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A new approach to the quantization of the relativistic kink model around the solitonic solution is developed
on the grounds of the collective coordinates method. The corresponding effective action is proved to be the
action of the nonminimald5111 point particle with curvature. It is shown that upon canonical quantization
this action yields the spectrum of the kink solution obtained first with the help of WKB quantization.
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I. INTRODUCTION

It is well known that the particles spectrum in quantum
field theories~QFT’s! possessing a topologically nontrivial
solution for the corresponding equation of motion may be
obtained either by the semiclassical WKB method@1#, or
with the help of effective actions@2#. The latter describes the
low-energy dynamics of a stable time-independent solution
~solitons, for instance! plus small quantum oscillations
around it. It was established earlier that these actions at the
classical level are written down as minimalp-brane actions,
supplemented with some additional nonminimal terms@3#.
Depending on curvatures of the relevant world volumes of
p branes, such nonminimal terms may become important
when the quantum corrections due to the field fluctuations in
a neighborhood of static solutions are not negligible. Upon
quantization these actions allow us to reveal the true quan-
tum content of their prototype field theories.

This approach amounts to a nonlinear change of the
space-time variables in the action of a given QFT model with
spontaneously broken relativistic symmetry@4,5#. As com-
pared with the old one, the new set of space-time variables
has another form of transformations under the original space-
time symmetry group. In what follows the static solutions of
the QFT model under consideration become completely co-
variant with respect to the relativistic group transformations.
To achieve this the special dependence of the aforemen-
tioned nonlinear change of the space-time variables on the
collective coordinates of the solitons has been assumed. In
order to provide a canonical relationship between these vari-
ables and the Goldstone excitations of the spontaneously
broken space-time symmetries the original set of field vari-
ables should be covariantly constrained. Sometimes this is

achieved by putting all the fields with zero expectation val-
ues equal to zero. Thus, we get the minimalp-brane action
as the residual effective action for the QFT model we start
with. However, as it was mentioned above, this procedure is
not suitable for models in which quantum perturbations of
fields near the static solutions are rather essential. In these
cases one is compelled to be more thorough in treating the
excited modes of static solutions.

In this article we discuss the simplest example of such a
model, thed5111 relativistic modelf4, in which the prob-
lem of exciting modes can be resolved both on the classical
and quantum levels simultaneously.

The outline of the paper is as follows. In Sec. II we re-
view some well-known results about the field-dependent
transformations for the action of the model under consider-
ation. It is shown how this transformation is associated with
the spontaneously broken relativistic symmetries of the ini-
tial action and how the latter can be recast in the correspond-
ing splitting form.

In Sec. III we have succeeded in showing that the equa-
tion of motion obtained from the ‘‘splitting’’ action for the
perturbations of field about the kink solution is covariantly
separated into an equivalent system of two equations. One of
them is solved by the excited modes of the static solution,
while the other one defines a world-line trajectory of the
effective nonminimal point particle in the weak curvature
limit.

The implications of this solution for the construction of
the corresponding effective action from the original field ac-
tion are proposed in Sec. IV. In Sec. V we extend this ap-
proach to the quantum level. Here, the canonical quantiza-
tion of the effective action is carried out for obtaining the
quantum states of kink as the spectrum of the underlying
point particle with curvature. We finish with some specula-
tions about the possible generalization of our results to more
complicated cases.

II. THE SPLITTING FORM ACTION FOR KINK

To show more precisely how the collective coordinate
method works, let us consider the action
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S@f#5E d2xL~f,]mf!, ~1!

L~f,]mf!5
1

2
~]mf!22

1

4
g2Ff22Smg D 2G2, ~2!

wheref(x,t) is a dimensionless scalar field;m and g are
real parameters. It is well known that the corresponding
equation of motion@6#,

]m]mf1g2Ff22Smg D 2Gf50, ~3!

leads to the kink solution

fc~x!5
m

g
th
mx

A2
, ~4!

the time-independent solution, which describes the bend of
the field at the pointx50, with the width of orderm21, and
the nontrivial behavior at infinity:

fc~1`!52fc~2`!5
m

g
. ~5!

