisfy

(as the starting operato®(®)) the prescriptions of field
theory, since they can be expressed in terms of a local charge
Odensity with finite spreadsee Sec. )l This allows us to
write

The problem of extracting from the lattice the topological
susceptibility of the @) o model has been studied for many
years[6,7,9—13 using different approaches. The topological
susceptibility has the dimension of a mass squareddsait-
ting that it is a physical quantity, i.e., renormalization group
invariant, its (adimensional lattice regularization should
scale in the continuum limit witlf 2, where¢ is the corre-
lation length in lattice units. In fact, this scenario is obscure
by a prevision of the semiclassical approximat{d®] and
some numerical evidencd47,18 which indicate that the
topology of the model is SV do%inated. x9(B)=aZM(B)*xeont PF(B)(1)+0(a). (39

In the field theoretical methofil] a lattice topological o . o
charge density operator is defined as a local ope@(od) Thke evalua:(tlc_)n in perturt_)at|on 'Fheory of the renormalizations
having the appropriate classical continuum limit. The matrixz(.) andP® is not practicable in this case because the ana-
elements ofQ(x) are related to those in the continuum lytical dependence of the operat@®$9 on the field¢ is not

through a finite multiplicative renormalization known; consequently, we turn to the numerical approach, the
heating method.
Q(x)=a%Z(B)Qeon( X) + O(a%). (32 The heating methof20,19 consists(for details see also

[13,18) in constructing on the lattice ensembles of configu-
The lattice version of the topological susceptibility is simply rations{C,}, each configuration of the ensemble being ob-
given by x=1L%[=,Q(x)]?) (L is the lattice size It is
connected to the continuum counterpart by the relation
%In the right-hand side of Eq33) the mixing of the topological
susceptibility with the action density has not been considered, since
4Using the first 12 leading couplings. it is numerically negligibld 18,15.
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TABLE V. Topological susceptibility in physical units up to the third RG levg}# ¢a). For compari-
son, we also report in the last column the data of R&ff.

B ¢ Xcoarse(gg) Xist teve( gs) Xznd tevel 55) X3rd Ieve(gs) X%gtolr:ve( 55) (6]
1.00 12.163) 0.144815)
12.273) 0.1377) 0.1506) 0.1515)
1.05 15.816) 0.1618) 0.1726) 0.1735)
1.10  20.349) 0.1738) 0.1857) 0.1886)
20.4Q9) 0.189327)
1.15 26.2614) 0.16G13) 0.1718) 0.1927) 0.1957)
1.20 34.1825) 0.19411) 0.21410 0.2139)
34.43) 0.2245)
tained by performing a sequence bflocal Monte Carlo VI. MC SIMULATIONS

sweeps starting from a discretized classical configuration _ _ .
Co—a large instanton or a flat configuration. For smathe we r,),erfo-rmed Monte Qarlo simulations on a starting
heating process thermalizes only the small-range fluctuationsoarse” lattice 90x 90 for five values o3 (1.0, 1.05, 1.10,
which are responsible for the renormalizations, when thél-15, 1.20, £ ranging from 12 to 35 lattice units. We mea-
starting configuration is a large instant@itat configuration, ~ sured Q%) (only in the caseg=1.15), Q\)), Q%) and
measuringQ (or x) on the ensemblefC,} a plateau at the ngn using the numerical technique discussed in Sec. IV. We
value of Z(B) [or P(B)] is observed after a certain time, considered~5000 decorrelated starting configurations at
not depending orB, corresponding to the thermalization of thermal equilibrium for each value ¢.

quantum fluctuations. The adaptation of this technique to the |5 Taple Vv and in Fig. 3 we present values )@c'foné;,

present case needs the building of the en_sem{cﬂ_.é@} at  where&,=¢a, at the fiveg’s considered on each RG level;
the three fine levels. Starting from a configuration on the

) ; , , Ycont NS been extracted according to E8d), ¢ was deter-
coarse lattic @} = {Cy}, the corresponding configuration at ined by evaluating the exponential decay of the wall-wall

the kth fine 'eYe_'{‘_f’(k)[.‘I’]}E{Cgk)} was obtained by per- cqrrelation function on lattices satisfying the condition
forming the minimization procedure described in Sec. IV.L/§Z7 (in order to keep safe from finite size effects
Averaging the starting definition of the topological charge Data in Table V allows two observations: the vertical
(susceptibility on the ensemblelC{"} amounts to perform- reading shows that there is no scaling up to correlation
ing the heating procedure f@® (x), so that the renor- |ength £¢=35; the horizontal reading shows that the physical
malization constanz® (P(Y) at each RG level can be de- signal y.,, increases after each RG step. The first observa-
termined. In Tables Il and |1l we show the valuesz8f’ and  tion is a consequence of the UV dominated nature of the
P® k=1,2,3(in the casgs=1.15 alsck=0) for five differ-  topology of the model, already well established in literature;
ent B8’s with the Symanzik improved topological charge asthe second effect is subtler, related to the different scale in-
the starting operator; it is interesting to observe thaand  variance properties of the three operatdf¥), k=1,2,3. Be-
P converge rapidly towards 1 and O respectively when ing classically perfectQgp should have a scale invariant
increases, thus indicating that the FP topological charge anghectrum, so it should attribute the correct topological charge
susceptibility are insensitive to quantum fluctuations. to lattice configurations up to a very small size, close to the
In Figs. 1 and 2 we show the behavior ¢@@)(8 Iattice unit. In the case d@® this property is only approxi-
=1.15) and(QW)(B=1.15) during the heating of an ex- mate, improving for increasing. This is visually clear in
tended instantofwith fixed boundary conditionsThe most  Fig. 4, where we show the behavior of topological charge at
important observation is that the time of thermalization ofthe coarse, the first fine and the second fine levels on small
the quantum fluctuations 6§*) — not yet erased by the RG size classical configurationgone-instantons with fixed
procedure — is very short~ four heating stepsthus indi-  boundary conditionls We can see that the topological charge
cating that the spread of this operator is sn@flthe order of  at the coarse level underestimates the correct continuum
few lattice spacings This gives a numerical support to the valueQ=1 on classical configurations with small size, while
arguments of Sec. Il about the spread of renormalized operake correct value is asymptotically attained kagncreases.
tors defined starting from a local density. We conclude that the slight dependence of our determination
From the analysis of the data of heating we conclude thagf y,,,on the “fineness level” of the lattick is an effect of
Q(S‘;zn is the starting operator closest to the fixed point, since ithe progressive saturation of the topological signal coming
yields at a giverk the values oZ andP closestto 1 and 0 from small size instantons. We observe thatkat3 this
respectively{see Table IV forZ(8=1.15)].° In the follow-  saturation can be considered practically complete; we argue
ing we will be concerned about the data coming from thistherefore that only a negligible improvement would come
starting operator. from further RG steps. It is also evident from Fig. 4 that no

