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Canonical quantization of the kink model beyond the static solution
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A new approach to the quantization of the relativistic kink model around the solitonic solution is developed
on the grounds of the collective coordinates method. The corresponding effective action is proved to be the
action of the nonminimatl=1+1 point particle with curvature. It is shown that upon canonical quantization
this action yields the spectrum of the kink solution obtained first with the help of WKB quantization.
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I. INTRODUCTION achieved by putting all the fields with zero expectation val-
ues equal to zero. Thus, we get the minirpabrane action
It is well known that the particles spectrum in quantumas the residual effective action for the QFT model we start
field theories(QFT’s) possessing a topologically nontrivial With. However, as it was mentioned above, this procedure is
solution for the corresponding equation of motion may bel10t Suitable for models in which quantum perturbations of
obtained either by the semiclassical WKB metHdd, or fields near the static solutions are rather essential. In these

with the help of effective action]. The latter describes the cases one IS compell_ed to b_e more thorough in treating the
excited modes of static solutions.

I(owl-_tenerg); dyr?arrslcsdgf f‘ stable Itllme—lnc:ependenltl s;pluuon In this article we discuss the simplest example of such a
solitons, - for instance pius -small quantum OSClalions ,qqe| thed=1+ 1 relativistic modekp?, in which the prob-

around it. It was established earlier that these actions at thl%m of exciting modes can be resolved both on the classical
classical level are written down as minim@dorane actions, g quantum levels simultaneously.

supplemented with some additional nonminimal teri@} The outline of the paper is as follows. In Sec. Il we re-
Depending on curvatures of the relevant world volumes ofjiey some well-known results about the field-dependent
p branes, such nonminimal terms may become importanfransformations for the action of the model under consider-
when the quantum corrections due to the field fluctuations iration. It is shown how this transformation is associated with
a neighborhood of static solutions are not negligible. Uporthe spontaneously broken relativistic symmetries of the ini-
guantization these actions allow us to reveal the true quartial action and how the latter can be recast in the correspond-
tum content of their prototype field theories. ing splitting form.

This approach amounts to a nonlinear change of the In Sec. lll we have succeeded in showing that the equa-
space-time variables in the action of a given QFT model witition of motion obtained from the “splitting” action for the
spontaneously broken relativistic symmef#y;5]. As com-  perturbations of field about the kink solution is covariantly
pared with the old one, the new set of space-time variable§eparated into an equivalent system of two equations. One of
has another form of transformations under the original spacdhem is solved by the excited modes of the static solution,
time symmetry group. In what follows the static solutions of While the other one defines a world-line trajectory of the
the QFT model under consideration become completely Cogff(_actlve nonminimal point particle in the weak curvature
variant with respect to the relativistic group transformations™t , ) )

To achieve this the special dependence of the aforemen- 'h€ implications of this solution for the construction of
tioned nonlinear change of the space-time variables on thgle corresponding _effectlve action from the original f|el_d ac-
collective coordinates of the solitons has been assumed. PN a@re proposed in Sec. IV. In Sec. V we extend this ap-
order to provide a canonical relationship between these varfroach to the quantum level. Here, the canonical quantiza-

ables and the Goldstone excitations of the spontaneousgpn of the effective action is carried out for obtaining the

broken space-time symmetries the original set of field variuantum states of kink as the spectrum of the underlying

ables should be covariantly constrained. Sometimes this R0t particle with curvature. We finish with some specula-
tions about the possible generalization of our results to more

complicated cases.
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II. THE SPLITTING FORM ACTION FOR KINK
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indicating that the above symmetries are spontaneously bro-
S[(ﬁ]:f d*XL( ¢, dmeb), (1) ken with x™(s) thought of as the corresponding Goldstone
fields (owing to the nonhomogeneous part in their transfor-
m) 212 mation laws typical of the Goldstone fie)d$n addition, one
¢2—(§) } ; 2 can check that due to the presence of the variaé{lgss) in
Egs.(6) the Lorentz symmetry of the actigid) is spontane-
where ¢(x,t) is a dimensionless scalar fielt) andg are  ously broken as well. So, the only unbroken symmetry we

real parameters. It is well known that the correspondinggre left with in Eqs(6) is a gauge symmetry under a world-
equation of motiori6], line reparametrization of the point particle:

1 1
L(¢,dmd)= E(amd’)z_zgz

x™(s")=x"(s),
"I+ g2

2 m ?
¢ —(5> ¢=0, 3
s'=s'(s). (9)

leads to the kink solution The existence of this symmetry guarantees that after gauge

bel0)= Tt @
X)=—th—,
c 9 \/5
the time-independent solution, which describes the bend oie get the set of physical degrees of freedom needed to

the field at the poink=0, with the width of ordem™1, and  recover the field content of the original theory. To see this
the nontrivial behavior at infinity: we make the change of variablé® in action(1). This gives

x%(s)=t, x(s)=X(1), (10

bo(+0)=— o —0) = g (5) S[X™, B]= f d2oA(o)L($,Vind), (11)

Using the semiclassical method, it was foundihthat upon ~ Where we use the notation

guantization the kink solutioid) yields a heavy quantum- gy

mechanical particle. The modified approach which we follow A(o)= detLA = \/)'(—2(1_ pk), (12)
here shows that the same result may be obtained straightfor- do
wardly from the corresponding effective action. The way in 2 2
which such a nonlinear action would arise from the QFT L(ZS v g)zl[i(a ;5)2—((? %2}_392(52_(”‘) )
model[Egs. (1) and (2)] can be seen by the following con- m 2|A%S p 4 '
siderations, analogous to those which were implemented for 13
the rigid string in[4]. Let us pass to a new set of the basis

variables in the actiofil): Note that action11) depends on the curvature of the point-

particle world line:
x"=x"(s)+e(,(s)p=y"(oa), A=0,1,

k=+—-a"a,, (14
PXD=h(0n),  Ta=0=S,  Oa-1=p, ®)  Where the acceleratica’ is defined by
wherex™(s) are the coordinates of thd=2 point particle, d
eE“l)(sl is the unit spacelike vector orthogonal to its world an:i _i. (15)
line, ¢(o,) is the notation for the fields(x,t) in terms of \/ﬁ ds \/;

the new variables. It is clear that it describes an infinite set of . . ) .

the world-line fields emerging in its expansion with respectlt is rather evident that, in comparison to Ed), action(11)

to the inert coordinate. It is worth noticing that unlike involves one superfluous degree of freedft). The latter
(x,t) the new basis variables () are invariant under Poin- 1S nothing but the linear prototype of the Goldstone field
caretransformations. The reason for such a behavior of the&(t), arising in the decomposition @(x,t) around its static
variables is explained completely by the presence of the cosolution (4)

ordinates of the point particle™(s) in the mapping(6). A ,

specific feature gf thege coort(jir)mtes is the?tpthg( Poincare XD = ho(X) = X(V) e (X)+ - - -
translation symmetries associated with the actibn

(16)

To avoid the doubling of the Goldstone degrees of freedom
XM = XM 4 oM in action (11) we are forced to relate botk(t) andX(t)
fields by an equivalence transformation.

@' (X', t)=d(x,1), @)

are realized on them in the form

IIl. ELIMINATING EXCITED MODES

Here, we wish to show that the most correct way to reveal
x™ (s)=x"(s)+a™, this relation in the framework of the model under consider-

_ _ ation is to restrict the set of variablgz™, ¢] in action(11)
o' (o)=dd(0), (8) by the covariant condition
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SYX™, B]
_— =0, 1
S(5¢()) an

xM(s) =const

where 55(0) denote the perturbations of the fields
¢(o) near the kink solution

B(0)=do(p)+ Sp(0). (19

1 72
L(¢c)+ﬂ2((935¢)

XM, b+ 55]:f d%[A

1 ~, 1 , [m\? ~
—5(&p5¢)2—§92<3¢c—(5) )5¢2

~, 1 ~ ~
~Q*pcdp’— 7 9%09" |+ ¢é5¢apA] :

be=0dpbc, (24)