Using the semiclassical method, it was found in@1# that upon
quantization the kink solution~4! yields a heavy quantum-
mechanical particle. The modified approach which we follow
here shows that the same result may be obtained straightfor-
wardly from the corresponding effective action. The way in
which such a nonlinear action would arise from the QFT
model @Eqs. ~1! and ~2!# can be seen by the following con-
siderations, analogous to those which were implemented for
the rigid string in@4#. Let us pass to a new set of the basis
variables in the action~1!:

xm5xm~s!1e~1!
m ~s!r[ym~sA!, A50,1,

f~x,t !5f̃~sA!, sA505s, sA515r, ~6!

wherexm(s) are the coordinates of thed52 point particle,
e(1)
m (s) is the unit spacelike vector orthogonal to its world
line, f̃(sA) is the notation for the fieldf(x,t) in terms of
the new variables. It is clear that it describes an infinite set of
the world-line fields emerging in its expansion with respect
to the inert coordinater. It is worth noticing that unlike
(x,t) the new basis variables (s,r) are invariant under Poin-
carétransformations. The reason for such a behavior of the
variables is explained completely by the presence of the co-
ordinates of the point particlexm(s) in the mapping~6!. A
specific feature of these coordinates is that the Poincare´-
translation symmetries associated with the action~1!,

xm85xm1am,

f8~x8,t8!5f~x,t !, ~7!

are realized on them in the form

xm8~s!5xm~s!1am,

f̃8~s!5f̃~s!, ~8!

indicating that the above symmetries are spontaneously bro-
ken with xm(s) thought of as the corresponding Goldstone
fields ~owing to the nonhomogeneous part in their transfor-
mation laws typical of the Goldstone fields!. In addition, one
can check that due to the presence of the variablese(1)

m (s) in
Eqs.~6! the Lorentz symmetry of the action~1! is spontane-
ously broken as well. So, the only unbroken symmetry we
are left with in Eqs.~6! is a gauge symmetry under a world-
line reparametrization of the point particle:

xm8~s8!5xm~s!,

s85s8~s!. ~9!

The existence of this symmetry guarantees that after gauge
fixing,

x0~s!5t, x1~s!5 x̃~ t !, ~10!

we get the set of physical degrees of freedom needed to
recover the field content of the original theory. To see this
we make the change of variables~6! in action~1!. This gives

S@xm,f̃#5E d2sD~s!L~f̃,¹mf̃ !, ~11!

where we use the notation

D~s!5det
]ym

]sA 5Aẋ2~12rk!, ~12!

L~f̃,¹mf̃ !5
1

2 F 1D2 ~]sf̃ !22~]rf̃ !2G2
1

4
g2S f̃22Smg D 2D 2.

~13!

Note that action~11! depends on the curvature of the point-
particle world line:

k5A2anan, ~14!

where the accelerationan is defined by

an5
1

Aẋ2
d

ds

ẋn

Aẋ2
. ~15!

It is rather evident that, in comparison to Eq.~1!, action~11!
involves one superfluous degree of freedomx̃(t). The latter
is nothing but the linear prototype of the Goldstone field
x(t), arising in the decomposition off(x,t) around its static
solution ~4!

f~x,t !5fc~x!2x~ t !fc8~x!1•••. ~16!

To avoid the doubling of the Goldstone degrees of freedom
in action ~11! we are forced to relate bothx(t) and x̃(t)
fields by an equivalence transformation.

III. ELIMINATING EXCITED MODES

Here, we wish to show that the most correct way to reveal
this relation in the framework of the model under consider-
ation is to restrict the set of variables@xm,f̃# in action ~11!
by the covariant condition
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dS@xm,f̃#

d„df̃~s!…
U
xm~s!5const

50, ~17!

where df̃(s) denote the perturbations of thes fields
f̃(s) near the kink solution

f̃~s!5fc~r!1df̃~s!. ~18!

It is worthwhile to emphasize that when varying the variable
df̃(s) in Eq. ~17! one should treat both thexm(s) and per-
turbation fields on equal footing as independent variables.
Only then can Eq.~17! be considered as the covariant con-
straint for eliminatingdf̃(s) in terms of xm(s) and their
derivatives. The reason for this is rather simple and belongs
to some common issues of the effective actions theory@7#.
We wish to briefly concern ourselves with this problem, with
emphasis on the peculiarities brought about by our model.

