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We study the renormalization group evolution up to the fixed point of the lattice topological susceptibility in
the 2D O~3! nonlinears model. We start with a discretization of the continuum topological charge by a local
charge density polynomial in the lattice fields. Among the different choices we propose also a Symanzik-
improved lattice topological charge. We check step by step in the renormalization group iteration the progres-
sive dumping of quantum fluctuations, which are responsible for the additive and multiplicative renormaliza-
tions of the lattice topological susceptibility with respect to the continuum definition. We find that already after
three iterations these renormalizations are negligible and an excellent approximation of the fixed point is
achieved. We also check by an explicit calculation that the assumption of slowly varying fields in iterating the
renormalization group does not lead to a good approximation of the fixed point charge operator.
@S0556-2821~97!03804-6#

PACS number~s!: 11.10.Lm, 11.10.Hi, 11.15.Ha

I. INTRODUCTION

In the field theoretical approach the lattice is an ultraviolet
regulator for continuum quantum field theories, with the lat-
tice spacing acting as cutoff; physical observables are con-
structed on the lattice in terms of local operators having the
correct classical continuum limit. Two classes of effects
hamper the extraction of physics from the lattice in this ap-
proach. First, discretized quantities are connected with the
continuum ones through nontrivial renormalizations@1#;
these renormalizations should be accurately evaluated. Sec-
ond, a slight cutoff dependence of lattice quantities, not sub-
tracted by the renormalization procedure and vanishing in
the a→0 limit, induces systematic errors~the well-known
cutoff effects! in the determination of continuum quantities.
Both classes of effects are artifacts of discretization.

A very elegant and radical solution to these problems
comes from renormalization group~RG! theory @2#: all lat-
tice actions and operators corresponding to the renormalized
trajectory~i.e., the asymptotic flow line in the space of cou-
plings under repeated RG transformations! are perfect, in the
sense that they are free from lattice artifacts. Using perfect
actions and perfect operators in numerical simulations, infor-
mation about the continuum can be directly extracted from
the lattice, since renormalizations and cutoff effects are ab-
sent. The first step in this ambitious program consists in con-
structing, for asymptotically free theories, fixed point~FP!
actions and operators, which are perfect in the classical limit
g→0 ~beingg the asymptotically free coupling!. A formal
argument of perturbative RG implies that FP actions are one-
loop ~quantum! perfect@3,4#.

A method for the determination of FP actions for asymp-
totically free theories has been proposed in a recent paper
@5#. The procedure has been applied to the two-dimensional
~2D! O~3! nonlinears model on the lattice and a parametri-

zation of the FP actionAFP suitable for numerical simula-
tions has been found. In Ref.@6# a numerical implementation
of RG has led to the definition of a FP topological charge
operator in the geometrical approach@7# for the same model.

In this paper we build a FP topological charge operator
for the O~3! s model in the framework of the field theoreti-
cal method@1#; this operator is used to extract the topologi-
cal susceptibility of the model through numerical simula-
tions. We adopt the FP parametrized action proposed in Ref.
@5#.

The paper is organized as follows. In Sec. II we review
the techniques used in the construction of FP actions and
operators and make some comments about the locality of
renormalized and FP density operators. In Sec. III we outline
the analytical determination of the FP topological charge at
lowest order in a slowly varying field approximation. In Sec.
IV we describe the numerical procedure which implements
the RG transformations; by iterating this procedure we con-
struct the RG flow of topological charge operators starting
from a field theoretical definition and eventually converging
to the FP operator; in Section V we outline the prescriptions
of the field theoretical method in the computation of the
topological susceptibility; we determine numerically its mul-
tiplicative renormalization and perturbative tail, when the
first three renormalized charge operators of the RG flow are
used. In Sec. VI, we study the scaling of the topological
susceptibility by implementing the RG formalism in the
usual Monte Carlo~MC! techniques. In Sec. VII, we draw
some conclusions.

II. THE FP TOPOLOGICAL CHARGE OPERATOR

In order to clarify the further exposition and fix the nota-
tion, we briefly review the RG techniques used in construct-
ing FP actions and operators for asymptotically free theories.

Let us consider an asymptotically free lattice spin theory.
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We write its partition function

Z5E @df#e2bA[f] , ~1!

wheref is a spin field living on a lattice with spacinga, and
bA@f# is some lattice regularization of the continuum ac-
tion. In the case of the O~3! nonlinears model@df# would
be the O~3!-invariant measure

@df#5)
n

d3fnd~fn
221! ~2!

andbA@f# a regularization of the continuum action

bAcont5
b

2E d2x]mf~x!]mf~x!, f2~x!51 . ~3!