It is worthwhile to emphasize that when varying the variable

55(0) in Eq. (17) one should treat both theé"(s) and per-

1 1
turbation fields on equal footing as independent variables. L(¢pe)=— §¢;2— Zgz
Only then can Eq(17) be considered as the covariant con-

straint for eliminatingd¢ (o) in terms ofx™(s) and their

derivatives. The reason for this is rather simple and belong

to some common issues of the effective actions th¢@ty

We wish to briefly concern ourselves with this problem, with
emphasis on the peculiarities brought about by our model.

Let an actionS= g x,X], which depends on two sets of

2

SEi
¢e g | (

\évhere we have used the equation of motion dgr

’ 2
- é+g d’c

2 m 2
¢>c—(5) =o0. (26)

variables{x} and{X}, achieve its extremum at the stationary F'om Eq.(24) it follows that the perturbationl8) are gov-

point x.,X.. That is,

0S S

P _O’ P
OX g X oX

v

=0. (19

Xe i X

The corresponding effective action of the model is obtained

by putting
Ser X=X, X(X)], (20
where the constraint

5S ~ ~
X =0, =X=X(X) (21)

X=const

is used for excluding the subset of variab{e§ in terms of
{x}. Now, any stationary point of the effective acti¢20),
with X(x) subject to the constraii21), is simultaneously an
extremum of the total actioig[x,X]. Indeed, varying the
definition (20) with respect tax, we find

0Ser[ X] O X, X(X)] = 69X, X(x)] 6X(X)
x - ax T oxx) ox - @2

The second term on the right-hand sid@HS) of Eqg. (22)
disappears owing to Eq19), while the first one vanishes
only at the solutiork=x, extremizing the effective action

OSer X]
. 0

(23

In our case the constrairi2l) is represented by the mani-
festly covariant conditior{17). Let us analyze the structure
of this condition in more detail.

By putting Eq.(18) into action(11) one finds

erned by the equation

2
IA ™ L0s—3,A0,+ gZA[E}q&g— (g) H 5b+ dik X2
+0(54%)=0. (27)

After the field rescaling§7¢—>(m/g) 6X and variable redefi-
nition p— eu,e= J2/m Eqg. (27) can be rewritten in a more
convenient form:

[€29A ™ 9,— d A0+ 2A(3X2— 1)] X+ eXLk /X2
+0(6X?)=0,

A=X4(1-euk), (28)
Xc=tanhu,

where the prime indicates the differentiation bbyEven in a
linear approximation wherO(8X?)=0, this equation is
rather complicated mainly due to its nonlinearities. So, we
are not able to solve it unless some additional assumptions
are adopted. First, we suppose that the corresponding
ansatzis given by

OX(s,u)=ek(s)f(u). (29

Note that the zeroth-order solutions of Eg9) are omitted
owing to the nonhomogeneity term on the left-hand side
(LHS), which is of first order ine.

Now, we can obtain approximate equations f¢u) and
k(s) by simply expanding Eq(29) in Taylor series around
€=0. In doing so we need, however, to be sufficiently care-
ful in treating the first term inside the square brackets in Eq.
(28). One cannot drop it as the terms of the second-order
correction ine in the case when the point-particle world-line
metric is a quickly varying function. Let us suppose that the
term
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d 1 dk spontaneous breakdown of the translation invariance. Let us
lim ezd— T3 ds #0, (30 note first that we can take the decompositi®8) in the same
w0 US \/; S form as in Eq.(16):
is not zero even in the=0 limit. Taking into account Eqs. E(p,t): de(p)—9(S)pL(p)+ - - -, (38)

(29 and (30) one finds that to the lowest order i the
variables in Eq(28) are separated and instead of one equawhereg(s), as opposed tx(t), is a completely covariant
tion with partial derivatives the equivalent system of two degree of freedom. Comparing this expression with Egjs.