Let an actionS5S@x,X#, which depends on two sets of
variables$x% and$X%, achieve its extremum at the stationary
point xc ,Xc . That is,

dS

dx U
xc ,Xc

50,
dS

dX U
xc ,Xc

50. ~19!

The corresponding effective action of the model is obtained
by putting

Seff@x#[S@x,X~x!#, ~20!

where the constraint

dS

dX U
x5const

50, ⇒X5X~x! ~21!

is used for excluding the subset of variables$X% in terms of
$x%. Now, any stationary point of the effective action~20!,
with X(x) subject to the constraint~21!, is simultaneously an
extremum of the total actionS@x,X#. Indeed, varying the
definition ~20! with respect tox, we find

dSeff@x#

dx
5

dS@x,X~x!#

dx
1

dS@x,X~x!#

dX~x!

dX~x!

dx
. ~22!

The second term on the right-hand side~RHS! of Eq. ~22!
disappears owing to Eq.~19!, while the first one vanishes
only at the solutionx5xc extremizing the effective action

dSeff@x#

dx
50. ~23!

In our case the constraint~21! is represented by the mani-
festly covariant condition~17!. Let us analyze the structure
of this condition in more detail.

By putting Eq.~18! into action~11! one finds

S@xm,fc1df̃#5E d2sH DFL~fc!1
1

2D2 ~]sdf̃!2

2
1

2
~]rdf̃!22

1

2
g2S 3fc

22Smg D 2D df̃2

2g2fcdf̃32
1

4
g2df̃4G1fc8df̃]rDJ ,

fc8[]rfc , ~24!

L~fc!52
1

2
fc8

22
1

4
g2Ffc

22Smg D 2G2, ~25!

where we have used the equation of motion forfc

2fc91g2fcFfc
22Smg D 2G50. ~26!

From Eq.~24! it follows that the perturbations~18! are gov-
erned by the equation

H ]sD
21]s2]rD]r1g2DF3fc

22Smg D 2G J df̃1fc8kAẋ2

1O~df̃2!50. ~27!

After the field rescalingdf̃→(m/g)dX and variable redefi-
nition r→eu,e[A2/m Eq. ~27! can be rewritten in a more
convenient form:

@e2]sD
21]s2]uD]u12D~3Xc

221!#dX1eXc8kAẋ2

1O~dX2!50,

D5Aẋ2~12euk!, ~28!

Xc5tanhu,

where the prime indicates the differentiation byu. Even in a
linear approximation whenO(dX2)50, this equation is
rather complicated mainly due to its nonlinearities. So, we
are not able to solve it unless some additional assumptions
are adopted. First, we suppose that the corresponding
ansatzis given by

dX~s,u!5ek~s! f ~u!. ~29!

Note that the zeroth-order solutions of Eq.~29! are omitted
owing to the nonhomogeneity term on the left-hand side
~LHS!, which is of first order ine.

Now, we can obtain approximate equations forf (u) and
k(s) by simply expanding Eq.~29! in Taylor series around
e50. In doing so we need, however, to be sufficiently care-
ful in treating the first term inside the square brackets in Eq.
~28!. One cannot drop it as the terms of the second-order
correction ine in the case when the point-particle world-line
metric is a quickly varying function. Let us suppose that the
term
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lim
e→0

e2
d

ds

1

Aẋ2
dk

ds
Þ0, ~30!

is not zero even in thee50 limit. Taking into account Eqs.
~29! and ~30! one finds that to the lowest order ine the
variables in Eq.~28! are separated and instead of one equa-
tion with partial derivatives the equivalent system of two
equations for total derivatives arises:

e2
1

Aẋ2
d

ds

1

Aẋ2
dk

ds
1ck50, ~31!

2 f 912~3Xc
221! f2c f1X8c50. ~32!

Here,c is a constant which can be found as a solution of Eq.
~32!. Both equations of the system@Eqs. ~31! and ~32!# are
very important for the constitution of the relationship be-
tween linear and nonlinear parametrizations of the action.
First, it appears that in contrast with the linear version of the
theory the lowest eigenvalue of the energy is not zero. In-
deed, one can see that forc50, Eq.~32! can be rewritten as

d

du F 1

cosh4u

d

du
~cosh2u f0!G5

1

cosh4u
. ~33!