A RG transformation with scale factorl for the spin system
can be defined in the following way:

e2b8A8[F]5E @df#e2b~A[f]1T[F,f] !. ~4!

HereF is the blocked spin living on the lattice with spacing
a85la, related to a local average of the original spin vari-
ables,T @F,f# is the blocking kernel, normalized in order to
keep the partition function invariant under the transforma-
tion. The transformation used in Ref.@5# for the 2D O~3! s
model is obtained by dividing the original square lattice into
232 blocks and assigning to each of them a new block spin
FnB

. This spin is constructed by averaging the four original

spins of the block. In theb→` limit, Eq. ~4! can be solved
in the saddle point approximation1

A8@F#5min
$f%

$A@f#1T @F,f#%. ~5!

In this limit the blocking kernelT@F,f# turns out to be@5#

T @F,f#52k(
nB

FFnB (
nPnB

fn2U (
nPnB

fnUG , ~6!

where $n:nPnB% are the sitesn of the original lattice be-
longing to the block labeled withnB ; k is a free parameter.
The fixed pointA* of Eq. ~5! is the starting point, on the
b5` critical surface, of the renormalized trajectory, which
defines lattice actions free of cutoff effects. As a conse-
quence, the FP actionAFP5bA* @f# is perfect in the clas-
sical limit b→`; i.e., it is the classical perfect action.

For a given configuration$F% the value of the renormal-
ized actionA8@F# can be determined by finding the configu-
ration $f%, defined on the finer lattice, which minimizes the
right-hand side of Eq.~5!. Furthermore, if the RG transfor-
mation is iteratedk times, the equation corresponding to Eq.
~5! is

A~k!@F#5 min
$f~1!, . . . ,f~k!%

$A~0!@f~k!#1T @f~k21!,f~k!#

1•••1T @F,f~1!#%, ~7!

wheref (k) is the field at thekth fine level; starting on the
finest lattice with any regularizationA(0) of the lattice ac-
tion, a good approximation of the FP action can be obtained
even for small values ofk @5#.

In the case of the O~3! s model the parametrization used
in Ref. @5# for AFP is

AFP@f#5bH 2
1

2 (
n,r

r~r !~12fnfn1r !

1 (
n1 ,n2 ,n3 ,n4

c~n1 ,n2 ,n3 ,n4!~12fn1
fn2

!

3~12fn3
fn4

!1•••J , ~8!

wherer represents the perfect discretization of the Laplac-
ian; the coefficientsc(n1 ,n2 ,n3 ,n4) andr(r ) can be deter-
mined analytically by expanding the FP equation for slowly
varying fields@5#. In the following we will always refer to
the 24 couplings parametrization given in Table IV of Ref.
@5#, where the couplings above the quartic order in the fields
have been determined numerically by a fit procedure on the
functionalA* @f#, implementing Eq.~7! for an ensemble of
configurations$F%.

The RG transformation for an operatorO@f# is defined as

O8@F#e2b8A8[F]5E @df#O@f#e2b~A[f]1T @F,f] !; ~9!

in theb→` limit it is straightforward to derive

O8@F#5O@fmin@F##, ~10!

where$fmin@F#% is the solution of the saddle point Eq.~5!.
Equation~10! says that the renormalized operatorO8 calcu-
lated on the blocked configuration$F% has the same value as
the original operatorO calculated on the minimizing con-
figuration$fmin@F#%. The iteration of Eq.~10! yields a suc-
cession of operatorsO(k) starting from some lattice regular-
izationO(0), satisfying the recursive equation

O~k!@F#5O~k21!@fmin@F##. ~11!

The solution of Eq.~11! is

O~k!@F#5O~0!@f~k!@F##, ~12!

being $f (k)@F#% the minimizing configuration on the finest
lattice in Eq.~7!. The fixed point operatorOFP is thek→`
limit of O(k). A numerical determination of this limit can be
practically viable if the FP operator is approximated by the
renormalized operator after few iterations. Using the same
RG argument of the FP action, one concludes that the FP
operator is the classical perfect operator and its classical
properties are the same of the corresponding continuum op-
erator.1b85b2const owing to asymptotic freedom.
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In the following we will be concerned with the topologi-
cal charge operator of the O~3! nonlinears model; however,
the discussion is quite general and can be extended to every
operator which can be expressed in terms of a local density.
Let us suppose to be on the fixed pointA* of the RG trans-
formation ~5!. The minimizing configuration$fmin@F#% on
the fine lattice can be parametrized@6# in the following way:

~fmin!n5(
nB

a~n,nB!FnB
1 (

lB ,mB ,nB
b~n,lB ,mB ,nB!