equations for total derivatives arises: in the proper-time gaugél0), we find
1 d 1 dk g(tr):X(tr)_'i(tr)"" Tt (39
€ —— - —— =+tck=0, (3D . . . —
\/; ds \/; ds wheret, =t—p is the “retentive” time and ellipsis stands for
terms which are at least second order in the figlt). On
—f"+ 2(3x§— 1)f—cf+X',=0. (32 the other hand, from solution&9), (35), (37) it follows that

g(s)=—(29/3m3k(s). Thus, owing to the constrair.7)
Here,c is a constant which can be found as a solution of Eqthere is no independent degree of freedom to be related with
(32). Both equations of the systefqs.(31) and(32)] are  the zero modep.(p). Instead of this, we have the relation
very important for the constitution of the relationship be-
tween linear and nonlinear parametrizations of the action.
First, it appears that in contrast with the linear version of the
theory the lowest eigenvalue of the energy is not zero. In-

deed, one can see that for 0, Eq.(32) can be rewritten as Which establishes the desired equivalence connection be-
tween the Goldstone field(t) and corresponding collective

- 2 (g
X(t)=x(t)+3-2 E) K(t)+-,

d 1 fui 1 33 coordinate.
du| costfu duS°STuTo) | = ooy (33
IV. THE EFFECTIVE ACTION FOR KINK WITH
The corresponding solution can be represented in the form QUANTUM CORRECTIONS
1 1 sintfu b a Thus, we succeeded in resolving the constréii by the

ansatz(29) and(30). Actually, this construction allows us to
eliminate 5¢(X) in terms ofx™(s) and its derivatives. As a
by-product, the new equatioi31) implementing the role of

: (349 the low-energy dynamical equation of motion for kink in
presence of its excited modes was obtained. On the other

It is evident that this solution ceases to have any appropriatd@nd, one can consider the solutia@8) and(37) for elimi-
behavior for largdu|. Thus, one cannot provide the stabili- nation of the excited modes of the fief{x) from the ac-
zation of the theory until this state is assumed to be rejectetion. Indeed, putting together Eq9), (31), and (37) and
from the very beginning. It is not difficult to do this, how- inserting them back into the actidg@4), we find the follow-
ever, in the case+0. To this end, we have to go to the ing expression for the effective action:

shifted function

= - + +
fo(u) 4cosi'?u 12 cosifu ~ cosHu 8cosKu

X

1
3u+ 25inh21+zsinh4u

- 1
~ Sefi=— | dsvx?| 1+ kz), 40
f(u)=f(u)—c X.(u) (35 of “f s\ 3m? 40
and carry out the calculation chr(u) andc from the corre- where
sponding equation of motion 22 m? (41)
~ ~ o~ M= 7.
—Fr+2(3X2—1)f—cf=0. (36) 3 ¢°

Note that in deriving Eq(40) the p integration in the action
(24) (modulo terms of ordek®) was performed.

It was shown in Sec. Ill that the method at hand ensures
the consistency of a given action with the acti¢24).
——, C€1=3. (37 Namely, both of them possess one and the same set of sta-
tionary points. To check the correctness of this statement it is
sufficient to compare Eq31) to the equation of motion de-
rived from the effective actio40):

Here, we display the partial solution which is the most suit-
able for our purposes:

It is appropriate to remark that in addition to E§7), there
exist other solutions of Eq36) [6]. However, we do not
consider such solutions here because they represent more
excited eigenstates of the energy.

In the remainder of this section we want to discuss the L d oL
relationship between collective coordinateS(s) and the —oeft = Treft
Goldstone fieldx(t), which arises in the action upon the Tooxn ds e

anO,

(42)
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An important property oL o defined from Eq(40) is that  The explicit forms of the moment&6) and (47) are given
Egs. (42) admit a very nice representation in terms of theby

world-line curvaturek(s). The transition to such a represen-

tation is achieved through the implication of the correspond- \ n ) 2ae?l).
ing Frenet equationgs] p"=—ep(u—ak)+ N K, (48)
q
m _ v2aM
b=~ k%], 2ael),
n"=- N k, (49
e = —kyx2el . (43 a
m ) where we use the notation
wheree(, ,a=0,1 are the basis components of the “mov-
ing” frame: ne”
k== a=ty (50
)'(m am q 3m
eM—|gm—"_ gMm__ __
@ O e ® k|’ The components of the Frenet basflg, in expression$48)—
(50) are defined in Eq(44). This allows us to establish the
el emv)= M(apy=diag +1,—1), (44)  existence of two primary first-class constraints:
&, =TIg~0, (51

e™el =g™"=diag +1,—1).