The corresponding solution can be represented in the form

f 0~u!5
1

4
cosh2u2

1

12

sinh4u

cosh2u
1

b

cosh2u
1

a

8cosh2u

3S 3u12sinh2u1
1

4
sinh4uD . ~34!

It is evident that this solution ceases to have any appropriate
behavior for largeuuu. Thus, one cannot provide the stabili-
zation of the theory until this state is assumed to be rejected
from the very beginning. It is not difficult to do this, how-
ever, in the casecÞ0. To this end, we have to go to the
shifted function

f̃ ~u!5 f ~u!2c21Xc8~u! ~35!

and carry out the calculation forf̃ (u) andc from the corre-
sponding equation of motion

2 f̃ 912~3Xc
221! f̃2c f̃50. ~36!

Here, we display the partial solution which is the most suit-
able for our purposes:

f̃ 1~u!5
sinhu

cosh2u
, c153. ~37!

It is appropriate to remark that in addition to Eq.~37!, there
exist other solutions of Eq.~36! @6#. However, we do not
consider such solutions here because they represent more
excited eigenstates of the energy.

In the remainder of this section we want to discuss the
relationship between collective coordinatesxm(s) and the
Goldstone fieldx(t), which arises in the action upon the

spontaneous breakdown of the translation invariance. Let us
note first that we can take the decomposition~18! in the same
form as in Eq.~16!:

f̃~r,t !5fc~r!2g~s!fc8~r!1•••, ~38!

whereg(s), as opposed tox(t), is a completely covariant
degree of freedom. Comparing this expression with Eqs.~6!
in the proper-time gauge~10!, we find

g~ t r !5x~ t r !2 x̃~ t r !1•••, ~39!

wheret r5t2r is the ‘‘retentive’’ time and ellipsis stands for
terms which are at least second order in the fieldx̃(t r). On
the other hand, from solutions~29!, ~35!, ~37! it follows that
g(s)52(2g/3m3)k(s). Thus, owing to the constraint~17!
there is no independent degree of freedom to be related with
the zero modefc8(r). Instead of this, we have the relation

x̃~ t r !5x~ t r !1
2

3m2 S gmD k~ t r !1•••,

which establishes the desired equivalence connection be-
tween the Goldstone fieldx(t) and corresponding collective
coordinate.

IV. THE EFFECTIVE ACTION FOR KINK WITH
QUANTUM CORRECTIONS

Thus, we succeeded in resolving the constraint~17! by the
ansatz~29! and~30!. Actually, this construction allows us to
eliminatedf̃( x̃ ) in terms ofxm(s) and its derivatives. As a
by-product, the new equation~31! implementing the role of
the low-energy dynamical equation of motion for kink in
presence of its excited modes was obtained. On the other
hand, one can consider the solutions~29! and~37! for elimi-
nation of the excited modes of the fieldf̃( x̃ ) from the ac-
tion. Indeed, putting together Eqs.~29!, ~31!, and ~37! and
inserting them back into the action~24!, we find the follow-
ing expression for the effective action:

Seff52mE dsAẋ2S 11
1

3m2 k
2D , ~40!

where

m5
2A2
3

m3

g2
. ~41!

Note that in deriving Eq.~40! ther integration in the action
~24! ~modulo terms of orderk3) was performed.

It was shown in Sec. III that the method at hand ensures
the consistency of a given action with the action~24!.
Namely, both of them possess one and the same set of sta-
tionary points. To check the correctness of this statement it is
sufficient to compare Eq.~31! to the equation of motion de-
rived from the effective action~40!:

ṗn50,

pn5
]Leff

] ẋn
2
d

ds

]Leff

] ẍn
. ~42!
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An important property ofLeff defined from Eq.~40! is that
Eqs. ~42! admit a very nice representation in terms of the
world-line curvaturek(s). The transition to such a represen-
tation is achieved through the implication of the correspond-
ing Frenet equations@8#

ė~0!
m 52kAẋ2e~1!

m ,

ė~1!
m 52kAẋ2e~0!

m , ~43!

wheree(a)
m ,a50,1 are the basis components of the ‘‘mov-

ing’’ frame:

e~a!
m 5S e~0!

m 5
ẋm

Aẋ2
,e~1!

m 52
am

k D ,
e~a!
m em~b!5h~ab!5diag~11,21!, ~44!

em~a!e~a!
n 5gmn5diag~11,21!.