3~12FmB
•FnB

!F lB
1•••. ~13!

Since we sit on the fixed point, the form of the parametriza-
tion is independent of the RG step. We defined(n,mB) as
the distance in coarse lattice units between the sitemB and
the sitenB to whichn belongs. We define thespreadof the
parametrization~13! as the maximum distanced(n,mB),
over all themB’s in the coarse lattice involved in the param-
etrization of (fmin)n . A good parametrization of (fmin)n can
be possible even with a little spread~in Ref. @5# it was found
a parametrization with spreadA2). We also define the spread
of a discretized local density operatorO@f#(n) as the maxi-
mum distanced(n,n8) over the sitesn8 involved in the defi-
nition of O@f#(n). By definition of local operator, this
spread must keep finite in lattice units as the continuum limit
is reached.

Let us now consider Eq.~11! for the topological charge
and suppose thatQ(k21) is expressed in terms of a local
density operator

Q~k!@F#5(
n

Q~k21!@fmin@F##~n!. ~14!

We can rewrite the last equation performing a blocking on
the last summation,

Q~k!@F#5(
nB

S (
nPnB

Q~k21!@fmin@F##~n! D
5(

nB
Q~k!@F#~nB!. ~15!

The last equation defines implicitly the densityQ(k)(nB).
Suppose that the field parametrization has spreadr ~in units
of the coarse lattice spacing! and thatQ(k21)(n) has spread
sk21 ~in terms of the finer lattice spacing!. Then, it is quite
clear thatQ(k)(nB) has spreadsk;r1 1

2sk21. From this fol-
lows that, starting from a lattice regularization
Q(0)5(nQ

(0)(n) with spreads, every element of the succes-
sionQ(k) can be parametrized in terms of a discretized local
density having spread

sk;r1
r

2
1•••1

r

2k21 1
s

2k
. ~16!

Sincefmin@F# can be parametrized in a local way@6#, the
operatorsQ(k), k51,2, . . . , andultimately the FP charge
QFP itself, will still be expressed in terms of local densities
Q(k)(n) with finite spread, the limiting value being
sFP;2r . This feature allows the application of heating tech-

niques to determine the behavior of the renormalizations of
the lattice operatorsQ(k) ~see the following!. What, however,
is not under control is the number of powers of the fields
contained in the density operators. Indeed, due to the nonlin-
ear terms in the field parametrization~13!, the iteration of
Eq. ~11! is likely to give rise to an uncontrolled growth of the
powers of the fields involved in the parametrization of
Q(k)(n) as k grows. ThatQFP in particular cannot be well
approximated by a polynomial expression in the fields, can
be concluded using the following two arguments.

~i! The FP charge operator has, as in the continuum, a
discrete spectrum. This is clear considering Eq.~12! in the
caseO[Q: in the limit k→` the minimizing configuration
on the finest latticef (k)@F# approaches a classical con-
tinuum solution@6#, on which every starting regularization of
the chargeQ(0) gives an integer value~the same for all!. This
property is consistent with the RG argument which ensures
thatQFP is a perfect classical charge operator: the FP charge
reflects, up to a minimum size, the discrete classical spec-
trum of the continuum operator

Q5E d2xQ~x!,

Q~x!5
1

8p
emne i jkf i~x!]mf j~x!]nfk~x!. ~17!

~ii ! On the lattice, differently from the continuum, each
configuration can be continuously deformed into any other.2

Joining arguments~i! and~ii ! one concludes thatQFP cannot
have an analytical functional dependence in the lattice field:3

one can produce for instance a discontinuous jump ofQFPby
continuously deforming aQFP50 configuration into a
QFP51 one.