Now, it is not difficult to show that making a projection of ~ ®,=H .= pq+I1g—L=pqg+ o2
Eq. (42) onto the basi$44) and taking account of Eq$43),

1
,u,—|—4aql_[) 0.

we obtain the equation of motion in the following compact (52)
form One verifies easily that upon substitution of the functions
) (48) and (49) into Egs.(51) and(52), these constraints van-
ezi i i ﬂ(+ ( 3 e_kz) k=0. (45) ish identically with respect tq,, andq,,. This means that, in
\/5(_2 ds \/; ds 2 fact, the dynamics of our system is constrained on a certain

submanifold of the total phase space. For definition of the
Evidently, Eq.(31) is merely the linearized version of Eq. physical phase space according to Dirac’s gauge-fixing pre-
(45). scription[10] we need to introduce new constraints which
enable us to avoid the gauge freedom of the theory generated
by the constraintg51) and (52). To this end we shall con-
sider only the ordinary proper-time gauge condition

So far, our attention has been devoted to the classical

subject. It was shown that the quantum field theory aation X=1g?-1~0. (53
and (2) around the topological defe¢#) can be reduced to ] .
the effective action40) which incorporates implicitly the It is easy to see thaX forms a second-class algebra with the
dependence of the theory on zero and nonzero modes. Tig@Nstraint(51):
latter are apparent only from the mass form(#d) which
depends inversely on the coupling constgnfThus we get,

in fact, the new nonperturbative formulation of the theoryTherefore, it must be omitted as nondynamical degree of

which may be regarded as fundamental in its own right. INfreedom. This result can be achieved if we pass from the
particular, it will be of a great interest to use the act{d0) Poisson brackets to Dirac ones:

straightforwardly for obtaining the quantum states of kink as
the spectrum of point particle with curvature. 1 1

We begin with some general comments about the canoni-f,9}* ={f,g} + 35 Af, ®1:{X, 0} = 75 Af. XH P4, 9}
cal analysis of this system. The Lagrangig®) depends, (55)
apart from the velocinkm, on the acceleration of the particle
(15). This, in accordance with theories with higher deriva-From Eg.(55) one can observe that the constraif§$) and
tives, means that we have to treat the varialilegndx,, as (03 have zero Dirac’s brackets with everything and, there-
canonically independent coordinafé€. So, the phase space fOre; can be considered as strong equations.

of our model consists of two pairs of the canonical variables; 1€ remaining phase-space coordinates have a transparent
physical meaning. Indeed, let us perform the transformation

V. QUANTIZATION

{®,,X}=1+X. (54)

Oleg - to the new set of canonically conjugated variables:
X Pm=qm ~Hm 49 p=+?, T1,=II,,
1 p ’
. aL
Om=Xm, = f: (47 v=arctanl=?£, I, =plly,, (56)
aq P(o)
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Z"=x"—{x" v}, , [a)a,—&(1—-\)]¥(v)=0, (62)

where pa)=pne(y), I1(a)=11,€(, are the momentum com- where the operators, , a, are defined as in Eqé61). This
ponents in the Frenet basis. We would like to note that thequation can be rewritten in the standard form of the Schro
above representation of the phase-space variables presendgifiger equation:

the structure of the canonical Poisson brackets:

d ) A v
{11, ,p}={11, v}=1, —W-l—Z)\fZSInth— \[Egcoshz—)\lf(v)
{p"zo}=0n, (57) =£2(1- NV (v), (63)

with all others equal to zero. It follows from their definitions with the potential
that the constraint$51)—(53), when rewritten in terms of
new coordinates, have the forms