Now, it is not difficult to show that making a projection of
Eq. ~42! onto the basis~44! and taking account of Eqs.~43!,
we obtain the equation of motion in the following compact
form

e2
1

Aẋ2
d

ds

1

Aẋ2
dk

ds
1S 32

e2

2
k2D k50. ~45!

Evidently, Eq.~31! is merely the linearized version of Eq.
~45!.

V. QUANTIZATION

So far, our attention has been devoted to the classical
subject. It was shown that the quantum field theory action~1!
and ~2! around the topological defect~4! can be reduced to
the effective action~40! which incorporates implicitly the
dependence of the theory on zero and nonzero modes. The
latter are apparent only from the mass formula~41! which
depends inversely on the coupling constantg. Thus we get,
in fact, the new nonperturbative formulation of the theory
which may be regarded as fundamental in its own right. In
particular, it will be of a great interest to use the action~40!
straightforwardly for obtaining the quantum states of kink as
the spectrum of point particle with curvature.

We begin with some general comments about the canoni-
cal analysis of this system. The Lagrangian~40! depends,
apart from the velocityẋm , on the acceleration of the particle
~15!. This, in accordance with theories with higher deriva-
tives, means that we have to treat the variablesxm andẋm as
canonically independent coordinates@9#. So, the phase space
of our model consists of two pairs of the canonical variables:

xm , pm5
]Leff
]qm

2Ṗm , ~46!

qm5 ẋm , Pm5
]Leff

]q̇m
. ~47!

The explicit forms of the momenta~46! and ~47! are given
by

pn52e~0!
n ~m2ak2!1

2ae~1!
n

Aq2
k̇, ~48!

Pn52
2ae~1!

n

Aq2
k, ~49!

where we use the notation

k5
q̇ne~1!

n

q2
, a5

m

3m2 . ~50!

The components of the Frenet basise(a)
n in expressions~48!–

~50! are defined in Eq.~44!. This allows us to establish the
existence of two primary first-class constraints:

F15Pq'0, ~51!

F25Hcan5pq1Pq̇2L5pq1Aq2S m1
1

4a
q2P2D'0.

~52!

One verifies easily that upon substitution of the functions
~48! and ~49! into Eqs.~51! and ~52!, these constraints van-
ish identically with respect toqn andq̇n . This means that, in
fact, the dynamics of our system is constrained on a certain
submanifold of the total phase space. For definition of the
physical phase space according to Dirac’s gauge-fixing pre-
scription @10# we need to introduce new constraints which
enable us to avoid the gauge freedom of the theory generated
by the constraints~51! and ~52!. To this end we shall con-
sider only the ordinary proper-time gauge condition

X5Aq221'0. ~53!

It is easy to see thatX forms a second-class algebra with the
constraint~51!:

$F1 ,X%511X. ~54!

Therefore, it must be omitted as nondynamical degree of
freedom. This result can be achieved if we pass from the
Poisson brackets to Dirac ones:

$ f ,g%*5$ f ,g%1
1

11X
$ f ,F1%$X,g%2

1

11X
$ f ,X%$F1 ,g%.

~55!

From Eq.~55! one can observe that the constraints~51! and
~53! have zero Dirac’s brackets with everything and, there-
fore, can be considered as strong equations.

The remaining phase-space coordinates have a transparent
physical meaning. Indeed, let us perform the transformation
to the new set of canonically conjugated variables:

r5Aq2, Pr5P~0! ,

v5arctanh
p~1!

p~0!
, Pv5rP~1! , ~56!
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zm5xm2$xm,v%Pv ,

wherep(a)5pne(a)
n , P (a)5Pne(a)

n are the momentum com-
ponents in the Frenet basis. We would like to note that the
above representation of the phase-space variables preserves
the structure of the canonical Poisson brackets:

$Pr ,r%5$Pv ,v%51,

$pm,zn%5dn
m , ~57!

with all others equal to zero. It follows from their definitions
that the constraints~51!–~53!, when rewritten in terms of
new coordinates, have the forms

F15rPr ,

F25rS 2Ap2coshv1m2
1

4a
Pv

21
1

4a
r2Pr

2D , ~58!