III. QFP FOR SLOWLY VARYING FIELDS

A possible way to construct FP actions and operators, is
to solve Eq.~11! making an expansion for slowly varying
fields. The parameter of this expansion is the mean angle
between the spins in the configuration$f%. In this section we
present the analytical determination ofQFP@f# at lowest or-
der. A necessary step in the calculation is finding the mini-
mizing configuration$fmin@F#% at lowest order in the ex-
pansion, i.e., the term linear inF in the parametrization~13!.
This amounts to solving the saddle point equation~5! in the
free field theory case@8,5#. We expressa(n,nB) of Eq. ~13!
in Fourier transform

a~n,nB!5E
B

d2k

~2p!2
F~k!ei ~n2nB!k, ~18!

where the subscript B means that the integration domain is
the first Brillouin zone @2p/a,p/a#3@2p/a,p/a# and

2On the continuum this is impossible for starting and final con-
figurations having different topological charge.
3In this respect,QFP resembles the geometrical definition of the

lattice topological charge@7#.
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bothn andnB are expressed in the coordinates of the coarse
lattice. The result can be written as

F~k!5
1

4
a~k!a8~2k!21)

m51

2

2cos
qm

2
; ~19!

here, a(k) is the inverse of the Laplacianr(k), and the
prime means after one RG transformation.

We used the following O~3!-invariant odd-parity param-
etrization of the topological charge operator at lowest order
in the fields:

8pQ5 (
n1 ,n2 ,n3

m~n12n2 ,n12n3!e i jkf i~n1!f j~n2!fk~n3!

~20!

5E
B

d2q1
~2p!2

d2q2
~2p!2

m~q1 ,q2!e i jkf i

3~2q12q2!f j~q1!fk~q2!

5S 122D
2

(
m1 ,m2

E
B8

d2q1
p2

d2q2
p2 m~q11m1p,q21m2p!

3e i jkf i~2q12m1p2q22m2p!f j

3~q11m1p!fk~q21m2p!,

wherem1 ,m2 are two component vectors whose components
take the values 0 and 1; the second equation follows from
expressing the summation over the sitesn as a summation
over the blocked sitesnB and over the four sites of the block
defining the fixednB , B8 means the ‘‘halved’’ Brillouin
zone@2p/(2a),p/(2a)#3@2p/(2a),p/(2a)#. If we now
write Q after one RG transformation as

8pQ85E
B8

d2q1
p2

d2q2
p2 m8~q1 ,q2!e i jkF i~2q12q2!

3F j~q1!Fk~q2! ~21!

and, according to Eq.~14!, plug the lowest order approxima-
tion of fmin@F# ~in Fourier transform! in the last integral in
Eq. ~20!, we find

m8~2q1,2q2!5
1

222243 (
m1 ,m2

m~q11m1p,q21m2p!
r8~2q112q2!r8~2q1!r8~2q2!

r~q11m1p1q21m2p!r~q11m1p!r~q21m2p!

3)
m

2cosS q11m1p1q21m2p

2 D
m
)

n
2cosS q11m1p

2 D
n
)
s

2cosS q21m2p

2 D
s

. ~22!

The FPm functionmFP can be found iterating the previous relation; it comes out that

mFP~q1 ,q2!5 (
m1 ,m2PZ2

mcont~q112m1p,q212m2p!
rFP~q11q2!rFP~q1!rFP~q2!

~q112m1p1q212m2p!2~q112m1p!2~q212m2p!2

3)
m

sin~~q11q2!/2!m

@~q11q2!/21m1p1m2p#m
)

n

sin~q1/2!n

~q1/21m1p!n
)
s

sin~q2/2!s

~q2/21m2p!s
, ~23!

where mcont(p,q)5emnpmqn and, usingrFP, we have as-
sumed that the action is also at the FP. We give for com-
pleteness the expression ofrFP @8,5#

rFP
215 (

lPZ2

1

~p12lp!2)m
sin2~pm/2!

~pm/21 lm!2
1

1

3k
. ~24!

As in @5# we usek52. In Table I we show the coefficients
m(m,n) up toO(1025) ~coefficients which can be related to
these by symmetry transformations are omitted!. The prop-
erty of locality of m(m,n) is consistent with the general
discussion of the previous section about the spread of FP
operators.

We have tested the leadingQFP operator in the slowly
varying field expansion, observing that it fails to reproduce
the integer-valued spectrum of the continuum even on

TABLE I. Largest nonequivalent values ofm(m,n).

m n m(m,n) m n m(m,n)

~1,1! ~1,0! 5.0010031022 ~3,0! ~2,1! –4.3537631025

~2,0! ~1,1! –6.2731631023 ~3,1! ~2,0! 4.1555031025

~2,1! ~1,1! –4.9003631023 ~3,2! ~2,2! 3.9013231025

~2,1! ~2,0! 1.5222131023 ~3,2! ~2,1! –2.5369131025

~2,1! ~1,2! –9.3910531024 ~3,1! ~2,2! 2.2066431025

~2,1! ~2,–1! 3.5514231024 ~2,2! ~2,1! 1.5190131025

~2,2! ~2,0! 1.1627031024 ~3,1! ~3,0! 1.3789331025

~3,1! ~2,1! –8.3914631025 ~3,2! ~3,1! –1.2811231025
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quite smooth configurations. We conclude that even on these
configurations the neglected higher order operators dominate
the expansion. This agrees with the theoretical conclusion at
the end of the previous section.