V(v)=2)\§zsinh2%— \/ggcosl'g— (64)

1 and the energfE=&2(1—\). The interesting feature of the
b,=p| — \/Fcosh; +u— 1‘[ 24 _p21'[2 , (58 potentialV(v) is that it can be written in the form

(I)l:pHp’

X=p-1. V(v)=GX0)~G'(v), G(v)=\2rcosty, (69

Thus, we see that the physical variablés, v are nothing

. . ical rsymmetri ntum mechanit4].
but the intrinsic angular momentum, i.e., the spin typical to supersymmetric quantu echarjit]

One may check that for all the solutions of E§3) with
(59) pu=m, (é=1) the potential(64) has only one stationary
point V,,;,= — VA/2¢. Hence, from the boundary condition
and the corresponding angular variable in this model. Th&E=V,,,;, we get the following constraint on the permissible
residual first-class constraidt, in terms of the remaining values of the parameteksand ¢:
coordinates has the form

Sin= Adml = dnllm=emall, ,

. E(1—N)=— \/2. (66)
2
—Jp?cost + PR (60 we will come back to this point later on.

Let us now consider the eigenfunction which can be ob-
The physical states on the quantum level must satisfy théained from Eq.(63). First, it is easy to notice that there
conditi0n<i>2| phy=0. Here, the operatoi)Z is obtained from  exists a well-defined ground state solution with the canonical
Eq. (60) by the normal ordering prescription in the coordi- eigenvalueM = u (E=0):
nate representatiot], = —id/dv:

dy=ata,— (1)), a1V dv)=0=2V, = c:exp( —Zﬁgcosl%) . (67

d v In order to construct the wave functions for other physical
= + 2\ §smhi, states it will be convenient to perform the following standard
61) decomposition:

1%
gziﬁ \I’(v)=W(v)exy{—2\/§§cost>. (68)
Jam’
\/_2 When substituting Eq68) into Eg.(63), a new equation for
_NpT_M the functionW(v) appears:
N =—=0.
mooop
LU

Note, that there are other similar modifications of the opera- W"—Z\/X&IW\EW +&(1-M)W=0. (69

tor ®, admissible from the classical point of view. Depend-
ing on the operators ordering procedure for the product offhere are only two forms of representation for the function
operatorsa, , a, , they are not equivalent to the expressmnsw(v) compatible with the structure of E¢69):
(61). We do not find them very satisfactory since in what
follows such representations lead to difficulties with the nv
physical interpretation of the system. In particular, the obvi- W)= Z Af)COShZ—, (70
ous interpretation of the ground state of kink as a state with n=o
M = u does not hold. o

Thus, here we shall confine ourselves to the equation of W)= 2 A(n’)smh(n+ )U (72)
motion n=0
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TABLE I. Eigenvalues o\~ expressed as functions éf

13 3.16 3.87 4.47 5.00 5.48 5.92 6.32 6.71 7.07 10.0 12.0 13.0
INEI) 1.55 1.425 1.36 1.32 1.289 1.265 1.245 1.23 1.216 1.15 1.144 1.115
3 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0

N(§) 1.09 1.047 1.044 1.042 1.040 1.037 1.035 1.033 1.032 1.030 1.029 1.028

under the transformatiom — —v. For definiteness, let us M=u+ = (75)

The first representation is even and the second one is odd 1 \F
=m
2V2

consider the functiofV(~)(v). As a result of the substitution
of the decompositioii71) into Eq.(69), we obtain the recur-

) . - 7 In our notation[see Eq.(61)], this expression is given by
sive conditions for the coefficien#s!{):

1
” AN =1+ —. (76)
>, al)Al)=0, (72 V2¢
n=0
It is of main importance that the last formula is in good
with agreement with all the numerical data represented in Fig. 1
by the solid line. From the foregoing it follows that the point
al)=—EN2)Y2MS, o1+ [E(1—N) +(m+1)%/4]5, &; may be regarded as that in which the weak-coupling per-
turbative regime of the theory is replaced by its strong-