X5r21.

Thus, we see that the physical variablesPv , v are nothing
but the intrinsic angular momentum, i.e., the spin

Smn5qmPn2qnPm5«mnPv , ~59!

and the corresponding angular variable in this model. The
residual first-class constraintF2 in terms of the remaining
coordinates has the form

F252Ap2coshv1m2
1

4a
Pv

2 . ~60!

The physical states on the quantum level must satisfy the
conditionF̂2uph&50. Here, the operatorF̂2 is obtained from
Eq. ~60! by the normal ordering prescription in the coordi-
nate representation,Pv52 i ]/]v:

F̂25al
1al2j2~12l!,

al5
]

]v
1A2ljsinh

v
2
,

~61!

j5
2

A3
m

m
,

l5
Ap2

m
[
M

m
>0.

Note, that there are other similar modifications of the opera-
tor F̂2 admissible from the classical point of view. Depend-
ing on the operators ordering procedure for the product of
operatorsal , al

1, they are not equivalent to the expressions
~61!. We do not find them very satisfactory since in what
follows such representations lead to difficulties with the
physical interpretation of the system. In particular, the obvi-
ous interpretation of the ground state of kink as a state with
M5m does not hold.

Thus, here we shall confine ourselves to the equation of
motion

@al
1al2j2~12l!#C~v !50, ~62!

where the operatorsal , al
1 are defined as in Eqs.~61!. This

equation can be rewritten in the standard form of the Schro¨-
dinger equation:

S 2
]

]v2
12lj2sinh2

v
2

2Al

2
jcosh

v
2DC~v !

5j2~12l!C~v !, ~63!

with the potential

V~v !52lj2sinh2
v
2

2Al

2
jcosh

v
2

~64!

and the energyE5j2(12l). The interesting feature of the
potentialV(v) is that it can be written in the form

V~v !5G2~v !2G8~v !, G~v !5A2ljcosh
v
2
, ~65!

typical to supersymmetric quantum mechanics@14#.
One may check that for all the solutions of Eq.~63! with

m>m, (j>1) the potential~64! has only one stationary
point Vmin52Al/2j. Hence, from the boundary condition
E>Vmin we get the following constraint on the permissible
values of the parametersl andj:

j~12l!>2Al/2. ~66!

We will come back to this point later on.
Let us now consider the eigenfunction which can be ob-

tained from Eq.~63!. First, it is easy to notice that there
exists a well-defined ground state solution with the canonical
eigenvalueM5m (E50):

al51Cvac~v !50⇒Cvac5CexpS 22A2jcosh
v
2D . ~67!

In order to construct the wave functions for other physical
states it will be convenient to perform the following standard
decomposition:

C~v !5W~v !expS 22A2ljcosh
v
2D . ~68!

When substituting Eq.~68! into Eq.~63!, a new equation for
the functionW(v) appears:

W922A2ljsinh
v
2
W81j2~12l!W50. ~69!

There are only two forms of representation for the function
W(v) compatible with the structure of Eq.~69!:

W~1 !5 (
n50

`

An
~1 !cosh

nv
2
, ~70!

W~2 !5 (
n50

`

An
~2 !sinh

~n11!v
2

. ~71!
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The first representation is even and the second one is odd
under the transformationv→2v. For definiteness, let us
consider the functionW(2)(v). As a result of the substitution
of the decomposition~71! into Eq.~69!, we obtain the recur-
sive conditions for the coefficientsAn

(2):

(
n50

`

amn
~2 !An

~2 !50, ~72!

with

amn
~2 !52j~l/2!1/2mdn,m211@j2~12l!1~m11!2/4#dn,m

1j~l/2!1/2~m12!dn,m11 . ~73!