6ThatQSym is closest to the FP operator could support the idea that "We are indebted to the authors of Ri] for allowing us to use
Symanzik’'s improvement program goes in the same direction of th¢heir cluster algorithm program for measurements of correlation
RG improvement. length.
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. renormalization group transformation. The operators ob-
12| 1 tained at each step of the renormalization group procedure
can be considered as improvements of the starting operators,
________________ in the sense of a suppression of the quantum noise around the
e physical signal. A similar improvement, consisting in the
R | reduction of the renormalization constants, was obtained in
Ref.[21] by using smearing techniques. We have also calcu-
° sl | lated the physical value of the topological susceptibility at
: thermal equilibrium by subtracting the effect of the renor-
malizations from the lattice signal at each renormalization
- - coarss level 1 group step. The physical quantity obtained increases with the
T e teve renormalization group step up to convergence within a few
1 percent of accuracy. This convergence corresponds to the
saturation of the topological signal by smaller and smaller
00,5 10 15 20 25 3.0 instantons, down to the minimum size allowed on the lattice.
P The physical signal at the fixed point does not exhibit a
scaling behavior, since the topological contribution of instan-
FIG. 4. Topological charge at the coarse, first fine, and secongons with size lower than the critical size, which is still lost
fine levels on classical configurations consisting of one-instantongn, the lattice, is dominating. A procedure similar to the one
(with fixed boundary conditionswith different size. Instantons described in this paper has already been applied in [Béf.
have been smoothed out by some cooling steps before the chargging the geometrical approach to the lattice topological
measurement. charge: we observe that the two different methods, while
diverging at the starting point, give asymptotically consistent
results when the renormalization group procedure is carried

04

02

. . . . on.
topological signal is observable on the lattice below 0.9 lat-

) 4 h . Fp d a FP acti We have also presented an analytic determination of the
t|<_:e units, even when using a Fr Ope_rator.an a actiony, o point topological charge in the approximation of slowly
Since most of the topological signal in this model come

. . : S\/arying fields, by iterating the renormalization group trans-
from the region of small lengths, a cutoff effect is still o ot at the leading order. The resulting operator fails to
present in the lattice theory, which manlfgsts itself in thereproduce the integer-valued spectrum of the continuum
unphysical dependence gton 0N ¢ (nonscaling. even on quite smooth configurations, thus leading to the con-
clusion that the neglected higher order terms are important.

VIl. SUMMARY AND CONCLUSIONS The negative result obtained is not completely unexpected

The theory of Wilson's renormalization group states thesince an analytic expression in the lattice fields for the topo-

existence of perfect lattice operators, i.e., operators dig_oglcal char_ge operator cannot reproduce_ a disctare,
éherefore, discontinuoyispectrum on the lattice, where each

operators correspond to the renormalized trajectory of &onfiguration can be continuously transformed into any

given renormalization group transformation. The fixed pointOther'

of the transformation defines the fixed point operator, the Thg present paper can .be.considered. as a preliminary
classically perfect lattice operator. work in view of the determination of the fixed point topo-

In this paper we have studied the evolution towards th ogical charge for th_e S3) gauge theor_y. F_or this theory,
fixed point of the two-point correlation function of the topo- owever, the num_erlcal pr(_)cedure applied in the p“?se”.t pa-
logical charge, i.e., the topological susceptibility, in the 2DPEr 1S no longer viable, owing to the huge computation time
O(3) nonlinearc model on the lattice. For this purpose, we f.‘eeded for the determ_mauon of the pqnflguratlons on the
have discretized the continuum topological charge on théIner lattices. We retalp that a promising approach Is to
lattice in terms of a local operator, polynomial in the lattice segrch for a(_few-coupllngs parametrlzatlon of the fixed
fields, and we have implemented the renormalization grou;?omt topo_IoglcaI charge operator which works even on
procedure in a numerical fashion. coarse lattices.

We have observed that the quantum fluctuations are pro-
gressively erased as the fixed point is approached, thus lead-
ing to an integer-valued spectrum of the topological charge We wish to thank M. Blatter, R. Burkhalter, A. Di Gia-
on the lattice. The amount of quantum fluctuations is quaneomo, A. Hasenfratz, P. Hasenfratz, and F. Niedermayer, for
tified by the renormalization constanf§3) and P(B) en-  many useful discussions. This work was partially supported
tering the lattice definition of the topological susceptibility. by Fondazione “A. Della Riccia”(ltaly). We also thank
We have measured these constants by the heating meth@NUCE (Pisa for having provided CPU time on a IBM-SP2
observing their rapid disappearance with the iteration of thavhere most of the numerical work was done.
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