IV. NUMERICAL DETERMINATION OF QFP

An alternative way to face the problem of the determina-
tion of the FP charge of a given lattice configuration, is to
solve the FP equation for the charge operator numerically.
This approach has been described and applied recently to the
O~3! s model in Ref.@6# for the geometrical definition of the
lattice topological charge. Starting from a certain configura-
tion $F% defined on the ‘‘coarse lattice’’L (0), the minimiz-
ing configuration$f (k)@F#% of Eq. ~12! is singled out by
constructing the succession of configurations defined on finer
and finer lattices

$F%,$f~1!%, . . . ,$f~k!%[$f~k!@F#%; ~25!

given the configuration$f (k21)% on the latticeL (k21), the
configuration$f (k)% on the latticeL (k) is determined by nu-
merically minimizing the quantity

A* @f8#1T @f~k21!,f8# ~26!

over all the configurations$f8% living on the latticeL (k).
After few steps of this iteration, the irrelevant content in
Q(k)@F#5Q(0)@f (k)@F## (Q(0) is the starting lattice opera-
tor! is negligible, and this quantity is a good approximation
of QFP@F#. We have performed this program using three
different starting lattice regularizationQ(0) of the charge.

~1! The naı¨ve regularizationQst
(0) :

Qst
~0!~x!5

1

8p
emne i jkf i~x!¹mf j~x!¹nfk~x!, ~27!

where¹m is the symmetrized lattice derivative

¹mf i~x!5
1

2
@f i~x1m!2f i~x2m!#. ~28!

~2! The Symanzik tree-level improved@up toO(a6)# op-
eratorQsym

(0) :

Qsym
~0! ~x!5

1

8p
emne i jkf i~x!Dmf j~x!Dnfk~x!, ~29!

whereDm is the improved lattice derivative,

Dm5
1225

1024
¹m

~1!2
245

1024
¹m

~3!1
49

1024
¹m

~5!2
5

1024
¹m

~7! ,

¹m
~n!f i~x!5

1

2n
~f i~x1nm!2f i~x2nm!!. ~30!

FIG. 1. Topological charge at the coarse level during the heating
of an extended instanton~with fixed boundary conditions! at
b51.15. The line represent the fit~with errors! of the data on the
plateau.

FIG. 2. Topological charge at the first fine level during the heat-
ing of an extended instanton~with fixed boundary conditions! at
b51.15. The line represent the fit~with errors! of the data on the
plateau.

TABLE II. Z(b) for the differentb ’s at the various RG levels,
k. The starting operator isQsym

(0) .

b coarse 1st level 2nd level 3rd level

1.00 0.892~9! 0.980~5! 0.9950~27!
1.05 0.910~8! 0.990~3! 0.9999~11!
1.10 0.921~6! 0.9929~23! 0.9992~8!

1.15 0.450~6! 0.929~6! 0.9931~21! 0.9990~6!

1.20 0.936~5! 0.9939~15! 0.9991~3!

TABLE III. P(b)3104 for the differentb ’s at the various RG
levels,k. The starting operator isQsym

(0) .

b coarse 1st level 2nd level 3rd level

1.00 0.571~22! 0.177~7! 0.0466~24!
1.05 0.179~10! 0.0276~22! 0.0037~5!

1.10 0.123~7! 0.0241~19! 0.0022~3!

1.15 0.804~13! 0.094~5! 0.0116~10! 0.00064~12!
1.20 0.066~3! 0.0088~9! 0.00061~11!
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~3! The FP operator at lowest order in the slowly varying
field approximationQSVF

(0) derived in the previous section.4

We performed the minimization of the quantity in Eq.
~26! by a local Metropolis algorithm accepting only lowering
changes. The algorithm started from the minimizing configu-
ration at lowest~linear! order in the slowly varying fields
expansion:

~fstart
~k! !n5(

nB
a~n,nB!fnB

~k21! . ~31!