It is obvious that in accordance with the homogeneity of the
system~72! it appears the equation

detamn
~2 !50 ~74!

to be satisfied. It gives the relationship between parameters
l andj in accordance with Table I. The roots of this equa-
tion are exhibited in Fig. 1, where the eigenvalues ofl (2)

are expressed as a function ofj. It is evident that only the
part of the dots, indicated by the solid line, has been inter-
preted as the physical ones. The remaining branch, denoted
by the dashed line, is not compatible with the condition~66!.
Therefore, the dotj5jc>15 can be regarded as the crucial
one. In order to understand better this result it would be
useful to remind the reader of our previous lesson. It was
mentioned in Sec. III that in accordance with@1#, the weak-
coupling corrections to the kink solution can be summarized
in the mass formula

M5m1
1

2
A3

2
m. ~75!

In our notation@see Eq.~61!#, this expression is given by

l~2 !511
1

A2j
. ~76!

It is of main importance that the last formula is in good
agreement with all the numerical data represented in Fig. 1
by the solid line. From the foregoing it follows that the point
jc may be regarded as that in which the weak-coupling per-
turbative regime of the theory is replaced by its strong-
coupling regime and we are left with the solitonic solution
only.

Having the spectrum of kink given by the explicit func-
tion ~76! we can construct eigenfunctionsC (2) straightfor-
wardly by making use of the recursive condition~73!. The
results of this calculations forn ranging from 1 to 20 are
drawn in Fig. 2. It is worthwhile to remark that the function
W(2)(v) we are dealing with is, in principle, a well-defined
and calculable quantity, since the reduction of the series~71!
is provided by the recursive condition~73!. It turns out that
for largem and the functionl (2)(j) defined by Eq.~76!,
there exists a simple expression for the coefficientsAn

(2) in
Eq. ~71!:

Am
~2 !

Am21
~2 ! 5

am

11am
2 /11•••

,

am5
2A2j

m
. ~77!

From Eqs.~77! it follows that the calculations ofW(2)(v)
are consistently defined.

TABLE I. Eigenvalues ofl~2! expressed as functions ofj.

j 3.16 3.87 4.47 5.00 5.48 5.92 6.32 6.71 7.07 10.0 12.0 13.0

l(j) 1.55 1.425 1.36 1.32 1.289 1.265 1.245 1.23 1.216 1.15 1.144 1.115
j 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0
l(j) 1.09 1.047 1.044 1.042 1.040 1.037 1.035 1.033 1.032 1.030 1.029 1.028

FIG. 1. The eigenvalues ofl~2! as a function of the parameterx.
FIG. 2. The odd wave functionC1

(2)(v,j) for the excited kink
state withj520, 30, 40.
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The above considerations are connected to the method of
calculation of the odd wave functionC (2)(v) only. In prin-
ciple, the analogous method allows one to find a formal so-
lution for the even wave functionC (1)(v) also. The latter,
however, is not relevant from the physical point of view
since the corresponding eigenvalue equation detamn

(1)50 for
the functionl (1)(j) is in contradiction with the boundary
condition ~66!.

VI. CONCLUSION

A few comments are in order. In this paper we have con-
structed a new nonperturbative approach to the problem of
quantization of the topologically, nontrivial QFT, models
with spontaneously broken relativistic symmetry. Ultimately
this approach is based on the observation that the spectrum
of the localized field states can be restored from the corre-
sponding effective actions. The method of deriving the effec-
tive actions from the field theory is proved to be reduced to
the transformation~6! allowing us to eliminate some field
variables of the theory in terms of the appropriate collective
coordinates. It was shown that in the case of kink solution
this yields the action of the nonminimald5111 point par-
ticle with curvature. Upon quantization, it describes the

quantum particle with the mass~75! obtained earlier in the
framework of the WKB approach@1#.

It is clear that the methods developed here can be ex-
tended to the cases of field models involving more compli-
cated static solutions. In particular, it would be of great in-
terest to apply this approach to carry out the quantization of
the ’t Hooft–Polyakov monopole@11# and of the static solu-
tion of (211)-dimensional SU~2! Yang-Mills theory with
the Chern-Simons term@12#. We hope also that such an in-
vestigation turns out to be useful in the cases of solutions
obtained from supersymmetric field theories~see, for ex-
ample,@13# and references therein!.

Note added in proof. We are grateful to R. Jackiw who
brought our attention to a series of works@15# in which the
quantization beyond the static solution was initiated.