+EN2)YAM+2) 8, i1 - (73)  coupling regime and we are left with the solitonic solution
only.
It is obvious that in accordance with the homogeneity of the Having the spectrum of kink given by the explicit func-
system(72) it appears the equation tion (76) we can construct eigenfunctions(™) straightfor-
wardly by making use of the recursive conditi¢érd). The
ded|)=0 (74)  results of this calculations fon ranging from 1 to 20 are

drawn in Fig. 2. It is worthwhile to remark that the function
W()(v) we are dealing with is, in principle, a well-defined
and calculable quantity, since the reduction of the séiés

is provided by the recursive conditigi@3). It turns out that
are expressed as a function &flt is evident that only the for Iarge_m and_the functlon)\(_ (£) defined b_y_Eq.g6_),
part of the dots, indicated by the solid line, has been intertn€re exists a simple expression for the coefficieifs) in
preted as the physical ones. The remaining branch, denotdefl- (72):
by the dashed line, is not compatible with the conditi66).

to be satisfied. It gives the relationship between paramete
N\ and¢ in accordance with Table |. The roots of this equa-
tion are exhibited in Fig. 1, where the eigenvalues\6f)

Therefore, the dof= ¢,=15 can be regarded as the crucial AEn ) _ %m

one. In order to understand better this result it would be ALD 1+ad1+ -

useful to remind the reader of our previous lesson. It was

mentioned in Sec. lll that in accordance withl, the weak- 2\2¢

coupling corrections to the kink solution can be summarized U= (77)

in the mass formula

From Eqs.(77) it follows that the calculations oW(™)(v)
are consistently defined.

N"(f)ﬁ
1.5} |
1
A : — £20 Wiy, )
1.4 \ L
L e £=30
Y 2.
1.3 A — £=40
\; 1
1.2 \\\ 3 3
\\\: - _] L
1.1 \\\i: -2
‘M"‘—Lﬂ_n_n_q_o_c
! -3
5 10 15 20 £

FIG. 2. The odd wave functio®{ (v, &) for the excited kink
FIG. 1. The eigenvalues &f ) as a function of the parametgr  state with&= 20, 30, 40.
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The above considerations are connected to the method guantum particle with the mag35) obtained earlier in the

calculation of the odd wave functio#(~)(v) only. In prin-
ciple, the analogous method allows one to find a formal so
lution for the even wave functio® (*)(v) also. The latter,
however, is not relevant from the physical point of view
since the corresponding eigenvalue equatioraﬁj,étzo for
the function\()(¢) is in contradiction with the boundary

framework of the WKB approacf].

It is clear that the methods developed here can be ex-
tended to the cases of field models involving more compli-

cated static solutions. In particular, it would be of great in-

terest to apply this approach to carry out the quantization of
the 't Hooft—Polyakov monopolfl1] and of the static solu-

tion of (2+1)-dimensional S(2) Yang-Mills theory with
the Chern-Simons terifl2]. We hope also that such an in-
vestigation turns out to be useful in the cases of solutions
obtained from supersymmetric field theoriésee, for ex-

A few comments are in order. In this paper we have conample,[13] and references thergin
structed a new nonperturbative approach to the problem of Note added in proofWe are grateful to R. Jackiw who
quantization of the topologically, nontrivial QFT, models brought our attention to a series of worlkib] in which the
with spontaneously broken relativistic symmetry. Ultimately quantization beyond the static solution was initiated.
this approach is based on the observation that the spectrum
of the localized field states can be restored from the corre-
sponding effective actions. The method of deriving the effec-
tive actions from the field theory is proved to be reduced to This work was supported in part by International Soros
the transformation(6) allowing us to eliminate some field Science Education Program of the International Renaissance
variables of the theory in terms of the appropriate collectiveFoundation through Grant No. N APU062045, the Russian
coordinates. It was shown that in the case of kink solutiorFoundation of Fundamental Research Grant No. 96-02-

condition (66).
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