The number of minimization sweeps needed to reach the
minimum decreases very rapidly withk and at the third step
no further minimization beyond the linear approximation is
required at all; indeed, the configuration$f (2)% is generally
very smooth and the lowest order approximation~31! allows
to determine$f (3)% with sufficient accuracy. The starting
topological charges give clearly different results at the step
zero, since large cutoff effects are present which are un-
equally handled by the various definitions; but, under itera-
tion of the RG transformation, these UV effects are gradually
erased and the three different field theoretical definitions of
the lattice charge operator converge to the same operator
QFP.

V. THE FIELD THEORETICAL METHOD

The problem of extracting from the lattice the topological
susceptibility of the O~3! s model has been studied for many
years@6,7,9–15# using different approaches. The topological
susceptibility has the dimension of a mass squared, soadmit-
ting that it is a physical quantity, i.e., renormalization group
invariant, its ~adimensional! lattice regularization should
scale in the continuum limit withj22, wherej is the corre-
lation length in lattice units. In fact, this scenario is obscured
by a prevision of the semiclassical approximation@16# and
some numerical evidences@17,18# which indicate that the
topology of the model is UV dominated.

In the field theoretical method@1# a lattice topological
charge density operator is defined as a local operatorQ(x)
having the appropriate classical continuum limit. The matrix
elements ofQ(x) are related to those in the continuum
through a finite multiplicative renormalization

Q~x!5a2Z~b!Qcont~x!1O~a4!. ~32!

The lattice version of the topological susceptibility is simply
given by x51/L2^@(xQ(x)#

2& (L is the lattice size!. It is
connected to the continuum counterpart by the relation

x~b!5a2Z~b!2xcont1P~b!^I &1O~a4!, ~33!

whereP(b) is the perturbative expectation value of the lat-
tice topological susceptibility~the so called perturbative
tail!.5 Both Z(b) and P(b) are artifacts of discretization
induced by the lattice quantum fluctuations. Equation~33!
allows us to extractxcont, the topological susceptibility of
the continuum theory, from MC determinations of the lattice
regularized susceptibilityx. An intermediate step is the
evaluation of the renormalizationsZ(b) andP(b). In stan-
dard perturbation theory they are calculated as power series
in 1/b @13#; an alternative approach is the Monte Carlo
‘‘heating’’ technique@19,13,18# ~see the following!.

Let us now come to the central issue of this paper, i.e., the
application of the field theoretical method in combination
with the FP lattice regularization of the topological charge.
We move towards the FP operator through the operators
Q(k) (k51,2,3) and construct the lattice susceptibilities
x (k)51/L2^@(xQ

(k)(x)#2&. The operatorsQ(k) still satisfy
~as the starting operatorQ(0)) the prescriptions of field
theory, since they can be expressed in terms of a local charge
density with finite spread~see Sec. II!. This allows us to
write

x~k!~b!5a2Z~k!~b!2xcont1P~k!~b!^I &1O~a4!. ~34!

The evaluation in perturbation theory of the renormalizations
Z(k) andP(k) is not practicable in this case because the ana-
lytical dependence of the operatorsQ(k) on the fieldf is not
known; consequently, we turn to the numerical approach, the
heating method.

The heating method@20,19# consists~for details see also
@13,18#! in constructing on the lattice ensembles of configu-
rations $Ct%, each configuration of the ensemble being ob-

4Using the first 12 leading couplings.

5In the right-hand side of Eq.~33! the mixing of the topological
susceptibility with the action density has not been considered, since
it is numerically negligible@18,15#.

FIG. 3. xjp
2 (jp[ja) for five correlation lengthsj at the vari-

ous RG steps. The starting topological charge regularization is the
Symanzik charge. Data at the coarse, 2nd, and 3rd fine level have
been slightly shifted for the sake of readability.

TABLE IV. Z(b) at b51.15 for the three different starting
regularizations of the topological charge.

coarse 1st level 2nd level 3rd level

Qst
(0) 0.411~4! 0.855~5! 0.9625~25! 0.9903~10!

Qsym
(0) 0.450~6! 0.929~6! 0.9931~21! 0.9990~6!