ACKNOWLEDGMENTS

This work was supported in part by International Soros
Science Education Program of the International Renaissance
Foundation through Grant No. N APU062045, the Russian
Foundation of Fundamental Research Grant No. 96-02-
17634, INTAS Grants No. 94-2317, No. 93-633, No. 94-
2317, and grant of the Dutch NWO organization.

@1# R. Dashen, B. Hasslacher, and A. Neven, Phys. Rev. D10,
4130 ~1974!; 11, 3424~1975!.

@2# S. Coleman, J. Wess, and B. Zumino, Phys. Rev. B117, 2239
~1969!; C. Callan, S. Coleman, J. Wess, and B. Zumino,ibid.
117, 2247 ~1969!; D. V. Volkov, Sov. J. Part. Nucl.4, 3
~1974!; V. I. Ogievetsky, inProceedings Xth Winter School of
Theoretical Physics~Karpach, Wroclav, 1974!, Vol. 1, p. 117.

@3# J. Hughes and J. Polchinski, Nucl. Phys.B278, 147 ~1986!; J.
Hughes, J. Liu, and J. Polchinsky, Phys. Lett. B180, 370
~1986!; P. K. Townsend,ibid. 202, 53 ~1988!; J. P. Gauntlett,
K. Itoh, and P. K. Townsend,ibid. 238, 65 ~1990!; A. Achu-
carro, J. P. Gauntlett, K. Itoh, and P. K. Townsend, Nucl. Phys.
B314, 129 ~1989!.

@4# D. Forster, Nucl. Phys.B81, 84 ~1988!; K. Maeda and N.
Turok, Phys. Lett. B202, 376 ~1988!; R. Gregory, D. Haws,
and D. Garfinkle, Phys. Rev. D42, 343 ~1990!; R. Gregory,
Phys. Lett. B206, 199 ~1988!; Phys. Rev. D43, 520 ~1991!;
D. Garfinkle and R. Gregory,ibid. 41, 1889~1990!.

@5# E. A. Ivanov and A. A. Kapustnikov, Int. J. Mod. Phys. A7,
2153 ~1992!; Phys. Lett. B252, 212 ~1990!; A. A. Kapustni-
kov, ibid. 294, 186 ~1992!.

@6# R. Rajaraman,Solitons and Instantons~North-Holland, Am-
sterdam, 1988!.

@7# S. M. Barr and D. Hochberg, Phys. Rev. D39, 2308~1989!; H.
Arodz and P. Vegrzyn, Phys. Lett. B291,251 ~1991!.

@8# Yu. A. Aminov, Differential Geometry and Topology of
Curves~Nauka, Moscow, 1987!; V. V. Nesterenko, A. Feoli,
and G. Scarpetta, J. Math. Phys.~to be published!.

@9# T. Dereli, H. Hartley, M. Onder, and R. W. Tuker, Phys. Lett.
B 252, 601~1990!; M. Huq, P. I. Obiakor, and S. Singh, Int. J.
Mod. Phys. A5, 4301~1990!; V. V. Nesterenko, Class. Quan-
tum Grav.9B, 1101 ~1992!; M. S. Plyushchay, Nucl. Phys.
B362, 54 ~1991! and references therein; Phys. Lett. B253, 50
~1991!; Yu. A. Kuznetsov and M. S. Plyushchay, Nucl. Phys.
B389, 181 ~1993!.

@10# P. A. M. Dirac, Lectures on Quantum Mechanics, Belfor
Graduate School of Science, Yeshiva University, New York,
1964.

@11# G. ’t Hooft, Nucl. Phys.79B, 276~1974!; A. M. Polyakov, Zh.
Eksp. Teor. Fiz. Pis’ma Red.20, 430 ~1974!.

@12# R. Teh, J. Phys. G16, 175 ~1990!.
@13# M. J. Duff, R. R. Khuri, and J. X. Lu, Phys. Rep.259, 213

~1995!.
@14# E. Witten, Nucl. Phys.B188, 513 ~1981!.
@15# R. Goldstone and R. Jackiw, Phys. Rev. D11,1486~1974!; E.

Tomboulis,ibid. 12, 1606~1975!; R. Jackiw, Rev. Mod Phys.
49, 681 ~1977!.

2264 55A. A. KAPUSTNIKOV, A. PASHNEV, AND A. PICHUGIN