QSVF
(0) 0.384~3! 0.815~5! 0.9478~27! 0.9860~11!
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tained by performing a sequence oft local Monte Carlo
sweeps starting from a discretized classical configuration
C0—a large instanton or a flat configuration. For smallt, the
heating process thermalizes only the small-range fluctuations
which are responsible for the renormalizations, when the
starting configuration is a large instanton~flat configuration!,
measuringQ ~or x) on the ensembles$Ct% a plateau at the
value ofZ(b) @or P(b)# is observed after a certain time,
not depending onb, corresponding to the thermalization of
quantum fluctuations. The adaptation of this technique to the
present case needs the building of the ensembles$Ct

(k)% at
the three fine levels. Starting from a configuration on the
coarse lattice$F%P$Ct%, the corresponding configuration at
the kth fine level $f (k)@F#%P$Ct

(k)% was obtained by per-
forming the minimization procedure described in Sec. IV.
Averaging the starting definition of the topological charge
~susceptibility! on the ensembles$Ct

(k)% amounts to perform-
ing the heating procedure forQ(k) (x (k)), so that the renor-
malization constantZ(k) (P(k)) at each RG level can be de-
termined. In Tables II and III we show the values ofZ(k) and
P(k) k51,2,3~in the caseb51.15 alsok50) for five differ-
ent b ’s with the Symanzik improved topological charge as
the starting operator; it is interesting to observe thatZ and
P converge rapidly towards 1 and 0 respectively whenk
increases, thus indicating that the FP topological charge and
susceptibility are insensitive to quantum fluctuations.

In Figs. 1 and 2 we show the behavior of^Q(0)&(b
51.15) and^Q(1)&(b51.15) during the heating of an ex-
tended instanton~with fixed boundary conditions!. The most
important observation is that the time of thermalization of
the quantum fluctuations ofQ(1) — not yet erased by the RG
procedure — is very short (; four heating steps!, thus indi-
cating that the spread of this operator is small~of the order of
few lattice spacings!. This gives a numerical support to the
arguments of Sec. II about the spread of renormalized opera-
tors defined starting from a local density.

From the analysis of the data of heating we conclude that
Qsym
(0) is the starting operator closest to the fixed point, since it

yields at a givenk the values ofZ andP closest to 1 and 0
respectively@see Table IV forZ(b51.15)#.6 In the follow-
ing we will be concerned about the data coming from this
starting operator.

VI. MC SIMULATIONS

We performed Monte Carlo simulations on a starting
‘‘coarse’’ lattice 90390 for five values ofb ~1.0, 1.05, 1.10,
1.15, 1.20!, j ranging from 12 to 35 lattice units. We mea-
suredQsym

(0) ~only in the caseb51.15), Qsym
(1) , Qsym

(2) , and
Qsym
(3) using the numerical technique discussed in Sec. IV. We

considered;5000 decorrelated starting configurations at
thermal equilibrium for each value ofb.

In Table V and in Fig. 3 we present values ofxcontjp
2 ,

wherejp[ja, at the fiveb ’s considered on each RG level;
xcont has been extracted according to Eq.~34!, j was deter-
mined by evaluating the exponential decay of the wall-wall
correlation function on lattices satisfying the condition
L/j.7 ~in order to keep safe from finite size effects!.7

Data in Table V allows two observations: the vertical
reading shows that there is no scaling up to correlation
lengthj.35; the horizontal reading shows that the physical
signalxcont increases after each RG step. The first observa-
tion is a consequence of the UV dominated nature of the
topology of the model, already well established in literature;
the second effect is subtler, related to the different scale in-
variance properties of the three operatorsQ(k), k51,2,3. Be-
ing classically perfect,QFP should have a scale invariant
spectrum, so it should attribute the correct topological charge
to lattice configurations up to a very small size, close to the
lattice unit. In the case ofQ(k) this property is only approxi-
mate, improving for increasingk. This is visually clear in
Fig. 4, where we show the behavior of topological charge at
the coarse, the first fine and the second fine levels on small
size classical configurations~one-instantons with fixed
boundary conditions!. We can see that the topological charge
at the coarse level underestimates the correct continuum
valueQ51 on classical configurations with small size, while
the correct value is asymptotically attained ask increases.
We conclude that the slight dependence of our determination
of xcont on the ‘‘fineness level’’ of the latticek is an effect of
the progressive saturation of the topological signal coming
from small size instantons. We observe that atk53 this
saturation can be considered practically complete; we argue
therefore that only a negligible improvement would come
from further RG steps. It is also evident from Fig. 4 that no

6ThatQsym is closest to the FP operator could support the idea that
Symanzik’s improvement program goes in the same direction of the
RG improvement.

7We are indebted to the authors of Ref.@6# for allowing us to use
their cluster algorithm program for measurements of correlation
length.

TABLE V. Topological susceptibility in physical units up to the third RG level (jp[ja). For compari-
son, we also report in the last column the data of Ref.@6#.

b j xcoarse(jp
2) x1st level(jp

2) x2nd level(jp
2) x3rd level(jp

2) x1st level
geom (jp

2) @6#

1.00 12.16~3! 0.1448~15!
12.27~3! 0.137~7! 0.150~6! 0.151~5!

1.05 15.81~6! 0.161~8! 0.172~6! 0.173~5!

1.10 20.34~9! 0.173~8! 0.185~7! 0.188~6!

20.40~9! 0.1893~27!
1.15 26.26~14! 0.160~13! 0.177~8! 0.192~7! 0.195~7!

1.20 34.13~25! 0.194~11! 0.210~10! 0.213~9!

34.4~3! 0.224~5!
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topological signal is observable on the lattice below 0.9 lat-
tice units, even when using a FP operator and a FP action.
Since most of the topological signal in this model comes
from the region of small lengths, a cutoff effect is still
present in the lattice theory, which manifests itself in the
unphysical dependence ofxcont on j ~nonscaling!.

VII. SUMMARY AND CONCLUSIONS

The theory of Wilson’s renormalization group states the
existence of perfect lattice operators, i.e., operators dis-
cretized on the lattice which are free of cutoff effects. These
operators correspond to the renormalized trajectory of a
given renormalization group transformation. The fixed point
of the transformation defines the fixed point operator, the
classically perfect lattice operator.

In this paper we have studied the evolution towards the
fixed point of the two-point correlation function of the topo-
logical charge, i.e., the topological susceptibility, in the 2D
O~3! nonlinears model on the lattice. For this purpose, we
have discretized the continuum topological charge on the
lattice in terms of a local operator, polynomial in the lattice
fields, and we have implemented the renormalization group
procedure in a numerical fashion.

We have observed that the quantum fluctuations are pro-
gressively erased as the fixed point is approached, thus lead-
ing to an integer-valued spectrum of the topological charge
on the lattice. The amount of quantum fluctuations is quan-
tified by the renormalization constantsZ(b) andP(b) en-
tering the lattice definition of the topological susceptibility.
We have measured these constants by the heating method
observing their rapid disappearance with the iteration of the

renormalization group transformation. The operators ob-
tained at each step of the renormalization group procedure
can be considered as improvements of the starting operators,
in the sense of a suppression of the quantum noise around the
physical signal. A similar improvement, consisting in the
reduction of the renormalization constants, was obtained in
Ref. @21# by using smearing techniques. We have also calcu-
lated the physical value of the topological susceptibility at
thermal equilibrium by subtracting the effect of the renor-
malizations from the lattice signal at each renormalization
group step. The physical quantity obtained increases with the
renormalization group step up to convergence within a few
percent of accuracy. This convergence corresponds to the
saturation of the topological signal by smaller and smaller
instantons, down to the minimum size allowed on the lattice.
The physical signal at the fixed point does not exhibit a
scaling behavior, since the topological contribution of instan-
tons with size lower than the critical size, which is still lost
on the lattice, is dominating. A procedure similar to the one
described in this paper has already been applied in Ref.@6#
using the geometrical approach to the lattice topological
charge: we observe that the two different methods, while
diverging at the starting point, give asymptotically consistent
results when the renormalization group procedure is carried
on.

We have also presented an analytic determination of the
fixed point topological charge in the approximation of slowly
varying fields, by iterating the renormalization group trans-
formation at the leading order. The resulting operator fails to
reproduce the integer-valued spectrum of the continuum
even on quite smooth configurations, thus leading to the con-
clusion that the neglected higher order terms are important.
The negative result obtained is not completely unexpected
since an analytic expression in the lattice fields for the topo-
logical charge operator cannot reproduce a discrete~and,
therefore, discontinuous! spectrum on the lattice, where each
configuration can be continuously transformed into any
other.

The present paper can be considered as a preliminary
work in view of the determination of the fixed point topo-
logical charge for the SU~3! gauge theory. For this theory,
however, the numerical procedure applied in the present pa-
per is no longer viable, owing to the huge computation time
needed for the determination of the configurations on the
finer lattices. We retain that a promising approach is to
search for a~few-couplings! parametrization of the fixed
point topological charge operator which works even on
coarse lattices.
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FIG. 4. Topological charge at the coarse, first fine, and second
fine levels on classical configurations consisting of one-instantons
~with fixed boundary conditions! with different size. Instantons
have been smoothed out by some cooling steps before the charge
measurement.
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